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Abstract: To provide a low-cost methodical way for inference-driven insight into the assessment
of SDN operations, a behavioral study of key network parameters that predicate the proper func-
tioning and performance of software-defined networks (SDNs) is presented to characterize their
alterations or variations, given various emulated SDN scenarios. It is standard practice to use sim-
ulation environments to investigate the performance characteristics of SDNs, quantitatively and
qualitatively; hence, the use of emulated scenarios to typify the investigated SDN in this paper. The
key parameters studied analytically are the jitter, response time and throughput of the SDN. These
network parameters provide the most vital metrics in SDN operations according to literature, and
they have been behaviorally studied in the following popular SDN states: normal operating condition
without any incidents on the SDN, hypertext transfer protocol (HTTP) flooding, transmission control
protocol (TCP) flooding, and user datagram protocol (UDP) flooding, when the SDN is subjected
to a distributed denial-of-service (DDoS) attack. The behavioral study is implemented primarily
via univariate and multivariate exploratory data analysis (EDA) to characterize and visualize the
variations of the SDN parameters for each of the emulated scenarios, and linear regression-based
analysis to draw inferences on the sensitivity of the SDN parameters to the emulated scenarios.
Experimental results indicate that the SDN performance metrics (i.e., jitter, latency and throughput)
vary as the SDN scenario changes given a DDoS attack on the SDN, and they are all sensitive to the
respective attack scenarios with some level of interactions between them.

Keywords: exploratory data analysis; linear regression; sensitivity analysis; software-defined networks

MSC: 68U01

1. Introduction

Data networks are becoming increasingly more ubiquitous and pervasive owing to a
plethora of applications that rely heavily on data-driven paradigms and robust information
exchange. Amongst these applications, the Internet of Things (IoT) [1] and its apparent
subset, the Industrial Internet of Things (IIoT) [2], appear to be the most dominant [3].
This is primarily because IoT and IIoT are continuously creating and offering innovative
solutions that are based on very robust, and sometimes unprecedented levels of inter-
connectivity between devices, systems and networks [1–3]. Despite added advantages
such as the decentralization of control on industrial shop floors and ubiquity of process
management [4], enhanced visualization of operations for cognition and informed decision-
making [5], and higher levels of inter-connectivity for latency critical operations [6,7],
present-day IoT and IIoT data network architectures that still suffer from the drawback of
complexity of management as they grow and become more subjected to uneven dynamic
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behavioural changes [2,3]. Software-defined networking is an approach aimed at address-
ing the complexity of management in contemporary data networks such as IoT and IIoT
data networks [2,8].

Generally, software-defined networks (SDNs) are implemented to mainly decouple
control management and data forwarding in present-day data networks [8]. To affect
this, SDNs support the flexibility, programmability, and openness of many data networks
today [8]. In a typical SDN, a network operating system, called the SDN controller, holds
the entire data network information (including topology, dynamic changes, application
requirements and security requirements) and network administrators or operators are able
to dynamically configure or program routines or instructions implemented on network
forwarding devices to guarantee optimal allocation and utilization of network resources.
With this network architecture, forwarding equipment in SDNs adopt a unified interface to
exchange data and/or information, usually in the form of packets, with the SDN controller,
which in turn can obtain the operational status of the data network for efficient traffic
engineering and other network services [8]. According to available literature, the pri-
mary challenge with the higher programmability, flexibility and openness introduced into
modern data networks such as IoT and IIoT networks by SDN-based architectures is the
increased susceptibility to security breaches such as distributed denial of service (DDoS)
flooding attacks [9].

By convention, DDoS flooding attacks are well-organized attacks that emanate from
several compromised hosts that target the nodes or end-users’ devices on the network with
the goal of usurping the available network bandwidth or rendering the nodes and end-user
devices completely unavailable. Last year, about 20 DDoS flooding attacks were launched
every minute globally [10], and they are often classified as the most dangerous malicious
traffic on the internet [11]. Consequently, DDoS flooding attacks have been extensively
discussed in available literature [12–15]. Many researchers in this domain agree that there
is not a unified way for the launching of DDoS flooding attacks; typically, perpetrators
clandestinely engage a botnet (entire networks of infected devices) to launch attacks [12,14].
As a result, operators of the device nodes on attacked networks are often blindsided and
unaware of the fact that attacks are emanating from their devices and internet protocol (IP)
addresses.

Even though DDoS flooding attacks on SDNs have been discussed extensively in the
literature [12–15], a behavioral study of the variants of DDoS flooding attacks that can
be launched on present-day SDNs using the performance metrics of the data network is
still a relatively grey area, as discussed further in Section 2. Several research efforts have
evaluated the efficiency and performance of SDNs using throughput, jitter and response
time metrics [15–19]. Thus, they are arguably the most popular SDN performance metrics.
A behavioral study of these popular SDN performance metrics under popular SDN DDoS
states will aid network administrators in characterizing and distinguishing DDoS flooding
attacks on SDN platforms. Consequently, more robust mitigation techniques, response
plans and actions can be developed to ascertain the reliability and availability of present-
day and future SDNs. In this work, a behavioral study of SDN performance metrics is
carried out for various scenarios of DDoS flooding attacks using the jitter, latency and
throughput of an emulated SDN [15,16].

The emulated SDN model used, and the associated dataset explored and analyzed,
have been typified in literature to be representative of real-world SDN and SDN scenar-
ios [15,16] (see Section 3). Hence, the further analysis carried out in this work using the SDN
model and its data are an additional work to the outcomes detailed in [15,16]. Particularly,
the performance metrics of the emulated SDN subjected to hypertext transfer protocol
(HTTP) flooding, transmission control protocol (TCP) flooding, and user datagram protocol
(UDP) flooding, given a distributed denial-of-service (DDoS) attack are analyzed to make
the following main contributions:
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• Behavioural study of popular SDN performance metrics (i.e., jitter, latency and
throughput) under real-world SDN operations (normal SDN operations and when the
SDN is subjected to popular variants of DDoS flooding attacks);

• Regression-based sensitivity analysis (RSA) of popular SDN performance metrics
(i.e., jitter, response time and throughput) to ascertain the pairwise interactions be-
tween them for real-world SDN operations (normal SDN operations and when the
SDN is subjected to popular variants of DDoS flooding attacks);

• Low-cost inference-driven assessment and characterization of real-world SDN
operations.

The remaining part of this paper is organized as follows: Section 2 summarily discusses
the related work to reemphasize the practical need of the work carried out, Section 3
describes the SDN configuration and network setup, Section 4 presents the step-by-step
procedures required in the proposed approach, Section 5 details the behavioral study and
sensitivity analysis of the SDN performance metrics for the popular variants of DDoS
flooding attacks, Section 6 highlights the guidelines for inference-based characterization of
DDoS flooding attacks on SDNs, and the concluding remarks are provided in Section 7.

