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Abstract: By the extended (G′
G ) method and the improved tanh function method, the exact solutions

of the (2+1) dimensional Boussinesq equation are studied. Firstly, with the help of the solutions of the
nonlinear ordinary differential equation, we obtain the new traveling wave exact solutions of the
equation by the homogeneous equilibrium principle and the extended (G′

G ) method. Secondly, by
constructing the new ansatz solutions and applying the improved tanh function method, many non-
traveling wave exact solutions of the equation are given. The solutions mainly include hyperbolic,
trigonometric and rational functions, which reflect different types of solutions for nonlinear waves.
Finally, we discuss the effects of these solutions on the formation of rogue waves according to the
numerical simulation.

Keywords: (2+1)-dimensional Boussinesq equation; homogeneous equilibrium principle; extended
(G′

G ) method; improved tanh function method
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1. Introduction

As is well known, many nonlinear phenomena can finally be described by nonlinear
partial differential equations. With the wide application of nonlinear partial differential
equations in practical problems, the research on solutions of high-dimensional nonlinear
partial differential equations has gradually become a hot topic. There are many methods
to solve the exact solution, such as Hirota’s bilinear form [1], conformable triple Sumudu
decomposition method [2], Painlevé analysis [3], Exp-function method, ansatz method [4],
etc. Most explicit exact solutions of equations are obtained through transformation and
operation, but in fact, there is no unified solution method. Therefore, many scientists are
committed to finding a universally applicable method.

A few years ago, Wang et al. in [5] used the (G′
G )-expansion method to deal with

nonlinear evolution equations. The idea of this method is that the traveling wave solutions
of nonlinear evolution equations can be expressed by a polynomial of (G′

G ), where G = G(ξ)
satisfies a linear ordinary differential equation. The degree of the polynomial can be
determined by the homogeneous balance between the highest derivative term and the
nonlinear term in nonlinear evolution equations, and the coefficients of the polynomial
can be obtained by solving algebraic equations. Solitary waves can be derived from
traveling waves, and traveling wave solutions will be expressed by hyperbolic functions,
trigonometric functions and rational functions.

Furthermore, in order to find the non-traveling wave solutions of nonlinear evolution
equations, Xie et al. in [6] introduced the generalized Riccati equation and then improved
the tanh function method; that is, various ansatz solutions were proposed on the basis of the
generalized Riccati equation. In order to show that abundant non-traveling wave solutions
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can be obtained by this method, they chose the (3+1)-dimensional Kadomtsev–Petviashvili
equation, which can describe water waves, and finally obtained abundant soliton-like
solutions, periodic solutions and rational solutions.

These two methods are concise and effective, and they can be widely used in many
nonlinear evolution equations. The Boussinesq equation is a wave equation introduced
by Joseph Boussinesq, which describes the dispersive and nonlinear properties of shallow
water. This equation is widely applied in the research on changes in wave-induced set-up
and current [7], and it is an important nonlinear partial differential equation. Many scholars
have studied the exact solutions of such equations in different ways.

Song et al. in [8] gave the solitary wave number of the generalized (2+1)-dimensional
Boussinesq equation, and they obtained the exact solitary wave solutions by using the
bifurcation method of dynamic systems under different parameter conditions.

utt − αuxx − βuyy − γ(u2)xx − δuxxxx = 0, (1)

where α, β, γ and δ are arbitrary constants. Zhao et al. in [9] applied the improved
(G′

G )-expansion method with a second-order linear ordinary differential equation, assuming
that the form of the solution has positive and negative power terms, and they obtained
the exact solutions of this equation expressed by the hyperbolic function, trigonometric
function and rational function. Yang et al. in [10] used the Riccati equation to obtain
abundant solutions for this equation.

When α = β = γ = δ = 1, the generalized (2+1)-dimensional Boussinesq equation is
simplified as

utt − uxx − uyy − (u2)xx − uxxxx = 0. (2)

Zeng et al. in [11] have obtained the exact solutions of this equation by using Bäcklund
transformation and performing mathematical calculations. Wang in [12] employed Hirota’s
bilinear method and Riemann-theta functions to construct the explicit triple periodic wave
solutions for this equation under the Bäcklund transformation. Liu et al. in [13] constructed
a general higher-order breather solution by using Hirota’s bilinear method combined with
perturbation expansion. Taking a long-wave limit for the obtained breather solution, and
then making further parameter constraints, general smooth rational solutions would be
succinctly constructed.

When α = β = δ = 1, γ = −3, Wang et al. in [14] used the (G′
G )-expansion method to

construct a new exact solution of the (2+1)-dimensional Boussinesq equation

utt − uxx − uyy + 3(u2)xx − uxxxx = 0. (3)

Li et al. in [15] further improved the (G′
G )-expansion method and constructed the

solutions in the forms of ( G′
G+G′ ) and ( G′

G2 ), respectively, and they obtained and discussed
the existence of the extended solution of the (2+1)-dimensional Boussinesq equation and
its solution process. Jiao in [16] used the step-by-step procedure to obtain Jacobian elliptic
function solutions of similarity equations, thus generating truncated series solutions of the
original perturbed Boussinesq equation.

Many phenomena in nature can be simulated by functions, such as bell-shaped sech
functions and kink-shaped tanh functions, which can model wave phenomena such as
plasma, elastic medium, fluids, etc. [6]. In order to obtain more abundant new solutions
that can explain the corresponding nonlinear phenomena, we employ the extended (G′

G )
method in [17,18] and improved the tanh function method in [19,20] to study Equation (3).
In Section 2, using the solutions of nonlinear ordinary differential equation, adding the con-
stant d, as well as positive and negative power terms, many exact solutions are constructed
by the extended (G′

G ) method. Moreover, we discuss the structure and properties of the
exact solutions under the same and different undetermined coefficients, and we analyze
the effects of these solutions on the formation of rogue waves. In Section 3, by using the
improved tanh function method, constructing new ansatz solutions of the generalized
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Riccati equation, and assuming that the solution has a positive power term and negative
power term, we obtain three groups of non-traveling wave solutions composed of arbitrary
functions µ(y, t) and c(y, t). Furthermore, we discuss the different trajectories of the image
in a certain direction for different differentiable functions. In Section 4, some conclusions
are given.

2. Extended (G′
G ) Method

2.1. Preliminary

The extended (G′
G ) method is based on the general method, changing the auxiliary non-

linear ordinary differential equations and undetermined functions. For a given nonlinear
partial differential equation

P(u, ut, ux, utt, uxt, uxx, ...) = 0, (4)

the main steps of the extended (G′
G ) method are as follows.

