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Abstract: This paper considers what we propose to call multi-gear bandits, which are Markov decision
processes modeling a generic dynamic and stochastic project fueled by a single resource and which
admit multiple actions representing gears of operation naturally ordered by their increasing resource
consumption. The optimal operation of a multi-gear bandit aims to strike a balance between project
performance costs or rewards and resource usage costs, which depend on the resource price. A
computationally convenient and intuitive optimal solution is available when such a model is indexable,
meaning that its optimal policies are characterized by a dynamic allocation index (DAI), a function of
state–action pairs representing critical resource prices. Motivated by the lack of general indexability
conditions and efficient index-computing schemes, and focusing on the infinite-horizon finite-state
and -action discounted case, we present a verification theorem ensuring that, if a model satisfies two
proposed PCL-indexability conditions with respect to a postulated family of structured policies, then it
is indexable and such policies are optimal, with its DAI being given by a marginal productivity index
computed by a downshift adaptive-greedy algorithm in AN steps, with A + 1 actions and N states.
The DAI is further used as the basis of a new index policy for the multi-armed multi-gear bandit problem.

Keywords: Markov decision process; multi-gear bandits; index policies; indexability; index algorithm
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1. Introduction

There is a substantial literature analyzing the indexability of infinite-horizon discrete-
time binary-action Markov decision processes (MDP), i.e., their optimal solution by index
policies, starting with the seminal work of Bellman in [1] on a Bernoulli bandit model. Such
MDPs can be interpreted as models of a generic dynamic and stochastic project, which can
be operated in a passive or an active mode. We propose to refer to such operating modes as
gears, to reflect their natural ordering by increasing activity level.

The model in [1] had the property that, while the project is passive, its state does
not change, which corresponds to a classic bandit setting. It was later shown that, given a
finite collection of classic bandits, one of which must be active at each time, the policy that
maximizes the expected total discounted reward in such a multi-armed bandit problem has
a remarkably simple structure which overcomes the curse of dimensionality of a standard
dynamic programming approach: it suffices to evaluate what Gittins and Jones [2] called the
dynamic allocation index (DAI), later known as the Gittins index, of each project, which is a
function of its state, and then activate at each time a project with largest index. See, e.g., the
seminal work of Gittins and Jones [2] and Gittins [3], the monograph by Gittins [4], and
alternative proofs by Whittle [5], Weber [6], and Bertsimas and Niño-Mora [7].

The assumption in classic bandit models that passive projects do not change state was
removed by Whittle in [8], introducing restless bandits. That paper further introduced an
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index for restless bandits (the Whittle index), which characterizes the optimal operation of a
single restless project and provides a suboptimal heuristic policy for scheduling multiple
such projects, in the so-called multi-armed restless bandit problem. The latter has huge
modeling power but is computationally intractable, and Whittle’s index policy has proven
effective in an ever-increasing variety of models for multifarious applications. Thus, e.g.,
to name a few, scheduling multi-class make-to-stock queues [9], scheduling multi-class
queues with finite buffers [10], admission control and routing to parallel queues with
reneging [11], obsolescence mitigation strategies [12], sensor scheduling and dynamic
channel selection [13–16], group maintenance [17], multi-target tracking with Kalman filter
dynamics [18,19], scheduling multi-armed bandits with switching costs [20] or switching
delays [21], the dynamic prioritization of medical treatments or interventions [22,23],
and resource allocation with varying requests and with resources shared by multiple
requests [24].

Yet, while the Gittins index is well defined for any classic bandit, the Whittle index
only exists for some restless bandits, called indexable. Whittle pointed out in [8] the need of
finding sufficient conditions for indexability (the existence of the index).

While researchers have deployed a wide variety of ingenious ad hoc techniques for
proving the indexability of particular restless bandit models and computing their Whittle
indices, the author has developed over the last two decades in a series of papers a systematic
approach to accomplish such goals. Thus, Ref. [25] introduced a framework for establishing
both the indexability of a general finite-state restless bandit and the optimality of a postulated
family of structured policies, based on the concept of partial conservation laws (PCLs), also
introduced there. If project performance metrics satisfy so-called PCL-indexability conditions,
then the project’s Whittle index can be efficiently computed in N steps, where N is the
number of states, by an adaptive-greedy index algorithm. This algorithm is an extension
of the classic index-computing algorithm of Klimov [26] for computing the indices that
characterize the optimal policy for scheduling a multi-class queue with feedback. Note
that Klimov’s algorithm was adapted in [7] for computing the Gittins index, based on a
framework of generalized conservation laws.

PCLs extend classical conservation laws in stochastic scheduling. See, e.g., the conser-
vation laws in Coffman and Mitrani [27], the strong conservation laws in Shanthikumar and
Yao [28], and the generalized conservation laws in the work of Bertsimas and Niño-Mora [7].

The author further developed the PCL framework for analyzing the indexability of
finite-state restless bandits in [29], which introduced projects fueled by a generic resource
with a general resource consumption function. The framework was extended to the count-
ably infinite state space case in [30] and to the bias optimality criterion in [10]. Such early
work is surveyed in the discussion paper [31]. The framework was then extended to
projects with a continuous real state in [32], motivated by sensor scheduling applications.
As for the adaptive-greedy algorithm for the Whittle index, an efficient computational
implementation was presented in [33].

The extension of the concept of indexability from two-gear bandits to multi-gear
bandits was first outlined by Weber [34] in the setting of an illustrative example given
by a three-action queueing admission control model. Ref. [34] further outlined an index-
computing algorithm for such a three-action model extending the aforementioned adaptive-
greedy algorithm for the Whittle index. Such an insightful outline, was, however, not
theoretically supported.

The author formalized and extended Weber’s [34] outline to introduce in [35] a gen-
eral multi-armed multi-mode bandit problem with finite-state projects, motivated by a
model of optimal dynamic power allocation to multiple users sharing a wireless downlink
communication channel subject to a peak energy constraint, proposing an index policy
when individual projects are indexable. Ref. [35] further outlined an extension of the PCL
framework along with an index algorithm, yet without proofs or analyses.
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See also the recent work of Zayas-Cabán et al. [36] on a finite-horizon multi-armed
multi-gear bandit problem and that of Killian et al. [37] on multi-action bandits, yet without
a focus on indexability.

A related strand of research is the work on the optimality of structured policies in
MDP models, mostly focusing on the monotonicity of optimal actions on the state. See, e.g.,
Serfozo [38] and the book chapter by Heyman and Sobel ([39] Ch. 8). In some models with
a one-dimensional state, most notably those arising in queueing theory, researchers have
established the optimality of policies given by multiple thresholds. Thus, e.g., Crabill [40]
shows that such policies are optimal for selecting the speed of a single server catering to a
queue. Such a model is an example of what we call here a multi-gear bandit. Similar results
are obtained, e.g., in Sabeti [41], Ata and Shneorson [42], and Mayorga et al. [43]. The
methods proposed herein also serve to establish the optimality of postulated families of
structured policies, different from prevailing approaches, typically based on submodularity.

Another related line of work is the computational complexity of solving discounted
finite-state and -action MDPs with general-purpose algorithms, most notably the classi-
cal methods of value iteration, policy iteration, and linear optimization. Such methods are
not strongly polynomial in that the number of iterations required to compute an optimal
policy depends not only on the number of states and actions but also on other factors,
most notably the discount factor. Thus, e.g., Ye [44] showed that the number of itera-
tions required by policy iteration is bounded by O((N2 A/(1− β)) log(N/(1− β)), which
shows that policy iteration is strongly polynomial but only if the discount factor is fixed
and hence not part of the input. Such a bound has been improved by Scherrer [45] to
O((NA/(1 − β)) log(1/(1− β))). Otherwise, policy iteration is known to have exponen-
tial worst-case complexity. See Hollanders et al. [46] and references therein. In contrast, as
we will see, the algorithm presented herein solves a multi-gear bandit model with N states
and A + 1 actions in precisely AN steps and is hence a strongly polynomial algorithm.

In contrast with the aforementioned outlines in the earlier work [34,35], this paper
presents a theoretically supported extension of the PCL-based sufficient indexability con-
ditions from two-gear bandits to multi-gear bandits, along with an intuitive and efficient
algorithm for computing the model’s index.

The main contribution is a verification theorem (Theorem 1) which ensures that, if the
performance metrics of a multi-gear bandit model under a postulated family of structured
policies satisfy two PCL-indexability conditions, then both the model is indexable and such
policies are optimal, with the model’s index being computed by a downshift adaptive-greedy
algorithm in AN steps as pointed out above.

The remainder of the paper is organized as follows. Section 2 describes the multi-gear
bandit model and formulates the main result, the verification theorem for indexability.
Sections 3–6 lay out the groundwork needed to prove the verification theorem. Thus,
Section 3 discusses the linear optimization reformulation of the relevant MDP model.
Section 4 presents the required relations between project performance metrics. Section 5
analyzes the output of the proposed index-computing algorithm. Section 6 presents the
framework of partial conservation laws in the present setting. Then, Section 7 draws on the
above to present our proof of the verification theorem. Section 8 applies the indexability
property to provide a performance bound and a novel index policy for the multi-armed
multi-gear bandit problem. Section 9 outlines some extensions, in particular to the long-run
average cost criterion (Section 9.1), to models with uncontrollable states (Section 9.2) and
to models with a countably infinite state space (Section 9.3). Finally, Section 10 concludes
with a discussion of the results.

2. Preliminaries and Formulation of the Main Result
2.1. Multi-Gear Bandits

We next describe a general MDP model for the optimal operation of a multi-gear
dynamic and stochastic project, which we call the multi-gear bandit problem. Consider a
general discrete-time infinite-horizon discounted MDP model of a controlled dynamic
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and stochastic project that consumes a single resource. At the start of each time period
t = 0, 1, . . ., the controller observes the current project state s(t), which moves through the
finite state spaceN , {1, . . . , N}, and then selects an action a(t) from the finite action space
A = {0, 1, . . . , A}. The choice of action at each time t is based on a possibly randomized
function of the system’s historyH(t) , {s(t)} ∪ {(s(t′), a(t′)) : t′ = 0, . . . , t− 1}, consisting
of the current state s(t) and previous states visited and actions taken, if any. This corre-
sponds to adopting a control policy (policy for short) π from the class Π of history-dependent
randomized policies (see ([47] Sec. 2.1.5)). We will call such policies admissible.

We will refer to action 0 as the passive action, as it models the project’s evolution in the
absence of control, and to 1, . . . , A as the active actions. Such actions model distinct gears for
operating the project which are naturally ordered by their increasing resource consumption.
Henceforth, we will use the terms action and gear interchangeably.

When the project occupies state s(t) = i at the start of a period and action a(t) = a is
selected, it incurs a holding cost ha

i and consumes a quantity qa
i of the resource in the period,

time-discounted with factor 0 < β < 1. Then, the project state moves in a Markovian
fashion from s(t) = i to s(t + 1) = j with probability pa

ij.
Consistently with the interpretation of actions a as operating gears ordered by increas-

ing activity levels, we shall assume that higher gears entail larger resource consumptions,
so the resource consumption qa

i is monotone increasing in the gear a for each state i:

0 6 q0
i < q1

i < · · · < qA
i , i ∈ N . (1)

Intuitively, to compensate for their larger resource consumptions, higher gears should
be more beneficial in some sense than lower gears, e.g., they might tend to drive the project
towards less costly states or yield lower holding costs.