2. Related Work

In comparison to traditional networks, the effect of DDoS attacks can be severe in
SDNs when attacks are launched against the infrastructure, control, and application layers
(see Section 3). Hence, a behavioral study of the performance metrics that predicate
the proper functioning of SDNs is highly essential for the instantaneous or on-the-fly
detection and evaluation of abnormal SDN operations. Typically, network performance
metrics are studied to find possible ways of enhancing the quality of service (QoS) in SDN
environments. For example, in [19], the response time and throughput metrics of the SDN
have been utilized to predict packet scheduler activities for real-time online interactive
applications (ROIA), hierarchical token bucket (HTB), stochastic fairness queueing (SFQ),
and random early detection (RED). As a result, the HTB packet scheduler and SFQ packet
scheduler were deduced to be better in terms of response time and throughput, respectively,
in comparison to the other common architectures investigated. Even though this work
correctly demonstrates that a representative subset of the SDN flows can be monitored to
effect QoS monitoring, an extensive behavioral study of the SDN metrics considered has
not been conducted.

In [17], the jitter metric and two other metrics (end-to-end delay and throughput
linked to packet loss and link utilization) have been studied to improve the QoS for SDN-
based robotic cyber-physical systems. The primary goal of the methodology presented
in [17] is to monitor network links and react to abnormal network states by dynamically
migrating flows to more stable alternative routes. As a result, it was shown that, as the
number of flows and emulation time varies, the SDN metrics (i.e., jitter, end-to-end delay,
and throughput) are altered. In each case, the QoS-aware routing scheme (QRS) proposed
in [17] opted for a path or route with less jitter, lower end-to-end delay (indicating lower
packet loss and higher available bandwidth), and more throughput. However, exploratory
analysis and statistical or inferential evaluation of the alterations of the SDN metrics in
the various SDN states were not carried out in [17]. To better validate the robustness of
SDN architectures in comparison to traditional network architectures (in the context of
future generation networks that are desired to be flexible, scalable, and highly secure),
Mininet and Graphical Network Simulator-3 (GNS3) have been used to emulate and typify
an SDN and a conventional network, respectively, for the evaluation of their respective
metrics (latency and jitter) in [18]. Even though the experimental study of the latency (SDN
performance metric in [18]) revealed that the SDN offers an average latency over three
times lower than the traditional network, a behavioral study of the network performance
metrics was neither presented nor discussed in [18].

A relatively in-depth analysis of SDN parameters or performance metrics, local sensi-
tivity analysis of throughput, response time, and jitter metrics under various SDN states
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has been reported in [16] by the authors. The results in [16] show that the throughput, jitter,
and response time metrics of the SDN are all statistically sensitive to the changes in the SDN
states from normal operations to abnormal operations, following popular DDoS flooding
attacks on the SDN. The sensitivities deduced in [16] are relative to the change of a single
SDN parameter or metric value at a time, i.e., throughput or response time or jitter, with the
jitter metric being the most sensitive. Hence, a global analysis methodology that examines
the sensitivities of the SDN parameters or metrics relative to their entire distributions or
trends presents a research gap. Sequel to the work in [16] and as a way of verifying that
the states of the SDN (categorical or discrete variables) can be effectively mapped to the
measures of its key performance metrics (numerical or continuous variables), four popular
classifiers (machine learning algorithms) are investigated in [15] for the predictive modeling
of the SDN states (normal state and DDoS flooding attack states), given a set of SDN metrics
(i.e., throughput, jitter, and response time). All the classifiers investigated in [15] show
good efficiency in detecting and classifying the SDN state. However, a behavioral study of
the SDN parameters has not been carried out per se in [15].

Based on the works discussed above, it can be said that most of the recent works in the
available literature tend to proffer solutions for enhancing QoS, detecting and classifying
the state of the SDN, given an attack such as a DDoS flooding attack. Therefore, exploratory
data analysis and regression-based sensitivity analysis to characterize and draw inferences
on the behavior of the SDN using key performance metrics, in particular, as carried out in
this work and discussed in the subsequent sections, offers a new paradigm and insight into
how to secure the SDN when it is subjected to abnormal state changes or transitions due to
attacks such as DDoS flooding attacks, based on a more robust inferential assessment of
the SDN.

3. SDN Architecture and Experimental Setup

The architecture of the SDN is explained summarily in this section to provide a
background to the experimental setup that is explained in more details in this section
as well.

3.1. SDN Architecture

Typically, SDNs are built on the separation of the data plane and the control plane of
networks to allow the logical control of network devices [20]. As illustrated in Figure 1, con-
trollers and forwarding devices constitute the basic architecture of the SDN. The controller
sits as the decision-making entity and uses information from the applications running
on devices in the network to make decisions for the data plane, whereas the forwarding
devices engage in the actual message forwarding based on stated forwarding policies [21].
Forwarding devices could be implemented in hardware or software. For the work in this
paper, the explained SDN architecture is used.

3.2. Experimental Setup

To set up the system model for the experiments in this work, a custom fat-tree topology
having three layers of switches administered by a controller, and serving a group of end
devices or hosts was created. A pictorial representation is given in Figure 2. The network
design was carried out in an open-source network emulator, specifically Mininet. Mininet
emulates realistic virtual networks consisting of links, switches, and end devices, and it
runs a real Linux kernel. Note that it is not unconventional to use emulators or simulation
techniques for network management to observe the behavior and characteristics of the
network system before deployment [22–24]. Mininet is a very popular emulator in the SDN
research domain, and networks modeled in the Mininet environment have been reported
in several works to typify real-world SDN scenarios [22–24]. Hence, its choice for the
typification of the SDN in this work.
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Figure 1. SDN architecture.

As shown in Figure 2, the custom topology is implemented on a 32 GB RAM Xeon pro-
cessor with Kali Linux as the base operating system. The floodlight controller is deployed in
VirtualBox running Ubuntu 18.10 LTS and Mininet emulator is deployed on Ubuntu 16.10
LTS. Sixteen interconnected hosts or end nodes and 10 OpenFlow switches were considered
for the experimentation. The links between the hosts and the switches support throughput
up to 100 Mbps. Although experimental, this size of the network is easily applicable to
enterprise cases and campus network scenarios. To create non-malicious traffic between the
network nodes, “iperf” and “ping” commands were used. Low Orbit Ion Cannon (LOIC)
was used to launch DDoS attacks on the network server from designated compromised
six hosts (hosts six–eight and hosts 10–12). These attacks (HTTP, TCP, and UDP DDoS
flooding attacks) were launched for 15 min each, i.e., for each round of the experiments,
subjecting the network server to 45 min of flooding attacks in total. During the duration of
these attacks, generated system properties were recorded for analysis.