Step 1 Making the traveling wave transformation on Equation (4), we suppose that u(ξ) =
u(x, y, ..., t), ξ = a1x + a2y + ...− bt, in which aj(j = 1, 2, ...) and b are undetermined
real constants. Then, we integrate and simplify it to an ordinary differential equation

P(e, u, u′, u′′, ...) = 0, (5)

where e is a integral constant, and u′ = du
dξ , u′′ = d2u

dξ2 , ...

Step 2 Supposing that the solution of Equation (5) has the following form

u(ξ) =
N

∑
i=−N

ei(d + H(ξ))i, (6)

where ei(i = 0,±1,±2, ...,±N) are undetermined constants and ei 6= 0, N is de-
termined by the homogeneous balance principle, and H(ξ) = G′(ξ)

G(ξ)
satisfies an

auxiliary nonlinear partial differential equation of G.
Step 3 Substituting (6) into Equation (5), we use the auxiliary equation to convert the left-

hand side of Equation (5) into a polynomial of (d + H(ξ)). Equating each coefficient
of the same power term of (d+ H(ξ)) to zero, then we obtain the algebraic equations
about undetermined coefficients.

Step 4 Solving the algebraic equations of ei(i = 0,±1,±2, ...,±N) and e, we finally substi-
tute the solutions of the auxiliary equation to determine the specific form of (6).

The choice of auxiliary equations determines the structure and properties of solutions
of nonlinear partial differential equation. Generally speaking, the (G′

G )-expansion method
in [14] is to use a second-order linear ordinary differential equation G′′ + λG′ + µG = 0,
which includes three types of solutions.

In Ref. [21], the author mentioned a nonlinear auxiliary ordinary differential equation

AGG′′ − BGG′ − C(G′)2 − EG2 = 0, (7)

where A, B, C and E are undermined coefficients. Taking M = A− C, ω = B2 + 4EM, and
∆ = ME, the solutions of this equation are as follows.

When B 6= 0 and ω > 0,

H(ξ) = (
G′

G
) =

B
2M

+

√
ω

2M
C1 sinh(

√
ω

2A ξ)− C2 cosh(
√

ω
2A ξ)

C2 sinh(
√

ω
2A ξ) + C1 cosh(

√
ω

2A ξ)
. (8)
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When B 6= 0 and ω < 0,

H(ξ) = (
G′

G
) =

B
2M

+

√
−ω

2M
−C1 sin(

√
−ω

2A ξ) + C2 cos(
√
−ω

2A ξ)

C2 sin(
√
−ω

2A ξ) + C1 cos(
√
−ω

2A ξ)
. (9)

When B 6= 0 and ω = 0,

H(ξ) = (
G′

G
) =

B
2M

+
C2

C1 + C2ξ
. (10)

When B = 0 and ∆ > 0,

H(ξ) = (
G′

G
) =

√
∆

M
C1 sinh(

√
∆

A ξ) + C2 cosh(
√

∆
A ξ)

C2 sinh(
√

∆
A ξ)− C1 cosh(

√
∆

A ξ)
. (11)

When B = 0 and ∆ < 0,

H(ξ) = (
G′

G
) =

√
−∆
M
−C1 sin(

√
−∆
A ξ) + C2 cos(

√
−∆
A ξ)

C2 sin(
√
−∆
A ξ) + C1 cos(

√
−∆
A ξ)

. (12)

In the subsequent sections, we will use the extended (G′
G ) method to solve the exact

solutions of (2+1)-dimensional Boussinesq equation with AGG′′− BGG′−C(G′)2− EG2 =
0 as an auxiliary equation.

2.2. Expression Form of Traveling Wave Solution

Considering the following (2+1)-dimensional Boussinesq equation

utt − uxx − uyy + 3(u2)xx − uxxxx = 0,

through traveling wave transformation u(ξ) = u(x, y, t), ξ = x + ay− bt, where a, b are
two non-zero constants, Equation (3) becomes

(b2 − 1− a2)u′′ + 3(u2)′′ − u′′′′ = 0.

Integrating it twice, we obtain

u′′ − 3u2 + cu + e = 0, (13)

where e is a real integral constant, c = a2 + 1− b2. We suppose that Equation (13) has the
following solution

u(ξ) =
N

∑
i=−N

ei(d + H(ξ))i. (14)

When the power of the highest-order derivative term u′′ and the nonlinear term u2

are equal, then N = 2. Furthermore, (14) can be written as

u(ξ) = e−2(d + H)−2 + e−1(d + H)−1 + e0 + e1(d + H) + e2(d + H)2. (15)



Mathematics 2022, 10, 2522 5 of 20

Substituting (15) into Equation (13), and taking Θ = Md2 + Bd− E, then we obtain
the following algebraic equations about undetermined coefficients.

−3A2e2(e2 −
2M2

A2 ) = 0,

−6A2(e2 −
2M2

A2 )((e1 +
2M(2dM + B)

A2 ))− 10M2(e1 +
2M(2dM + B)

A2 ) = 0,

3A2(
M(B + 2dM)

A2 − e1)(e1 +
2M(B + 2dM)

A2 )− 12M2(e0 −
12MΘ + A2c + ω

6A2 )

+ 6A2(e2 −
2M2

A2 )((
12MΘ + A2c + ω

6A2 − e0) +
(B + 2dM)2

2A2 ) = 0,

−6A2(e2 −
2M2

A2 )(e−1 +
Θ(B + 2dM)

A2 )− 6MΘ(e1 +
2M(B + 2dM)

A2 )

− 12M2e−1 = 0,
A2e0(c + 3e0 + e)− 6A2(e2e−2 + e1e−1) + 2M2e−2 + 2e2Θ2 − e1(B + 2dM)Θ

− e−1M(B + 2dM) = 0,

−6A2(e−2 −
2Θ2

A2 )(e1 +
M(B + 2dM)

A2 )− 6MΘ(e−1 +
2(B + 2dM)Θ

A2 )

− 12Θ2e1 = 0,

3A2(e−1 +
2(B + 2dM)Θ

A2 )(
(B + 2dM)Θ

A2 − e−1))− 12Θ(e0 −
12MΘ + A2c + ω

6A2 )

+ 6A2(e−2 −
2Θ2

A2 )((
12MΘ + A2c + ω

6A2 − e0) +
(B + 2dM)2

2A2 ) = 0,

−6A2(e−2 −
2Θ2

A2 )(e−1 +
5(B + 2dM)Θ

3A2 ) + 10Θ2(e−1 +
2(B + 2dM)Θ

A2 ) = 0,

−3A2e−2(e−2 −
2Θ2

A2 ) = 0.

