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Abstract: Heat exchangers are usually designed using a sophisticated process of trial-and-error to
find proper values of unknown parameters which satisfy given requirements. Recently, the design of
heat exchangers using evolutionary optimization algorithms has received attention. The major aim of
the present study is to propose an improved Gaussian quantum-behaved particle swarm optimization
(GQPSO) algorithm for enhanced optimization performance and its verification through application
to a multivariable thermal-economic optimization problem of a crossflow plate–fin heat exchanger
(PFHE). Three single objective functions: the number of entropy generation units (NEGUs), total
annual cost (TAC), and heat exchanger surface area (A), were minimized separately by evaluating
optimal values of seven unknown variables using four different PSO-based methods. By comparing
the obtained best fitness values, the improved GQPSO approach could search quickly for better global
optimal solutions by preventing particles from falling to the local minimum due to its modified local
attractor scheme based on the Gaussian distributed random numbers. For example, the proposed
GQPSO could predict further improved best fitness values of 40% for NEGUs, 17% for TAC, and 4.5%
for A, respectively. Consequently, the present study suggests that the improved GQPSO approach
with the modified local attractor scheme can be efficient in rapidly finding more suitable solutions for
optimizing the thermal-economic problem of the crossflow PFHE.

Keywords: plate–fin heat exchanger; thermal-economic optimization; improved Gaussian quantum-behaved
particle swarm optimization; modified local attractor

MSC: 49N30; 65K10; 80M50; 80M60; 90C31

1. Introduction

A crossflow plate–fin heat exchanger (PFHE) is a compact heat exchanger composed
of flat plates and fins that increase the heat transfer area. Hot and cold fluid streams in
passages between the plates generate high heat transfer rates. On the one hand, since
a crossflow PFHE can operate with any combination of liquids or two-phase fluids, its
design offers a high degree of flexibility. Thus, this type of heat exchanger is widely used
in many industries, such as in aerospace, energy conversion, and utilization because of
its compact size, light weight, and effectiveness [1]. On the other hand, a disadvantage
of a crossflow PFHE is higher operational and installation costs than conventional heat
exchangers, due to a higher level of detail during manufacture [1]. As the demand for heat
exchangers becomes more complex and diversified, it is becoming more challenging to
simultaneously derive optimum values of several design variables that satisfy given opera-
tional requirements by using the conventional design approach of trial-and-error. Hence,
recently, meta-heuristic (or evolutionary) optimization techniques have been introduced by
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many researchers to improve the efficiency and productivity of the heat exchanger design
process. For example, Yousefi et al. [2] proposed an imperialist competitive algorithm (ICA)
to optimize a heat exchanger. In their study, the ICA was used, in which empires compete
to take over each other’s colonies. Objective functions, such as minimization of the total
weight and total annual cost for the heat exchanger, were optimized with the proposed
algorithm. Wang and Li [3] used the cuckoo algorithm for an irreversibility analysis of
PFHEs. To achieve a better optimal solution, a non-uniform mutation operator was applied
to the algorithm [3]. Khosravi et al. [4] presented an adaptive multitracker optimization
algorithm (AMTOA) for global optimization problems and also applied it to solve chal-
lenging chemical engineering optimization problems including designing a heat exchanger
network. Naruei and Keynia [5] proposed the wild horse optimizer (WHO) algorithm and
evaluated the efficiency of the proposed algorithm in solving a heat exchange network
design problem. In addition, many different heuristic optimization algorithms have been
successfully proposed and applied to various practical problems [6–10].

Among the various meta-heuristic optimization techniques, particle swarm optimiza-
tion (PSO) is a recently preferred population-driven optimization algorithm that models
social-psychological behaviors, such as those of bird flocks or individuals, and is known as
a simpler and more intuitive computational technique as compared with other heuristic
optimization methods [11–13]. However, a major disadvantage of the PSO algorithm is the
high possibility of premature convergence to a local minimum, which leads to a failure
of searching global optimal solutions. To improve this performance degradation, several
variants of the PSO methods have been developed and introduced by many researchers.
For example, the quantum-behaved PSO (QPSO) algorithm was proposed based on the
Schrödinger equation for the state of a particle [13–16]. Cai et al. [17] proved that the
QPSO algorithm could avoid the local minimum during the optimization process and
could produce an outstanding performance as compared with that of the basic PSO algo-
rithm. Since most thermal systems are multivariable or multidimensional problems, more
in-depth studies on heat exchangers that utilize the QPSO scheme are still needed. There
has also been discussion on convergence and accuracy issues using a random function in
the QPSO scheme. Gaussian distributed random numbers were introduced by Coelho [18]
and it was found that the effectiveness of the QPSO was significantly improved [18]. This
Gaussian QPSO (GQPSO) algorithm utilizes the Gaussian probability distribution to allow
a continuous searching process with a series of mutation operators. However, a literature
review revealed that the GQPSO algorithm has not yet been applied to the optimization
problems of thermal system design.

