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Abstract: Scene graph generation is the basis of various computer vision applications, including
image retrieval, visual question answering, and image captioning. Previous studies have relied
on visual features or incorporated auxiliary information to predict object relationships. However,
the rich semantics of external knowledge have not yet been fully utilized, and the combination
of visual and auxiliary information can lead to visual dependencies, which impacts relationship
prediction among objects. Therefore, we propose a novel knowledge-based model with adjustable
visual contextual dependency. Our model has three key components. The first module extracts the
visual features and bounding boxes in the input image. The second module uses two encoders to
fully integrate visual information and external knowledge. Finally, visual context loss and visual
relationship loss are introduced to adjust the visual dependency of the model. The difference
between the initial prediction results and the visual dependency results is calculated to generate
the dependency-corrected results. The proposed model can obtain better global and contextual
information for predicting object relationships, and the visual dependencies can be adjusted through
the two loss functions. The results of extensive experiments show that our model outperforms most
existing methods.

Keywords: scene graph generation; external knowledge; context fusion; computer vision; visual
dependency constraint

MSC: 68T07

1. Introduction

Scene graph generation (SGG) [1] aims to detect objects and their relationships in images.
The generated scene graphs capture rich semantic information in the images and can be
used to extend knowledge beyond individual objects. Therefore, SGG can provide significant
assistance for subsequent computer vision [1–6] and scene understanding [7–11] tasks.

Early studies on SGG relied solely on visual contextual information to identify object
relationships in images [12–15]. These methods successively pass visual features through a
given network to update the feature representations and relationships of different objects.
However, because scenes may include diverse visual relationships, simple visual features
cannot fully represent the contextual information contained in a scene. For example,
in the images shown in Figure 1, the relationships, (person, ride, horse) and (person, ride,
bicycle), are semantically similar. However, horses and bicycles have considerably different
appearances in the images, and an SGG model should use external knowledge to infer
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that these relationships are the same. Thus, methods that rely solely on visual contextual
information are inadequate for SGG.

Figure 1. (a) An example of an SGG model. (b) Different visual representations of similar relationships
in the Visual Genome dataset. (c) An intuitive example of eliminating visual dependencies caused by
external knowledge or visual information bias. It should be noted that the background blurring is
applied only for illustration and should not be considered part of the visual processing step.

Recently, external knowledge, including inter-object statistical information and common-
sense information [13,16–18], has been incorporated into SGG tasks through two related
approaches. The first method uses the inter-object statistical information to initialize the
edge weights in the graph structure. For example, Chen et al. [19] used statistical correla-
tions between object pairs to construct message-passing graphs. However, this approach
failed to fully exploit the semantic content of the statistical information. In fact, this ap-
proach mainly uses visual information and does not deeply mine external knowledge.
The second method uses external knowledge and visual information to construct common-
sense graphs for predicting object relationships. For example, Zareian et al. [20] constructed
a common-sense graph and used connections in the knowledge and scene graphs to rep-
resent objects and their relationships. These methods incorporate visual features and
categorical information into the nodes of knowledge graphs and update the nodes and
relational representations by propagating messages through the graph. However, visual
context is crucial in relational reasoning, and both knowledge-based approaches fail to
combine the visual information contained in the images with the rich semantic information
provided by external knowledge when predicting object relationships.

In summary, two essential tasks should be considered when incorporating external
knowledge. The first task that should be considered is how the external knowledge and vi-
sual features should be combined to best learn the global contextual information contained
in a scene. Visual and contextual semantic features can both assist models in accurately
predicting object relationships. Therefore, an important challenge is developing a method
for combining these two types of features that comprehensively captures the underlying
information. The second task is how the model’s reliance on visual information and exter-
nal knowledge should be adjusted. As shown in Figure 1, when the same relationship has
various possible visual features (such as <man, ride, horse> and <man, ride, bicycle>),
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visual information plays a major role in relationship prediction. However, when a relation-
ship is represented by only a few samples in a dataset, the relationship must be inferred
according to external knowledge. Therefore, a high-level SGG model must not only fully
integrate effective information from visual features and external knowledge but also adjust
the dependence of the model on these two information sources.

In this paper, we propose a novel knowledge-based SGG model with visual contextual
dependency (KVCD). Our KVCD model combines external knowledge and visual features
to determine the global contextual information in a scene. Furthermore, because our model
learns and adjusts visual dependencies during the fusion process, our model can generate
more balanced scene graphs. The proposed model includes three modules. First, the feature
extraction module uses object detection to determine the visual features contained in an
image. Second, the relational reasoning module uses the visual features extracted by
the previous module and applies a novel approach to combine external knowledge with
these visual features. This module uses two encoders to obtain the global contextual
information. The first encoder corrects the initial object classification results using an
external knowledge base. Then, the second encoder encodes the semantic features and
external knowledge obtained in the previous layer. Thus, the model can generate richer
contextual information than previous models. As a result, our model can fully use external
knowledge as auxiliary information to supplement the visual feature information for SGG.
Finally, the visual dependency constraint module applies two losses (the visual context
loss and the visual relationship loss) to balance the model’s reliance on the two types of
knowledge applied in the relational reasoning module. The performance of the model is
validated with the Visual Genome dataset, and the results show that our model outperforms
most existing approaches. The contributions of this paper can be summarized as follows:

• To ensure that external knowledge is fully utilized, we propose a novel SGG method
based on visual–semantic context fusion. We design two encoder–decoder bidirec-
tional long short-term memory (BiLSTM) networks that successively update the visual
and contextual information according to the external knowledge.

• To address the dependencies caused by introducing external knowledge and datasets,
we propose two loss functions (the visual loss and visual context loss) to learn the
model’s bias towards the external knowledge and contextual information. By analysing
the effect of these two dependencies on the results, our model can generate more effec-
tive scene graphs.