By solving these equations with Maple, we obtain three groups of coefficient relations
about e−2, e−1, e0, e1, e2 and e.

Group 1

e =
ω2 − A4c2

12A4 , e−2 = 0, e−1 = 0,

e0 =
12M(Md2 + Bd− E) + A2c + ω

6A2 , e1 = −2M(2dM + B)
A2 , e2 =

2M2

A2 .

Group 2

e =
ω2 − A4c2

12A4 , e−2 =
2(Md2 + Bd− E)2

A2 , e−1 = −2(2dM + B)(Md2 + Bd− E)
A2 ,

e0 =
12M(Md2 + Bd− E) + A2c + ω

6A2 , e1 = 0, e2 = 0.

Group 3

e =
256M2(Md2 + E)2 − A4c2

12A4 , e−2 =
2(Md2 + E)2

A2 , e−1 = 0,

e0 =
A2c− 8M(Md2 + E)

6A2 , e1 = 0, e2 =
2M2

A2 , B = −2dM.

Considering the exact solutions of each group when the conditions (8)–(12) are satisfied,
for convenience, in (8) and (11), C2

1 − C2
2 = 1, C3 = arccoshC1 = arcsinhC2. In (10), C2 6= 0,

C3 = C1
C2

. In (9) and (12), C2
1 + C2

2 = 1, C3 =arccosC1 =arcsinC2.
The exact solutions of Group 1 are as follows.

u1,1(ξ) =
12M(Md2 + Bd− E) + A2c + ω

6A2

− 2M(2dM + B)
A2 (d +

B
2M

+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))
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+
2M2

A2 (d +
B

2M
+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

2,

u1,2(ξ) =
12M(Md2 + Bd− E) + A2c + ω

6A2

− 2M(2dM + B)
A2 (d +

B
2M

+

√
−ω

2M
tan(−

√
−ω

2A
ξ + C3))

+
2M2

A2 (d +
B

2M
+

√
−ω

2M
tan(−

√
−ω

2A
ξ + C3))

2,

u1,3(ξ) =
12M(Md2 + Bd− E) + A2c + ω

6A2 − 2M(2dM + B)
A2 (d +

B
2M

+
1

ξ + C3
)

+
2M2

A2 (d +
B

2M
+

1
ξ + C3

)2,

u1,4(ξ) =
12M2d2 − 8ME + A2c

6A2 +
2M2

A2 (d +

√
∆

M
tanh(

√
∆

A
ξ + C3))

2

− 4M2d
A2 (d +

√
∆

M
tanh(

√
∆

A
ξ + C3)),

u1,5(ξ) =
12M2d2 − 8ME + A2c

6A2 +
2M2

A2 (d +

√
−∆
M

tan(−
√
−∆
A

ξ + C3))
2

− 4M2d
A2 (d +

√
−∆
M

tan(−
√
−∆
A

ξ + C3)).

The exact solutions of Group 2 are as follows.

u2,1(ξ) =
12M(Md2 + Bd− E) + A2c + ω

6A2

− 2(2dM + B)(Md2 + Bd− E)
A2 (d +

B
2M

+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

−1

+
2(Md2 + Bd− E)2

A2 (d +
B

2M
+

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

−2,

u2,2(ξ) =
12M(Md2 + Bd− E) + A2c + ω

6A2

− 2(2dM + B)(Md2 + Bd− E)
A2 (d +

B
2M

+

√
−ω

2M
tan(−

√
−ω

2A
ξ + C3))

−1

+
2(Md2 + Bd− E)2

A2 (d +
B

2M
+

√
−ω

2M
tan(−

√
−ω

2A
ξ + C3))

−2,

u2,3(ξ) =
12M(Md2 + Bd− E) + A2c + ω

6A2

− 2(2dM + B)(Md2 + Bd− E)
A2 (d +

B
2M

+
1

ξ + C3
)−1

+
2(Md2 + Bd− E)2

A2 (d +
B

2M
+

1
ξ + C3

)−2,

u2,4(ξ) =
12M2d2 − 8ME + A2c

6A2 +
2(Md2 − E)2

A2 (d +

√
∆

M
tanh(

√
∆

A
ξ + C3))

−2

− 4dM(Md2 − E)
A2 (d +

√
∆

M
tanh(

√
∆

A
ξ + C3))

−1,

u2,5(ξ) =
12M2d2 − 8ME + A2c

6A2

− 4dM(Md2 − E)
A2 (d +

√
−∆
M

tan(−
√
−∆
A

ξ + C3))
−1

+
2(Md2 − E)2

A2 (d +

√
−∆
M

tan(−
√
−∆
A

ξ + C3))
−2.

The exact solutions of Group 3 are as follows.

u3,1(ξ) =
A2c− 8M(Md2 + E)

6A2 +
2M2

A2 (

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

2

+
2(Md2 + E)2

A2 (

√
ω

2M
tanh(

√
ω

2A
ξ − C3))

−2,

u3,2(ξ) =
A2c− 8M(Md2 + E)

6A2 +
2M2

A2 (

√
−ω

2M
tan(−

√
−ω

2A
ξ + C3))

2
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+
2(Md2 + E)2

A2 (

√
−ω

2M
tan(−

√
−ω

2A
ξ + C3))

−2,

u3,3(ξ) =
A2c− 8M(Md2 + E)

6A2 +
2M2

A2 (
1

ξ + C3
)2 +

2(Md2 + E)2

A2 (
1

ξ + C3
)−2,

u3,4(ξ) =
A2c− 8ME

6A2 +
2M2

A2 (

√
∆

M
tanh(

√
∆

A
ξ + C3))

2

+
2E2

A2 (

√
∆

M
tanh(

√
∆

A
ξ + C3))

−2,

u3,5(ξ) =
A2c− 8ME

6A2 +
2M2

A2 (

√
−∆
M

tan(−
√
−∆
A

ξ + C3))
2

+
2E2

A2 (

√
−∆
M

tan(−
√
−∆
A

ξ + C3))
−2.

Next, we numerically simulate the solutions, and the images are shown in Figures 1–13,
where r = x− t

2 , w = y− t
2 .

2.3. Numerical Simulation of Solutions under Different Undetermined Coefficient Values

Firstly, we discuss the structure and properties of the exact solutions under different
undetermined coefficient values.

Figure 1. Hyperbolic function u1,1(ξ) as a = 1, c = 1, e = 3
64 , A = 2, B = 1, C3 =

√
5, E = 1,

M = 1, ω = 5, e0 = 13
24 , e1 = 3

2 , C = 1, e2 = 1
2 , d = −2.