Thus, in the present study, the first aim is to propose an improved approach based
on the GQPSO algorithm for optimizing thermal system design and its operational per-
formance. To verify the improved searching capability of the proposed improved GQPSO
algorithm, its optimization results are compared with those of the basic PSO and original
GQPSO methods for the design optimization problem of a PFHE with the same constrained
search space suggested by Zarea et al. [19]. Regarding the second aim, the proposed GQPSO
algorithm is applied to the thermal-economic optimization problem of a heat exchanger
for validation of its usefulness. For this purpose, a crossflow PFHE design was chosen for
the multivariable thermal-economic optimization problem. Three single objective func-
tions: the number of entropy generation units (NEGUs), total annual cost (TAC), and heat
exchanger surface area (A), were minimized separately by evaluating optimal values of
seven unknown design variables under different calculating complexities with a specified
heat power range, using the basic PSO, the original GQPSO, and the improved GQPSO
methods. By comparing the calculation results of each method, the better efficiency and
outperformance of the improved GQPSO algorithm were verified for the present thermal-
economic design problem of a crossflow PFHE. Through the above investigations, the
results of the present study suggest that the improved GQPSO algorithm can be efficient
for the thermal-economic design optimization problem of a crossflow PFHE.
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2. Materials and Methods
2.1. Particle Swarm Optimization

The basic PSO algorithm was suggested by Kennedy and Eberhart [20], as shown in
Figure 1. As seen in a schematic of the basic PSO algorithm, an unplanned distributed
population of potential solutions is initially generated in the algorithm, named particle
i, where the subscript i = 1, 2, . . . , Np indicates the number of particles of a swarm or
population, and each particle has multivariables j = 1, 2, . . . , Nv. The present position in the
search space, i.e., xij, can move until the calculation stops at a predefined maximum iteration
tmax. When a particle seeks the global best position within the swarm, the remaining
particles will follow it. During iterations, every particle of the swarm searches for its own
best experience and updates to particle best (Pbest). Then, the particle communicates the
latest global best (Gbest) information for all particles and moves to a new position. The
velocity vector of individual particles vij(t + 1) is generated, and then, xij(t + 1) is updated
as below [15,20,21]:

vij(t + 1) = w × vij(t) + c1r1[pi − xij(t)] + c2r2[pg − xij(t)], (1)

xij(t + 1) = xij(t) + vij(t + 1). (2)

Figure 1. Concept of particle swarm optimization (PSO) algorithm.

Here, pi is the best position for each particle (Pbest), and pg is the best suitable position
for all particles (Gbest), where pi = [p1, p2, . . . , pNp] represents the Pbest of the ith particle, r1
and r2 are the uniformly distributed random numbers between 0 and 1, c1 is the particle
cognition coefficient, c2 is the social collaboration coefficient; w is the inertia weight for
the convergence and is an essential parameter to balance the exploration and exploitation
behaviors between Pbest and Gbest [20], which determines the contribution rate from
particle velocity to the new velocity at each iteration. Usually, w is chosen as a constant
value such as 1, but the inertia weight is defined as a linearly decreasing function with time
for better convergence, as below:

w = wmax − (wmax − wmin)×
t

tmax
, (3)

where wmin and wmax are the initial and final values of inertia weight, respectively, which
are set as 0 and 1 in this study. The dynamic inertia weight has been proven to balance the
exploration and exploitation features of the PSO methods for better performance [21,22].

2.2. Gaussian Quantum-Behaved Particle Swarm Optimization

A particle can exist along an absolute trajectory in conventional Newtonian mechanics,
but the particle moves in a probability haze in quantum mechanics [18,23]. In the quantum
world, xij and vij of a particle cannot be determined directly, but the particle has a possibility
of being at the position. In the QPSO method, the state of a particle is positioned by the
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wave function ψ[xij(t)] [18], instead of directly calculating the position and velocity vectors.
Therefore, the behavior of the particles is dynamic in the QPSO, which is different from the
basic PSO algorithm. In the QPSO algorithm, the Monte Carlo method is embedded, and
thus, the particles can move according to the following iterative equation [14]:{

xij(t + 1) = Pi+β·
∣∣Mbest− xij(t)

∣∣·ln(1/ui) if k > 0.5
xij(t + 1) = Pi−β·

∣∣Mbest− xij(t)
∣∣·ln(1/ui) if k < 0.5

, (4)

where β is the contraction–expansion coefficient, which plays a similar role as inertia
weight in the basic PSO and ui or k is a uniform probability function in the range [18]. The
mean best Mbest should be defined as the mean of the Pbest for all particles and iterations
as follows:

Mbest =
1

Np

Np

∑
i=1

pi(t), (5)

Pi is the local attractor between the global and particle bests, considering the weighted
constants c1 and c2.

Pi =
c1 pi + c2 pg

c1 + c2
. (6)

Figure 2 shows a flowchart that compares the basic PSO algorithm with the QPSO
algorithm. The initialization process is similar, but the intermediate step of the QPSO
algorithm is different in that it calculates Mbest and Pi to reach an optimum solution, which
are parameters that are controlled by a series of random numbers.

Figure 2. Flowcharts of PSO-based algorithms. (a) Basic PSO; (b) QPSO or GQPSO.