• Our model is extensively evaluated, and the results show the advantages of the
proposed model over comparative baselines in terms of the Recall@K and mean
Recall@K metrics.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
relevant research on information transmission-based and external knowledge-based SGG.
In Section 3, we discuss the main structures of the proposed SGG method, which is based on
the fusion of visual and semantic context information, and our baseline model. In Section 4,
we present the experimental results and comparisons with previous models. In Section 5,
we conclude this work.

2. Related Work

SGG involves determining the representations of objects and their relationships in
visual scenes. In recent years, various works have investigated visual scenes in images.
Li et al. [21] proposed the multilevel scene description network (MSDN) model and ex-
plored the possibility of using a single neural network to understand images from three
perspectives: object detection, SGG, and image captioning. Inspired by the knowledge
base, Zhang et al. proposed VTransE [22], an extension of the TransE [23] method of visual
relationship detection. Dai et al. proposed deep relational networks (DR-Net) [24] based
on deep neural networks for jointly predicting category labels according to the spatial
configurations and statistical correlations of various targets. Image contextual information
has also received attention from researchers. For example, Newell et al. proposed Pix-
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els2Graphs [25], an approach that uses the image’s context to jointly reason the relational
labels for an entire scene graph. Wang et al. [26] adopted a method that first prioritized
the key relationships in a scene and then identified trivial relationships to obtain a com-
plete scene graph. Recent works, including information-transmission-based and external
knowledge-based methods, have focused on learning visual knowledge in SGG tasks.

Information transmission-based methods. Joint reasoning based on contextual in-
formation fully considers the semantic information contained in an image to generate a
complete scene-graph representation. Inspired by this approach, Li et al. [27] decomposed
connectivity graphs between targets into sub-graphs with a top-down clustering method
and refined the sub-graph features using a spatially weighted message-passing method to
generate the scene graph. To better capture the contextual information, Herzig et al. [28]
proposed an alignment-invariant structure prediction SGG approach that identifies visual
scenes with multiple interrelated objects according to the global context. Woo et al. pro-
posed the LinkNet [29] model, which is based on the interdependencies between object
instances. Zellers et al. proposed a global context method for SGG based on the concept
of neural motifs [15]. Due to the fact that the neural motif method uses local visual rela-
tionships and the contextual information of the entire image, this method can generate
more complete feature representations. Xu et al. proposed an iterative message-passing
(IMP) method [14] that iteratively transmits contextual information about objects and their
relationships. Tang et al. proposed a visual context tree (VCTree) model [12]. In contrast
to the IMP and neural motif methods, the VCTree model uses a tree structure to extract
the features of object nodes and relation edges. However, because the detection of pred-
icates requires that each pair of target proposals be enumerated, the VCTree model has
considerable computational complexity. Zareian et al. [30] proposed a visual–semantic
parsing network (VSPNET) that uses novel vector space-planning methods to map entity
nodes and edges to semantic spaces. VSPNET decreases its computational complexity by
generating vector space mappings.

However, these information-transmission-based approaches utilize the visual features
in an iterative manner and do not use external information to assist in reasoning on scene
graphs. Therefore, these models are susceptible to visual dependencies when relationship
categories with a large number of samples are used. Furthermore, the performance of
these models is reduced when relationship categories with a small number of samples
are employed.

External knowledge-based methods. In addition to visual contextual information,
many researchers have focused on identifying effective external knowledge (e.g., lan-
guage priors and knowledge graphs). The knowledge-embedded routing network (KERN)
model [19] considers the statistical correlations between object pairs as language priors.
These language priors can assist the object detection network in predicting object classes and
determining the graphical structure of the identified objects and relationships. The KERN
model uses this graphical structure to infer relationships and generate scene graphs. To
address the long-tail problem associated with object and relationship distributions in SGG
datasets, Gu et al. proposed KB-GAN [31]. KB-GAN uses external knowledge to refine the
target and predicate features and generates scene graphs through a generative adversar-
ial network (GAN)-based approach. The graph-bridging network (GB-NET) model [20]
transforms scene graphs into knowledge graphs to better identify visual relations. Al-
though the introduction of external knowledge improves the model’s performance on SGG
tasks, the deviations caused by long-tailed distributions in category datasets with a small
number of samples and the issues associated with joint analyses with visual features when
generating complete scene graphs still need to be resolved.

In addition to the previous method, considering the effectiveness of graph neural
networks for fusing contextual information, Yang et al. proposed the Graph R-CNN [32]
method for calculating correlation scores among objects and removing unlikely relation-
ships. Qi et al. [33] embedded joint graphical representations by introducing an attention
mechanism. In addition, an effective loss function can improve the SGG performance.
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Moreover, Zhang et al. [34] introduced the graphical contrast loss to address the issue of
pairing the same predicate with different instances. Chen et al. [35] used the cross-entropy
as a loss function for target detection and optimized SGG through a multi-agent strategy.

3. Methodology

An overview of our proposed model is shown in Figure 2. The various components are
introduced in detail in the following sections. Our model can be summarized in three steps:

• Feature extraction. The object features, bounding boxes, and class distributions in the
input image are extracted by the feature-extraction module.

• Relational reasoning. The relational reasoning module identifies the corresponding
word vector in the knowledge base by using the object’s visual information. To fully
utilize the external knowledge, a successive updating strategy and two BiLSTM
encoders are used to fuse the word vectors and visual context information.

• Visual dependency constraint. The visual relationship and visual context loss func-
tions are introduced to learn and adjust the visual dependencies in the model.