Figure 2. Hyperbolic function u3,1(ξ) as a = 1, c = 1, e = 133
4 , A = 2, B = 4, C3 =

√
20, E = 1,

M = 1, ω = 20, e0 = − 11
6 , e−2 = 25

2 , C = 1, e2 = 1
2 , d = −2.
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Figure 3. Hyperbolic function u3,4(ξ) as a = 1, c = 1, e = 5
4 , A = 2, B = 0, C3 = 2, E = 1, M = 1,

∆ = 1, e0 = − 1
2 , e−2 = 1

2 , C = 1, e2 = 1
2 , d = 0.

When the exact solution has the form of hyperbolic function, such as u1,1, u1,4, u2,1,u2,4,
u3,1 and u3,4. If the solution does not contain the negative power term of (d + H(ξ)), such
as u1,1 and u1,4, it can be inferred from the properties of the hyperbolic tangent function
that the image of the solution is smooth. If the solution contains negative power terms
of (d + H(ξ)), when the denominator of the solution gradually approaches zero by ξ, the
image of the solution for u2,1, u2,4,u3,1 and u3,4 may reflect sharp points. However, there
must be sharp points in the image of solutions u3,1 and u3,4. For u3,4, due to the condition
of the auxiliary equation solution B = −2dM = 0, and ∆ > 0, but M 6= 0, d = 0. In this
case, the denominator of the negative power term of (d + H(ξ)) is

√
∆

M tanh(
√

∆
A ξ + C3),

and ξ can always obtain the value − AC3√
∆

, so the blow-up phenomenon cannot be avoided
and rogue waves will appear in actual phenomena.

Figure 4. Trigonometric function u1,5(ξ) as a = 1, c = 1, A = 2, B = 0, E = −1, M = 1, ∆ = −1,
C = 1, e0 = 13

6 , e1 = 2, e2 = 1
2 , e = 0, C3 = 2, d = −2.

Figure 5. Trigonometric function u2,2(ξ) as a = 1, c = 1, e = − 1
16 , B = 1, E = − 3

4 , M = 1,
ω = −2, C = 1, e0 = 9

8 , e−1 = 33
8 , e−2 = 121

32 , A = 2, C3 =
√

2, d = −2.
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Figure 6. Trigonometric function u2,5(ξ) as a = 1, c = 1, A = 2, B = 0, E = −1, M = 1,
∆ = −1, C = 1, e0 = 13

6 , e−2 = 25
2 , e−1 = 10, e = 0, C3 = 2, d = −2.

When the exact solution has the form of trigonometric function, such as u1,2,u1,5,u2,2,
u2,5,u3,2 and u3,5, from the properties of the tangent function, we deduce that whether the
solution contains negative power terms of (d + H(ξ)), the image of the solution will have
segmented periodic spikes.

Figure 7. Rational functionu1,3(ξ) as a = 1, c = 1, e = − 1
12 , B = 2, E = 1, M = −1, ω = 0,

C = 2, e0 = 11
6 , e1 = −4, e2 = 2, A = 1, C3 = 1, d = 2.

Figure 8. Rational function u2,3(ξ) as a = 1, c = 1, e = − 1
12 , B = 2, E = 1, M = −1, ω = 0,

C = 2, e−1 = −4, A = 1, e−2 = 2, e0 = 11
6 , C3 = 2, d = 2.
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Figure 9. Rational function u3,3(ξ) a = 1, c = 1, e = − 1
12 , B = 4, E = 4, M = −1, ω = 0, C = 2,

e0 = − 1
6 , A = 1, e2 = 2, e−2 = 0, C3 = 2, d = 2.

When the exact solution has the form of rational function, such as u1,3, u2,3 and u3,3,
since there is always a rational function of ξ in the denominator, there will be sharp points
in the image of the solution.

2.4. Numerical Simulation of Solutions under the Same Situation

Now, we discuss the influence of d on the structure and properties of the solution
under the same situation.

Figure 10. Hyperbolic function u2,4(ξ) as d = −2, a = 1, c = 1, A = 2, B = 0, C3 = 2, C = 1,
e = 0, E = 1, M = 1, ∆ = 1, e0 = 3

2 , e−1 = 6, e−2 = 9
2 .

Figure 11. Hyperbolic function u2,4(ξ) as d = 0, a = 1, c = 1, A = 2, B = 0, C3 = 2, C = 1, e = 0,
E = 1, M = 1, ∆ = 1, e0 = − 1

2 , e−1 = 0, e−2 = 1
2 .

Taking the solution u2,4 as an example, which denominator will be
√

∆
M tanh(

√
∆

2A ξ +C3)

when d = 0, that is a hyperbolic tangent function, but if ξ infinitely approaches − AC3√
∆

,

the solution value tends to be infinity, and therefore, blow-up occurs. When |d| >
√

∆
|M| ,
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the denominator d+
√

∆
M tanh(

√
∆

A ξ + C3) 6= 0; then, the function image will be smooth at
this time.

Figure 12. Trigonometric function u3,2(ξ) as d = −1, a = 1, c = 1, A = 2, B = 2, E = −2, e = 5
4 ,

C = 1, M = 1, ω = −4, C3 = −2, e0 = 1
6 , e2 = 1

2 , e−2 = 1
2 .

Figure 13. Trigonometric function u3,2(ξ) as d = 0, a = 1, c = 1, A = 2, B = 0, E = −2, e = 21
4 ,

C = 1, M = 1, ω = −8, C3 = −2, e0 = 1
2 ,e2 = 1

2 , e−2 = 2.

For u3,2, it is known from the image properties of tangent function that there always
exists a ξ so that

√
−ω

2M tan(−
√
−ω

2A ξ + C3) is equal to zero no matter what the value d is;
then, the solution value is always infinite. These values are periodic, and periodic blow-up
will occur.

Comparing those methods mentioned in Refs. [14,15], we add a constant d and
negative power terms. Different properties of solutions are obtained by controlling the
variable d. The negative power term affects the solution to blow up.

3. Improved Tanh Function Method
3.1. Preliminary

The improved tanh function method makes full use of the generalized Riccati equation

ϕ′ = r + pϕ + qϕ2, (16)

on the basis of the tanh function method, where r, p and q are real constants. For the
nonlinear partial differential Equation (4), the steps of the improved tanh function method
are as follows.
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Step 1 Supposing that Equation (4) has the following form of solution

u(x, y, t) =
N′

∑
i=−N′

µi(y, t)ϕi(kx + η(y, t)), (17)

where µi(y, t)(i = 0, 1, 2, ..., N′)and η(y, t) are differentiable functions, and the value
N′ here is determined by the homogeneous balance principle.