Although the QPSO algorithm can escape local minima using many random num-
bers, the particles may change drastically from the current position, which may lead to
an unexpected divergence [18]. To reduce this unwanted divergence, the GQPSO algo-
rithm employs the Gaussian distributed random number selection process by Coelho [18],
which allows for fine-tuning due to the probability of having a large number around
the current point. The GQPSO algorithm uses the absolute value of the Gaussian prob-
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ability distribution with unit variance and zero mean as G = abs[N(0,1)], where N is the
unit normal distribution function. In particular, Coelho [18] introduced the following
three GQPSO schemes with different mutation operators to achieve better convergence as
described below:

1. Approach 1: use Ui = abs[N(0,1)] instead of ui{
xij(t + 1) = Pi+β·

∣∣Mbest− xij(t)
∣∣·ln(1/Ui) if k > 0.5

xij(t + 1) = Pi − β·
∣∣Mbest− xij(t)

∣∣·ln(1/Ui) if k < 0.5
, (7)

2. Approach 2: use G = abs[N(0,1)] and g = abs[N(0,1)] instead of c1 and c2 at Pi;

Pi =
Gpi + gpg

G + g
. (8)

3. Approach 3: use both Approach 1 and Approach 2.

Here, G, g, and Ui are different Gaussian-distributed random numbers. Although
the flowchart of the GQPSO algorithm illustrated in Figure 2 looks similar to the QPSO
algorithm, Coelho’s work [18] revealed that the GQPSO could be a powerful strategy
algorithm by employing a Gaussian mutation operator instead of the random sequences in
the QPSO algorithm, and therefore, improve the search performance of optimum solutions
of unknown variables by preventing premature convergence to local optima. The QPSO
and GQPSO algorithms also have some disadvantages. For example, they usually require
longer calculation times as compared with the basic PSO algorithm because many random
numbers need to be generated during the search process for the optimum solutions. In
addition, when the same constants are used, the GQPSO and QPSO algorithms tend to
become more biased weighted to Pbest than to Gbest, because Pbest is used twice to calculate
Pi and Mbest, as seen in Equation (7), while Pbest and Gbest of the basic PSO method
balance each other by setting the same value for c1 and c2. Thus, the GQPSO method
without consideration of a proper balance of Pbest and Gbest may predict a false or local
minimum. To prevent this, an improved approach based on the GQPSO algorithm is
proposed to balance between Pbest and Gbest by introducing a modified local attractor Pi,
as describe below:

4. Newly improved approach: use Equation (7) with Ui = abs[N(0,1)] and modified local
attractor Pi

Pi =
c1Gpi + c2gpg

c1G + c2g
. (9)

as defined in Equation (9), the improved GQPSO approach employs random number
generation based on Gaussian distribution when calculating its local attractor Pi; c1
and c2 are the weighting constants, similar to those of the basic PSO. In addition, G,
g, and Ui are different Gaussian distributed random numbers used for the original
GQPSO algorithm (Approaches 1, 2 and 3). Moreover, c2 is weighted to Gbest to
balance with Pbest in the improved GQPSO, and c2 is assumed to be increased by a
multiple of c1 (for example, c1 = 1 and c2 = 3).

2.3. Constraints Handling

Constraint handling techniques are applied in the proposed optimization algorithm,
which involve numerical attempts to solve only the feasible space using a modified
fitness function [18]:

min f (xij) =

{
f (xij) if xij ∈ Ω
f (xij) + penalty(xij) otherwise

. (10)
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A penalty function can be a check tool for how many feasible particles are in Ω. In
thermal system engineering problems such as the design of a crossflow PFHE, xij, vij,
and pij contain multivariable or multidimensional vectors, and, therefore, many particles
can be filtered. In this study, two repair rules are considered. The first step operates to
find solutions for each variable within the upper bound (UB) and lower bound (LB), that
is, xij ∈ [LBj,UBj]. When xij is located beyond the two bounds, the following repair rule
is applied.

Vj =

{
Vj = LBj if Vj < LBj

Vj = UBj if Vj > UBj
, (11)

The second step is to check whether or not the decision variable g(xij) is of bounded
inequalities [18]:

min f (xij) =

{
f (xij) if g(xij) ∈ Ω
f (xij) + q·g(xij) otherwise

, (12)

where q is a positive constant, such as 100,000 in this study. As defined in Equation (12), the
minimum objective function values of the particles existing within the feasible calculation
region (Ω) are considered to be possible candidates for global optimal solutions (Gbest),
while the minimum objective function values of other particles that violate the given
constraints are multiplied by an arbitrary large constant (q) to be excluded as possible
candidates for Gbest. As a result, proper values of Gbest can be attained only among the
feasible particles. Although a value of 5000 for q has been suggested in a previous study [18],
a much higher number (100,000) was chosen to definitely exclude the particles beyond the
given constraint region.

3. Crossflow Plate–Fin Heat Exchanger

In the present study, thermal design optimization is investigated with the crossflow
PFHE configuration in Figure 3, which includes many alternative layers of corrugated
metal fins and plates. The following assumptions are defined for comparison with other
literature before the calculation of the heat exchanger:

• Nc = Nh + 1, where Nc and Nh are the number of fin layers for cold and hot fluids,
respectively.

• Heat exchange and heat distribution are considered uniform.
• The heat exchanger works under a steady-state.
• Longitudinal thermal resistance or heat transfer of the walls is negligible.
• The fouling or aging effect is neglected for the heat exchanger.
• The fluid physical property does not change with temperature.
• The geometry of offset-strip-fins is identical for both gases.
• Hot and cold gases are considered the ideal gases.