For the work in this paper, the system properties of interest recorded and examined
are throughput, jitter, and response time. Their generated values were stored and used
to analyze the network performance. Conventionally, throughput is the actual amount
of traffic flowing within the network per time, jitter is the variation in the time delay
between the transmission and successful delivery of packets within the network connection,
and response time is the elapsed time between the successful initiation and successful
termination of a task within the network. More contextual relevance of these system
properties is provided in Section 3.3. After the initial custom network setup using Mininet,
SDN data were generated using the following steps:

• Step 1: Confirm connectivity between hosts on the network using “pingall” command.
• Step 2: Using “iperf”, create UDP and TCP servers to listen on different ports of the

network.
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• Step 3: Use hosts one and two to send ping requests to TCP, UDP, and HTTP servers
and measure throughput, jitter, and response time.

• Step 4: Obtain the throughput, jitter, and response time for 15 min without attack
(normal state) from the listening server port.

• Step 5: Use LOIC on compromised hosts within the system to launch TCP DDoS
flooding attack for 15 min and obtain the throughput, jitter, and response time.

• Step 6: Use LOIC on compromised hosts within the system to launch UDP DDoS
flooding attack for 15 min and obtain the throughput, jitter, and response time.

• Step 7: Use LOIC on compromised hosts within the system to launch HTTP DDoS
flooding attack for 15 min and obtain the throughput, jitter and response time.

Steps 5, 6 and 7 were implemented at different time intervals, and for each DDoS
flooding attack launched, the port numbers were changed to avoid interference in each
scenario. Each output (SDN data) obtained in the Linux environment was converted to a
.txt file and Konstanz Information Miner (KNIME) was used to extract features of interest
(i.e., throughput, jitter, and response time metrics).

Figure 2. Modeled SDN tree topology.

3.3. SDN Performance Metrics

Network performance metrics help in predicting and preventing network downtime
by identifying potential and unexpected errors on SDNs. Depending on the specific issues
that affect SDNs, not every metric is going to be important to effectively measure network
performance. There are some metrics that are essential for network administrators to
consider as performance baselines. As discussed in Section 1, the network throughput
(Tp), jitter (Jt) and response time (Rt) are core SDN performance metrics that allow for
clear indication of the network state. Based on their definitions given in Section 3.2 and
as later corroborated by their mean values in Tables 1–4, the deductions in Equation (1)
can be made a priori and a posteriori. Note that there could be exceptions to Equation (1).
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This will be particularly true for attacks that require the target node to respond by sending
packets such as internet control message protocol (ICMP), as in the case of the UDP DDoS
flooding attack [25]. In such a case, the Tp metrics can be high when the SDN is under
attack. This is also corroborated in Table 3.

Typical SDN scenarios



Tp → High (SDN is not under attack)
Tp → Low (SDN is under attack)
Rt → Low (SDN is not under attack)
Rt → High (SDN is under attack)
Jt → Stable (SDN is not under attack)
Jt → Vary a lot (SDN is under attack)

(1)

In Equation (1), it can be said that a low value for the Tp metric and high values for
the Jt and Rt metrics when the SDN is operational strongly suggest that the SDN is likely
to be under attack, whereas a high value for the Tp metric and low values for the Jt and Rt
metrics when the SDN is operational strongly suggest that the SDN is likely to not be under
attack. In other words, the network parameter variations indicate that the SDN experiences
changes due to attacks. Hence, their behavioral study is carried out in this work using the
approach proposed in Section 4.

Table 1. Descriptive statistics for Tp, Rt and Jt (over 900 samples) for normal operating scenario.

Metric Minimum Maximum Mean Median Standard Deviation

Tp 95.1000 95.9000 95.6332 95.6000 0.1402
Rt 0.0320 2.1200 0.2114 0.1980 0.1286
Jt 0.0040 0.4930 0.2271 0.1940 0.0943

Table 2. Descriptive statistics for Tp, Rt and Jt (over 900 samples) for the TCP DDoS flooding attack
scenario.

Metric Minimum Maximum Mean Median Standard Deviation

Tp 0.0000 95.9000 0.5441 0.0238 7.0999
Rt 0.2650 678.000 302.2676 299.000 110.6598
Jt 0.0040 0.4930 0.2271 0.1940 0.0943

Table 3. Descriptive statistics for Tp, Rt and Jt (over 900 samples) for the UDP DDoS flooding attack
scenario.

Metric Minimum Maximum Mean Median Standard Deviation

Tp 95.1000 95.9000 95.6332 95.6000 0.1402
Rt 0.1980 82.1000 25.3097 24.8000 7.3245
Jt 9.1610 18.4280 10.5100 10.1725 1.0496

Table 4. Descriptive statistics for Tp, Rt and Jt (over 900 samples) for the HTTP DDoS flooding attack
scenario.

Metric Minimum Maximum Mean Median Standard Deviation

Tp 0.0000 95.9000 0.7429 0.0000 8.3955
Rt 0.0200 1673.0000 49.1262 23.7000 90.9398
Jt 0.0040 0.4930 0.2271 0.1940 0.0943
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4. Proposed Approach for the Behavioral Study

The flow diagram of the proposed approach adopted for the behavioral study is shown
in Figure 3 and the essential steps are described summarily as follows:

• Step 1: Sampled SDN performance metrics (Jt, Rt and Tp) from the emulated SDN
scenarios in Section 3 are declared as inputs into scripts and functions purpose-built
for EDA and linear regression.

• Step 2: The EDA-based scripts and functions in Step 1 are firstly executed, and their
outputs are analyzed to understand and visualize the trends or distributions of Jt, Rt
and Tp metrics for inference-driven assessment and characterization of their alterations
or variations.

• Step 3: Samples of Jt, Rt and Tp metrics from Step 1 are standardized at this stage,
and their z-scores are used to derive an adaptive univariate response value for each Jt,
Rt and Tp set or sample.

• Step 4: z-scores of the SDN metrics and the derived response values are used to build
a linear regression model.

• Step 5: Coefficients and statistics of the linear regression model in Step 5 are used
to account for the sensitivities and pairwise interaction effects between the Jt, Rt
and Tp metrics for a more robust study of their behavior given the emulated SDN
scenarios.

More details about the implementation of the proposed approach are presented in
Section 5.

Figure 3. Flow diagram of the proposed behavioral study approach.