Step 2 Substitute (17) into Equation (4), and repeatedly use Equation (16) to convert the
left-hand side of Equation (4) into a polynomial about ϕ(kx + η(y, t)). Equate each
coefficient of the same power term to zero, and then obtain the algebraic equations
about undetermined functions.

Step 3 Solve the algebraic equations to determine µi(y, t) and η(y, t), and finally substitute
the solution of the generalized Riccati equation into (17).

In the subsequent sections, with the help of the generalized Riccati equation, we will
apply the improved tanh function method to solve the non-traveling wave exact solutions
of the (2+1)-dimensional Boussinesq equation.

3.2. Expression of Non-Traveling Wave Exact Solution

For the (2+1) dimensional Boussinesq equation

utt − uxx − uyy + 3(u2)xx − uxxxx = 0,

in order to balance the highest derivative term uxxxx and nonlinear term (u2)xx, we suppose
that Equation (3) has the following form of solution.

u(x, y, t) =
a(y, t)

ϕ2 +
b(y, t)

ϕ
+ c(y, t) + d(y, t)ϕ + e(y, t)ϕ2, (18)

where ϕ = ϕ(kx + η(y, t)), k is a real number but k 6= 0, a(y, t), b(y, t), c(y, t), d(y, t), e(y, t)
and η(y, t) are differentiable functions.

Substituting (18) into Equation (3), and taking c0 =
k4 p2+8k4qr+k2−(ηt

2−ηy
2)

6k2 , then we
obtain the coefficients of ϕ.
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60ek2q2(e− 2k2q2) = 0,
12kq(p(e− 2k2q2)(9e + 2k2q2) + q(d− 2k2 pq)(6e− 2k2q2)) = 0,
(e− 2k2q2)(6k2 p2(c− c0) + 4k4q2 p2) + 12k4q4(c− c0) + e(8k2 p2 + 16k2qr)

+ k2q(d− 2k2 pq)(21ep− 3dp− 4k2 pq2) = 0,
6k2(d− 2k2 pq)[q(20k2 p2q + 32k2q2r + 5dp) + 9(p2 + 2qr)(e− 2k2q2)]

+ 6k2[2rp(e− 2k2q2)(7e + 2k2q2) + 2q(beq− k2 p3(e− 2k2q2))]

+ 2eq(ηtt− ηyy) + 4q(etηt − eyηy) = 0,
6k2[(e− 2k2q2)(3pq(b− 2k2 pr) + 15pr(d− 2k2 pq) + 6er2) + 4k2 p2qr− 2k2 p4]

+ 2q(dtηt − dyηy) + 4p(etηt − eyηy) + (ett − eyy) + (2ep + dq)(ηtt− ηyy)
+ 2(d− 2k2 pq)((p2 + 2qr)(d− 2k2 pq) + k2 pq(3p2 + 20qr)) + 6k2 p2q2b = 0,

6k2[r(b− 2k2 pr)(4k2 p2q + 6er + 3dr) + (e− 2k2q2)(bp2 − 4k2 p3r + 2bqr)]
+ 12bk4q2(p2 + 2qr) + (2er + dq)(ηtt − ηyy) + 2p(dtηt − dyηy)

+ 4r(etηt − eyηy) + (dtt − dyy) = 0,
6k2[(b− 2k2 pr)(4k2 p2r + b + dr2(d− 2k2 pq) + ap(a− 2k2r2)(d− 2k2 pq)]

+ 6prk2(e− 2k2q2)) + (dr− bq)(ηtt − ηyy)− 2q(btηt − byηy)

+ 2r(dtηt − dyηy) + (ctt − cyy) = 0,
6k2[q(b− 2k2 pr)(4k2 p2r + 6aq + 3bq) + (a− 2k2r2)(dr2 − 4k2 p3q + 2bqr)]

+ 12dk4r2(p2 + 2pr)− (2aq + bp)(ηtt − ηyy)− 2p(btηt − byηy)

− 4q(atηt − ayηy) + (btt − byy) = 0,
6k2[(a− 2k2r2)(3pr(d− 2k2 pq) + 15pq(b− 2k2 pr) + 6aq2) + 4k2 p2qr− 2k2 p4]

− (2ap + br)(ηtt− ηyy) + 2r(btηt − byηy)− 4p(atηt − ayηy)− (att − ayy)

+ 2(b− 2k2 pr)((p2 + 2qr)(b− 2k2 pr) + k2 pr(3p2 + 20qr)) + 6k2 p2r2d = 0,
6k2(b− 2k2 pr)[r(20k2 p2r + 32k2q2q + 5bp) + 9(p2 + 2qr)(a− 2k2r2)]

+ 6k2[2ap(a− 2k2r2)(7a + 2k2r2) + 2r(adr− k2 p3(a− 2k2r2))]

− 2ar(ηtt − ηyy)− 4q(atηt − ayηy) = 0,
(a− 2k2r2)(6k2 p2(c− c0) + a(8k2 p2 + 16k2qr) + 4k4r2 p2) + 12k4r4(c− c0)

+ k2r(b− 2k2 pr)(21ap− 3br− 4k2 pr2) = 0,
12kr(p(a− 2k2r2)(9a + 2k2r2) + r(b− 2k2 pr)(6a− 2k2r2)) = 0,
60ak2q2(a− 2k2r2) = 0.

We can obtain the following results by solving those equations with Maple.
Case 1

a = 0, b = 0, d = 2k2 pq, e = 2k2q2, η(y, t) = f1(y) + f2(y)t + f3(t),

c =
1

6k2 (k
4 p2 + 8k4qr + k2 − (( f2(y) + f ′3(t))

2 − ( f ′1(y) + f ′2(y)t)
2)),

where f1(y), f2(y) and f3(t) are arbitrary differentiable functions, and η2
tt = η2

yy = η2
yt,

while the other two cases are the same.
Case 2

a = 2k2r2, b = 2k2 pr, d = 0, e = 0, η(y, t) = f1(y) + f2(y)t + f3(t),

c =
1

6k2 (k
4 p2 + 8k4qr + k2 − (( f2(y) + f ′3(t))

2 − ( f ′1(y) + f ′2(y)t)
2)).

Case 3

a = 2k2r2, b = 0, d = 0, e = 0, e = 2k2q2, η(y, t) = f1(y) + f2(y)t + f3(t),
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p = 0, c =
1

6k2 (8k4qr + k2 − (( f2(y) + f ′3(t))
2 − ( f ′1(y) + f ′2(y)t)

2)).