Figure 2. Overview of our proposed modules. First, the feature-extraction module extracts visual
features in the images. Then, the relational reasoning module combines external knowledge and
visual features to obtain the global contextual information. Finally, the visual dependency constraint
module reduces visual dependencies in the model.

The objectives of SGG are to detect objects in an image, to identify the relationships
between object pairs, and to use graph structures to visualize these objects and their
relationships. Let the target set in the image be defined as O = {o1, o2, . . . , oN}, and let
the set of bounding boxes corresponding to these targets be B = {b1, b2, . . . , bN}, where
N is the total number of object categories in the dataset. The set of relationships among
these objects is defined as R = {r1, r2, . . . , rK}, where K is the total number of relationship
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categories between object pairs in the dataset. Thus, the scene graph is jointly represented
by the object and relationship sets as follows: G =

⋃(
oi, rk, oj

)
. The task of generating the

scene graph can be expressed as

P(G | I) = P
(
rk | I, oi, oj

)
P(oi | I)P

(
oj | I

)
(1)

where P(oi | I) is the initial probability of each target, and P
(
rk | I, oi, oj

)
is the relationship

between object i and object j.

3.1. Feature Extraction

As shown in Figure 3, in the feature-extraction module, the feature map of the input
image is first extracted by the backbone object-detection network, which has a residual
block structure (ResNet). Then, the feature map is input into a region proposal network
(RPN) to generate a set of candidate regions. Next, we apply RoIAlign to align the features
and pixels in the image to obtain feature representations for each object. Thus, we can use
the feature-extraction module to obtain the object features, union features, bounding boxes,
and class distributions contained in the image. Finally, this module outputs visual and
spatial information, which is then used by the relational reasoning module.

Figure 3. Structure of the feature extraction module.

3.2. Relational Reasoning

The relational reasoning module fuses external knowledge with the visual and spatial
information provided by the feature-extraction module to obtain the visual–semantic
context. As shown in Figure 4, we designed two encoders to fuse the external knowledge
with the visual features obtained in the previous module and to incorporate the semantic
information contained in the external knowledge. In the first encoder, the initial object
classification results are corrected using an external knowledge base. In the second encoder,
the semantic features and external knowledge extracted by the previous layer are encoded,
resulting in richer contextual information than previous models.

Figure 4. Structure of the relational reasoning module. GloVe word vectors are used to represent
our external knowledge. GloVe uses the initial object class pobj to determine the first word vector
eobj. Then, the word vector eobj, object features, and bounding boxes are input into Encoder 1 to
determine the visual–semantic context Vctx. After the first encoder, we decode Vctx to obtain an
updated object class p∼obj. GloVe then uses p∼obj to obtain an updated word vector e∼obj. Finally, e∼obj and
Vctx are input into the second encoder, yielding rich contextual information. The classifier predicts
the relationships between object pairs based on the contextual information and the union features
output by the feature-extraction module.
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In this paper, we define the external knowledge of different organizational approaches
as the knowledge base (KB). Since the external knowledge contains substantial noise, we
use the object category with the highest confidence to extract valid information from the
KB. The process of extracting this external information can be expressed as:

eobj = F
(

pobj

)
× KB, (2)

where pobj is the initial probability distribution of the objects identified by the object-
detection network, and F(·) is a self-defined function that determines the subscript of
the maximum value in pobj and converts this value into a one-hot code according to the
dimensionality of pobj. This one-hot encoding is used to identify the corresponding word
vector eobj in the knowledge base. The KB includes word vectors that were generated
using different organizational methods. Specifically, our relational reasoning module uses
Word2Vec [36,37], GloVe [38], and ConceptNet [39] word vectors as external knowledge,
and the word vector dimension is 300.

Next, the visual information and word vectors are used to fuse the context of the visual–
semantic features Vctx with a BiLSTM encoder network. The visual–semantic context Vctx
is decoded by a gated recurrent unit (GRU), yielding a new probability distribution. We
use this probability distribution and the F(·) function to determine the final class pobj.
Thus, the final classification p∼obj of the target is determined by F(·). We obtain the target
classification as follows:

Vctx = BiLSTM
([

fobj, eobj, bobj

⌋)
(3)

p∼obj = F(GRU(Vctx)), (4)

where fobj includes the image features obtained by the feature-extraction module, bobj is
the image coordinate information, and funion contains the union area features (the features
of the union area between the target and the bounding box). It should be noted that bobj is
a 128-dimensional vector that is obtained by a fully connected layer.

Finally, we successively update Vctx using the new word vector e∼obj and the second
encoder network. The visual–semantic features and joint regional features of the object pair
are combined, yielding the relational context features rctx−ij. Each object pair is classified
according to the relationship context characteristics. The relationship between each object
pair is classified as

e∼obj = p∼obj × KB (5)

V∼ctx = BiLSTM
([

Vctx, e∼obj

])
(6)

rctx−ij = v∼ctx−i � v∼ctx− j � funion (7)

P
(
rk | I, oi, oj

)
= Softmax

(
rctxij

)
, (8)

where v∼ctx−i and v∼ctx− j represent the updated visual–semantic vectors of targets i and
j, respectively, and funion represents the joint regional features. A BiLSTM network is
used to combine the visual–semantic features of the object and the external knowledge,
yielding vector V∼ctx, which contains richer contextual information than vectors generated
by previous models. The second external knowledge fusion is applied to ensure that all
relevant information is fully used.