We further introduce a scalar parameter λ ∈ R modeling the resource unit price. Note
that λ could take negative values, in which case it would represent a subsidy for using
the resource. We shall consider the project’s λ-price problem, which is to find an admissible
project operating policy π∗(λ) minimizing the expected total discounted holding and
resource usage cost for any initial state. Writing as Eπ

i [·] the expectation under policy π
starting from state i, we denote by

Vi(λ, π) , Eπ
i

[ ∞

∑
t=0

(
ha(t)

s(t) + λqa(t)
s(t)

)
βt
]

(2)

the corresponding expected total discounted cost incurred by the project when resource
usage is charged at price λ. The resulting optimal (project) cost function is

V∗i (λ) , inf {Vi(λ, π) : π ∈ Π}, i ∈ N .

We can thus formulate the project’s λ-price problem as

(Pλ) find π∗(λ) ∈ Π : Vi(λ, π∗(λ)) = V∗i (λ), i ∈ N . (3)

We shall refer to a policy π∗(λ) solving the λ-price problem (Pλ) as a λ-optimal policy.
Denoting by ΠSD the class of stationary deterministic policies (see [47] (Sec. 2.1.5)), which

base action choice on the current state only, standard results in MDP theory (see [47]
(Theorem 6.2.10.a)) ensure the existence of a λ-optimal policy π∗(λ) ∈ ΠSD. Both the
optimal cost function V∗i (λ) and the optimal stationary deterministic policies for the λ-
price problem (Pλ) are determined by Bellman’s discounted-cost optimality equations

V∗i (λ) = min
a∈A

(
ha

i + λqa
i + β ∑

j∈N
pa

ijV
∗
j (λ)

)
, i ∈ N . (4)
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It is well known that the optimal cost function V∗i (λ) is the unique solution to such
equations and that a stationary deterministic policy is optimal iff (i.e., if and only if) it selects
an action attaining the minimum in the right-hand side of (4) for each state i. We shall also
call such actions λ-optimal. For fixed λ, the Bellman equations can be solved numerically
by classical methods, such as value iteration, policy iteration, and linear optimization. See,
e.g., ([47] Sec. 6).

2.2. Indexability

Instead of solving the λ-price problem for specific values of the parameter λ, we shall
pursue an alternative approach aiming at a complete understanding of optimal policies over
the entire parameter space, by fully characterizing the optimal actions for the parametric
collection P , {Pλ : λ ∈ R} of all λ-price problems. Such a characterization will be given
in terms of critical parameter values λ∗,ai , as defined next.

Note that, below and throughout the paper, we use the standard abbreviation iff for if
and only if.

Definition 1 (Indexability and DAI). We call the above multi-gear bandit model indexable if
there exist critical resource prices λ∗,ai for every state i and active action (gear) a > 1 satisfying
λ∗,Ai 6 · · · 6 λ∗,1i , such that, for any such state and resource price λ ∈ R: (i) action 0 is λ-optimal
in state i iff λ > λ∗,1i ; (ii) action 1 6 a 6 A− 1 is λ-optimal in state i iff λ∗,a+1

i 6 λ 6 λ∗,ai ; and
(iii) action A is λ-optimal in state i iff λ 6 λ∗,Ai . We call λ∗,ai the model’s dynamic allocation index
(DAI), viewed as a function of (i, a).

Remark 1.

(i) The definition of indexability for multi-action bandits was first outlined by Weber [34] in the
setting of a three-action project model and was first formalized by the author [35] in the general
setting considered herein. The latter paper further introduced the multi-armed multi-mode
bandit problem and proposed to use the above DAI as the basis for a heuristic index policy for
it. The concept of indexability for two-gear (active/passive) bandits has its roots in the work
of Bellman [1], where he characterized the optimal policies for operating a Bernoulli bandit
in terms of critical parameter values. Gittins and Jones [2] showed that such critical values
(later known as Gittins indices) provide a tractable optimal policy for the classic multi-armed
bandit problem, involving the optimal sequential activation of a collection of two-gear bandits
that do not change state when passive. The idea of indexability was extended by Whittle [8] to
two-gear bandits that can change state when passive, called restless bandits. He also proposed
to use the corresponding Whittle index policy as a heuristic for the intractable multi-armed
restless bandit problem, when the individual bandits (projects) are indexable, which need not
be the case as there are nonindexable bandits.

(ii) Writing as Vi(λ, 〈a, ∗〉) , ha
i + λqa

i + β ∑j∈N pa
ijV
∗
j (λ) the optimal cost function with

initial action a, indexability means that there exist critical prices λ∗,ai as in Definition 1 such
that, for each state i,

Vi(λ, 〈0, ∗〉) 6 Vi(λ, 〈a, ∗〉) for a > 1⇐⇒ λ > λ∗,1i

for 0 < a < A : Vi(λ, 〈a, ∗〉) 6 Vi(λ, 〈a′, ∗〉) for a′ 6= a⇐⇒ λ∗,a+1
i 6 λ 6 λ∗,ai

Vi(λ, 〈A, ∗〉) 6 Vi(λ, 〈a, ∗〉) for a < A⇐⇒ λ 6 λ∗,Ai .

(5)

(iii) In intuitive terms, when an indexable project model occupies state i, it is λ-optimal to select
the lowest (passive) gear 0 iff the resource is expensive enough (λ > λ∗,1i ); it is λ-optimal to
select the highest gear A iff the resource is cheap enough (λ 6 λ∗,ai ); and it is λ-optimal to
select the intermediate gear 0 < a < A iff the resource price lies between the critical prices
λ∗,a+1

i and λ∗,ai .
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(iv) In an indexable model, λ∗,ai is the unique critical resource price λ for which gears a− 1 and a
are both λ-optimal in state i; hence, it is the unique solution to the equation

Vi(λ, 〈a− 1, ∗〉) = Vi(λ, 〈a, ∗〉). (6)

Yet, note that for a nonindexable model, Equation (6) need not have a unique solution.
(v) Let A∗i (λ) be the set of λ-optimal actions in state i. If the model is indexable then, for each

active action a > 1, A∗i (λ) ∩ {a, . . . , A} 6= ∅ (i.e., there is an optimal action greater than or
equal to a) iff λ∗,ai > λ and A∗i (λ) ∩ {0, . . . , a− 1} 6= ∅ (i.e., there is an optimal action less
than a) iff λ∗,ai 6 λ.

We shall address the following research goals: (1) identify sufficient conditions ensur-
ing that the above multi-gear bandit model is indexable and (2) for models satisfying such
conditions, provide an efficient means of computing the DAI.

2.3. Project Performance Metrics and Their Characterization

To formulate the main result and facilitate the required analyses, we consider certain
project performance metrics. We measure the holding cost incurred by the project under a
policy π ∈ Π starting from the initial-state distribution s(0) ∼ p = (pi)i∈N , so P{s(0) =
i} = pi for i ∈ N , by the (holding) cost metric

Fp(π) = Eπ
p

[ ∞

∑
t=0

ha(t)
s(t)βt

]
,

where Eπ
p [·] denotes expectation under policy π starting from s(0) ∼ p. Similarly, we

measure the corresponding resource usage by the resource (usage) metric

Gp(π) = Eπ
p

[ ∞

∑
t=0

qa(t)
s(t)βt

]
.

When s(0) = i, we write Fi(π) and Gi(π). Note that Fp(π) = ∑i piFi(π) and Gp(π) =

∑i piGi(π). As for the total cost metric Vi(λ, π) in (2), we can thus express it as

Vi(λ, π) = Fi(π) + λGi(π).

We shall similarly write Vp(λ, π) when s(0) ∼ p.
We next address the characterization of such metrics for stationary deterministic

policies. We will represent any such policy by the partition S = (Sa)a∈A = (S0, . . . , SA) it
naturally induces on the state space N , where Sa is the subset of states where the policy
selects gear a. We shall refer to it as the S-policy or policy S.

The performance metrics Fi(S) and Gi(S) for the S-policy are thus characterized as the
unique solutions to the linear equation systems

Fi(S) = ha
i + β ∑

j∈N
pa

ijFj(S), i ∈ Sa, a ∈ A,

and
Gi(S) = qa

i + β ∑
j∈N

pa
ijGj(S), i ∈ Sa, a ∈ A.

In the sequel we will find it convenient to use vector notation, denoting vectors and ma-
trices in boldface and writing, e.g., F(S) = (Fi(S))i∈N and FB(S) = (Fi(S))i∈B for B ⊂ N ,
and similarly for G(S), ha and qa. We will also write Pa = (pa

ij)i,j∈N , Pa
BB′ = (pa

ij)i∈B,j∈B′

and Pa
B· = (pa

ij)i∈B,j∈N for B, B′ ⊂ N .
The above equations characterizing F(S) and G(S) are thus formulated as

FSa(S) = ha
Sa
+ βPa

Sa·F(S), a ∈ A. (7)
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and
GSa(S) = qa

Sa
+ βPa

Sa·G(S), a ∈ A. (8)

We shall further consider corresponding marginal metrics. Denote by 〈a, S〉 the policy
that selects gear a at time t = 0 and then adopts the S-policy thereafter. Note that

Fi(〈a, S〉) = ha
i + β ∑

j∈N
pa

ijFj(S)

and
Gi(〈a, S〉) = qa

i + β ∑
j∈N

pa
ijGj(S).

For given actions a 6= a′, we define the marginal (holding) cost metric

f a,a′
i (S) , Fi(〈a, S〉)− Fi(〈a′, S〉) = ha

i − ha′
i + β ∑

j∈N
pa

ijFj(S)− β ∑
j∈N

pa′
ij Fj(S), (9)

which measures the decrement in the holding cost metric that results from the shifting of
the initial gear from a to a′ starting from state i, provided that the S-policy is followed
thereafter.

We also define the marginal resource (usage) metric

ga,a′
i (S) , Gi(〈a′, S〉)− Gi(〈a, S〉) = qa′

i − qa
i + β ∑

j∈N
pa′

ij Gj(S)− β ∑
j∈N

pa
ijGj(S), (10)

which measures the corresponding increment in the resource metric.
In vector notation, we can write the above identities as

fa,a′(S) , F(〈a, S〉)− F(〈a′, S〉) = ha − ha′ + β(Pa − Pa′)F(S) (11)

and
ga,a′(S) , G(〈a′, S〉)−G(〈a, S〉) = qa′ − qa + β(Pa′ − Pa)G(S). (12)

If ga,a′
i (S) > 0 for certain i, a, a′, and S, we further define the marginal productivity (MP)

metric as the ratio of the marginal cost metric to the marginal resource metric:

ma,a′
i (S) ,

f a,a′
i (S)

ga,a′
i (S)

. (13)

We next present a preliminary result, on which we draw later on, establishing further
relations between metrics F(S) and fa,a′(S) and between G(S) and ga,a′(S). Note that,
below, 0Sa denotes a vector of zeros with components indexed by Sa.

Lemma 1. For any stationary deterministic policy S and action a,

(a) (I− βPa)F(S)− ha =

[
(fa′ ,a

Sa′
(S))a′∈A−{a}

0Sa

]
;

(b) qa − (I− βPa)G(S) =

[
(ga′ ,a

Sa′
(S))a′∈A−{a}

0Sa

]
.

Proof. (a) For a′ 6= a, using in turn (7) and (11) we obtain

fa′ ,a
Sa′

(S) = ha′
Sa′
− ha

Sa′
+ β(Pa′

Sa′ ·
− Pa

Sa′ ·
)F(S)

= (FSa′
(S)− ha′

Sa′
− βPa′

Sa′ ·
F(S)) + (ha′

Sa′
− ha

Sa′
+ β(Pa′

Sa′ ·
− Pa

Sa′ ·
)F(S))

= FSa′
(S)− βPa

Sa′ ·
F(S)− ha

Sa′
,
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and
FSa(S)− βPa

Sa·F(S)− ha
Sa

= 0Sa .