5. Analysis and Discussion

In this section, the SDN performance metrics generated based on the SDN configura-
tion discussed, and the experiments conducted in Section 3 are visualized and critically
investigated via univariate and multivariate, graphical, and non-graphical EDA meth-
ods. EDA methods such as descriptive statistics and histograms are at the core of data
science, and they have been widely used for the analysis, visualization and interpretation
of data [26]. For a more robust analysis of the SDN performance metrics, RSA is conducted
by fitting a linear regression model to understand and statistically account for the pair-
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wise interactions between the jitter (Jt), response time (Rt) and throughput (Tp) metrics
of the emulated SDN when it is operating without attack (“Normal” state) and when it is
subjected to HTTP DDoS flooding attacking (“HTTP” state), TCP DDoS flooding attack
(“TCP” state) and UDP DDoS flooding attacking (“UDP” state). All experiments analyzed
and discussed in this section have been carried out on a workstation with Intel 6-core
i7-8700 3.20 GHz CPU and 32.0 GB RAM, except where stated otherwise. The elapsed times
reported are elapsed real times from a wall clock.

5.1. Descriptive Statistics of the SDN Parameters

The description of the dataset generated according to the experiments carried out in
Section 3 are further detailed in [15,16]. However, the descriptive statistics for Tp, Rt and Jt
over the entire dataset for the emulated scenarios are reported again in Tables 1–4 to make
this work self-contained.

Similar to the inferences in [16], from Tables 1–4, it can be deduced that Tp, Rt and Jt
all vary according to the SDN scenarios indicating their susceptibility to the SDN scenarios.
The goal is to visualize and analyze the distributions, ascertain the sensitivities and un-
derstand the level of interactions of the SDN performance metrics for the respective SDN
scenarios as carried out in the following subsections.

5.2. Distributions of the SDN Parameters

To visualize the distributions of the SDN parameters under consideration for the SDN
scenarios described in Section 3, histograms with distribution fits based on probability
density function (PDF) are used. The visualizations are shown in Figures 4–6. The PDFs for
the normal distributions in Figures 4–6 with mean (µ), standard deviation (σ), and variance
(σ2) are derived as follows:

f (X, µ, σ) =
1

µ
√

2π
exp

[
− (X− µ)2

2µ2

]
(2)

From Figure 4, the following inferences can be made for Tp: (1) Tp is affected or altered
when the SDN is subjected to a DDoS flooding attack. (2) The distribution of Tp did not
change or vary noticeably when the SDN is subjected to UDP flooding attack. (3) The
distribution of Tp changed or varied noticeably when the SDN is subjected to TCP flooding
and HTTP flooding attacks with most of the metrics distributed around 0, as opposed to
the range of around 95 to around 96, when the SDN is operating normally or subjected
to UDP flooding attack. From a practical viewpoint, in Figure 4, Tp can be said to be
more susceptible to TCP and HTTP flooding attacks due to the way in which TCP and
HTTP flooding attacks work—bombardment of the target server with multiple connection
requests to consume the server’s network resources and inundation of the target server
with multiple browser-based internet requests that will eventually cause denial-of-service
to additional legitimate requests, respectively [27,28]. In a sense, Tp is typically affected
in these scenarios. However, a scenario in which the targeted server utilizes resources to
check and then responds to each received UDP packet, including spoofed UDP packets, as
in the case of the UDP flooding attack, may not necessarily affect Tp.
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Figure 4. The distributions of Tp metrics for various SDN scenarios.

Figure 5. The distributions of Jt metrics for various SDN scenarios.

From Figure 5, the following inferences can be made for Jt: (1) Jt is affected or altered
when the SDN is subjected to a DDoS flooding attack. (2) The distribution of Jt did not
change or vary noticeably when the SDN is subjected to TCP flooding and HTTP flooding
attacks. (3) The distribution of Jt changed or varied noticeably when the SDN is subjected
to UDP flooding attack with most of the metrics distributed over the range of around to
around 15, as opposed to the range of around 0 to around 0.5, when the SDN is operating
normally or subjected to TCP flooding attack or subjected to HTTP flooding attack. Jitter
is all about timing and the sequence of the arriving packets. If packets arrive in bursts
interspersed with gaps, or if they arrive out of sequence, then jitter values will be high.
From a practical viewpoint, in Figure 5, Jt can be said to be more susceptible to UDP DDoS
flooding attack due to the way in which UDP DDoS flooding attacks work—a handshake
is not required, and the targeted server is flooded with UDP traffic without first getting
the server’s permission to initiate communication [29]. In a sense, Tp and Rt are typically
not affected in this scenario. However, the impact of the UDP DDoS flooding attack can be
more severe when running voice over IP (VoIP) applications [30].

From Figure 6, the following inferences can be made for Rt: (1) Rt is affected or altered
when the SDN is subjected to a DDoS flooding attack. (2) The distribution of Rt changed or
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varied noticeably when the SDN is subjected to TCP flooding, UDP and HTTP flooding
attacks. (3) Most of the metrics are distributed over a range of around 0 to around 500 for
TCP flooding attack, a range of around 10 to around 50 for UDP flooding attack, and a range
of around 0 to around 200 for HTTP flooding attack, in sharp contrast to a range of around 0
to around 0.5, when the SDN is operating normally. From a practical viewpoint, in Figure 6,
Rt can be said to be susceptible to all the investigated DDoS flooding attacks (TCP, UDP
and HTTP) due to the nature of these attacks (already discussed above) [27–29]. As a
result, Rt is a critical network monitoring metric, and it can be drastically affected by DDoS
flooding attacks, especially in applications that require waiting for an acknowledgement
before sending any more packets. In such situations, the unified communication systems of
SDNs are often hampered.

Figure 6. The distributions of Rt metrics for various SDN scenarios.

5.3. Pairwise Covariances and Correlations of the SDN Parameters

To have the measures that indicate the extent to which the SDN performance metrics
(i.e., Jt, Rt and Tp) change in tandem (alongside each other), their pairwise covariances are
derived to have the covariance matrices reported in Tables 5–7. A measure of covariance
between any two observations (Xi and Yi) in the dataset of the SDN performance metrics
can be described mathematically as follows:

Cov(Xi, Yj) =
∑n

i=1(Xi − µX)(Yi − µY)

n− 1
(3)

where n is the total number of observations in the dataset, i is the ith observation in the
dataset, µX is the mean of all observations for X and µY is the mean of all observations for
Y such that:

Cov(X, X) = Var(X) = σ2
X (4)

Cov(Y, Y) = Var(Y) = σ2
Y (5)

where σ2
X and σ2

Y are the variances of all observations for X and Y, respectively.
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Table 5. Covariance matrix for Tp when the SDN is operating normally and subjected to popular
variants of DDoS flooding attacks.