3.3. Visual Dependency Constraint

The introduction of external knowledge allows the model to identify more relation-
ships, and the training process fits the data according to this knowledge, improving the
relationship classification results. However, this approach results in model dependencies,
and the relationships are predicted based on only the type of object rather than the visual
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information contained in the images. Therefore, the visual dependency constraint mod-
ule, which applies the visual relationship loss and visual context loss functions to adjust
the visual dependency of the model, is introduced. As shown in Figure 5, we input the
object features contained in the image and the contextual information contained in the
external knowledge into the relational reasoning module to generate an initial prediction
vector. Then, we calculate the average value of the effective object features (visual features
and contextual information) and use the same method to obtain a dependence vector V1.
In V1, some of the effective information is removed by averaging the visual features and
contextual information. Therefore, we can apply V1 to learn the visual dependencies of
the model. Finally, V −V1 represents the dependency-corrected vector. To reduce possible
dependencies, we design two loss functions to adjust the visual dependencies of the model,
which are specified below.

Figure 5. (a) Example of applying the object features and word vectors to predict object relationships,
where X represents the visual features of the objects of interest, W represents the corresponding
word vector in the external knowledge base, and R represents the prediction. (b) The process of
adjusting the visual dependencies. The objective of this process is to preserve valid information while
minimizing unrelated information.

Visual relationship loss. The visual relationship loss considers the dependence of
the learned model on the visual object features. In an SGG task, the features ( funion) of the
joint region of a target pair are usually used as the visual relationship features. Therefore,
we first pass these visual features through a fully connected (FC) layer; then, we use a
softmax function to predict the probabilities of these visual features and determine their
relationship. Thus, the visual relationship loss can be formulated as

VProb = Softmax(FC( funion)) (9)

Lossvisual = −
K

∑
i=1

qi × log(VProb), (10)

where K represents the number of relationship categories, qi represents the true target-
category label value, and VProb represents the predicted target relationship value.

Visual context loss. The visual context loss considers the dependence of the learned
model on the object’s contextual information. The visual context loss is calculated in terms
of the visual contextual information and the dependence of the learned model on this
visual information. First, the learned visual context features are passed through an FC layer,
as shown in Equation (6); then, a softmax function is used to calculate the probability of
the relationship between these visual context features. Thus, the visual context loss can be
formulated as

CProb = Softmax(FC(V∼ctx)) (11)
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Losscontext = −
K

∑
i=1

qi × log(CProb), (12)

where K is the number of relationship categories, qi is the true target category label value,
and CProb is the predicted target relationship value.

3.4. Loss Function

The loss function of our model has two components: the classification loss of the
relational reasoning module, which is described in Section 3.2, and the visual dependency
loss (visual relationship loss and visual context loss) of the visual dependency constraint
module, which is described in Section 3.3. The visual dependency loss is presented in
Section 3.3, and the classification loss and total loss can be expressed as follows.

Classification loss. In the proposed SGG model with visual–semantic fusion, the ob-
ject classification and relationship classification loss functions are formulated as

Lossobject = −∑ qi× log
(

p∼obj

)
(13)

Lossrelation = − ∑
k−1

qk × log
(

P
(
rk | I, oi, oj

))
, (14)

where n is the number of target categories, qi is the true target category label value, p∼obj is
the predicted object value, K is the number of relationship categories, qk is the label of the
true relationship category, and P

(
rk | I, oi, oj

)
is the predicted relationship value.

In this work, we calculate the overall loss by adding the visual relationship loss, the vi-
sual context loss, the object classification loss shown in Equation (13), and the relationship
classification loss shown in Equation (14). Different weights are set for the various losses.
Thus, the overall loss can be expressed as

Loss = α1 × Lvisual + β× Lcontext + γ× Lobject + δ× Lrelation. (15)

4. Experiment Results
4.1. Settings

Dataset. The Visual Genome (VG) dataset [40] was adopted to train and evaluate our
model. The VG dataset includes 56,224 training images and 26,446 test images, and each
image contains an average of 18 relationships. The VG-150 dataset (which includes 50 rela-
tionship types and 150 object types) was used in our experiment.

Scene-graph generation. Three protocols were adopted to evaluate our model: (1) pred-
icate classification (PredCls): given the object categories and bounding boxes contained in an
image, predict their relationships; (2) scene-graph classification (SGCls): given the object
bounding boxes contained in an image, predict the object categories and their relationships;
and (3) scene-graph detection (SGDet): given an image, detect the object categories and
their relationships.

Metrics: Lu et al. first proposed Recall@K (R@K) [41] as an SGG evaluation metric,
and we adopt the conventional Recall@K as our evaluation metric. However, the VG
dataset contains incomplete annotations, and SGG models trained on biased datasets such
as the VG dataset have poor performance on less frequent categories. Thus, the mean
Recall@K (mR@K) metric has been proposed for evaluating the overall performance of SGG
models [12,19]. To calculate this metric, the recall on each predicate category is calculated
independently; then, the results are averaged. Compared with R@K, mR@K can be used to
more objectively evaluate the performance of a model on less frequent categories.

Our experiments yielded three key observations: (1) the introduction of effective
external information can enhance the performance of an SGG model; (2) gloVe is a better
external knowledge organizational format than other word vector formats; and (3) the
visual context dependencies impact the performance of an SGG model.
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4.2. Configuration

As shown in Table 1, we used a pretrained Faster R-CNN object detector network with
a ResNeXt-101-FPN backbone. The object detector is adjusted and trained on the VG dataset.
To guarantee that our training was reliable, our model is trained with an SGD optimizer.
The batch size, initial learning rate, and weight decay were set to 8, 0.08, and 0.0001,
respectively. The hidden dimension of the BiLSTM network was 512. To ensure that the
model converged, for learning rate, we set 0.008 in Kb (the model of introducing external
knowledge) and 0.006 in Ctx (the model of using visual contextual loss). The dropout in Kb
was set to 0.4, 0.2 and 0.1 for PredCls, SGCls, and SGDet, respectively, and the dropout in
Ctx was set to 0.4, 0.3, and 0.2 for PredCls, SGCls, and SGDet, respectively. Meanwhile, we
set the maximum number of iterations to 50,000. During the training process, the PredCls
model converged after 20,000 iterations, the SGCls model converged after 24,000 iterations,
and the SGDet model converged after 25,000 iterations. To evaluate the performance of
the proposed model, the accuracy of the classification task was used as our experimental
metric. We used Python 3.8.1, PyTorch 1.4.0, and CUDA 10.2 software.