Part (b) follows similarly.

2.4. Main Result: A Verification Theorem for Indexability

We next present our main result, giving sufficient conditions for indexability. The
conditions correspond to the framework of PCL-indexability, which is extended here from
the two-gear setting in [25,29,30,32] to the multi-gear setting.

We will use the following notation. Given a stationary deterministic policy S =

(S0, . . . , SA), actions a 6= a′, and a state j ∈ Sa, the policy denoted by Ŝ = T a,a′
j S is defined

by Ŝa = Sa − {j}, Ŝa′ = Sa′ ∪ {j}, and Ŝa′′ = Sa′′ for a 6= a′′ 6= a′. Thus, T a,a′
j S is obtained

from S by shifting the gear selected in state j from a to a′.
The verification theorem below refers to indexability relative to a structured family F

of stationary deterministic policies, which one needs to postulate a priori, based on insight
on the particular model at hand. We shall thus refer to the family of F -policies S ∈ F , and
to F -indexability, as defined below.

Definition 2 (F -indexability). We call the model F -indexable if (i) it is indexable and (ii) F -
policies are optimal for the λ-price problem (Pλ) in (3), for any λ ∈ R.

Note that Definition 2(ii) refers to the optimality of F -policies for all λ-price problems
(Pλ). By this we mean that, for any λ ∈ R, there exists a λ-optimal policy S∗(λ) ∈ F .

We require F to satisfy the following connectedness assumption, which is motivated by
algorithmic considerations. The assumption ensures that it is possible to go from policy
(∅, . . . , ∅,N ) to (N , ∅, . . . , ∅), both of which must be in F , through a sequence of policies
in F where each policy in the sequence is obtained from the previous one by downshifting
the gear selected in a single state to the next lower gear. Conversely, it is possible to go
from (N , ∅, . . . , ∅) to (∅, . . . , ∅,N ) through a sequence of policies in F where each policy
in the sequence is obtained from the previous one by upshifting the gear selected in a single
state to the next higher gear.

Assumption 1. The family of policies F satisfies the following conditions:

(i) (∅, . . . , ∅,N ) ∈ F and (N , ∅, . . . , ∅) ∈ F ;
(ii) For each S ∈ F − {(N , ∅, . . . , ∅)} there exist a > 1 and j ∈ Sa such that T a,a−1

j S ∈ F ;

(iii) For each S ∈ F − {(∅, . . . , ∅,N )} there exist a < A and j ∈ Sa such that T a,a+1
j S ∈ F .

Note that the above concepts of downshifting and upshifting gears naturally induce a
partial ordering� on the class of all stationary deterministic policies S and in particular on F .
Thus, given S and S′, we write S � S′ if, at every state, S does not select a higher gear than
S′. If, further, S 6= S′, we write S ≺ S′. Assumption 1 shows that the poset (partially ordered
set) (F ,�) contains the least element (N , ∅, . . . , ∅) and the largest element (∅, . . . , ∅,N ).

The verification theorem refers to the downshift adaptive-greedy index algorithm DS(F )
shown in Algorithm 1. This takes as input the model parameters and, in K , AN steps,
produces as output a sequence of distinct state–action pairs (jk, ak) spanningN × (A−{0})
along with corresponding sequences of F -policies Sk and scalars m∗,ak

jk
for k = 1, . . . , K.

Actually, the sequence Sk is a chain of the poset (F ,�) ordered as

(N , ∅, . . . , ∅) = SK+1 ≺ SK ≺ · · · ≺ S1 = (∅, . . . , ∅,N ).



Mathematics 2022, 10, 2497 9 of 31

Algorithm 1: Downshift adaptive-greedy index algorithm DS(F ).
Output: {(jk, ak), Sk, m∗,ak

jk
}K

k=1

Initialization: S1 := (∅, . . . , ∅,N ); a1 := A
pick j1 ∈ arg min

j∈N ,T a1,a1−1
j S1∈F

ma1−1,a1
j (S1)

m∗,a1
j1

:= ma1−1,a1
j1

(S1); S2 := T a1,a1−1
j1

S1

Loop:
for k := 2 to K do

pick (jk, ak) ∈ arg min
(j,a) : j∈Sk

a ,T a,a−1
j Sk∈F ma−1,a

j (Sk),

with ma−1,a
j (Sk) := m∗,ak−1

jk−1
+

ga−1,a
j (Sk−1)

ga−1,a
j (Sk)

(ma−1,a
j (Sk−1)−m∗,ak−1

jk−1
)

m∗,ak
jk

:= mak−1,ak
jk

(Sk); Sk+1 := T ak ,ak−1
jk

Sk

end { for }

Remark 2.

(i) Algorithm DS(F ) extends to multi-gear bandits the adaptive-greedy algorithm for computing
the Whittle index for restless (two-gear) bandits introduced by the author in [25] and further
developed in [29]. In turn, this has its early roots in Klimov’s adaptive-greedy index algo-
rithm [26] for computing the indices that give the optimal policy for scheduling a multi-class
queue with feedback. Note that Klimov’s algorithm was first adapted in [7] to compute the
Gittins index for classic bandits (i.e., two-gear bandits that do not change state when passive).

(ii) The term downshift refers to the way in which the algorithm generates the sequence Sk of
F -policies. It starts with policy S1, which selects the highest gear A in every state. Then, at
each step k of the algorithm, it selects a state jk in which to downshift gears from ak to ak − 1,
keeping the same gears in the other states, thus obtaining the next policy Sk+1. The selection
of such a state jk is performed in an adaptive-greedy fashion, by choosing a state in which
such a downshifting change entails a minimal MP decrease, as measured by the MP metric
ma−1,a

j (Sk), while also ensuring that the next policy Sk+1 will be in F . One can visualize the
workings of the algorithm in terms of balls trickling down a grid in which states are positioned
in columns and gears in rows, with gear A at the top. Initially, all balls are in the top row, as
the algorithm starts with policy S1 , (∅, . . . , ∅,N ), so gear A is chosen in every state. Then,
at each step of the algorithm, one ball trickles down from its current row to that immediately
below, which represents another F -policy. The algorithm ends in K steps when all N balls
have trickled down to the bottom row, which corresponds to policy SK+1 , (N , ∅, . . . , ∅), so
gear 0 is chosen in every state.

(iii) Note that, by construction, (1) each policy Sk in the sequence produced by the algorithm
satisfies Sk ∈ F , i.e., it is an F -policy, for k = 1, . . . , K + 1, and (2) the state–action
pairs (jk, ak) produced by the algorithm are all distinct, spanning the K state–action pairs
(j, a) ∈ N × (A− {0}) corresponding to active gears a > 1.

Definition 3 (PCL(F )-indexability and MP index). We call a multi-gear bandit model PCL-
indexable with respect to F -policies, or PCL(F )-indexable, if the following hold:

(PCLI1) ga−1,a
j (S) > 0 for every policy S ∈ F , active action a > 1, and state j ∈ N ;

(PCLI2) Algorithm DS(F ) computes the m∗,ak
jk

in nondecreasing order:

m∗,a1
j1

6 m∗,a2
j2

6 · · · 6 m∗,aK
jK

.

In such a case, we call m∗,aj the project’s MP index or MPI for short.
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Remark 3.

(i) Condition (PCLI1) means that the marginal resource metric corresponding to upshifting gears
in any state, relative to any F -policy, is positive. Note that it is equivalent to requiring that
ga′ ,a

j (S) > 0 for a′ < a, since ga′ ,a
j (S) = ga′ ,a′+1

j (S) + · · ·+ ga−1,a
j (S). Such a condition

and the fact that the Sk are in F ensures that the MP index m∗,aj computed by the algorithm is
well defined.

(ii) The recursive formula used in the algorithm for computing the MP metrics as

ma−1,a
j (Sk) := m∗,ak−1

jk−1
+

ga−1,a
j (Sk−1)

ga−1,a
j (Sk)

(ma−1,a
j (Sk−1)−m∗,ak−1

jk−1
) (14)

is justified by Lemma 8.

We next state the verification theorem.

Theorem 1. If a multi-gear bandit model is PCL(F )-indexable, then it is F -indexable with its
DAI being given by its MPI, i.e., λ∗,aj = m∗,aj .

The proof of Theorem 1 is presented in Section 7. It requires substantial preliminary
groundwork, which is laid out in Sections 3–6.

3. Linear Optimization Reformulation of the λ-Price Problem

We start the required groundwork by reviewing the standard linear optimization (LO)
formulation of a finite-state and -action MDP (see, e.g., ([47] Sec. 6.9)), since it applies to
the λ-price problem (Pλ) in (3), as it is needed in subsequent analyses. It is well known
that such an MDP can be reformulated as an LO problem on variables xa

j for state–action

pairs (j, a) ∈ K , N ×A, which represent discounted state–action occupancy measures. Thus,
variable xa

j corresponds to the measure

xa
pj(π) , Eπ

p

[ ∞

∑
t=0

1{(j,a)}(s(t), a(t))βt
]

,

where 1B(·) denotes the indicator function of a set B, so xa
pj(π) is the expected total

discounted number of times that action a is selected in state j under policy π starting from
s(0) ∼ p. We write it as xa

ij(π) when s(0) = i.
Such a standard LO formulation is

(Lλ(p)) : minimize ∑
(j,a)∈K

(ha
j + λqa

j )xa
j

subject to : xa
j > 0

∑
a∈A

xa
j − β ∑

(i,a)∈K
pa

ijx
a
i = pj, j ∈ N ,

(15)

or, in vector notation, writing the probability mass function p as a vector p,

(Lλ(p)) : minimize ∑
a∈A

xa(ha + λqa)

subject to : xa > 0, a ∈ A
∑

a∈A
xa(I− βPa) = p.

(16)

We next use the above LO formulation to show that the λ-price problem (Pλ) in (3)
can be reformulated into an equivalent problem in which holding costs under action A are
zero, a result on which we draw later on.
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Thus, define
ĥa , ha − (I− βPa)(I− βPA)−1hA, a ∈ A, (17)

and note that
ĥA = 0. (18)

Denote by F̂i(π), f̂ a,a′
i (S), and m̂a,a′

i (S) the cost, marginal cost, and marginal productiv-
ity metrics defined in Section 2.3, but for the model with modified holding costs ĥa

i in (17).
The following result clarifies the relations between such metrics and those for the original
holding costs ha

i . Recall that we denote by S1 , (∅, . . . , ∅,N ) the policy that selects the
highest gear in every state.

Lemma 2. For any admissible policy π, stationary deterministic policy S, and actions a 6= a′:

(a) F̂p(π) = Fp(π)− Fp(S1);

(b) f̂ a,a′
i (S) = f a,a′

i (S);

(c) m̂a,a′
i (S) = ma,a′

i (S).

Proof. (a) The measures xa
p(π) = (xa

pj(π))j∈N , viewed as row vectors, satisfy the con-
straints in (16):

A

∑
a=0

xa
p(π)(I− βPa) = p. (19)

Hence, since the matrices I− βPa are invertible, we can write

xA
p (π) +

A−1

∑
a=0

xa
p(π)(I− βPa)(I− βPA)−1 = p(I− βPA)−1.