SDN States or Scenarios Normal TCP UDP HTTP

Normal 0.0197 0.0036 0.0197 −0.0035
TCP 0.0036 50.4086 0.0036 50.3465
UDP 0.0197 0.0036 0.0197 −0.0035
HTTP −0.0035 50.3465 −0.0035 70.4837

From Table 5, the following inferences can be drawn for Tp: (1) The covariances
between the Tp metrics for the paired SDN scenarios are mostly close to or approaching
zero. This suggests that the paired values of the Tp metrics may vary independently of each
other for these paired SDN scenarios, except for when the SDN is subjected to TCP flooding
attack and HTTP flooding attack. This corroborates the analysis of the distributions of
Tp discussed in Section 5.2. (2) The large positive covariance between the Tp metrics for
when the SDN is subjected to TCP flooding attack and HTTP flooding attack indicates that,
when the Tp metric resulting from subjecting the SDN to TCP flooding attack is above its
mean, the Tp metric from subjecting the SDN to HTTP flooding attack will probably also be
above its mean, and vice versa. In other words, the paired values of the Tp metric for both
scenarios tend to increase together.

Table 6. Covariance matrix for Jt when the SDN is operating normally and subjected to popular
variants of DDoS flooding attacks.

SDN States or Scenarios Normal TCP UDP HTTP

Normal 0.0089 0.0089 −0.0022 0.0089
TCP 0.0089 0.0089 −0.0022 0.0089
UDP −0.0022 −0.0022 1.1017 −0.0022
HTTP 0.0089 0.0089 −0.0022 0.0089

From Table 6, the following inferences can be drawn for Jt: (1) The covariances
between the Jt metrics for the SDN scenarios are mostly close to or approaching zero. This
suggests that the paired values for Jt metrics may vary independently of each other for the
paired SDN scenarios. This corroborates the analysis of the distributions of Jt discussed in
Section 5.2. (2) The negative covariances between the Jt metrics when the SDN is subjected
to UDP flooding attack and when it is operating normally or subjected to TCP flooding
attack or subjected to HTTP flooding attack indicate that, when the Jt metric is above
its mean in any one of these paired SDN scenarios, it is probably below its mean in any
one of the other SDN scenarios in the same pair. In other words, an inverse relationship
exists between the Jt metrics for these paired SDN scenarios. Note that, since the negative
covariances are close to or approaching zero, the first inference could be a better generalized
inferential assessment.

Table 7. Covariance matrix for Rt when the SDN is operating normally and subjected to popular
variants of DDoS flooding attacks.

SDN States or Scenarios Normal TCP UDP HTTP

Normal 0.0165 −2.2539 0.1729 0.0314
TCP −2.2539 1.2246 × 104 −3.2816 × 102 −1.3091 × 103

UDP 0.1729 −3.2816 × 102 5.3648 × 101 6.4838 × 101

HTTP 0.0314 −1.3091 × 103 6.4838 × 101 8.2701 × 103

From Table 7, the following inferences can be drawn for Rt: (1) The covariances
between the Jt metrics for the paired SDN scenarios are mostly positive and negative. This
suggests the that Rt metrics for these paired SDN scenarios tend to be either above or below
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their means. (2) The approximately null covariance between the Rt metrics for when the
SDN is operating normally and, when it is subjected to HTTP flooding attack, suggests that
the paired values of the Rt metrics may vary independently of each other. (3) The positive
covariance between the Rt metrics when the SDN is subjected to UDP flooding attack and
when it is subjected to HTTP flooding or operating normally suggests that, when the Rt
metric is above its mean in any one of these paired SDN scenarios, it is probably above its
mean in any one of the other SDN scenarios in the same pair. In other words, the paired
values of the Jt metrics increase together for these paired SDN scenarios. (4) The negative
covariance between the Rt metrics when the SDN is subjected to TCP flooding attack and
when it is operating normally or subjected to UDP flooding attack or subjected to HTTP
flooding attack indicates that, when the Jt metric is above its mean in any one of these
paired SDN scenarios, it is probably below its mean in any one of the other SDN scenarios
in the same pair. In other words, an inverse relationship exists between the Rt metrics for
these paired SDN scenarios.

Covariances tend to be difficult to interpret, so measures of correlations are often
required for more robust analysis [26]. For example, covariances close to or approaching
null for Xi and Yi indicates that Xi and Yi vary independently of each other. This can be
observed in Tables 5–7 for Tp, Jt and Rt, respectively. In a technical sense, independence
implies correlation, but the converse or reverse is not necessarily true. To have a scaled
form of the covariance measures reported in Tables 5–7, pairwise correlation measures that
represent how strongly the SDN performance metrics are related to each other are derived
to have the correlation matrix reported in Tables 8–10. A measure of correlation between
any two sets of observations (X and Y) in the dataset of the SDN performance metrics can
be described mathematically as follows:

rX,Y =
Cov(X, Y)

µXµY
(6)

Table 8. Correlation matrix for Tp when the SDN is operating normally and subjected to popular
variants of DDoS flooding attacks.

SDN States or Scenarios Normal TCP UDP HTTP

Normal 1.0000 0.0036 1.0000 −0.0030
TCP 0.0036 1.0000 0.0036 0.84460
UDP 1.0000 0.0036 1.0000 −0.0030
HTTP −0.0030 0.8446 −0.0030 1.0000

From Table 8, the following inferences can be drawn for Tp: (1) The correlations
between the Tp metrics are mostly positive and approaching null, indicating that some
linear positive relationships exist between the Tp metrics for the SDN scenarios, but they are
not necessarily strong. (2) A perfect positive linear correlation exists between the Tp metrics
for when the SDN is operating normally and when it is subjected to UDP flooding attack.
This corroborates the analysis of the distributions of Tp metrics discussed in Section 5.2.
(3) A strong positive linear correlation exists between the Tp metrics for when the SDN is
subjected to HTTP flooding attack and when it is subjected to UDP flooding attack. This
also corroborates the analysis of the distributions of Tp metrics discussed in Section 5.2.
(4) Negative linear correlations exist between the Tp metrics for when the SDN is operating
normally and when it is subjected to HTTP flooding, and for when the SDN is subjected to
UDP flooding attack and HTTP flooding attack.
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Table 9. Correlation matrix for Jt when the SDN is operating normally and subjected to popular
variants of DDoS flooding attacks.