Figure 3. Schematic of corrugated crossflow PFHE.
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The present optimization study employs the ε-NTU method to investigate the heat
exchanger’s efficiency in the modeling. The well-known effectiveness of the crossflow
PFHE is used for two unmixed fluids [24]:

ε = 1− exp
{(

1
Cp,r

)
NTU0.22

[
exp

(
−Cp,r NTU0.78

)
− 1
]}

, (13)

where Cp,r = Cp,min/Cp,max, and the number of transfer units (NTU) is defined as follows:

1
NTU

= Cp,min

[
1

(hA)h
+

1
(hA)c

]
, (14)

The heat transfer coefficient can be described in terms of the Colburn factor j:

h = jCpJPr−(2/3), (15)

where Pr is the Prandtl number. The mass flux velocity J can be expressed as
.

m/Aff where
Aff is the free flow area for hot and cold sides as below:

Aff,h = (H − tt)(1 − ntt)LcNh, (16)

Aff,c = (H − tt)(1 − ntt)LhNc, (17)

Therefore, the heat exchanger surface area for both hot and cold sides, A (= Ah + Ac),
can be calculated in Equations (18) and (19)

Ah = LhLcNh[1 + 2n(H − tt)], (18)

Ac = LhLcNc[1 + 2n(H − tt)], (19)

Bejan [25] suggested the entropy generation rate for the crossflow PFHE based on the
gas pressure and temperature:

.
S =

.
mh

[
Cp,h ln

Th,out

Th,in
− Rh ln

Ph,out

Ph,in

]
+

.
mc

[
Cp,c ln

Tc,out

Tc,in
− Rc ln

Pc,out

Pc,in

]
, (20)

where subscripts in and out stand for the inlet and outlet, respectively. The effectiveness of
the crossflow PFHE can be arranged as:

ε =
Cp,c(Tc,out − Tc,in)

Cp,min(Th,in − Tc,in)
, (21)

As the effectiveness of the crossflow PFHE is determined, the outlet temperatures can
be obtained as well as the total heat transfer rate in Equations (22) and (23):

Th,out = Th,in − εCp,min/Cp,h(Th,in − Tc,in), (22)

Q = εCp,min(Th,in − Tc,in), (23)

In addition, the exit pressure for hot and cold sides with frictional pressure drops can
be estimated:

Ph,out = Ph,in − ∆Ph, (24)

Pc,out = Pc,in − ∆Pc, (25)

∆Ph =
4 fhLh J2

h
2ρhd

, (26)

∆Pc =
4 fcLc J2

c
2ρcd

. (27)
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In the offset-strip-fin configurations, the same f and j factors in Equations (28) and (29)
are utilized as Zarea et al. [19] for the proper validation and optimization process:

f = 9.624·Re0.7422α−0.1856δ0.3053γ−0.2659·(1 + 7.7·10−8Re4.429α0.920δ3.767γ0.236)0.1, (28)

j = 0.652·Re−0.5403α−0.1541δ0.1499γ−0.0677·(1 + 5.3·10−5Re1.34α0.504δ0.456γ−1.055)0.1, (29)

where the following set of ratios describing the offset-strip-fin geometry should be used:

α = s/(H − tt), δ = tt/l, γ = tt/s, and s = (1/n) − tt, (30)

The Reynolds number can be defined using Equation (31) with a hydraulic diameter
in Equation (32):

Re =
Jd
µ

=

.
md

A f f µ
, (31)

d =
4sl(H − tt)

2[sl + (H − tt)l + (H − tt)tt] + tts
. (32)

The number of entropy generation units, abbreviated as the NEGUs, represents how
the heat transfer increases with decreased frictional pressure drop and irreversibility [25].
Therefore, the number of entropy generation units gives a direct method to understand the
thermodynamic efficiency of a heat exchanger as follows:

NEGUs =

.
S( .

mCp
)

max
. (33)

In addition, the heat exchanger’s total annual cost (TAC) is considered for thermal-
economic optimization [19]. The TAC is the summation of investment cost (Ccp) and
operating cost (Cop). Ccp includes the unit area’s construction cost, heat exchanger surface
area, and annual coefficient factor, where Cop contains the compressor electricity price as
defined below [19]:

TAC = Ccp + Cop, (34)

Ccp = AcfCAAe, (35)

Cop =

[
ζτ

∆P
.

m
ηρ

]
h
+

[
ζτ

∆P
.

m
ηρ

]
c
, (36)

where CA, e, ζ, τ, and η presents the cost per unit surface area, exponent of nonlinear
increase with area, electricity price of the compressor, operation time, and compressor
effectivity in order. Acf indicates the annual coefficient factor as below:

Ac f =
r

1− (1 + r)−y , (37)

where r and y are an interest rate and a depreciation time, respectively [26–28].

4. Results and Discussion
4.1. Validation of PFHE Design Model

Before thermal-economic optimization, a validation process for the crossflow PFHE
design model was conducted to determine whether the complex calculation of objective
function values can correctly yield the design parameters as compared with Zarea et al.’s
work [19]. Here, the maximum dimensions of the present crossflow PFHE, i.e., Lh × Lc × H,
were assumed to be 1 × 1 × 0.01 m3. The same properties for the thermal-hydrodynamic
and thermal-economic parameters were also used, as summarized in Tables 1 and 2. Table 3
shows the lower and upper bounds of the design variables to be estimated, and the
validation results of the given parameters are summarized in Table 4. The objective function
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values of the NEGUs were back-calculated and validated by substituting the optimum
value in Zarea et al.’s work [19], which yielded slight relative differences within an error of
1.82%, as shown in Table 4. The main reason is a digit or precision error typically observed
during numerical calculations. As these errors tend to accumulate during the numerical
calculation, the relative differences between this study and that of Zarea et al. [19] can be
maximized with the calculation of the NEGUs value. As a result, we can confirm from the
present validation results that the design model of the crossflow PFHE used for the present
study is correct.