Table 1. The parameters of experiments. (Kb represents the model of introducing external knowledge,
Ctx represents the model of using visual contextual loss).

Hyperparameter Kb Ctx

Batch size 8 8
Hidden dim 512 512

Learning rate 0.008 0.006
Weight decay 0.0001 0.0001

Dropout [0.4, 0.2, 0.1] [0.4, 0.3, 0.2]
Numbers of Iterations [24,000, 24,000, 25,000] [20,000, 28,000, 36,000]

4.3. Comparisons with State-of-the-Art Methods

The results of our model are compared with the results of various state-of-the-art
methods in Table 2. In this table, IMP+ [14,15], Motifs [15], and VCTree [12] are recurrent
neural network (RNN)-based methods for contextual information fusion; FREQ [15] uses
statistical information to predict relationships;KERN [19] and GB-NET [20] incorporate
external knowledge; and LOGIN [42] uses the local-to-global interaction information
contained in images.

Table 2. Comparison of the R@20, R@50, and R@100 metrics in % between our model and existing
works. (Since the original paper lacks some results, the IMP+ results use the corresponding data
presented in [15]).

PredCls SGCls SGDet

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

IMP+ [14,15] \ 59.3 61.3 \ 34.6 35.4 \ 20.7 24.5
Motifs [15] 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3
FREQ [15] 53.6 60.6 62.2 29.3 32.3 32.9 20.1 26.2 30.1
KERN [19] \ 65.8 67.6 \ 36.7 37.4 \ 27.1 29.8
VCTree [12] 60.1 66.4 68.1 35.2 38.1 38.8 22 27.9 31.3
GB-NET [20] \ 66 68.2 \ 38 38.8 \ 26.4 30
LOGIN [42] 61.1 66.6 68.7 35.5 38.8 40.5 22.2 28.2 31.4

Ours 58.95 65.44 67.19 35.83 39.05 39.84 25.72 32.99 37.63

Previous experiments have proven that external knowledge can provide rich semantic
information in SGG tasks. GloVe representations fully mine the global contextual informa-
tion in a corpus, and the model proposed in this paper matches the visual information of the
targets in an images better than previous models. Visual–semantic fusion is thus suitable



Mathematics 2022, 10, 2525 11 of 20

for the model proposed in this article. Therefore, the proposed method uses GloVe repre-
sentations to introduce external knowledge and generate scene graphs. In the subsequent
experimental analyses, the default external knowledge is presented as 300-dimensional
GloVe word vectors.

We first present the R@K (K = 20, 50, 100) values obtained in three tasks with the VG
dataset. Table 2 shows, that compared with the state-of-the-art VCTree model and various
other models, our proposed model, which incorporates external knowledge in the GloVe
format (B+G), achieves the best performance on the SGDet task (with an R@100 value
of 37.63%). However, the performance of the proposed model on the PredCls task and
some SGCls tasks is slightly decreased. According to our analysis, the VCTree and GB-NET
models use only visual features, while the LOGIN method designs complex local and global
interaction heads according to the alignment of the region of interest (ROI). These three
methods apply complex object detectors and mining methods rather than fusing visual
features and auxiliary information. Thus, these methods perform better than our model
on the PredCls and SGCls tasks in terms of the R@100 metric. However, our proposed
model is superior to the VCTree and GB-NET methods on average. Table 2 indicates that
the proposed model shows considerable performance increases on the SGCls and SGDet
tasks, demonstrating that our model fully uses the visual contextual information.

For a comprehensive comparison with existing works, we also present the mR@K
results for the three tasks from the VG dataset in Table 3. Our proposed model shows signif-
icant performance improvements over the IMP+, Motifs, FREQ, KERN, GB-NET, VCTree,
and LOGIN methods in terms of the mR@K metric. Further analyses demonstrate that
the IMP+, Motifs, FREQ, and KERN methods use iterative information dissemination and
external statistical information for relational reasoning and that these models do not fully
integrate the visual–semantic information. The GB-NET method transfers information from
common-sense graphs to visual scene graphs, allowing the model to extract rich, valuable
information; however, this method does not address the offset problem in the dataset. The
VCTree model adopts a tree structure to capture hierarchical and parallel relationships;
however, the hierarchical and parallel relationships between targets remain difficult to
represent. The LOGIN method uses the interaction-encoding method to determine the
context and achieves good performance on the SGCls task (with the mR@20 and mR@50
metrics reaching 8.2% and 11.2%, respectively); however, because the LOGIN method
analyzes the contextual information contained in an image without introducing additional
external knowledge, this method under-performs on the SGDet task.

Table 3. Comparison of the mR@20, mR@50, and mR@100 metrics in % between our model and
existing works.

PredCls SGCls SGDet

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP+ [14,15] \ 9.8 10.5 \ 5.8 6 \ 3.8 4.8
Motifs [15] 10.8 14 15.3 6.3 7.7 8.2 4.2 5.7 6.6
FREQ [15] 8.3 13 16 5.1 7.2 8.5 4.5 6.1 7.1
KERN [19] \ 17.7 19.2 \ 9.4 10 \ 6.4 7.3
VCTree [12] 14 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8
GB-NET [20] \ 19.3 20.9 \ 9.6 10.2 \ 6.1 7.3
LOGIN [42] 16.0 19.2 22.3 8.6 11.2 12.4 5.9 7.7 9.1

Ours 15.23 21.66 25.35 8.02 11.05 12.8 6.42 8.78 10.58

Our proposed model applies visual dependency constraints. In greater detail, our
method uses GloVe representations to incorporate external knowledge and two BiLSTM
modules to encode and decode visual information and external knowledge; thus, our model
can obtain rich global contextual information. Furthermore, our proposed visual depen-
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dency constraint module captures visual dependencies. Therefore, our model generates
more complete scene graphs than other models.