SDN States or Scenarios Normal TCP UDP HTTP

Normal 1.0000 1.0000 −0.0227 1.0000
TCP 1.0000 1.0000 −0.0227 1.0000
UDP −0.0227 −0.0227 1.0000 −0.0227
HTTP 1.0000 1.0000 −0.0227 1.0000

From Table 9, the following inferences can be drawn for Jt: (1) The correlations
between the Jt metrics are mostly positive and unity, indicating that perfect linear positive
relationships exist between the Jt metrics for the SDN scenarios. (2) Some of the correlations
between the Jt metrics are negative and approaching null, indicating that some negative
linear positive relationships exist between the Jt metrics for the SDN scenarios, but they
are not necessarily strong. (3) Perfect positive linear correlations exist between the Jt
metrics for when the SDN is operating normally and when it is subjected to TCP flooding
attack or HTTP flooding attack, and for when the SDN is subjected to TCP flooding attack
and HTTP flooding attack. This corroborates the analysis of the Jt metrics carried out
earlier. (4) Negative linear correlations exist between the Jt metrics for when the SDN is
operating normally and when it is subjected to UDP flooding attack, and for when the SDN
is subjected to UDP flooding attack and TCP flooding attack or HTTP flooding attack. This
also corroborates the analysis of distributions of the Jt metrics discussed in Section 5.2.

Table 10. Correlation matrix for Rt when the SDN is operating normally and subjected to popular
variants of DDoS flooding attacks.

SDN States or Scenarios Normal TCP UDP HTTP

Normal 1.0000 −0.1584 0.1836 0.0027
TCP −0.1584 1.0000 −0.4049 −0.1301
UDP 0.1839 −0.4049 1.0000 0.0973
HTTP 0.0027 −0.1301 0.0973 1.0000

From Table 10, the following inferences can be drawn for Rt: (1) Some of the corre-
lations between the Rt metrics are positive and approaching null, indicating that some
linear positive relationships exist between the Rt metrics for the SDN scenarios, but they
are not necessarily strong. (2) Some of correlations between the Jt metrics are negative,
indicating that some negative linear positive relationships exist between the Rt metrics for
the SDN scenarios. (3) Significant positive linear correlations exist between the Rt metrics
for when the SDN is operating normally and when it is subjected to UDP flooding attack.
This corroborates the analysis of the distributions of Jt metrics discussed in Section 5.2.
(4) Significant negative linear correlations exist between the Rt metrics for when the SDN
is operating normally and when it is subjected to TCP flooding attack, and for when the
SDN is subjected to TCP flooding attack and when it is subjected to UDP flooding attack or
HTTP flooding attack. This also corroborates the analysis of the distributions of Jt metrics
discussed in Section 5.2.

The single run of the EDA implementation costs about 3.2 s in total on the workstation
mentioned above. Thus, it can be said, in practice, a suitable augmentation of the EDA
process that features as a complementary add-on or toolbox to existing SDN monitoring
and evaluation software will likely offer a promising data analytic framework for real-time
trend analysis, pattern recognition and overall monitoring and evaluation of SDN traffic
and performance metrics to an order of less than 5 s on conventional workstations, for every
15-min samples of SDN data collected. This time window is sufficient and reasonably short,
and it will ultimately reduce the current average time required to respond to potential
attacks on real-world SDNs because inferences can be made in a shorter time.
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5.4. Regression-Based Sensitivity Analysis of the SDN Parameters

Regression analysis is a popular and widely used data-driven methodology [31]. It is
a form of supervised learning, and it is typically implemented as linear regression analysis
in the conventional analysis of data such as SDN data [32]. Primarily, it allows for a
methodical and mathematical way of sorting the impact of the independent variable(s) on
the associated dependent variable in each given dataset. In doing so, the significance of
the independent variable(s) and the interactions between them relative to the dependent
variable can be understood as discussed in the following subsections for the SDN data in
this work.

5.4.1. Feature Scaling and Feature Engineering

Feature scaling and feature engineering are very common data pre-processing pro-
cedures in the implementation of machine learning [33,34] when supervised learning
techniques such as classification and/or regression are employed. Feature scaling mainly
involves the normalization of the range of the features or independent variables in the
dataset to ensure that each feature or independent variable contributes relative similar
numerical weights (approximately proportionally) to the targets [34]. Feature engineer-
ing on the other hand involves the transformation of raw datasets into datasets that are
characterized with informative features having high predictive power [33]. Depending on
the nature of the raw datasets being analyzed and the intended machine learning process,
feature scaling and feature engineering can be implemented in a number of ways [33,34].
In this work, feature scaling and feature engineering have been implemented according to
Equations (7) and (8) [15], respectively:

zi =
(Xi − µX)

σX
(7)

where zi is the z-score of the ith observation in a given data sample, X, having a mean and
standard deviation of µX and σX , respectively:

AURV = (Toi ,z
p − (Joi ,z

t + Roi ,z
t )) × w (8)

where w ∈ (0,1) is a random weight that is uniformly distributed, and it penalizes AURV
based on the operating condition that the ith SDN event or scenario is linked to. The values
of w are deduced as follows:

w =

{
0 < w < 0.5; If SDN scenario is ‘Normal’.
0.5 < w < 1; Otherwise.

(9)

Equation (7) ensures that Tp, Jt and Rt metrics all have a zero-mean (when subtracting
µTp , µJt , and µRt , respectively) and unit-variance. It also ensures that the gradient descent
of the linear regression implementation moves smoothly towards the minima and that the
gradient descent steps are updated at a similar rate for the Tp, Jt and Rt metrics prior to
the linear regression implementation (see Section 5.4.2). This is because machine learning
techniques such as linear regression that use gradient descent for the minimization of
the loss function are highly sensitive to the range of the input features as mathematically
described in the next subsection.

A multivariate visualization of the standardized metrics for Tp, Jt, and Rt and the
resulting values of AURV across all the SDN scenarios are reported using a parallel coordi-
nates plot shown in Figure 7. From Figure 7, it can be inferred that the relative numeric
weights of standardized Tp, Jt and Rt metrics are proportionate in their contributions to
the values of AURV. Note that the derivation in Equation (8) allows for the creation of an
artificial boundary between the normal SDN scenario (normal operating state of the SDN)
and other SDN scenarios (TCP, UDP and HTTP SDN scenarios—states in which the SDN is
subjected to TCP flooding, UDP flooding and HTTP flooding DDoS attacks, respectively)
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as verified in [15] and revealed again in Figure 8 to make this work self-contained; hence,
it is adopted in this work. However, in contrast to the work carried out in [15], where
AURV is used as a feature or independent variable to address a classification problem; it is
introduced and used as a mathematical cost function to reflect scenario-specific targets for
all states of the emulated SDN in terms of the performance metrics (i.e., Tp, Jt and Rt) in this
study. Note that, for the parametric study of SDNs via supervised learning, the derivation
of mathematical cost functions to synthetically generate the targets is not unconventional,
and it has recently been typified in [16].

Figure 7. Parallel coordinates of the zero scores of Tp, Jt and Rt metrics for all the SDN scenarios.