We thus obtain

Fp(π) =
A

∑
a=0

xa
p(π)ha =

A−1

∑
a=0

xa
p(π)ha + xA

p (π)hA

= p(I− βPA)−1hA +
A−1

∑
a=0

xa
p(π)

[
ha − (I− βPa)(I− βPA)−1hA]

= p(I− βPA)−1hA +
A−1

∑
a=0

xa
p(π)ĥa

= Fp(S1) + F̂p(π),

where the last line is obtained from the previous one by using Equation (7), which yields

F(S1) = (I− βPA)−1hA. (20)

(b) We have, using (11) and (17), and part (a),

f̂a,a′(S) , ĥa − ĥa′ + β(Pa − Pa′)F̂(S)

= ha − ha′ + β(Pa − Pa′)(I− βPA)−1hA + β(Pa − Pa′)(F(S)− F(S1))

= ha − ha′ + β(Pa − Pa′)F(S)

= fa,a′(S).

(c) This part follows directly from part (b) and (13), since m̂a,a′
i (S) , f̂ a,a′

i (S)/ga,a′
i (S) =

f a,a′
i (S)/ga,a′

i (S) = ma,a′
i (S).

Corollary 1. For any state j,
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(a) f a−1,a
j (S1) = ĥa−1

j − ĥa
j , a > 1;

(b) ma,A
j (S1) = ĥa

j /ga,A
j (S1), a < A.

Proof. (a) We have

fa−1,a(S1) = f̂a−1,a(S1) , ĥa−1 − ĥa + β(Pa−1 − Pa)F̂(S1) = ĥa−1 − ĥa,

where we have used in turn Lemma 2(b), (11), (18) and (20).
(b) This part follows from (a), since ma,A

j (S1) = f a,A
j (S1)/ga,A

j (S1) = ĥa
j /ga,A

j (S1).

Denote by (P̂λ) the modified λ-price problem where the ha in problem (Pλ) are
replaced by ĥa. Write as V̂p(λ, π) the project cost metric for the modified model.

Lemma 3. Problems (Pλ) and (P̂λ) are equivalent, since V̂p(λ, π) = Vp(λ, π)− Fp(S1).

Proof. We have, using Lemma 2(a),

V̂p(λ, π) = F̂p(π) + λGp(π) = Vp(λ, π)− Fp(S1).

4. Relations between Performance Metrics

This section presents relations between performance metrics that we will need to prove
the verification theorem. We start with a result giving decomposition identities that relate
the metrics Fp(π) and Gp(π) for an admissible policy π to the metrics Fp(S) and Gp(S)
under a particular stationary deterministic policy S, where p is the initial-state distribution.
The resulting decomposition identities involve marginal cost metrics f a,a′

j (S) and marginal

resource metrics ga′ ,a
j (S).

Lemma 4 (Performance metrics decomposition). For any admissible policy π and stationary
deterministic policy S:

(a) Fp(S) + ∑a<a′ ∑j∈Sa′
f a,a′
j (S)xa

pj(π) = Fp(π) + ∑a′<a ∑j∈Sa′
f a′ ,a
j (S)xa

pj(π);

(b) Gp(π) + ∑a<a′ ∑j∈Sa′
ga,a′

j (S)xa
pj(π) = Gp(S) + ∑a′<a ∑j∈Sa′

ga′ ,a
j (S)xa

pj(π).

Proof. (a) We can write, using in turn (19), Lemma 1(a), and f a′ ,a
j (S) = − f a,a′

j (S),

0 =

[
∑
a

xa
p(π)(I− βPa)− p

]
F(S) = ∑

a
xa

p(π)(I− βPa)F(S)− pF(S)

= ∑
a

xa
p(π)

[
(I− βPa)F(S)− ha]− pF(S) + ∑

a
xa

p(π)ha

= ∑
a

xa
p(π)

[
(I− βPa)F(S)− ha]− Fp(S) + Fp(π)

= ∑
a′ 6=a

xa
pSa′

(π)fa′ ,a
Sa′

(S)− Fp(S) + Fp(π)

= ∑
a′>a

xa
pSa′

(π)fa′ ,a
Sa′

(S) + ∑
a′<a

xa
pSa′

(π)fa′ ,a
Sa′

(S)− Fp(S) + Fp(π)

= ∑
a′<a

xa
pSa′

(π)fa′ ,a
Sa′

(S)− ∑
a′>a

xa
pSa′

(π)fa,a′
Sa′

(S)− Fp(S) + Fp(π)

= ∑
a′<a

∑
j∈Sa′

xa
pj(π) f a′ ,a

j (S)− ∑
a′>a

∑
j∈Sa′

xa
pj(π) f a,a′

j (S)− Fp(S) + Fp(π).

Part (b) follows similarly as part (a).
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The following result draws on the above to relate metrics Fp(S) and Fp(T a,a′
j S) to

Gp(S) and Gp(T a,a′
j S), respectively, which clarifies the interpretation of marginal metrics

f a,a′
j (S) and ga,a′

j (S). Recall that T a,a′
j S is the modification of policy S that results by shifting

gear in state j from a to a′.

Lemma 5. For any actions a 6= a′ and state j ∈ Sa:

(a) Fp(S) = Fp(T a,a′
j S) + f a,a′

j (S)xa′
pj(T

a,a′
j S);

(b) Fp(T a,a′
j S) = Fp(S) + f a′ ,a

j (T a,a′
j S)xa

pj(S);

(c) Gp(T a,a′
j S) = Gp(S) + ga,a′

j (S)xa′
pj(T

a,a′
j S);

(d) Gp(S) = Gp(T a,a′
j S) + ga′ ,a

j (T a,a′
j S)xa

pj(S).

Proof. (a) Writing Lemma 4(a) as

Fp(S) = Fp(π) + ∑
l 6=k

∑
j′∈Sl

f l,k
j′ (S)xk

pj′(π)

and taking π = T a,a′
j S in the latter expression, with j ∈ Sa, gives

Fp(S) = Fp(T a,a′
j S) + ∑

l 6=k
∑

j′∈Sl

f l,k
j′ (S)xk

pj′(T
a,a′

j S). (21)

Now, on the one hand, for l 6= a, policy T a,a′
j S selects gear l in states j′ ∈ Sl . Hence,

for k 6= l and such j′, xk
pj′(T

a,a′
j S) = 0.

On the other hand, for l = a, policy π = T a,a′
j S selects gear l = a in states j′ ∈ Sl − {j}

and selects gear a′ in state j′ = j. Hence, xk
pj′(T

a,a′
j S) = 0 for j′ ∈ Sl − {j}, since k 6= l = a

and xk
pj′(T

a,a′
j S) = 0 for j′ = j if k 6= a′.

Thus, the only positive xk
pj′(T

a,a′
j S) in (21) can be xa′

pj(T
a,a′

j S); hence, (21) reduces to

Fp(S) = Fp(T a,a′
j S) + f a,a′

j (S)xa′
pj(T

a,a′
j S).

(b) Let S′ = T a,a′
j S and note that j ∈ S′a′ and S = T a′ ,a

j S′. Hence, by part (a),

Fp(T a,a′
j S) = Fp(S′) = Fp(T a′ ,a

j S′) + f a′ ,a
j (S′)xa

pj(T
a′ ,a

j S′)

= Fp(S) + f a′ ,a
j (T a,a′

j S)xa
pj(S).

Parts (c) and (d) follow similarly as (a) and (b).

The following result, which follows easily from Lemma 5(c, d), clarifies the interpreta-
tion of PCL(F )-indexability condition (PCLI1) in Definition 3, as a natural monotonicity
property of the resource metric Gi(S).

Proposition 1. Condition (PCLI1) is equivalent to the following: for S ∈ F , a′ < a < a′′, j ∈ Sa,

(a) Gi(T a,a′
j S) 6 Gi(S) 6 Gi(T a,a′′

j S), i 6= j, and Gj(T a,a′
j S) < Gj(S) < Gj(T a,a′′

j S).

(b) If p has full support, Gp(T a,a′
j S) < Gp(S) < Gp(T a,a′′

j S).

Remark 4. Proposition 1 yields the following intuitive interpretation of condition (PCLI1): it
means that, for any F -policy S, modifying S by downshifting gears in one state results in a lower
or equal value of the resource usage metric; and, conversely, modifying S by upshifting gears in
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one state results in a higher or equal resource usage metric. When the initial state is drawn from
a distribution with full support, downshifting gears leads to a strictly lower resource usage, and
upshifting gears leads to a strictly higher resource usage.

The next result shows that, under (PCLI1), the increment Fp(T a,a′
j S)− Fp(S) is pro-

portional to Gp(S)− Gp(T a,a′
j S), with proportionality constant ma′ ,a

j (S), which is equal to

ma′ ,a
j (T a,a′

j S).

Lemma 6. Under condition (PCLI1), for any actions a′ 6= a and state j ∈ Sa,

(a) Fp(T a,a′
j S)− Fp(S) = ma′ ,a

j (S)(Gp(S)− Gp(T a,a′
j S)) = ma′ ,a

j (T a,a′
j S)(Gp(S)− Gp(T a,a′

j S));

(b) ma′ ,a
j (S) = ma′ ,a

j (T a,a′
j S).

Proof. (a) We have, using Lemma 5(a, c),

Fp(T a,a′
j S)− Fp(S) = − f a,a′

j (S)xa′
pj(T

a,a′
j S) = − f a,a′

j (S)
Gp(T a,a′

j S)− Gp(S)

ga,a′
j (S)

= ma′ ,a
j (S)(Gp(S)− Gp(T a,a′

j S)).

On the other hand, using Lemma 5(b, d) we obtain

Fp(T a,a′
j S)− Fp(S) = f a′ ,a

j (T a,a′
j S)xa

pj(S) = f a′ ,a
j (T a,a′

j S)
Gp(S)− Gp(T a,a′

j S))

ga′ ,a
j (T a,a′

j S)

= ma′ ,a
j (T a,a′

j S)(Gp(S)− Gp(T a,a′
j S)).

(b) This part follows directly from part (a).

The following result shows in its part (a) that, under condition (PCLI1), the increment
f a′ ,a
j (S)− f a′ ,a

j (T ā,ā′
i S) is proportional to ga′ ,a

j (S)− ga′ ,a
j (T ā,ā′

i S), with the proportionality

constant being mā′ ,ā
i (S). Then, its part (b) draws on this result to obtain a relation between

MP metrics that we use in Algorithm 1.

Lemma 7. Under condition (PCLI1), for any actions a′ 6= a and ā′ 6= ā with T ā,ā′
i S ∈ F and

states i ∈ Sā and j,

(a) f a′ ,a
j (S)− f a′ ,a

j (T ā,ā′
i S) = mā′ ,ā

i (S)(ga′ ,a
j (S)− ga′ ,a

j (T ā,ā′
i S));

(b) ga′ ,a
j (T ā,ā′

i S)
(
ma′ ,a

j (T ā,ā′
i S)−mā′ ,ā

i (S)
)
= ga′ ,a

j (S)
(
ma′ ,a

j (S)−mā′ ,ā
i (S)

)
.