4.4. Ablation Studies
4.4.1. Incorporation of External Knowledge

We investigated the influence of incorporating different types of external knowledge,
and the results are reported in Table 4. This table includes four sets of results: when no
external knowledge was incorporated, when Word2Vec word vectors were incorporated,
when GloVe word vectors were incorporated, and when ConceptNet word vectors were
incorporated. This ablation experiment and the analysis of the results were performed
based on three scene graph protocols: PredCls, SGCls, and SGDet.

Table 4. Influence of different types of external knowledge on R@K.

PredCls SGCls SGDet

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Mean

B 58.77 65.37 67.12 25.38 28.36 29.33 25.34 32.35 37.52 41.06
B+W 58.83 65.40 67.17 35.53 38.73 39.55 25.55 32.48 32.87 44.01
B+C 59.02 65.50 67.27 25.88 28.33 28.96 25.70 32.96 37.37 41.22
B+G 58.95 65.44 67.19 35.83 39.05 39.84 25.72 32.99 37.63 44.74

The ablation experiment has two components: (1) exploring the influence of the
presence or absence of external knowledge on the baseline of the model and (2) exploring
the influence of different types of external knowledge on the SGG model. The values K =
20, 50, 100 were used to evaluate the prediction performance of the model across different
ranges. The baseline model uses 300-dimensional zero vectors as external knowledge to
generate scene graphs. As an example, the R@100 values of each model for each relationship
in the test set are shown in Figure 4 for the SGCls task (relationships for which the R@100
value is 0 for each model are not shown). Specifically, the ablation experiment was analyzed
from two perspectives.

Influence of external knowledge on the SGG model. As shown in Table 4, for the
PredCls, SGCls, and SGDet tasks, the average value of the baseline model in terms of the
R@20, R@50, and R@100 metrics was 41.06%. The incorporation of Word2Vec (B+W), Con-
ceptNet (B+C), and GloVe (B+G) word vectors increased the average relative to the baseline
by 2.96%, 0.16%, and 3.68%, respectively. In addition, as shown in Table 5, the average
value of the baseline model in terms of the ngR@20, ngR@50, and ngR@100 metrics was
49.51%, and the B+W, B+C, and B+G methods improved the performance by 4.45%, 1.15%,
and 4.67%, respectively. Table 5 shows that the three types of external knowledge improve
the performance of the SGG model.

Table 5. Influence of different types of external knowledge on ngR@K.

PredCls SGCls SGDet
Mean

ngR@20 ngR@50 ngR@100 ngR@20 ngR@50 ngR@100 ngR@20 ngR@50 ngR@100

B 67 81.51 88.63 28.6 34.95 38.34 27.01 36.23 43.32 49.51
B+W 67.07 81.55 88.73 40.6 48.21 51.77 27.2 36.82 43.65 53.96
B+C 67.21 81.67 88.69 30.83 37.76 41.62 27.33 36.99 43.81 50.66
B+G 67.2 81.72 88.8 40.93 48.66 52.21 27.3 36.93 43.69 54.18

The reasons underlying the observed behaviours can be analysed further. The exter-
nal knowledge is represented by word vectors that are generated from large corpora by
modelling the relationships between entities. In fact, the semantics between each word
vector for each entity are implicitly included in the training process. Therefore, the intro-
duction of external knowledge can assist the model in obtaining implicit information on



Mathematics 2022, 10, 2525 13 of 20

the semantic relationships among objects. Our proposed model captures the visual and
semantic relationships among objects through BiLSTM modules. These two relationships
are then combined to determine the visual–semantic relationships in the input image. Fi-
nally, the proposed model uses these new visual–semantic relationships to generate more
accurate scene graphs than previous models. Therefore, the PredCls, SGCls, and SGDet
results show that a model that incorporates external knowledge performs better than a
model that does not integrate such knowledge.

In terms of relationship prediction, Figure 6 and Table 6 show that the baseline model
(which does not incorporate any external knowledge) exhibits poor performance in predict-
ing semantic relationships (such as carrying, eating, looking at, walking on, and watching).
This finding demonstrates that the semantic information provided by the external knowl-
edge can assist in SGG tasks and improve the relationship prediction accuracy. Moreover,
Table 6 shows that the contextual information fusion method proposed in this paper
effectively fuses visual information with external knowledge, thereby providing richer
visual–semantic contextual information for relational reasoning. Therefore, the introduc-
tion of external knowledge can effectively improve the quality of visual scene graphs for
relationship prediction.

Figure 6. Comparison of the R@100 values of different models for various relationships, calculated
on the test set for the SGCls task. The X-axis represents the common relationship categories in the
dataset, and the Y-axis represents the R@100 values.

Table 6. R@100 values of each model for selected relationship categories in the SGCls task.

Baseline GloVe ConceptNet Word2Vec

Model R@100 R@100 R@100 R@100

Between 0 0.35 0.69 0.69
Eating 0 8.94 17.09 5.52

Looking at 0 4.02 4.08 6.49
Walking on 0 4.43 0.13 0.54
Watching 0 2.55 0.38 7.26

Influence of different types of external knowledge on the SGG model. Table 6
shows that there are disparities in the semantic information provided by the three types of
vectors. ConceptNet vectors contain more semantic information than the other two types
of word vectors, because ConceptNet and the other external knowledge representation
methods have different constructions. The ConceptNet results are established by extract-
ing common-sense information from semi-structured sentences. Although relationships
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such as “across”, “along”, and “to” contain a high degree of semantic information, other
knowledge organization methods have difficulty learning the semantic common sense
indicated by human annotations and instead represent this common-sense information in a
format that can be understood by computers. Thus, ConceptNet performs well in these
relationship categories.