Table 1. Properties of thermal-hydrodynamic parameters.

Parameters Hot Side Cold Side

Mass flux,
.

m (kg/s) 1.66 2
Inlet Temperature, T (K) 1173 473

Density, ρ (kg/m3) 0.6296 0.9638
Specific Heat, Cp (J/kgK) 1122 1073

Viscosity, µ (Ns/m2) 4.01 × 10−5 3.36 × 10−5

Prandtl Number, Pr 0.731 0.694

Table 2. Properties of thermal-economic parameters.

Parameters Value

Cost per Unit Area, CA ($/m2) 90
Electricity Price, ζ ($/MWh) 20

Operation Hours, τ (hr) 5000
Exponent of Nonlinear Increase with Area, e 0.6

Depreciation Time, y (yr) 10
Compressor Efficiency, η (%) 60

Interest Rate, r 0.1

Table 3. Lower and upper bounds of the design variables.

Parameters Lower Bound (LB) Upper Bound (UB)

Hot Flow Length, Lh (m) 0.1 1
Cold Flow Length, Lc (m) 0.1 1

Fin Height, H (mm) 2 10
Fin Thickness, tt (mm) 0.1 0.2

Fin Frequency, n (fin/m) 100 1000
Lance Length, l (mm) 1 10

Number of Fin Layers at the Hot Fluid, Nh 1 200

Table 4. Validation results of crossflow PFHE design model.

Parameters Zarea et al. [19] Present Study Relative Difference (%)

γ 0.346 0.346 -
α 0.016 0.016 -
δ 0.052 0.052 -

∆Ph (Pa) 920 918 0.22
ε (%) 87.0 86.8 0.23

NEGUs 0.1176 0.1155 1.82

4.2. Thermal-Economic Optimization of PFHE Using Improved GQPSO

In this study, the same design of the crossflow PFHE was chosen as considered in
Zarea et al.’s work [19] to verify the optimization performance of the proposed improved
GQPSO (see Figure 3). For this, all the PSO-based algorithms, including the original
and improved GQPSO approaches, were developed using the MATLAB compiler, and the
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numerical calculations were performed using Intel® Core™ i7 CPU. Since all the PSO-based
algorithms use random numbers and their fitness values of the objective functions vary for
each calculation, the optimization was performed for at least 30 runs for each calculation.

For the first result, the influences of the particle and iteration numbers were inves-
tigated on the improved GQPSO approach with c1 = 1 and c2 = 1 to set up the optimal
computing conditions. The calculation was set to be terminated when the iteration reached
the predefined maximum number or when the relative difference in Gbest values between
two recent iterations became less than 1.0 × 10−8% during at least 30 consecutive iterations.
The comparison results of the best and average fitness values of a single objective function,
the NEGUs, with different particles and iteration numbers are summarized in Table 5. On
the one hand, it is clear that smaller fitness values of the NEGUs were obtained as the
number of particles/iterations increased to 100/300 and 300/300 cases when the improved
GQPSO approach was used. On the other hand, relatively larger fitness values of the
NEGUs were predicted with the 100/100 combination of particle size/iteration numbers.
The results also show that the standard deviation of the fitness values for 30 different runs
tends to decrease inversely proportional to the particle size/iteration number. For exam-
ple, for the 100/300 combination, only one run fell into a local minimum among 30 runs,
while the remaining 29 runs converged successfully to a global solution. In particular, the
converging consistency was significantly improved depending on the iteration number
rather than the particle size. The best, average, and total calculation times are summarized
in Table 5 with different particle sizes/iteration numbers. Here, the best calculation time
was observed for the best fitness value. The results in Table 5 reveal that a much longer
calculation time was consumed, especially as the particle size increased. Based on these
results, the 100/300 combination was chosen for the particle size/iteration numbers for the
proposed GQPSO algorithm, considering an overall balance between the calculation time
and the convergence consistency.

Table 5. Influences of the particle/iteration numbers on improved GQPSO approach.

Parameters 100/100 300/100 100/300 300/300

Best Fitness Value (NEGUsbest) 0.0717 0.0712 0.0712 0.0712
Average Fitness Value

(NEGUsavg) 0.0719 0.0713 0.0712 0.0712

Standard Deviation of Fitness
Values (NEGUsstdev, %) 1.069 0.0112 0.01 4.3 × 10−4

Best Calculation Time (s) 0.77 2.37 1.84 7.40
Average Calculation Time (s) 0.85 2.66 1.97 8.03

Total Calculation Time (s) 24.7 78.0 58.4 241.5

For the second result, to find an optimal value of the social collaboration coefficient
and investigate its influence on global best in the GQPSO algorithm, c2 was varied from
1 to 5, whereas c1 was fixed as 1. For this, three single objective functions: the NEGUs
in Equation (33), TAC in Equation (34), and A in Equations (18) and (19), were chosen
to be minimized separately for thermal-economic optimization criteria of the crossflow
PFHE. Ranges of their constraint values were set to 0.134 < α < 0.997, 0.012 < δ < 0.048,
and 0.041 < γ < 0.121, and 120 < Re < 104 based on previous study [19]. To achieve their
minimum values, the newly improved GQPSO approach was employed. The influences
of c2 on the convergence processes of the different objective functions are presented in
Figure 4a–c.
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Figure 4. Converging influence of c2 on improved GQPSO for different objective functions. (a) Number
of entropy generation units (NEGUs); (b) total annual cost (TAC); (c) heat exchanger surface area (A).