Proof. (a) From (11) and (12), we obtain

fa′ ,a(S)− fa′ ,a(T ā,ā′
i S) = β(Pa′ − Pa)(F(S)− F(T ā,ā′

i S))

and
ga′ ,a(S)− ga′ ,a(T ā,ā′

i S) = β
(
Pa − Pa′)(G(S)−G(T ā,ā′

i S))

Now, combining Lemma 6(a) with this gives

fa′ ,a(S)− fa′ ,a(T ā,ā′
i S) = mā′ ,ā

i (S)(ga′ ,a(S)− ga′ ,a(T ā,ā′
i S)).
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(b) We can write

ma′ ,a
j (T ā,ā′

i S) ,
f a′ ,a
j (T ā,ā′

i S)

ga′ ,a
j (T ā,ā′

i S)

=
f a′ ,a
j (S)

ga′ ,a
j (T ā,ā′

i S)
−mā′ ,ā

i (S)
( ga′ ,a

j (S)

ga′ ,a
j (T ā,ā′

i S)
− 1
)

=
ga′ ,a

j (S)

ga′ ,a
j (T ā,ā′

i S)

f a′ ,a
j (S)

ga′ ,a
j (S)

−mā′ ,ā
i (S)

( ga′ ,a
j (S)

ga′ ,a
j (T ā,ā′

i S)
− 1
)

=
ga′ ,a

j (S)

ga′ ,a
j (T ā,ā′

i S)
ma′ ,a

j (S)−mā′ ,ā
i (S)

( ga′ ,a
j (S)

ga′ ,a
j (T ā,ā′

i S)
− 1
)

= mā′ ,ā
i (S) +

ga′ ,a
j (S)

ga′ ,a
j (T ā,ā′

i S)

(
ma′ ,a

j (S)−mā′ ,ā
i (S)

)
,

where the second line is obtained by using part (a).

5. Analysis of the Output of Algorithm DS(F)

This section derives further relations between project performance metrics that will
play the role of key tools for elucidating and analyzing the output of the downshift adaptive-
greedy index algorithm DS(F ) in Algorithm 1 and hence to prove the verification theorem.
Throughout this section, {(jk, ak), Sk, m∗,ak

jk
}K

k=1 is an output of algorithm DS(F ).
We start with a result justifying recursive index update Formula (14) in the algorithm.

Lemma 8. Let condition (PCLI1) hold. Then, for any state j, active action a > 1, and k = 2, . . . , K,

ma−1,a
j (Sk) = m∗,ak−1

jk−1
+

ga−1,a
j (Sk−1)

ga−1,a
j (Sk)

(ma−1,a
j (Sk−1)−m∗,ak−1

jk−1
), (22)

or, equivalently,

ma−1,a
j (Sk−1) = m∗,ak−1

jk−1
+

ga−1,a
j (Sk)

ga−1,a
j (Sk−1)

(
ma−1,a

j (Sk)−m∗,ak−1
jk−1

)
. (23)

Proof. The result follows by noting that m∗,ak−1
jk−1

= mak−1−1,ak−1
jk−1

and taking i = jk−1, ā′ =

ak−1 − 1, ā = ak−1, S = Sk−1, and a′ = a− 1 in Lemma 7(b), since T ā,ā′
i S = Sk ∈ F .

The following result expresses, in its part (b), the MP metric mal−1,al
jl

(Sk), for k < l,

as the sum of index m∗,ak
jk

and a positive linear combination of the index differences

m∗,an
jn − m∗,an−1

jn−1
for n = k + 1, . . . , l. Part (a) is a preliminary result needed to prove

part (b).

Lemma 9. Under condition (PCLI1), the following holds for 1 6 k < l 6 K:

(a) For l′ = k + 1, . . . , l,

mal−1,al
jl

(Sk) = m∗,ak
jk

+
1

gal−1,al
jl

(Sk)

[ l′−1

∑
n=k+1

gal−1,al
jl

(Sn)(m∗,an
jn −m∗,an−1

jn−1
)

+ gal−1,al
jl

(Sl′)
(
mal−1,al

jl
(Sl′)−m

∗,al′−1
jl′−1

)]
.

(24)
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(b) f al−1,al
jl

(Sk) = gal−1,al
jl

(Sk)m∗,ak
jk

+ ∑l
n=k+1 gal−1,al

jl
(Sn)(m∗,an

jn −m∗,an−1
jn−1

), or, equivalently,

mal−1,al
jl

(Sk) = m∗,ak
jk

+
l

∑
n=k+1

gal−1,al
jl

(Sn)

gal−1,al
jl

(Sk)
(m∗,an

jn −m∗,an−1
jn−1

). (25)

Proof. (a) We prove the result by induction on l′ = k + 1, . . . , l. For l′ = k + 1, Equation (24)
holds because, by Equation (23) in Lemma 8, we have

mal−1,al
jl

(Sk) = m∗,ak
jk

+
gal−1,al

jl
(Sk+1)

gal−1,al
jl

(Sk)

(
mal−1,al

jl
(Sk+1)−m∗,ak

jk

)
.

Suppose now that Equation (24) holds for some l′ with k < l′ < l. We will use that, by
Equation (23) in Lemma 8, we have

mal−1,al
jl

(Sl′) = m∗,al′
jl′

+
gal−1,al

jl
(Sl′+1)

gal−1,al
jl

(Sl′)

(
mal−1,al

jl
(Sl′+1)−m∗,al′

jl′

)
.

Now, substituting the right-hand side of the latter identity for mal−1,al
jl

(Sl′) in
Equation (24) gives

mal−1,al
jl

(Sk) = m∗,ak
jk

+
1

gal−1,al
jl

(Sk)

[ l′−1

∑
n=k+1

gal−1,al
jl

(Sn)(m∗,an
jn −m∗,an−1

jn−1
)

+ gal−1,al
jl

(Sl′)

(
m∗,al′

jl′
+

gal−1,al
jl

(Sl′+1)

gal−1,al
jl

(Sl′)

(
mal−1,al

jl
(Sl′+1)−m∗,al′

jl′

)
−m

∗,al′−1
jl′−1

)]

= m∗,ak
jk

+
1

gal−1,al
jl

(Sk)

[ l′

∑
n=k+1

gal−1,al
jl

(Sn)(m∗,an
jn −m∗,an−1

jn−1
)

+ gal−1,al
jl

(Sl′+1)
(
mal−1,al

jl
(Sl′+1)−m∗,al′

jl′

)]
,

which shows that the result also holds for l′ + 1 and hence completes the induction.
(b) This part corresponds to the case l′ = l in part (a), noting that mal−1,al

jl
(Sl) =

m∗,al
jl

.

In the following result and henceforth we use the notation ak(j) to denote the action se-
lected in state j by policy Sk. Thus, e.g., a1(j) = A for every state j, since S1 = (∅, . . . , ∅,N ),
and aK+1(j) = 0 for every state j, since SK+1 = (N , ∅, . . . , ∅).

Lemma 10. Under condition (PCLI1), the following holds for 1 6 k 6 l 6 K:

f al−1,ak(jl)
jl

(Sk) = gal−1,ak(jl)
jl

(Sk)m∗,ak
jk

+
l

∑
n=k+1

gal−1,an(jl)
jl

(Sn)(m∗,an
jn −m∗,an−1

jn−1
), (26)

or, equivalently,

mal−1,ak(jl)
jl

(Sk) = m∗,ak
jk

+
l

∑
n=k+1

gal−1,an(jl)
jl

(Sn)

gal−1,ak(jl)
jl

(Sk)
(m∗,an

jn −m∗,an−1
jn−1

).
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Proof. Fix k. We prove the result by induction on l = k, . . . , K. For l = k, using that ak(jk) = ak

gives that (26) reduces to f ak−1,ak
jl

(Sk) = gak−1,ak
jk

(Sk)m∗,ak
jk

, which holds by construction,

since m∗,ak
jk

is defined in the algorithm precisely as mak−1,ak
jk

(Sk) = f ak−1,ak
jl

(Sk)/gak−1,ak
jk

(Sk).
Suppose now that (26) holds up to and including some l with k < l < K. We will prove

that it must then hold for l + 1. For such a purpose, we distinguish two cases, depending
on whether jl+1 = jl or jl+1 6= jl . Start with the case jl+1 = jl . To simplify the argument
below, we write jl as j and al as a. In this case, the algorithm downshifts in step l the gear in
state j from a to a− 1 and in step l + 1 downshifts again in state j from gear a− 1 to a− 2.
Hence, al(j) = a and al+1(j) = al+1 = a− 1. We can write

f al+1−1,ak(jl+1)
jl+1

(Sk) = f al+1−1,al+1
jl+1

(Sk) + f al+1,ak(j)
jl+1

(Sk) = f a−2,a−1
j (Sk) + f a−1,ak(j)

j (Sk)

= ga−2,a−1
j (Sk)m∗,ak

jk
+

l+1

∑
n=k+1

ga−2,a−1
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

+ ga−1,ak(j)
j (Sk)m∗,ak

jk
+

l

∑
n=k+1

ga−1,an(j)
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

= ga−2,ak(j)
j (Sk)m∗,ak

jk
+

l+1

∑
n=k+1

ga−2,an(j)
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

= gal+1−1,ak(j)
jl+1

(Sk)m∗,ak
jk

+
l+1

∑
n=k+1

gal+1−1,an(j)
jl+1

(Sn)(m∗,an
jn −m∗,an−1

jn−1
),

where we have used in turn the elementary property f a,a′′
j (S) = f a,a′

j (S) + f a′ ,a′′
j (S),

Lemma 9(b), the induction hypothesis, and al+1(j) = a− 1. Therefore, the result holds for
l + 1 in this case.

Consider now the case jl+1 6= jl , in which al+1 = al+1(jl+1) = al(jl+1). To simplify
the argument below, we write jl+1 as j and al+1 as a. In this case, the algorithm downshifts
in step l + 1 at state j from gear a to a− 1. If a < A, the previous downshift at state j, from
gear a + 1 to a, occurred at some earlier step l′ < l, so jl′ = j, al′ − 1 = a, and

al′+1(j) = · · · = al(j) = al+1(j) = a. (27)

We can now write

f al+1−1,ak(jl+1)
jl+1

(Sk) = f al+1−1,al+1
jl+1

(Sk) + f al+1,ak(j)
jl+1

(Sk) = f a−1,a
j (Sk) + f a,ak(j)

j (Sk)

= ga−1,a
j (Sk)m∗,ak

jk
+

l+1

∑
n=k+1

ga−1,a
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

+ gal′−1,ak(jl′ )
jl′

(Sk)m∗,ak
jk

+
l′

∑
n=k+1

gal′−1,an(jl′ )
jl

(Sn)(m∗,an
jn −m∗,an−1

jn−1
)

= ga−1,ak(j)
j (Sk)m∗,ak

jk
+

l′

∑
n=k+1

ga−1,an(j)
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

+
l+1

∑
n=l′+1

ga−1,a
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

= gal+1−1,ak(j)
jl+1

(Sk)m∗,ak
jk

+
l+1

∑
n=k+1

gal+1−1,an(j)
jl+1

(Sn)(m∗,an
jn −m∗,an−1

jn−1
),

where we have used in turn Lemma 9(b), the induction hypothesis, and (27).
Suppose now that a = A. Then,

ak(j) = ak+1(j) = · · · = al+1(j) = A, (28)
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and we can write

f al+1−1,ak(jl+1)
jl+1

(Sk) = f A−1,A
j (Sk)

= gA−1,A
j (Sk)m∗,ak

jk
+

l+1

∑
n=k+1

gA−1,A
j (Sn)(m∗,an

jn −m∗,an−1
jn−1

)

= gal+1−1,ak(j)
jl+1

(Sk)m∗,ak
jk

+
l+1

∑
n=k+1

gal+1−1,an(j)
jl+1

(Sn)(m∗,an
jn −m∗,an−1

jn−1
),

where we have used in turn Lemma 9(b) and (28).
Hence, the result also holds for l + 1 in the case jl+1 6= jl , which completes the

induction proof.

The next result expresses the modified holding costs ĥa
j as positive linear combina-

tions of m∗,a1
j1

and the differences m∗,an
jn −m∗,an−1

jn−1
. We will use it in Lemmas 14 and 15 to

reformulate the modified cost objective V̂p(λ, π).