For simplicity, we take M =

√
p2−4qr

2 , N =

√
4qr−p2

2 , ζ = kx + η(y, t). Substituting the
solutions of the generalized Riccati equation into three cases, we obtain

Case 1
When p2 − 4qr > 0, pq 6= 0(or qr 6= 0),

u1 = c− k2

2
[p2 − 4M2tanh2(Mζ)],

u2 = c− k2

2
[p2 − 4M2coth2(Mζ)],

u3 = c− k2

2
[p2 − 4M2(tanh(2Mζ)± isech(2Mζ))2],

u4 = c− k2

2
[p2 − 4M2(coth(2Mζ)±csch(2Mζ))2],

u5 = c− k2

2
[p2 −M2(tanh(

Mζ

2
)+coth(

Mζ

2
))2],

u6 = c− k2 p2

2
+ 2k2M2 (

√
A2 + B2 − Acosh(2Mζ))2

(Asinh(2Mζ) + B)2 ,

u7 = c− k2 p2

2
+ 2k2M2 (

√
B2 − A2 + Asinh(2Mζ))2

(Acosh(2Mζ) + B)2 ,

u8 = c + 4k2qrcosh(Mζ)
2qrcosh(Mζ) + p(2Msinh(Mζ)− pcosh(Mζ))

(2Msinh(Mζ)− pcosh(Mζ))2 ,

u9 = c + 4k2qrsinh(Mζ)
2qrsinh(Mζ) + p(2Mcosh(Mζ)− psinh(Mζ))

(2Mcosh(Mζ)− psinh(Mζ))2 ,

u10 = c + 4k2qrcosh(2Mζ)
(2qr− p2)cosh(2Mζ) + p(2Msinh(2Mζ)± i2M)

(2Msinh(2Mζ)− pcosh(2Mζ)± i2M)2 ,

u11 = c + 4k2qrsinh(2Mζ)
(2qr− p2)sinh(2Mζ) + p(2Mcosh(2Mζ)± 2M)

(2Mcosh(2Mζ)− psinh(2Mζ)± 2M)2 ,

u12 = c + 8k2qrΦ1(ζ)
2(2qr− p2)Φ1(ζ) + p(4Mcosh2(

Mζ

2
)− 2M)

(4Mcosh2(
Mζ

2
)− 2pΦ1(ζ)− 2M)2

,

where Φ1(ζ) = sinh(
Mζ

2
)cosh(

Mζ

2
), A and B are two non-zero real constants and satisfy

B2 − A2 > 0.
When p2 − 4qr < 0, pq 6= 0(or qr 6= 0),

u13 = c− k2

2
[p2 − 4N2tan2(Nζ)],

u14 = c− k2

2
[p2 − 4N2cot2(Nζ)],

u15 = c− k2

2
[p2 − 4N2(tan(2Nζ)±sec(2Nζ))2],

u16 = c− k2

2
[p2 − 4N2(cot(2Nζ)±csc(2Nζ))2],

u17 = c− k2

2
[p2 − N2(tan(

Nζ

2
)−cot(

Nζ

2
))2],

u18 = c− k2 p2

2
+ 2k2N2 (

√
A2 − B2 ∓ Acos(2Nζ))2

(Asin(2Nζ) + B)2 ,

u19 = c− k2 p2

2
+ 2k2N2 (

√
A2 − B2 ∓ Asin(2Nζ))2

(Acos(2Nζ) + B)2 ,

u20 = c + 4k2qrcos(Nζ)
2qrcos(Nζ)− p(2Nsin(Nζ) + pcos(Nζ))

(2Nsin(Nζ) + pcos(Nζ))2 ,

u21 = c + 4k2qrsin(Nζ)
2qrsin(Nζ) + p(2Ncos(Nζ)− psin(Nζ))

(2Ncos(Nζ)− psin(Nζ))2 ,

u22 = c + 4k2qrcos(2Nζ)
2qrcos(2Nζ)− p(2Nsin(2Nζ) + pcos(2Nζ)± 2N)

(2Nsin(2Nζ) + pcos(2Nζ)± 2N)2 ,
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u23 = c + 4k2qrsin(2Nζ)
2qrsin(2Nζ) + p(2Ncos(2Nζ)− psin(2Nζ)± 2N)

(2Ncos(2Nζ)− psin(2Nζ)± 2N)2 ,

u24 = c + 8k2qrΦ2(ζ)
2(2qr− p2)Φ2(ζ) + p(4Ncos2(

Nζ

2
)− 2N)

(4Ncos2(
Nζ

2
)− 2pΦ2(ζ)− 2N)2

,

where Φ2(ζ) = sin(
Nζ

2
)cos(

Nζ

2
), A and B are two non-zero real constants and satisfy

A2 − B2 > 0.
When r = 0, pq 6= 0,

u25 =
1

6k2 (k
4 p2 + k2 − (( f2(y) + f ′3(t))

2 − ( f ′1(y) + f ′2(y)t)
2))

− 2k2 p2c1
cosh(pζ)− sinh(pζ)

(c1 + cosh(pζ)− sinh(pζ))2 ,

u26 =
1

6k2 (k
4 p2 + k2 − (( f2(y) + f ′3(t))

2 − ( f ′1(y) + f ′2(y)t)
2))

− 2k2 p2c1
cosh(pζ) + sinh(pζ)

(c1 + cosh(pζ) + sinh(pζ))2 .

When q 6= 0, r = p = 0,

u27 =
1

6k2 (k
2 − (( f2(y) + f ′3(t))

2 − ( f ′1(y) + f ′2(y)t)
2)) +

2k2q2

(c2 + qζ)2 .

Case 2
When p2 − 4qr > 0, pq 6= 0(or qr 6= 0),

u28 = c− 4k2qr
2Mptanh(Mζ) + p2 − 2qr

(2Mtanh(Mζ) + p)2 ,

u29 = c− 4k2qr
2MpcothMζ + p2 − 2qr
(2Mcoth(Mζ) + p)2 ,

u30 = c− 4k2qr
p(2Mtanh(2Mζ) + p± iMsech(2Mζ))− 2qr

(2Mtanh(2Mζ) + p± iMsech(2Mζ))2 ,

u31 = c− 4k2qr
p(2Mcoth(2Mζ) + p±Mcsch(2Mζ))− 2qr

(2Mcoth(2Mζ) + p±Mcsch(2Mζ))2 ,

u32 = c− 8k2qr
p(2Mtanh(

Mζ

2
) + 2Mcoth(

Mζ

2
) + 2p)− 4qr

(2Mtanh(
Mζ

2
) + 2Mcoth(

Mζ

2
) + 2p)2

,

u33 = c− 4k2qrF1(ζ)
p(2AMcosh(2Mζ) + pF1(ζ)− 2M

√
A2 + B2)− 2qrF1(ζ)