Here, the best converging results among 30 runs are depicted for each case. In Figure 4a,
all the NEGUs values with different c2 values reached the global minimum before 300 itera-
tions. The improved GQPSO approach tended to converge faster during initial iterations
with higher c2 values because they increased the possibility of approaching the adjacent
region of the global optimum. However, the converging speed became much slower when
a c2 value much higher than 4 was used, due to a decrease in the local fine-tuning capability
near the global optimum region. For example, the fastest convergence occurred with c1 = 1
and c2 = 3 after about 67 iterations, while the slowest convergence occurred with c1 = 1 and
c2 = 5. The other objective function results of Figure 4b,c indicated that the best converging
performance was verified when c1 = 1 and c2 = 3 were used in the improved GQPSO
approach. Based on these results, it was concluded that a better balance between Pbest and
Gbest of the improved GQPSO approach could be attained when using the c1 = 1 and c2 = 3
combination among others. Thus, this combination was chosen for the proposed GQPSO
algorithm to search optimal design parameters of the given crossflow PFHE for the best
convergence performance.

For the next results, to verify the improved performance of the newly proposed GQPSO
algorithm, the overall optimization results of the proposed improved GQPSO algorithm
were compared with those by Zarea et al.’s work [19], the basic PSO algorithm, and the
original GQPSO algorithm, as summarized in Figure 5 and Table 6. For this, the NEGUs
were considered to be a single objective function to be minimized for the thermal-economic
optimization criterion of the crossflow PFHE, and the best converging results among 30 runs
were plotted for each method. The design of the crossflow PFHE is optimized, as shown in
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Figure 3, and Table 6 reveals that the BAHPSO method of Zarea et al. [19] and the basic
PSO predicted a similar order of the best fitness values of the NEGUs, i.e., 0.1176 and 0.1194,
respectively. As shown in Figure 5, the best fitness levels of the NEGUs with both methods
resulted in premature convergence during the remaining iterations, which reveals that the
BAHPSO and the basic PSO methods fell into a local minimum; thus, their particles did not
continue to search for better optimum solutions. In addition, the two GQPSO approaches
(original and improved) estimated better fitness values with a similar order of 0.07, as seen
in Figure 5. However, the improved GQPSO approach with c1 = 1 and c2 = 3 showed much
faster convergence than the other methods. It quickly decreased to the best fitness level
of the NEGUs during less than the initial 10 iterations, and then continued to converge
gradually to the global optimal solution, 0.0712, while the original GQPSO (Approach 1)
showed slower convergence to 0.0730. Furthermore, the improved GQPSO estimated about
a 40% lower best fitness value than that of the study by Zarea et al. [19] and the basic PSO
methods. To investigate the reason, a number of penalty particles that violated the given
constraints were also checked for each algorithm, as shown in Table 6.

Figure 5. Comparison of converging performance between different PSO methods [19].

Table 6. Converging performance results of different PSO methods.

Parameters Zarea et al. [19] Basic
PSO

GQPSO
(Approach 1)

Improved
GQPSO

Best Fitness Value (NEGUsbest) 0.1176 0.1194 0.0730 0.0712
Average Fitness Value (NEGUsavg) - 0.1207 0.0737 0.0712

Standard Deviation of Fitness Values
(NEGUsstdev, %) - 1.95 1.52 0.0005

Best Calculation Time (s) - 1.60 1.75 1.61
Average Calculation Time (s) - 1.63 2.03 1.88

Total Calculation Time (s) - 48.2 60.3 55.0
Maximum Number of Penalty Particles - 98 94 84
Minimum Number of Penalty Particles - 44 0 0
Average Number of Penalty Particles - 73 37 32

A number of penalty particles that violated the given constraints were also checked
for each algorithm, as shown in Table 6. In the case of the basic PSO method, the number
of penalty particles varied from 44 to 98, due to the simultaneous application of several
constraints. However, the improved GQPSO had the smallest average number of penalty
particles, i.e., 32, during the optimization process with its superior fine-tuning capability,
while 37 penalty particles were counted for the GQPSO (Approach 1). In some runs, it
was all 100 particles of the improved GQPSO search for the optimum solutions within the
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feasible constraints. This also resulted in the improved GQPSO providing the smallest
standard deviation of the fitness values for 30 different runs. Thus, it was confirmed that
the improved GQPSO provided more consistent and more reliable optimum solutions than
the basic PSO and original GQPSO methods. However, Table 6 depicts that the improved
GQPSO algorithm requires a slightly longer computing time than the basic PSO algorithm
because more generations of random numbers are necessary for the GQPSO approach.

In particular, for the best-run case, the improved GQPSO algorithm required a short
calculation time as compared to the basic PSO method with a faster convergence rate, as
the particles of the improved GQPSO algorithm reached the global minimum at the early
iterations. These results verify that the proposed approach using the improved GQPSO
algorithm with the new local attractor scheme in Equation (9) helps prevent particles
moving toward Gbest. Since a proper balance between Pbest and Gbest of the improved
GQPSO algorithm could minimize the number of penalty particles that lay beyond the
upper and lower bounds, this led directly to rapid finding of global optimal solutions, as
shown in Figure 5, within relatively short calculation time as compared with the basic
PSO method.