Figure 8. Trend of the AURVs for Tp, Jt and Rt metrics for all the SDN scenarios.

5.4.2. Regression Analysis

For the sensitivity analysis of the SDN dataset, supervised learning (linear regression)
is carried out to ascertain the interactions between the performance metrics (i.e., Tp, Jt
and Rt) as the SDN is being subjected to DDoS flooding attacks (i.e., as AURV changes
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according to changes in the ordered triads or combinations of Tp, Jt and Rt for instances
on the SDN). Note that, with this approach, the standardized regression coefficients are
employed directly to evaluate sensitivity [35]. The linear regression implementation can be
mathematically described as follows:

AURVi = f (Ti
p, Ji

t , Ri
t, β) + ei (10)

where AURVi, Ti
p, Ji

t , Ri
t, β and ei are the AURV, Tp, Tt and Rt, unknown parameters

(typically, scalar coefficients) and error terms (typically, scalar), respectively, for the ith
observation in the SDN data set. Equation (10) is then used to predict AURV for new or
arbitrary values of Tp, Jt and Rt.

In terms of computational complexity, linear regression implementation is generally
aimed at solving the linear or matrix algebra problem described as follows:

(AA′)−1 × A′B (11)

where A is the explanatory or predictor or independent variable, and it is a (3600 × 3)
matrix as discussed in Section 3, A′ is the transpose of A, and B is the response or target
or independent variable, and it is a (3600 × 1) matrix. As a result, A holds all the Tp,
Tt and Rt metrics for all the SDN scenarios investigated, and B holds the corresponding
AURV values for the metrics.

Considering Equation (11) and the dimensions of A and B, respectively, the matrix
product A× A′ will have a complexity of O(32 × 3600), the matrix–vector product A′ × B
will have a complexity of O(3× 3600), and the inverse operation A× A′−1 will have a
complexity ofO(33). Hence, the overall complexity of the linear regression implementation
becomesO(3600× 32 + 33), such that, for any SDNn total number observations on the SDN
having any SDNp metrics, the complexity may be generalized and estimated as follows:

O(SDNn × SDN2
p + SDN3

p) (12)

where SDNn and SDNp assume their values according to the given linear regression problem.
To build the linear regression model, the built-in function “fitlm” in MATLAB’s statis-

tics and machine learning toolbox is used [36], and it costs about 3.3 s on the workstation
described above. The algorithmic framework of “fitlm” premises on QR decomposition
or factorization and the use of M-estimation for robustness [37]. M-estimation formulates
estimating equations and solves them using the iteratively re-weighted least squares (IRLS)
method [38]. The linear regression model built as a result can be mathematically described
as follows:

AURV ≈ 1 + Tp × Jt + Tp × Rt + Jt × Rt (13)

Equation (13) corresponds to:

AURV = β0 + β1 × Tp + β2 × Jt + β3 × Rt + ε (14)

where β0, β1, β2 and β3 are the coefficients and ε is the error term. The coefficient of
determination (R-squared value) of the regression model is then deduced as follows:

1− SSE
SST

= 0.926 (15)

where SSE is the sum of squared estimate of errors (i.e., sum of the predicted deviations
from the actual empirical values of the data, also known as the sum of the squares of
residuals), and SST is the sum of squares total or total sum of squares (the sum over all
squared differences between the observations and their overall mean). An R-squared
value (R2) of 0.926 for the regression model also indicates that 92.6% of response variable
variation is explained by the regression model. This relatively large value of R2 indicates
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that the model’s response is in fact linear and the approach of using the standardized
regression coefficients as direct measures of sensitivity is suitable [39,40].

To further analyse the linear regression model, its root mean square of error (RMSE) is
deduced as follows: √

∑n
i=1 (AURVi − AURVi

′
)

2

n
= 0.235 (16)

where AURVi and AURV
′
i are the actual and predicted AURV for the ith SDN observation

among all the SDN observations (i.e., n = 3600) visualized in Figure 8. An RMSE value of
0.235 (low and tending towards to null) indicates that the linear regression model is of a
high quality [41].

Since the regression analysis involves multiple predictors or explanatory variables
(i.e., Tp, Tt, and Rt), an added variable plot shown in Figure 9 is used to visualize the
transformations of AURV that nets out the influence of all transformations of Tp, Jt and Rt
(i.e., the whole model) as recommended in [42]. The chosen level of statistical confidence is
95%-based such that, if the confidence interval excludes a null slope, the model is likely to
be statistically significant [42]. Figure 9 shows that the linear regression model is significant
because a horizontal line does not fit between the confidence bounds, as revealed in the
zoomed in section of Figure 9.

The summary of the estimated coefficients and statistics for the linear regression model
are detailed in Table 11. According to the p-Values (all ≪ 0.05) for the t-statistic of the
hypothesis test that the corresponding coefficient is equal to zero or not in Table 11, AURV
(the response or target variable) differs significantly according to Tp, Jt and Rt metrics (the
explanatory variables) and the pairwise interactions between them at the 5% significance
level or 95% confidence level. Thus, all the SDN metrics and the pairwise interactions
between them are significant.

Figure 9. Added-variable plot for the linear regression model.

The main and interaction effects of the linear regression model in Figure 9 and de-
scribed in Table 11 are explored to characterize the sensitivity of Tp, Tt and Rt relative to
the changing SDN scenarios numerically factored into AURV. The plots of the main effect,
interaction effect between Tp and Jt, interaction effect between Tp and Rt and interaction
effect between Rt and Jt are shown in Figures 10–13, respectively.
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Table 11. Summary of estimated coefficients and statistics for the regression analysis.

Variables or Parameters Estimate Standard Error t-Statistic p-Value

Intercept 0.8684 0.1298 6.6904 2.5721 × 10−11

Tp 1.2461 0.0988 12.6090 1.0575 × 10−35

Jt −0.81759 0.1304 −6.2695 4.0527 × 10−10

Rt 0.3714 0.0936 3.9665 7.4360 × 10−5

Tp : Jt −0.7082 0.1604 −4.4140 1.0448 × 10−5

Tp : Rt 2.1865 0.1657 13.1920 7.6537 × 10−39

Jt : Rt −1.8678 0.1555 −12.0090 1.3344 × 10−32

Figure 10. Main effect: Tp, Jt, and Rt metrics for all the SDN scenarios.