Nevertheless, although ConceptNet shows better performance in predicting certain
relationships, for the three SGG tasks considered in this work, ConceptNet still performs
worse than the other models. The average value of the R@20, R@50, and R@100 metrics of
the ConceptNet word vectors on the three tasks is 41.22%, while the corresponding values
for the GloVe and Word2Vec vectors are 44.74% and 44.01%, respectively.

Due to the fact that ConceptNet is a large-scale knowledge graph method, it can sup-
plement certain semantic information in SGG tasks; however, the rich semantic information
contained in the entity vectors in the knowledge graph is more suitable for solving natural-
language-reasoning problems than the semantic information provided by the ConceptNet
vectors. Thus, for the relational reasoning task in the generation of visual scene graphs,
better external knowledge organizations can be selected.

Table 4 shows that the GloVe performance on the three SGG tasks is slightly higher
than the Word2Vec performance in terms of the R@K indicator. The reason for this result is
that GloVe and Word2Vec have different knowledge organization approaches. In contrast
to ConceptNet, which requires manual semi-structured common sense extraction and other
operations during the initial stage, GloVe and Word2Vec allow computers to automatically
generate word vectors from certain corpora based on specific algorithms.

4.4.2. Experiments on the Effects of the Visual Dependency

In this section, we use the method introduced in Section 3.3 to impose three constraints
on the visual dependencies and explore the performance after these constraints are added in
terms of the mR@K metric. In these approaches, the visual relationship dependencies (Vis),
visual context dependencies (Ctx), or visual relationship and visual context dependencies
(Vis+Ctx) are constrained. We introduce the mR@K indicator to comprehensively evaluate
the performance of our SGG model after the visual dependency constraints are imposed.
We assess the performance of the model in different prediction ranges by choosing K values
of 20, 50, and 100. The results mainly explore the influence of the visual relationship
characteristics and visual context characteristics on the visual dependency of the model.
Future work will consider the influence of these characteristics on the visual dependency
of the model for the particular case of small objects and their relationships.

Table 7 shows the mR@K (K = 20, 50, 100) results for comparison. This table demon-
strates that the Ctx model achieves the best performance in terms of all indicators on the
PredCls, SGCls, and SGDet tasks. The results of the PredCls, SGCls, and SGDet tasks
shown in Table 7 indicate that the method in which contextual dependencies (Ctx) are
eliminated outperforms the other methods. According to these results, we present two
ablation experiments in which we consider the influence of the visual relationships and
context features on the visual dependency and the influence of the visual dependency
constraints on the SGG model.

Table 7. Visual dependency reduction in terms of mR@K. Vis refers to applying Lvisual , while Ctx
refers to applying Lcontext.

PredCls SGCls SGDet
Mean

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

B+G 12.58 15.93 17.24 6.98 8.61 9.09 5.37 7.3 8.6 10.19
Vis 10.7 13.43 14.57 6.45 7.92 8.39 4.15 5.62 6.84 8.67
Vis+Ctx 10.44 13.05 14.11 6.59 8.19 8.68 4.12 5.52 6.76 8.61
Ctx 15.23 21.66 25.35 8.02 11.05 12.8 6.42 8.78 10.58 13.32
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The Vis and Vis+Ctx models both perform worse than the B+G model; however, this
finding does not indicate that applying the Vis or Vis+Ctx methods leads to poorer results.
As shown in Table 8, compared with the B+G method, the Vis or Ctx methods increase the
model’s ability to identify new relationships. When the zR@K metric is calculated, only
triplets that do not appear in the training set are counted. Therefore, the Vis and Vis+Ctx
methods increase the generalizability of the model by eliminating dependencies.

Table 8. Visual dependency reduction in terms of zR@K.

PredCls SGCls SGDet
Mean

zR@20 zR@50 zR@100 zR@20 zR@50 zR@100 zR@20 zR@50 zR@100

B+G 1.3 3.31 5.34 0.33 0.85 1.37 0.02 0.06 0.25 1.42
Vis 5.41 10.33 13.43 1.04 2.1 2.89 0 0.09 0.25 3.95
Vis+Ctx 5.3 10.29 13.7 1.17 2.04 2.97 0.02 0.04 0.28 3.98
Ctx 7.63 12.8 16.28 1.41 2.2 2.88 1.3 2.15 2.8 5.49

Influence of visual relationships and context features on the visual dependency.
The SGDet task is used as an example to compare the R@100 values of each model to the
test set for various relationships. The specific experimental results are shown in Figure 7
(the relationship categories for which the R@100 value of each model is 0 are omitted
from the figure).

As shown in Table 7, the average mR@K value of the Vis method over the three tasks
is 8.67%, the average mR@K value of the Vis+Ctx method is 8.61%, and the average mR@K
value of the Ctx method is 13.32%. For the three SGG tasks, the model performance is
optimal when the visual dependencies of the visual context features are eliminated. When
the visual relationship features (the visual characteristics of the joint region of an object
pair) and the visual dependencies of the visual relationship and visual context features are
both removed, the model performs worse than the other methods.

Thus, according to our analysis, the model relies primarily on visual information for
relational reasoning. If the visual information is removed during the learning process,
the model relies only on the semantic information of the objects for relational reasoning
and thus cannot generate significant visual representations. Therefore, the Vis and Vis+Ctx
methods show worse performance than the Ctx method.