For the fourth results, the optimized design variables of the given crossflow PFHE
estimated from the proposed improved GQPSO approach were compared with those by
Zarea et al.’s work [19], the basic PSO algorithm, and the original GQPSO algorithm. The
design variables to be optimized in this study consisted of seven variables by separately
minimizing the three single objective functions: the NEGUs, TAC, and A. First, the optimal
values of design variables according to the best minimum fitness values of the NEGUs
are summarized in Table 7. All the estimated data are within the given upper and lower
bounds of the design variables. As compared with Zarea et al.’s work [19], the proposed
improved GQPSO algorithm estimated smaller dimensions of the individual rectangular
offset strip fin, leading to an increment in the number of fin layers at the hot side, Nh.
Moreover, a higher effectiveness of 95.2% was predicted with the new improved GPQSO
scheme when the NEGUsbest = 0.0712, while Zarea et al.’s work [19] achieved 87.0% as ε
with NEGUsbest = 0.1176, as seen in Table 7.

As a result, a considerable decrement of about 40% in the values of the NEGUs
was obtained with the new improved GPQSO method, which was better than those of
Zarea et al.’s work [19] based on the increment in efficiency. On the one hand, Table 7
shows that the new improved GPQSO algorithm predicts further improved best fitness
values of about 17% for TAC and 4.5% for A, which are lower than those of Zarea et al.’s
work [19]. On the other hand, the basic PSO algorithm and the original GQPSO algorithm
(Approach 1) estimate poorer best fitness values of the NEGUs, TAC, and A objective
functions than the improved GQPSO scheme. It was also observed that the basic PSO
estimated a considerable number of optimal solutions at the upper and lower bound values,
while the original GQPSO (Approach 1) searched optimized design variables within given
bounds. However, those values of the original GQPSO did not guarantee that it could
attain better fitness values or better optimization than the NEGUsbest, TACbest, and Abest of
other methods. This is because the original GQPSO algorithm (Approach 1) used constant
values of c1 and c2 for a local attractor in Equation (6), whereas the improved GQPSO
algorithm employed random number generation using Gaussian distribution for its local
attractor, as defined in Equation (9). Thus, the improved GQPSO algorithm provides
improved escaping capability from the local minimum as compared with the original
GQPSO algorithm (Approach 1) by balancing between Pbest and Gbest with the modified
local attractor.
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Table 7. Comparison of optimal design variables for different PSO algorithms.

Parameters for NEGUs Zarea et al. [19] Basic PSO GQPSO
(Approach 1)

Improved
GQPSO

Hot Flow Length, Lh (m) 1 1 0.9994 1
Cold Flow Length, Lc (m) 0.999 1 0.7778 1

Fin Height, H (mm) 7.03 10 6.80 6.76
Fin Thickness, tt (mm) 0.129 0.2 0.1004 0.1079

Fin Frequency, n (fin/m) 397.3 304.5 998.8 1000
Lance Length, l (mm) 7.98 10 1.19 1

Number of Fin Layers at the Hot Fluid, Nh 66 200 108 83
Effectiveness, ε (%) 87.0 86.0 94.9 95.2

Best Fitness Value, NEGUsbest 0.1176 0.1194 0.0730 0.0712

Parameters for TAC Zarea et al. [19] Basic PSO GQPSO
(Approach 1)

Improved
GQPSO

Hot Flow Length, Lh (m) 0.8954 0.3266 0.3108 0.3076
Cold Flow Length, Lc (m) 0.9988 0.4112 0.3928 0.3884

Fin Height, H (mm) 0.9977 10 10 10
Fin Thickness, tt (mm) 0.1929 0.2 0.2 0.2

Fin Frequency, n (fin/m) 216 470 445 440
Lance Length, l (mm) 0.9635 10 10 10

Number of Fin Layers at the Hot Fluid, Nh 71 200 200 200
Effectiveness, ε (%) 82.1 83.4 82.1 81.8

Best Fitness Value, TACbest ($/yr) 939 868 798 784

Parameters for A Zarea et al. [19] Basic PSO GQPSO
(Approach 1)

Improved
GQPSO

Hot Flow Length, Lh (m) 0.2099 0.1851 0.3378 0.1703
Cold Flow Length, Lc (m) 0.2211 0.1851 0.3641 0.1733

Fin Height, H (mm) 6.7 6.8 5.3 6.6
Fin Thickness, tt (mm) 0.107 0.1 0.116 0.108

Fin Frequency, n (fin/m) 1000 990.7 878.7 1000
Lance Length, l (mm) 2.24 1 7.49 1

Number of Fin Layers at the Hot Fluid, Nh 81 110 56 123
Effectiveness, ε (%) 81.8 82.3 82.0 81.8