Lemma 11. Under condition (PCLI1),

ga1−1,A
j1

(S1)m∗,a1
j1

= ĥa1−1
j1

gal−1,A
jl

(S1)m∗,a1
j1

+
l

∑
n=2

gal−1,an(jl)
jl

(Sn)(m∗,an
jn −m∗,an−1

jn−1
) = ĥal−1

jl
, l = 2, . . . , K.

(29)

Proof. The result follows from Corollary 1(a), which shows that f a−1,A
j (S1) = ĥa−1

j − ĥA
j =

ĥa−1
j (since ĥA

j = 0), and Lemma 10, used with k = 1, noting that a1(j) = A.

The following result shows that m∗,ak−1
jk−1

can be expressed in two different ways in
terms of MP metrics.

Lemma 12. Under condition (PCLI1),

mak−1−1,ak−1
jk−1

(Sk) = mak−1−1,ak−1
jk−1

(Sk−1) = m∗,ak−1
jk−1

, k = 2, . . . , K + 1.

Proof. The first identity follows from the result ma′ ,a
j (T a,a′

j S) = ma′ ,a
j (S) in Lemma 6(b), tak-

ing S = Sk−1, a = ak−1, a′ = ak−1 − 1, and j = jk−1, and noting that Sk = T ak−1,ak−1−1
jk−1

Sk−1.

The second identity follows by definition of m∗,ak−1
jk−1

.

The following result relates metrics under two successive policies as generated by the
index algorithm.

Lemma 13. Under condition (PCLI1),

(a) Fp(Sk) = Fp(Sk−1) + f ak−1−1,ak−1
jk−1

(Sk)xak−1
pjk−1

(Sk−1), k = 2, . . . , K + 1;

(b) Fp(Sk) = Fp(Sk+1)− f ak−1,ak
jk

(Sk+1)xak
pjk
(Sk), k = 1, . . . , K;

(c) Gp(Sk) = Gp(Sk−1)− gak−1−1,ak−1
jk−1

(Sk)xak−1
pjk−1

(Sk−1), k = 2, . . . , K + 1;

(d) Gp(Sk) = Gp(Sk+1) + gak−1,ak
jk

(Sk+1)xak
pjk
(Sk), k = 1, . . . , K;

(e) Vp(λ, Sk) = Vp(λ, Sk−1)− (λ−m∗,ak−1
jk−1

)gak−1−1,ak−1
jk−1

(Sk)xak−1
pjk−1

(Sk−1), k = 2, . . . , K + 1.

(f) Vp(λ, Sk) = Vp(λ, Sk+1)− (m∗,ak
jk
− λ)gak−1,ak

jk
(Sk+1)xak

pjk
(Sk), k = 1, . . . , K.

Proof. (a) This part follows from Lemma 5(a) by taking S = Sk, a = ak−1 − 1, a′ = ak−1,
and j = jk−1, noting that T ak−1−1,ak−1

jk−1
Sk = Sk−1 in Fp(S) = Fp(T a,a′

j S) + f a,a′
j (S)xa′

pj(T
a,a′

j S).
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(b) This part follows directly from (a).
(c) This part follows from Lemma 5(c) by taking S, a, a′, and j as in part (a) in

Gp(T a,a′
j S) = Gp(S) + ga,a′

j (S)xa′
pj(T

a,a′
j S).

(d) This part follows directly from (c).
(e) The result follows from

Vp(λ, Sk) = Fp(Sk) + λGp(Sk)

= Fp(Sk−1) + f ak−1−1,ak−1
jk−1

(Sk)xak−1
pjk−1

(Sk−1)

+ λ
[
Gp(Sk−1)− gak−1−1,ak−1

jk−1
(Sk)xak−1

pjk−1
(Sk−1)

]
= Vp(λ, Sk−1) +

(
f ak−1−1,ak−1
jk−1

(Sk)− λgak−1−1,ak−1
jk−1

(Sk)
)
xak−1

pjk−1
(Sk−1)

= Vp(λ, Sk−1) +
(
mak−1−1,ak−1

jk−1
(Sk)− λ

)
gak−1−1,ak−1

jk−1
(Sk)xak−1

pjk−1
(Sk−1)

= Vp(λ, Sk−1)−
(
λ−m∗,ak−1

jk−1

)
gak−1−1,ak−1

jk−1
(Sk)xak−1

pjk−1
(Sk−1),

where we have used parts (a, c) and Lemma 12.
(f) The result follows from

Vp(λ, Sk) = Fp(Sk) + λGp(Sk)

= Fp(Sk+1)− f ak−1,ak
jk

(Sk+1)xak
pjk
(Sk)

+ λ
[
Gp(Sk+1) + gak−1,ak

jk
(Sk+1)xak

pjk
(Sk)

]
= Vp(λ, Sk+1)−

(
f ak−1,ak
jk

(Sk+1)− λgak−1,ak
jk

(Sk+1)
)
xak

pjk
(Sk)

= Vp(λ, Sk+1)−
(
mak−1,ak

jk
(Sk+1)− λ

)
gak−1,ak

jk
(Sk+1)xak

pjk
(Sk)

= Vp(λ, Sk−1)−
(
λ−m∗,ak−1

jk−1

)
gak−1−1,ak−1

jk−1
(Sk)xak−1

pjk−1
(Sk−1),

where we have used parts (b, d) and Lemma 12.

6. Partial Conservation Laws

This section shows that, under condition (PCLI1) in Definition 3, project performance
metrics satisfy certain partial conservation laws (PCLs), which extend those previously
introduced by the author for finite-state restless (two-gear) bandits in [25,29]. It further
uses those PCLs to lay further groundwork towards the proof of Theorem 1.

In the following result, we assume that the initial-state distribution p has full support,
which we write as p > 0.

Proposition 2 (PCLs). Suppose that (PCLI1) holds and let p > 0. Then, metrics Gp(π) and
xa

pj(π), for states j and actions a < A, satisfy the following: for any admissible policy π and S ∈ F ,

(a.1) Gp(π) + ∑a<a′ ∑j∈Sa′
ga,a′

j (S)xa
pj(π) > Gp(S), with equality (conservation law),

Gp(π) + ∑
a<a′

∑
j∈Sa′

ga,a′
j (S)xa

pj(π) = Gp(S), (30)

iff π selects gears a′ 6 a in states j ∈ Sa (so π � S), for a = 0, . . . , A− 1.
(a.2) In particular, for S = SK+1 = (N , ∅, . . . , ∅), it holds that Gp(π) > Gp(SK+1), with

equality iff π selects gear 0 in every state.
(a.3) In the case S = S1 = (∅, . . . , ∅,N ), we have the conservation law

Gp(π) + ∑
a<A

∑
j∈N

ga,A
j (S1)xa

pj(π) = Gp(S1). (31)



Mathematics 2022, 10, 2497 20 of 31

(b) ∑a<a′ ∑j∈Sa′
ga,a′

j (S)xa
pj(π) > 0, with equality iff π selects gears a > a′ in states j ∈ Sa′ (so

S � π), for a′ = 1, . . . , A.

Proof. (a.1) From Lemma 4(b), we obtain, under condition (PCLI1),

Gp(π) + ∑
a<a′

∑
j∈Sa′

ga,a′
j (S)xa

pj(π) = Gp(S) + ∑
a<a′

∑
j∈Sa

ga,a′
j (S)xa′

pj(π) > Gp(S), (32)

with equality iff (using the fact that the initial state distribution p has full support) xa′
pj(π) = 0

for j ∈ Sa with a < a′, i.e., iff π selects gears a′ 6 a in states j ∈ Sa, for a = 0, . . . , A− 1.
Parts (a.2) and (a.3) are direct consequences of (a.1).
Part (b) follows directly from (PCLI1).

The next result shows how to reformulate the equivalent modified holding cost metric
F̂p(π) , ∑A−1

a=0 ∑j∈N ĥa
j xa

pj(π) (see Section 3) in terms of the output {(jk, ak), Sk, m∗,ak
jk
}K

k=1
of algorithm DS(F ) in Algorithm 1 and expressions arising in the PCLs in Proposition 2.

Lemma 14. Under condition (PCLI1),

F̂p(π) = m∗,a1
j1 ∑

a<a′
∑

j∈S1
a′

ga,a′
j (S1)xa

pj(π) +
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
) ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π).

Proof. The result follows from Lemma 11, which yields

F̂p(π) ,
A−1

∑
a=0

∑
j∈N

ĥa
j xa

pj(π) =
K

∑
l=1

ĥal−1
jl

xal−1
pjl

(π)

= ga1−1,A
j1

(S1)m∗,a1
j1

xa1−1
pj1

(π)

+
K

∑
l=2

[
gal−1,A

jl
(S1)m∗,a1

j1
+

l

∑
k=2

gal−1,ak(jl)
jl

(Sk)(m∗,ak
jk
−m∗,ak−1

jk−1
)

]
xal−1

pjl
(π)

= m∗,a1
j1

K

∑
l=1

gal−1,A
jl

(S1)xal−1
pjl

(π) +
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
)

K

∑
l=k

gal−1,ak(jl)
jl

(Sk)xal−1
pjl

(π)

= m∗,a1
j1 ∑

a<a′
∑

j∈S1
a′

ga,a′
j (S1)xa

pj(π) +
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
) ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π).

The following result draws on the previous one by showing how to reformulate the
cost metric V̂p(λ, π) of the equivalent modified λ-price problem (see Lemma 3) in terms of
the output of algorithm DS(F ).

Lemma 15. Under (PCLI1), V̂p(λ, π) can be reformulated into the following equivalent expressions:

(a)

V̂p(λ, π) = λGp(S1) + (m∗,a1
j1
− λ) ∑

a<a′
∑

j∈S1
a′

ga,a′
j (S1)xa

pj(π)

+
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
) ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π);
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(b)

V̂p(λ, π) = m∗,a1
j1

Gp(S1) +
l−1

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
)

(
Gp(π) + ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π)

)

+ (λ−m∗,al−1
jl−1

)

(
Gp(π) + ∑

a<a′
∑

j∈Sl
a′

ga,a′
j (Sl)xa

pj(π)

)
+ (m∗,al

jl
− λ) ∑

a<a′
∑

j∈Sl
a′

ga,a′
j (Sl)xa

pj(π)

+
K

∑
k=l+1

(m∗,ak
jk
−m∗,ak−1

jk−1
) ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π);

(c)

V̂p(λ, π) = m∗,a1
j1

Gp(S1) +
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
)

(
Gp(π) + ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π)

)
+ (λ−mjK ,aK )Gp(π).

Proof. All three parts follow from the definition V̂p(λ, π) , F̂p(π)+λGp(π) and Lemma 14
by suitably rearranging terms.

The next result draws on the above to reformulate the cost metrics V̂p(λ, Sl) in terms
of the output of algorithm DS(F ).

Lemma 16. Under condition (PCLI1),

(a) V̂p(λ, S1) = λGp(S1);
(b) For 2 6 l 6 K,

V̂p(λ, Sl) = m∗,a1
j1

Gp(S1) +
l−1

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
)Gp(Sk) + (λ−m∗,al−1

jl−1
)Gp(Sl);

(c) V̂p(λ, SK+1) = m∗,a1
j1

Gp(S1) + ∑K
k=2(m

∗,ak
jk
−m∗,ak−1

jk−1
)Gp(Sk) + (λ−m∗,aK

jK
)Gp(SK+1).

Proof. Each part follows from the corresponding part in Lemma 15, using the PCLs in
Proposition 2 to simplify the resulting expressions.