(2AMcosh(2Mζ) + pF1(ζ)− 2M
√

A2 + B2)2
,

u34 = c− 4k2qrF2(ζ)
p(2AMsinh(2Mζ) + pF2(ζ) + 2M

√
B2 − A2)− 2qrF2(ζ)

(2AMsinh(2Mζ) + pF2(ζ) + 2M
√

B2 − A2)2
,

u35 = c− k2

2
[p2 −M2csch2(

Mζ

2
)(2cosh(

Mζ

2
)− sech(

Mζ

2
))2],

where F1(ζ) = Asinh(2Mζ) + B, F2(ζ) = (Acosh(2Mζ) + B),
A and B are two non-zero real constants and satisfy B2 − A2 > 0.
When p2 − 4qr < 0, pq 6= 0(or qr 6= 0),

u36 = c + 4k2qr
2Nptan(Nζ)− p2 + 2qr

(2Ntan(Nζ)− p)2 ,

u37 = c− 4k2qr
2Npcot(Nζ) + p2 − 2qr

(2Ncot(Nζ) + p)2 ,

u38 = c + 4k2qr
p(2Ntan(2Nζ)− p± Nsec(2Nζ)) + 2qr

(2Ntan(2Nζ)− p± Nsec(2Nζ))2 ,

u39 = c− 4k2qr
p(2Ncot(2Nζ) + p± Ncsc(2Nζ))− 2qr

(2Ncot(2Nζ) + p± Ncsc(2Nζ))2 ,

u40 = c + 8k2qr
p(2Ntan(

Nζ

2
)− 2Ncot(

Nζ

2
)− 2p) + 4qr

(2Ntan(
Nζ

2
)− 2Ncot(

Nζ

2
)− 2p)2

,
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u41 = c− 4k2qrG1(ζ)
p(2ANcos(2Nζ) + pG1(ζ)∓ 2N

√
A2 − B2)− 2qrG1(ζ)

(2ANcos(2Nζ) + pG1(ζ)± 2N
√

A2 − B2)2
,

u42 = c + 4k2qrG2(ζ)
p(2ANsin(2Nζ)− pG2(ζ)∓ 2N

√
A2 − B2) + 2qrG2(ζ)

(2ANsin(2Nζ)− pG2(ζ)± 2N
√

A2 − B2)2
,

u43 = c− k2

2
[p2 − N2csc(

Nζ

2
)(2cos(

Nζ

2
)− sec(

Nζ

2
))2],

where G1(ζ) = Asin(2Nζ) + B, G2(ζ) = Acos(2Nζ) + B, A and B are two non-zero real
constants and satisfy A2 − B2 > 0.

When r = 0, pq 6= 0, the solution is independent of x.
When q 6= 0, r = p = 0, the solution is independent of x.
Case 3 (p = 0)
When p2 − 4qr > 0, pq 6= 0(or qr 6= 0),

u44 = c + 2k2 M4tanh4(Mζ) + q2r2

M2tanh2(Mζ)
,

u45 = c + 2k2 M4coth4(Mζ) + q2r2

M2coth2(Mζ)
,

u46 = c + 2k2 M4(tanh(2Mζ)± isech(2Mζ))4 + q2r2

M2(tanh(2Mζ)± isech(2Mζ))2 ,

u47 = c + 2k2 M4(coth(2Mζ)± csch(2Mζ))4 + q2r2

M2(coth(2Mζ)± csch(2Mζ))2 ,

u48 = c + k2
M4(tanh(

Mζ

2
) + coth(

Mζ

2
))4 + 16q2r2

2M2(tanh(
Mζ

2
) + coth(

Mζ

2
))2

,

u49 = c +
k2(2M

√
A2 + B2 − 2AMcosh(2Mζ))2

2(Asinh(2Mζ) + B)2

+
8k2r2q2(Asinh(2Mζ) + B)2

(2M
√

A2 + B2 − 2AMcosh(2Mζ))2
,

u50 = c +
k2(2M

√
B2 − A2 + 2AMsinh(2Mζ))2

2(Acosh(2Mζ) + B)2

+
8k2r2q2(Acosh(2Mζ) + B)2

(2M
√

B2 − A2 + 2AMsinh(2Mζ))2
,

u51 = c + 2k2 M4sinh4(Mζ) + cosh4(Mζ)q2r2

M2sinh2(Mζ)cosh2(Mζ)
,

u52 = c + 2k2 M4cosh4(Mζ) + sinh4(Mζ)q2r2

M2sinh2(Mζ)cosh2(Mζ)
,

u53 = c +
k2(2Msinh(2Mζ)± i2M)2

2cosh2(2Mζ)
+

8k2q2r2cosh2(2Mζ)

(2Msinh(2Mζ)± i2M)2 ,

u54 = c +
k2(2Mcosh(2Mζ)± 2M)2

2sinh2(2Mζ)
+

8k2q2r2sinh2(2Mζ)

(2Mcosh(2Mζ)± 2M)2 ,

u55 = c +
k2(4Mcosh2(

Mζ

2
)− 2M)2

8sinh2(
Mζ

2
)cosh2(

Mζ

2
)

+
32k2qrsinh2(

Mζ

2
)cosh2(

Mζ

2
)

(4Mcosh2(
Mζ

2
)− 2M)2

,

where A and B are two non-zero real constants and satisfy B2 − A2 > 0.
When p2 − 4qr < 0, pq 6= 0(or qr 6= 0),

u56 = c + 2k2 N4tan4(Nζ) + q2r2

N2tan(Nζ)
,

u57 = c + 2k2 N4cot4(Nζ) + q2r2

N2cot(Nζ)
,

u58 = c + 2k2 N4(tan(2Nζ)± sec(2Nζ))4 + q2r2

N2(tan(2Nζ)± sec(2Nζ))2 ,
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u59 = c + 2k2 N4(cot(2Nζ)± csc(2Nζ))4 + q2r2