From Figure 10, the following inferences can be made: (1) An increase in Tp from
−1.0067 to 0.9988 causes an expected 3-unit increase in AURV, given all else held constant.
(2) An increase in Jt from −0.6230 to 3.4851 causes an expected 3-unit decrease in AURV,
given all else held constants. (3) An increase in Rt from −0.6707 to 11.2085 causes an
expected increase of over four units in AURV, given all else held constants. (4) Tp, Jt and Rt
metrics are all sensitive to changes in the SDN scenarios as inferred by the main effects
on AURV. From a practical viewpoint, it can be said that, as the SDN transitions from its
normal operating state to other states because of DDoS flooding attacks, its key performance
metrics (i.e., Tp, Jt, and Rt) fluctuate with some level of interactions between them for every
change that they undergo. This can be expected due to the intrinsic interdependence
between the performance metrics. For example, Rt is related to the latency of the SDN, and
Jt is a factor of the change in latency of the SDN.

From Figures 11–13, the following inference can be made: (1) For each of the explana-
tory variables or predictors (i.e., Tp and Jt) in Figure 11, the main effect point (blue circle as
in Figure 10) and the conditional effect points (red circles showing the impact of varying
Tp and Jt) are not all exactly vertically aligned. This indicates the existence of interaction
effects on the response variable (i.e., AURV). This corroborates the p-value of Tp:Jt in
Table 11, 1.0448 × 10−5, which is much lower than 0.05. (2) For each of the explanatory
variables or predictors (i.e., Tp and Rt) in Figure 12, the main effect point (blue circle as
in Figure 10) and the conditional effect points (red circles showing the impact of varying
Tp and Rt) are not all exactly vertically aligned. This indicates the existence of interaction
effects on the response variable (i.e., AURV). This corroborates the p-value of Tp:Rt in
Table 11, 7.6537 × 10−39, which is much lower than 0.05. (3) For each of the explanatory
variables or predictors (i.e., Jt and Rt) in Figure 13, the main effect point (blue circle as in
Figure 10) and the conditional effect points (red circles showing the impact of varying Tp
and Rt) are not all exactly vertically aligned. This indicates the existence of interaction
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effects on the response variable (i.e., AURV). This corroborates the p-value of Tp:Rt in
Table 11, 1.3344 × 10−32, which is much lower than 0.05.

Figure 11. Interaction effect: Tp and Jt metrics for all the SDN scenarios.

Figure 12. Interaction effect: Tp and Rt metrics for all the SDN scenarios.

Figure 13. Interaction effect: Jt and Rt metrics for all the SDN scenarios.
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6. Guidelines for Inference-Based Assessment of SDN

In this section, guidelines are provided for the inference-based assessment of SDNs
using Tp, Jt and Rt metrics. Specifically, in Table 12, a summarized qualitative assessment
of SDN based on the EDA and regression analysis carried out in Section 5.4.2 of this article
is outlined. These guidelines will prove useful for network operators and administrators
in characterizing the distribution of the considered flooding attacks—thus shortening the
response time to handle these attacks in typical SDN environments.

Table 12. Summarized EDA-based qualitative assessment of SDN metrics.

Metric TCP Flooding HTTP Flooding UDP Flooding

Tp

Significant mean shift and
deviation from the “normal”
scenario (mean zeroing),
and significant expansion
of distribution spread.

Insignificant deviation
from the normal
scenario

Significant mean shift and
deviation from the “normal”
scenario (mean zeroing),
and significant expansion
of distribution spread.

Jt

Insignificant deviation
from the “normal”
scenario.

Significant (positive)
shifting of the mean of
the distribution.

Insignificant deviation
from the “normal”
scenario.

Rt

Significant (positive)
expansion of the spread of
the distribution,
and significant (positive)
mean shift.

Slight (positive) mean
shift and expansion of
the distribution spread.

Significant expansion of the
spread and mean zeroing.

From Table 12 above, it can be inferred that the DDoS flooding attack will likely be a
TCP flooding attack when the distributions of Tp and Rt experience a significant (positive)
shift from the “normal” state and a significant expansion of the distribution spread with
the distribution of Jt remaining unaffected. Similarly, a UDP DDoS flooding attack can be
inferred when the distribution of Tp experiences insignificant deviation from the “normal”
state, whereas both Jt and Rt experience mean shifts and distribution spread expansion.
However, the mean shift in the distribution of Rt is slight and that of Jt is significant.
From the RSA, Tp, Jt and Rt metrics of the SDN are all sensitive to the respective DDoS
flooding attacks. Tables 13 and 14 provide a summarized RSA-based qualitative assessment
of the sensitivities and pairwise interactions of the studied network parameters (i.e., Tp, Jt,
and Rt metrics), respectively.

Table 13. Summarized RSA-based qualitative assessment of SDN metrics (sensitivities).

Metric Comment

Tp Sensitive.

Jt Sensitive.

Rt Very sensitive.

Table 14. Summarized RSA-based qualitative assessment of SDN metrics (pairwise interactions).

Pair Comment

Tp:Jt Significant interaction.

Tp:Rt Most significant interaction.

Jt:Rt Very significant interaction.
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7. Conclusions

EDA and RSA have been employed to undertake a behavioral study of SDN param-
eters (Tp, Jt and Rt) given emulated SDN scenarios that are representative of popular
real-world SDN events or states (normal operating condition without any incidents on
the SDN, and hypertext transfer protocol (HTTP) flooding, transmission control protocol
(TCP) flooding and user datagram protocol (UDP) flooding, when the SDN is subjected to
a distributed denial-of-service (DDoS) attack). As a proposed methodology in this paper,
the behavioral study reveals that the trends or distributions of Tp, Jt and Rt performance
metrics on the SDN vary according to given SDN events or states via EDA, and the suc-
ceeding RSA ascertains the existence and level of pairwise interactions between the SDN
performance metrics (Tp, Jt and Rt) used to evaluate the emulated SDN scenarios, both
validating the proposed methodology. The findings of the EDA and RSA carried out are
summarized to provide SDN administrators and operators with inference-based guidelines
for the appraisal of SDNs. Even though these guidelines are not exhaustive, they are ex-
pected to be sufficient in informing SDN administrators and operators about the likelihood
of an attack on the SDN based on analysis and visualization of the SDN performance
metrics. In the future, real-world on-the-fly SDN data will be used to corroborate the
investigations and findings in this work as a backbone for the development of full-fledged
guidelines for SDN administrators and operators.

Author Contributions: Conceptualization, M.O.A.; Data curation, M.O.A. and A.O.S.; Formal analy-
sis, M.O.A., A.O.S. and U.E.U.; Investigation, M.O.A. and A.O.S.; Methodology, M.O.A.; Software,
M.O.A.; Validation, M.O.A., A.O.S., and U.E.U.; Writing—original draft, M.O.A., A.O.S. and U.E.U.;
Writing—review & editing, M.O.A., A.O.S. and U.E.U. All authors have read and agreed to the
published version of the manuscript.

Funding: The APC for this work was supported in part by the Faculty of Arts, Science and Technology,
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