7. Proof of the Verification Theorem

We are now ready to prove Theorem 1.

Proof of Theorem 1. We will prove the result by showing the following: (i) policy S1 is
λ-optimal iff λ 6 m∗,a1

j1
; (ii) for 2 6 l 6 K, policy Sl is λ-optimal iff m∗,al−1

jl−1
6 λ 6 m∗,al

jl
;

and (iii) policy SK+1 is λ-optimal iff λ > m∗,aK
jK

. Note that (i, ii, iii) imply that the model is
F -indexable with DAI λ∗,aj being given by the MPI m∗,aj .

We consider below that p > 0, i.e., the initial-state distribution p has full support.
Start with (i). If λ 6 m∗,a1

j1
, we have, for any policy π,
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V̂p(λ, π) = λGp(S1) + (m∗,a1
j1
− λ) ∑

a<a′
∑

j∈S1
a′

ga,a′
j (S1)xa

pj(π)

+
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
) ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π)

> λGp(S1) = V̂p(λ, S1),

where we have used Lemmas 15(a) and 16(a) and conditions (PCLI1, PCLI2). Hence, policy
S1 is λ-optimal.

Conversely, suppose that policy S1 is λ-optimal. Then, using Lemma 13(f), we obtain

0 6 Vp(λ, S2)−Vp(λ, S1) = (m∗,a1
j1
− λ)ga1−1,a1

j1
(S2)xa1

pj1
(S1).

Now, since ga1−1,a1
j1

(S2) > 0 (by (PCLI1)) and xa1
pj1
(S1) > 0 (because p has full support),

it follows that λ 6 m∗,a1
j1

.

Consider now (ii). If m∗,al−1
jl−1

6 λ 6 m∗,al
jl

for some l with 2 6 l 6 K, we have, for any
policy π,

V̂p(λ, π) = m∗,a1
j1

Gp(S1) +
l−1

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
)

(
Gp(π) + ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π)

)

+ (λ−m∗,al−1
jl−1

)

(
Gp(π) + ∑

a<a′
∑

j∈Sl
a′

ga,a′
j (Sl)xa

pj(π)

)
+ (m∗,al

jl
− λ) ∑

a<a′
∑

j∈Sl
a′

ga,a′
j (Sl)xa

pj(π)

+
K

∑
k=l+1

(m∗,ak
jk
−m∗,ak−1

jk−1
) ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π)

> V̂p(λ, Sl),

where we have further used Lemmas 15(b) and 16(b), Proposition 2, and conditions (PCLI1,
PCLI2). Hence, policy Sl is λ-optimal.

Conversely, suppose that policy Sl is λ-optimal. Then, using Lemma 13(e, f), we obtain

0 6 Vp(λ, Sl+1)−Vp(λ, Sl) = (m∗,al
jl
− λ)gal−1,al

jl
(Sl+1)xal

pjl
(Sl)

and
0 6 Vp(λ, Sl−1)−Vp(λ, Sl) = (λ−m∗,al−1

jl−1
)gal−1−1,al−1

jl−1
(Sl)xal−1

pjl−1
(Sl−1).

Now, since gal−1,al
jl

(Sl+1) > 0, gal−1−1,al−1
jl−1

(Sl) > 0, xal
pjl
(Sl) > 0 and xal−1

pjl−1
(Sl−1) > 0, it

follows that m∗,al−1
jl−1

6 λ 6 m∗,al
jl

.

Finally, consider (iii). If λ > m∗,aK
jK

, we can write, for any policy π,

V̂p(λ, π) = m∗,a1
j1

Gp(S1) +
K

∑
k=2

(m∗,ak
jk
−m∗,ak−1

jk−1
)

(
Gp(π) + ∑

a<a′
∑

j∈Sk
a′

ga,a′
j (Sk)xa

pj(π)

)
+ (λ−mjK ,aK )Gp(π)

> V̂p(λ, SK+1),

where we have further used Lemmas 15(c) and 16(c), Proposition 2, and conditions (PCLI1,
PCLI2). Hence, policy SK+1 is λ-optimal.
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Conversely, suppose that policy SK+1 is λ-optimal. Then, using Lemma 13(f), we obtain

0 6 Vp(λ, SK)−Vp(λ, SK+1l) = (λ−m∗,aK
jK

)gaK−1,aK
jK

(SK+1)xaK
pjK

(SK).

Now, since gaK−1,aK
jK

(SK+1) > 0 and xaK
pjK

(SK) > 0, it follows that λ > m∗,aK
jK

. This
completes the proof.

8. Application to Multi-Armed Multi-Gear Bandit Problem: Bound and Index Policy
8.1. The Multi-Armed Multi-Gear Bandit Problem (MAMGBP)

Besides the intrinsic interest of the indexability property in Definition 1 for solving
optimally the multi-gear bandit model, we next discuss as further motivation for such a
property its application to design a suboptimal heuristic policy for the intractable multi-
armed multi-gear bandit problem (MAMGBP) introduced by the author in [35] (where it was
called the multi-armed multi-mode bandit problem).

The MAMGBP concerns the optimal dynamic allocation of a single shared resource
to a finite collection of L projects modeled as multi-gear bandits, subject to a peak resource
constraint stating that the total resource usage in each period cannot exceed a given amount
q̄. Denote by sl(t) and al(t) the state and the action at time t for project l = 1, . . . , L, which
belong to the state and action spaces Nl = {1, . . . , Nl} and Al = {0, . . . , Al}, respectively.
The parameters of project l are denoted here by hl(jl , al), ql(jl , al), and pa

l (il , jl).
The MAMGBP is a multi-dimensional MDP with joint state s(t) = (sl(t))L

l=1 belonging
to the joint state spaceN , ∏L

l=1Nl and joint action a(t) = (al(t))L
l=1.

The joint holding cost and joint resource consumption are additive across projects, being
h(i, a) , ∑L

l=1 hl(il , al) and q(i, a) , ∑L
l=1 ql(il , al) in joint state i = (il)L

l=1 under joint
action a = (al)

L
l=1. The set of feasible actions in joint state i, satisfying the aforementioned

peak resource constraint, is

A(i) ,
{

a ∈
L

∏
l=1
Al : q(i, a) 6 q̄

}
. (33)

To ensure that there always exists a feasible joint action, we require that, for every joint
state i,

q(i, 0) 6 q̄. (34)

Individual project state transitions are conditionally independent given that the ac-
tions at every project have been selected, and hence the joint transition probabilities are
multiplicative across projects, being given by pa

l (i, j) , ∏L
l=1 pal

l (il , jl).
Let Π(q̄) be the class of history-dependent randomized policies for selecting a feasible

joint action at each time period, where we make explicit its dependence on q̄ and denote by
Eπ

i [·] the expectation under policy π ∈ Π(q̄) starting from the joint state i. The expected
total discounted holding cost incurred under policy π starting from i is

F(i, π) , Eπ
i

[ L

∑
l=1

∞

∑
t=0

hl(sl(t), al(t))βt
]

,

and hence the optimal holding cost is

F∗(i) , inf {F(i, π) : π ∈ Π(q̄)}.

We can thus formulate the MAMGBP as follows:

(P) find π∗ ∈ Π(q̄) : F(i, π∗) = F∗(i), i ∈ N . (35)

We shall refer to a policy π∗ solving the MAMGBP (P) as a P-optimal policy.
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Again, standard results in MDP theory ensure the existence of a P-optimal policy π∗

in the class ΠSD of stationary deterministic policies, which is determined by the Bellman
equations

F∗(i) = min
a∈A(i)

h(i, a) + β ∑
j∈N

pa
l (i, j)F∗(j), i ∈ N . (36)

However, these equations are hindered by the curse of dimensionality, as the size of the
state space N grows exponentially with the number L of projects, which renders them
computationally intractable in practice for all but small L.

8.2. A Bound for the MAMGBP

Ref. [35] introduced a Lagrangian approach for obtaining a lower bound for the
optimal value of the MAMGBP, extending that of Whittle [8] for the case of two-gear
projects. First, we construct a relaxation of problem (P) by (i) relaxing the class of admissible
policies from Π(q̄) to Π(∞), thus allowing violations to the sample-path peak resource
constraints

q(s(t), a(t)) 6 q̄, t = 0, 1, . . . ,

and (ii) replacing the latter by the following aggregate relaxed version in expectation:

Eπ
i

[ ∞

∑
t=0

q(s(t), a(t))βt
]
6

q̄
1− β

.

This leads to the following relaxation of problem (P) in (35):

(P̂) minimize Eπ
i

[ ∞

∑
t=0

h(s(t), a(t))βt
]

subject to : π ∈ Π(∞)

Eπ
i

[ ∞

∑
t=0

q(s(t), a(t))βt
]
6

q̄
1− β

.

(37)

The relaxed problem (P̂) is a constrained MDP (see, e.g., [48]), for which an optimal
policy generally depends on the initial state i. Such problems are amenable to a Lagrangian
approach. Introducing a non-negative multiplier λ > 0 attached to the constraint in (37),
we can dualize the latter, i.e., bring it into the objective, obtaining the Lagrangian relaxation

(P̂λ) minimize
π∈Π(∞)

Eπ
i

[ ∞

∑
t=0

h(s(t), a(t))βt
]
+ λ

(
Eπ

i

[ ∞

∑
t=0

q(s(t), a(t))βt
]
− q̄

1− β

)
. (38)

Note that, for any initial joint state i and multiplier λ > 0, the optimal cost V̂∗(i, λ) of
(P̂λ) is a lower bound for that of relaxed problem (P̂), which we denote by F̂∗(i). In turn,
the latter gives a lower bound for the optimal cost F∗(i) of (P). Thus,

V̂∗(i, λ) 6 F̂∗(i) 6 F∗(i). (39)

In light of (39), we are interested in finding an optimal multiplier λ∗(i) solving the
dual problem

(D) maximize
λ>0

V̂∗(i, λ). (40)

Since V̂∗(i, λ) is a concave function of λ, being a minimum of linear functions of λ, a
local maximum of problem (D) will be a global maximum. Furthermore, since the above
problems can be formulated as finite linear optimization (LO) problems, the strong duality
property of the latter ensures the existence of an optimal multiplier λ∗(i) > 0 solving
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problem (D) which attains the upper bound F̂∗(i), i.e., with V̂∗(i, λ∗(i)) = F̂∗(i). This
corresponds to the satisfaction of the complementary slackness property

λ∗(i)
(
Eπ∗

i

[ ∞

∑
t=0

q(s(t), a(t))βt
]
− q̄

1− β

)
= 0, (41)

where π∗ is an optimal policy for problem (P̂λ∗(i)).
Now, since individual project state transitions are conditionally independent given

that a joint action has been selected, it suffices —as noted by Whittle [8] for the case of
two-gear projects— to consider in (P̂λ) decoupled policies π = (πl)

L
l=1, where πl ∈ Πl and

Πl is the class of admissible policies for operating project l as if it were in isolation. This
allows us to reformulate problem (P̂λ) as

(P̂λ) minimize
L

∑
l=1

Eπl
il

[ ∞

∑
t=0

(
hl(sl(t), al(t)) + λql(sl(t), al(t))

)
βt
]
− λ

q̄
1− β

subject to : πl ∈ Πl , l = 1, . . . , L.