Best Fitness Value, Abest (m2) 107.2 110.4 140.4 101.6

Lastly, the solution searching process of the improved GQPSO particles for different
design variables is depicted in Figure 6 during iterations for the three single objective
functions: the NEGUs, TAC, and A. When the calculation started, the improved GQPSO
particles spread uniformly over the search domain between the upper and lower bounds.
Depending on the objective function to be optimized, the improved GQPSO algorithm
estimated the final optimum solutions at the given bound, as in Figure 6b for the TAC
case, or kept finding further improved solutions and converged to them strongly, which
showed significant variations during the converging process due to multiple combinations
of random functions, G, g, and Ui of Equations (7) and (9), as seen from Figure 6c for the case
of A. While most of the basic PSO particles got closer to either the upper or lower bounds,
the improved GQPSO particles tried to find and converge to a certain value between the two
bounds, which indicated the enhanced search capability of the proposed approach using
the improved GQPSO algorithm with local fine-tuning due to the modified local attractor
scheme. The given results confirm that the proposed approach with the improved GQPSO
algorithm successfully predicts better optimal design solutions that satisfy minimization of
the three single objective functions: NEGUs, TAC, and A. Consequently, it can be concluded
that the improved GQPSO algorithm with the modified local attractor outperforms other
methods by quickly searching for improved global optimum solutions.
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Figure 6. Solution searching process for improved GQPSO particles. (a) NEGUsbest; (b) TACbest;
(c) Abest.

5. Conclusions

In the present study, an improved GQPSO algorithm was proposed for the thermal-
economic optimization problem of a PFHE. First, to verify the improved searching capability
of the proposed improved GQPSO algorithm, its optimization results were compared
with those of the basic PSO and original GQPSO methods for the design optimization
problem of a PFHE with the same constrained search space. From the first results, it was
verified that the improved GQPSO could more rapidly search global optimal solutions than
other methods due to its modified local attractor scheme based on Gaussian distributed
random numbers.

Next, the proposed improved GQPSO algorithm was applied to a thermal-economic
optimization problem of a PFHE for validation of its usefulness. Three single objective
functions: the number of entropy generation units, total annual cost, and heat exchanger
surface area, were minimized separately by evaluating optimal values of seven unknown
design variables using the basic PSO, original GQPSO, and improved GQPSO algorithms.
By comparing the calculation results of each method, the outstanding performance of
the proposed improved GQPSO algorithm could be verified for the presented thermal-
economic design problem of a crossflow PFHE by preventing particles from falling to the
local minimum due to a proper balance between Pbest and Gbest values.
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Consequently, the present study suggests that the improved GQPSO algorithm with
the modified local attractor scheme can efficiently and more rapidly search for more
accurate global optimal solutions for optimizing the thermal-economic design problem of a
crossflow PFHE. In addition, we expect that this improved GQPSO algorithm should be
useful to related industries and engineers for optimizing thermal-economic designs and
the operational performances of various heat exchangers.
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Abbreviations

AMTOA adaptive multitracker optimization algorithm
Gbest global best
GQPSO Gaussian Quantum-Behaved Particle Swarm Optimization
ICA imperialist competitive algorithm
LB lower bound
Mbest mean particle best
NEGUs number of entropy generation units
NTU number of transfer units
Pbest particle best
PFHE crossflow plate–fin heat exchanger
PSO Particle Swarm Optimization
QPSO Quantum-behaved Particle Swarm Optimization
TAC total annual cost, $/yr
UB upper bound
Nomenclature
A heat exchanger surface area, m2

Acf annual coefficient factor
Aff free flow area, m2

CA cost per unit surface area, $/m2

Ccp capital cost, $
Cop operating cost, $
Cp heat capacity, J/K
Cp,r heat capacity ratio
c1 particle cognition coefficient
c2 social collaboration coefficient
d hydraulic diameter, m
e exponent of nonlinear increase with area
f fanning factor
f (x) objective function
G random number by Gaussian distribution
g random number by Gaussian distribution
g(x) constraint function
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H height of the fin, m
h heat transfer coefficient, W/m2 K
J mass flux velocity, kg/m2 s
j Colburn factor
k random number
L heat exchanger length, m
l lance length of the fin, m
.

m mass flux, kg/s
N normal distribution function
Nc number of fin layers at the cold fluid
Nh number of fin layers at the hot fluid
Np number of particles
Nv number of variables
n fin frequency, fin/m
Pc pressure at the cold side, Pa
Ph pressure at the hot side, Pa
Pi local attractor, m
pg global best position, m
pi particle best position, m
Pr Prandtl number
Q heat power, W
q constant
R ideal gas constant, J/kgK
Re Reynolds number
r interest rate
rand random function
r1 random number
r2 random number
.
S entropy generation rate, W/mK
s fin spacing, m
T temperature, K
t iteration
tmax maximum iteration
tt thickness of the heat exchanger, m
Ui random number by Gaussian distribution
ui random number
Vj variable
vij particle velocity, m
w inertia weight
xij particle position, m
y depreciation time, yr
Subscripts
avg average for different runs
best best fitness function for different runs
c cold side
h hot side
i ith particle
in inlet
j variable
max maximum
min minimum
out outlet
stdev standard deviation
Greek Symbols
α dimensionless aspect ratio for offset-strip-fin geometry
β contraction-expansion coefficient
γ dimensionless ratio for offset-strip-fin geometry
∆Pc pressure drop at the cold side, Pa
∆Ph pressure drop at the hot side, Pa
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δ dimensionless ratio for offset-strip-fin geometry
ε effectiveness, %
ζ electricity price, $/Wh
η efficiency
µ viscosity, Ns/m2

ρ density, kg/m3

τ operation hours, hr
ψ wave function
Ω feasible calculation region
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