N2(cot(2Nζ)± csc(2Nζ))2 ,

u60 = c + k2
N4(tan(

Nζ

2
)− cot(

Nζ

2
))4 + 16q2r2

2N2(tan(
Nζ

2
)− cot(

Nζ

2
))2

,

u61 = c +
2k2(±N

√
A2 − B2 − ANcos(2Nζ))2

(Asin(2Nζ) + B)2 +
2k2r2q2(Asin(2Nζ) + B)2

(±N
√

A2 − B2 − ANcos(2Nζ))2
,

u62 = c +
2k2(±N

√
A2 − B2 + ANsin(2Nζ))2

(Acos(2Nζ) + B)2 +
2k2r2q2(Acos(2Nζ) + B)2

(±N
√

A2 − B2 + ANsin(2Nζ))2
,

u63 = c + 2k2 N4sin4(Nζ) + cos4(Nζ)q2r2

N2sin2(Nζ)cos2(Nζ)
,

u64 = c + 2k2 N4cos4(Nζ) + sin4(Nζ)q2r2

N2sin2(Nζ)cos2(Nζ)
,

u65 = c +
k2(2Nsin(2Nζ)± 2N)2

2cos2(2Nζ)
+

8k2q2r2cos2(2Nζ)

(2Nsin(2Nζ)± 2N)2 ,

u66 = c +
k2(2Ncos(2Nζ)± 2N)2

2sin2(2Nζ)
+

8k2q2r2sin2(2Nζ)

(2Ncos(2Nζ)± 2N)2 ,

u67 = c +
k2(4Ncos2(

Nζ

2
)− 2N)2

8sin2(
Nζ

2
)cos2(

Nζ

2
)

+
32k2qrsin2(

Nζ

2
)cos2(

Nζ

2
)

(4Ncos2(
Nζ

2
)− 2N)2

,

where A and B are two non-zero real constants and satisfy A2 − B2 > 0.
When r = 0, pq 6= 0, but p = 0, the solution is independent of x.

3.3. Property Analysis of the Solution

The solutions obtained in this section all include arbitrary differentiable functions
f1(y), f2(y) and f3(t), which may give the prediction of physical phenomena with given
parameters. According to the expressions of solutions in Case 1, these non-traveling wave
solutions can be regarded as kink type, periodic type and singular solitary wave type.
Below, we take z = kx, v = y + t and give the numerical simulation for the solutions of
Case 1.

Figures 14 and 15, respectively, show that when f1(y) = y, f2(y) = 0, f3(t) = t,
ζ = kx + y + t =z +v, the image of u25 shows a linear trajectory in a certain direction;
when f1(y) = y2, f2(y) = 2y, f3(t) = t2, ζ = kx + (y + t)2 =z +v2, the image of u25
shows a parabolic trajectory in a certain direction. If c1 = 1, p = 1, the denominator
(1 + cosh(ζ)− sinh(ζ))2 of u25 is always not equal to zero; then, no blow-up occurs, so the
images are of all solitary wave. In Figures 16 and 17, u20 mainly includes sine functions and
cosine functions. If N = 1, p = 2, the denominator (2sin(ζ) + 2cos(ζ))2 of u20 can be equal
to zero, which leads to singularity. However, by comparing ζ =z +v with ζ =z +v2 as an
independent variable of trigonometric function, we can intuitively find that the sharps in
Figure 17 are multiplied more than those in Figure 16. From the properties of trigonometric
function, it can be seen that the images are periodic type. Moreover, each trigonometric
function solution in Case 1 is a periodic singular solitary wave solution.
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Figure 14. Linear solitary wave solution u25(ζ) as k = 1, p = 1,q = 1, r = 0, f1(y) = y,
f2(y) = 0, f3(t) = t, c1 = 1, c = 1

3 .

Figure 15. Parabolic solitary wave solution u25(ζ) as k = 1, p = 1,q = 1, r = 0, f1(y) = y2, f2(y) =
2y, f3(t) = t2, c1 = 1, c = 1

3 .

Figure 16. Parabolic and periodic singular wave solution u20(ζ) as k = 1, p = 2, q = 2, r = 2,
N = 1, f1(y) = y, f2(y) = 0, f3(t) = t, c = 7

2 .

Figure 17. Parabolic and periodic singular wave solution u20(ζ) as k = 1, p = 2, q = 2, r = 2,
N = 1, f1(y) = y2, f2(y) = 2y, f3(t) = t2, c = 7

2 .

4. Conclusions

In this paper, the exact solutions of the (2+1)-dimension Boussinesq equation are
obtained by using the extended (G′

G ) method. For hyperbolic function solutions, such
as u3,4, the denominator can always obtain zero if d = 0, and the blow-up phenomenon
cannot be avoided. For the trigonometric function solutions, periodic blow-up will occur
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because of the property and periodicity of the tangent function. For rational function
solutions, the solution u3,3 contains both positive and negative power terms (d + H(ξ)),
the image of solution u3,3 is therefore like a superposition of the image of solution u1,3 and
u2,3. Moreover, the rational function of ξ always appears as the denominator, which will
lead to blow-up. The formation of rogue waves is reflected by those solutions.

The extended (G′
G ) method is to add a coefficient d to each item in the (G′

G )-expansion,
so that the solution becomes the form of (d + H(ξ)). In the fourth hyperbolic function
solution of Group 2, it is observed that the smoothness of the image can be controlled by d.

The improved tanh function method is also applied to obtain many non-traveling
wave solutions, including kink solutions, periodic solitary wave solutions, and singular
solitary wave solutions. Numerical simulation and analysis enables us to better explain
the rogue wave phenomenon in natural phenomena. The image of the solution changes
greatly under the influence of differentiable function f1(y), f2(y) and f3(t). For example, if
f1(y) = y2, f2(y) = 2y, f3(t) = t2, the image of the solution shows a parabolic trajectory
in a certain direction. If we extend these arbitrary differentiable functions, considering
trigonometric functions, hyperbolic trigonometric functions, exponential functions, and so
on, the equation will have more abundant solutions.

We also find that u1,1 and u1 can be expressed as k1 + k2tanh2(k3φ + k4) when B =
−2dM and φ(x, y, t) = ϕ(kx + η(y, t)) is a linear transformation satisfing η2

yy = η2
tt = η2

yt.
Observing the solutions obtained by those two methods, we find that in the extended
( G′

G ) method, the B = −2dM is satisfied. In the improved tanh function method, if ϕ(kx +
η(y, t)) is a linear transformation of x, y and t, that satisfies the condition η2

yy = η2
tt = η2

yt,

which is recorded as φ(x, y, t). u1,1 and u1 can be simply expressed as k1 + k2tanh2(k3φ +
k4), where ki(i = 1, 2, 3, 4) are constants. Moreover, u1,2 and u13 can be simply expressed as
k5 + k6tan2(k7φ + k8), u1,3 and u27 can be expressed as k9 +

k10
(k11φ+k12)2 . Here, we only list

the solutions of Group 1 and Case 1 obtained by those two methods. These phenomena
suggest that there may be some relationships between solutions obtained by different
methods for the same equation.
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