However, as shown in Figure 7 and Table 9, when the influence of the visual features
is removed, the relationship category prediction performance improves. Thus, the removal
of the visual feature information from the model can alleviate visual dependencies to some
extent, especially when the dataset has a large amount of data for a given relationship
category (on, has, wearing, holding, in, etc.). However, the model needs visual features for
relationship reasoning; without visual features, visual representations of these relationships
may be difficult to learn. Thus, although the addition of visual relationship features can
alleviate certain visual dependency issues in the model, since the model mainly learns
visual representations based on the image, the visual dependencies caused by these visual
relationship features can be ignored.

Furthermore, Figure 8 and Table 10 show that the visual dependency of the model is
mainly due to the visual contextual information rather than the visual feature information.
In the Ctx model, the visual context features can easily capture relationship categories that
carry semantic information (such as along, covered in, hanging from, laying on, and parked
on); thus, when the influence of these visual context features is removed from the model,
the visual dependencies of the model can be alleviated.
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Figure 7. Comparison of the R@100 values of different models on the test set for various types of
relationships in the SGDet task. The X-axis represents the common relationship categories in the
dataset, and the Y-axis represents the R@100 values.

Table 9. R@100 values of each model for selected relationship categories in the SGDet task.

Vis Ctx Vis+Ctx

On 42.26 8.5 41.97
Has 49.37 36.84 49.14

Wearing 68.27 50.45 67.73
Holding 39.67 24.47 37.53

In 15.72 10.9 15.71

Figure 8. Comparison of the R@100 values of different models on the test set for various types of
relationships in the PredCls task. The X-axis represents the common relationship categories in the
dataset, and the Y-axis represents the R@100 values.
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Table 10. R@100 values of each model for selected relationship categories in the SGDet task.

Vis Ctx Vis+Ctx

Along 0 4.59 0
Covered in 0 2.14 0

Hanging from 0 1.2 0
Laying on 0 14.17 0
Parked on 0 40.34 0

Therefore, the above analysis demonstrates that, while the model exhibits visual de-
pendencies based on both visual relationship features and visual context features, the most
important information contained in the model is the visual relationship features rather
than external knowledge or statistical information. Visual contextual information captures
visual dependencies better than external knowledge or statistical information, because the
visual context includes the spatial and semantic information of the targets. The model can
determine object relationships based on this information; therefore, when the visual context
features are removed from the model, the model directs more attention to the true visual
relationships represented in the image rather than over-fitting based on the few relationship
categories that account for the majority of the samples in the VG dataset.

In general, the experimental results shown in Tables 9 and 10 demonstrate that the
visual relationship features and visual context features both capture certain visual depen-
dencies, especially the visual context features. To illustrate the performance of our method
more clearly, Figure 9 shows some examples to compare the differences between the results
of our method and the ground truth, demonstrating that our model identifies most objects
and relationships.

Figure 9. Qualitative examples of the performance of our model. Our model can detect most of the
relationships in the depicted scenes. (The red font indicates relationship triplets that were not found
by our model).

5. Discussion

In summary, we introduce an SGG approach that uses external knowledge to succes-
sively update visual and contextual information and reduces visual dependencies by using
the proposed visual context loss.

The semantic information contained in knowledge bases and visual dependencies
is noisy; thus, our proposed module has the following design. First, the most relevant
semantic information of a target instance is selected. Then, two BiLSTM encoders and
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a GRU decoder network are introduced to fuse the semantic and visual information in
a successive manner. Finally, two loss functions are designed to learn the dependencies
of the visual and semantic information. The proposed method is thoroughly explained,
demonstrating the principles of the modules and the experimental results.

The ablation studies and experimental results demonstrate two key conclusions:
(1) compared with other external knowledge bases, GloVe can better exploit the semantic
information and is thus more suitable for our proposed model;and (2) although visual de-
pendencies exist in both visual relationships (Vis) and semantic contexts (Ctx), the semantic
context contains more visually dependent information. In addition, to further validate the
superiority of the proposed model, we compared our model with previous models in terms
of the R@K and mR@K metrics. The results show that our model outperforms the other
models in most metrics.

However, some specific problems have yet to be solved. Our approach has two main
limitations. First, the computational complexity of our methods is still high. In real visual
scenes, most target pairs do not have relationships with each other, and considering all
the relationships between targets in a scene introduces a considerable number of useless
calculations, reducing the accuracy of the model. Second, due to the significant category
imbalance in the dataset, the model over-fits large-sample relationships and may ignore
small-sample relationships. Thus, although our proposed loss function reduces some of the
visual dependence, the long-tail distribution problem is still present in the SGG task.

6. Conclusions and Future Work

In this work, we propose a knowledge-based SGG method with visual contextual
dependencies. We apply two encoders to combine the visual features and external knowl-
edge to determine the contextual information contained in a scene. Furthermore, two loss
functions are designed to adjust the visual dependency of the model. As a result, we can
generate more complete scene graphs than we could with previous methods. The experi-
mental results indicate that the proposed model shows significant advantages over existing
models in terms of the R@K and mR@K indicators. We believe that this study provides
insight into the impact of different knowledge bases on the performance of scene graphs,
as well as a new approach for handling visual dependencies.

In future work, we aim to reduce the computational complexity and visual dependence
of our model to ensure that the model obtains unbiased features. First, we will design
an efficient graphical structure to reduce the number of computations between pairs
of invalid instances in the model. Second, we aim to explore unsupervised or weakly
supervised methods to address the long-tail distribution problem. We believe that both
approaches may improve the performance of our model. In addition, we hope to extend
our model to scene graphs employed in other tasks, such as recommender systems and
risky behaviour recognition.
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