(42)

We can thus decouple problem (P̂λ) into the individual project subproblems

(P̂l,λ) minimize
πl∈Πl

Eπl
il

[ ∞

∑
t=0

(
hl(sl(t), al(t)) + λql(sl(t), al(t))

)
βt
]

, (43)

for l = 1, . . . , L. Denoting by V∗l (il , λ) the minimum cost objective of subproblem (P̂l,λ), it
follows that the optimal cost V̂∗(i, λ) of Lagrangian relaxation (P̂λ) is decoupled as

V̂∗(i, λ) =
L

∑
l=1

V∗l (il , λ)− λ
q̄

1− β
, (44)

which allows us to reformulate dual problem (D) in (40) as

(D) maximize
λ>0

L

∑
l=1

V∗l (il , λ)− λ
q̄

1− β
(45)

Now, suppose that each project l is indexable with DAI λ∗l (jl , al), so such indices
characterize as in Definition 1 the optimal policies for individual project subproblems (P̂l,λ),
which facilitates the evaluation of optimal costs V∗l (il , λ) and hence the computational
solution of dual problem (D). For such a purpose, one can use the result that, if π∗l (λ) is an

optimal policy for subproblem (P̂l,λ), then −Eπ∗l (λ)
il

[
∑∞

t=0 ql(sl(t), al(t))βt] is a subgradient
of V∗l (il , λ), seen as a function of λ.

8.3. A Downshift Index Policy for the MAMGBP

Assuming that individual projects are indexable, the author proposed in [35] a subop-
timal heuristic index policy for the above MAMGBP based on the projects’ DAIs. Here we
present a different proposal of a heuristic index policy based on individual project DAIs,
which is more easily implementable than that in [35].

Suppose that at time t the joint state is j = (jl)L
l=1. Consider the project DAIs evaluated

at such states, λ∗l (jl , al), for project l = 1, . . . , L. The proposed index policy is described in
Algorithm 2, which specifies how to obtain the joint action â = (âl)

L
l=1 prescribed in such a

joint state.
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Algorithm 2: Downshift index policy for the MAMGBP.

Input: j = (jl)L
l=1 (current joint state)

Output: â = (âl)
L
l=1 (prescribed joint action)

Initialization: al := Al , l = 1, . . . , L
Loop:
while ∑L

l=1 ql(jl , al) > q̄ or min1≤l≤L : al>1 λ∗l (jl , al) 6 0 do
pick l̂ ∈ arg min1≤l≤L : al>1 λ∗l (jl , al)

al̂ := al̂ − 1 (downshift gear in project l̂)
end { while }
â := a = (jl)L

l=1

In short, the algorithm starts by assigning the highest possible gear Al to each project
l. If this is feasible, in that it does not violate the peak resource constraint, this would be
the prescribed joint action. Otherwise, the algorithm proceeds by downshifting one of the
projects to the next lower gear. The chosen project is one that has minimum DAI at the
current gear. The algorithm proceeds until the peak resource constraint is satisfied and the
DAIs at the projects with prescribed active actions, if any, are non-negative. In light of the
above, we call the policy resulting from this algorithm the downshift index policy.

The intuition behind the design of such a policy is that projects should be operated in
such a way that two conflicting goals are balanced: (1) higher gears are to be preferred to
lower gears whenever possible; and (2) the resulting joint action must be feasible, satisfying
the peak resource constraint. The proposed downshift index policy is designed to strike
such a balance. If a joint action is not feasible so that a project must be downshifted to a
lower gear, the chosen project is one where the loss in performance due to such a downshift,
for which the project DAIs are used as a proxy measure, is minimal.

Note that the downshift index policy reduces to the Whittle index policy in the case of
two-gear projects.

9. Some Extensions

This section presents some extensions to the above framework.

9.1. Extension to the Long-Run Average Cost Criterion

The above results for the discounted cost criterion readily extend to the (long-run)
average cost criterion (see, e.g., ([47] Ch. 8)) under appropriate ergodicity conditions. Consider
the average cost, including holding and resource usage costs (charged at price λ), of running
the project starting from state i under a policy π ∈ Π, defined by

Vi(λ, π) , lim sup
T→∞

1
T
Eπ

i

[ T−1

∑
t=0

(
ha(t)

s(t) + λqa(t)
s(t)

)]
.

We further define the corresponding optimal cost

V∗i (λ) , inf
π∈Π

Vi(λ, π).

We can thus formulate the project’s average λ-price problem as

(Pλ) find π∗(λ) ∈ Π : Vi(λ, π∗(λ)) = V∗i (λ), i ∈ N . (46)

We shall refer to a policy π∗(λ) solving the average λ-price problem (Pλ) as a λ-optimal
policy.

We shall make the following assumption.

Assumption 2. The following conditions hold:
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(i) The model is weakly accessible, so the state space N can be partitioned into two subsets N tr

and N acc, such that (i.a) all states in N tr are transient under every stationary policy and (i.b)
for every two states i and j in N acc, j is accessible from i, so there exists a stationary policy π
and a positive integer t such that Pπ

i {s(t) = j} > 0.
(ii) Every policy S ∈ F is unichain, i.e., it induces a single recurrent class plus possible additional

transient states.

Now, by standard results in average-cost MDP theory (see [49] (Sec. 5.2)), Assumption 2
(i) ensures the existence of a λ-optimal policy π∗(λ) ∈ ΠSD, with the optimal average cost
V∗i (λ) being independent of the initial state, i.e., V∗i (λ) ≡ V∗(λ).

Now, by using the Laurent series expansions for finite-state and -action MDP models (see
Corollaries 8.2.4 and 8.2.5 in [47]), we have the following. For any stationary deterministic
policy π ∈ ΠSD,

xa
ij(π) , lim

T→∞

1
T
Eπ

i

[ T−1

∑
t=0

1{a(t)=a}

]
= lim

β↗1
(1− β)xa

ij(π),

Fi(π) , lim
T→∞

1
T
Eπ

i

[ T−1

∑
t=0

ha(t)
s(t)

]
= lim

β↗1
(1− β)Fi(π),

Gi(π) , lim
T→∞

1
T
Eπ

i

[ T−1

∑
t=0

qa(t)
s(t)

]
= lim

β↗1
(1− β)Gi(π).

Furthermore, for any S = (S0, . . . , SA) ∈ F , Assumption 2(ii) ensures that the above
metrics do not depend on the initial state i, so we can write xa

j (S), F(S), and G(S). Further-
more, we have the Laurent series expansions

Fi(S) =
F(S)
1− β

+ ϕi(S) + O(1− β), as β↗ 1

and

Gi(S) =
G(S)
1− β

+ γi(S) + O(1− β), as β↗ 1,

where the bias terms ϕi(S) and γi(S) are determined, up to an additive constant, by the
evaluation equations

F(S) + ϕi(S) = ha
i + ∑

j∈N
pa

ij ϕj(S), i ∈ Sa, a ∈ A

and
G(S) + γi(S) = qa

i + ∑
j∈N

pa
ijγj(S), i ∈ Sa, a ∈ A.

From the above, (9) and (10) we can define the average marginal (holding) cost metric

f̄ a,a′
i (S) , ha

i − ha′
i + ∑

j∈N
pa

ij ϕj(S)− ∑
j∈N

pa′
ij ϕj(S) = lim

β↗1
f a,a′
i (S) (47)

and the the average marginal resource (usage) metric

ḡa,a′
i (S) , qa′

i − qa
i + ∑

j∈N
pa′

ij γj(S)− ∑
j∈N

pa
ijγj(S) = lim

β↗1
ga,a′

i (S). (48)
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If ḡa,a′
i (S) > 0, we further define the average MP metric

ma,a′
i (S) ,

f̄ a,a′
i (S)

ḡa,a′
i (S)

= lim
β↗1

ma,a′
i (S). (49)

We thus have the following verification theorem, which is the average criterion coun-
terpart to Theorem 1 for the discounted criterion. Note that the following theorem refers to
the corresponding concepts for the average criterion ofF -indexability, PCL(F )-indexability,
and downshifting algorithm DS(F ), which is as algorithm DS(F ) but using the average
marginal metrics instead of the discounted ones.

Theorem 2. If the average cost model is PCL(F )-indexable, then it is F -indexable, with DAI λ̄∗,aj
given by the MPI m∗,aj .

9.2. Models with Uncontrollable States

In the above framework, we have assumed that the DAI λ∗,aj is defined for all project
states j ∈ N . Yet, in some models, this need not be the case, in particular in those having
uncontrollable states. We call a project state i uncontrollable if only one action is available
at i, or, equivalently, if all actions a give the same transition probabilities, so pa

ij = p0
ij

for all a. This concept was considered by the author in the corresponding framework for
two-gear projects developed in [29]. If there are uncontrollable states, we decompose the
state space as N = N cont ∪N unc, where N cont is the controllable state space and N unc is
the uncontrollable state space.

In such a case, the above framework carries over by defining the concept of indexability
and DAI by focusing on the controllable state space N cont, so the DAI λ∗,aj will only be
defined for states j ∈ N cont. The required adaptions are straightforward. For example, the
policy notation S = (S0, . . . , SA) used above can now be interpreted as meaning that, under
such a policy, action a is taken in controllable states j ∈ Sa for a = 0, . . . , A, as S0, . . . , SA is
now a partition of N cont.

9.3. Models with a Countably Infinite State Space

The extension of the above framework to models with a countably infinite state space
raises issues mainly in the definition of the downshift adaptive-greedy algorithm. Thus,
the algorithm would not terminate, and it might not traverse the entire space of (j, a) for
which the index is defined. Furthermore, it might possibly entail choosing among infinitely
many state–action pairs (j, a) at each step.

Yet, in some countably infinite state space models such issues are easily addressed.
Consider, e.g., a model that might arise in queueing theory where the state is the number
of customers in the system so the state space is the set of non-negative integers, N ,
{0, 1, 2, . . .}. Imagine that the actions or gears a correspond to server speeds, so higher
gears give faster service rates. The holding costs are used to model penalties (possibly
nonlinear) for congestion.

In such a setting, it is natural to conjecture that optimal policies should be multi-
threshold policies. Any such policy is characterized by thresholds z1 6 z2 6 · · · 6 zA,
with the interpretation that gear 0 is used in states 1 6 j 6 z1, gear a is used in states
za < j 6 za+1 for a = 1, . . . , A − 1, and gear A is used in states j > zA. Note that the
optimality of such policies has been established in some queueing models, see, e.g., [40–43].

The present framework would be applied to such a setting as follows. Rather than
considering directly such multi-threshold policies and trying to establish their optimality,
one would postulate a corresponding family of policies F . Note that in such a model state
0 would be uncontrollable, as there is no meaningful choice of action when the queue is
empty. Thus, excluding state 0 from consideration, the postulated family F would consist
of partitions S = (S0, . . . , SA) of the controllable state space with the following property: if
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gear a is selected in a state j (i.e., j ∈ Sa), then at any lower state j′ < j a gear a′ 6 a must
be selected.

It is easy to see that, in this setting, the natural extension of the downshift adaptive-
greedy algorithm would indeed traverse the entire space of state–action pairs (j, a) for
which the DAI is defined, which would provide an alternative approach to address such
problems to that previously considered in the aforementioned literature.

10. Discussion

This paper has introduced novel sufficient conditions for the indexability of multi-gear
bandits modeling a dynamic and stochastic project consuming a single resource, along
with an efficient index-computing algorithm. This can be used to efficiently solve general
MDP models that satisfy such conditions, and the index has further been used to design a
heuristic index policy for the more complex multi-armed multi-gear bandit problem. This
work opens a number of further avenues for developing such an approach, including the
following: developing an efficient implementation of and testing the algorithm; deploying
the new PCL-indexability conditions in a variety of relevant models arising in applications;
extending the approach to models with a countable state space; and extending the approach
to models with a continuous state space.
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