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Abstract: Based on the multiple barriers concept of deep geological disposal of high-level waste, frac-
tional advection diffusion equations for radionuclide migration in multiple layers low-permeability
porous media are proposed in this work. The presented fractional advection diffusion models in
terms of different definitions of fractional derivative are analytically addressed via the Laplace in-
tegral transform method. This work provides a theoretical foundation for further simulations of
radionuclide migration in the multiple barriers system of the high-level waste repository.
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1. Introduction

Deep geological repository (DGR) is the internationally preferred option for the per-
manent disposal of high-level waste (HLW). In general, DGR is built in stable geological
layers, such as clay and granite formations, to protect humans and the environment from
the possible adverse consequences of HLW as it may remain radioactive [1]. In China, the
site-selection process for HLW repository has commenced since the last century and the
Beishan granitic region has been selected as the final DGR site [2]. Meanwhile, the multiple
barriers concept is provided for the deep geological disposal of HLW. Most importantly, for
the long timescales not less than ten thousand years, the stability of the multiple barriers
system must be demonstrated. A quantitative description of the geochemical properties
of the multiple barriers system must be investigated by analyzing the transport processes
of radionuclides. In addition, advection and diffusion are the two limiting processes for
radionuclide migration miscible with deep groundwater through the multiple barriers
system. However, multiple barriers often have ultra-low permeability, and the particle
transport in these barriers arises anomalous transport behaviors [3]. These complex pro-
cesses in the multiple barriers system of DGR may not be adequately described by the
conventional approaches, such as the classical advection–diffusion equation models. There-
fore, appropriate mathematical models should be developed to characterize the anomalous
transport process of radionuclides in low-permeability porous media.

The fractional dynamic approach is emerging as a novel description of anomalous
transport processes [4–6]. Numerous researchers have applied the fractional derivative models
to describe the turbulent flow [7], non-Darcian flow [8–10], transient flow [11], atmospheric
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pollutant dispersion [12,13], solute transport [14], and contaminant migration [15,16]. More-
over, fractional diffusion models, in terms of different definitions of a fractional derivative,
also have been considered to depict the advective-dispersive transport in single porous
media [17–19]. Advection diffusion models can be solved by analytical methods as well as
numerical methods [20,21].

Motivated by the aforementioned works, this work makes an attempt to propose
fractional advection diffusion models for radionuclide anomalous migration in multiple
barriers system of deep geological repository. The rest of this work is organized as follows:
In Section 2, the fractional advection diffusion models for radionuclide anomalous transport
in multiple barriers system of DGR are developed and analytical addressed. In Section 3,
the main conclusions are drawn.

2. Fractional Advection Diffusion Model: Two Adjacent Layers
2.1. Geological Disposal Concept of HLW Repository

The principal concept of the HLW geological disposal depends on a combination of
engineered and natural barriers, called a multiple barriers system. The main objective
of this multiple barriers system is to prevent radionuclides from reaching the human
environment. A representative illustration of the deep geological disposal concept of HLW
repository is shown in Figure 1. The multiple barriers system is simplified as two adjacent
layers to represent the engineered barrier (bentonite backfill) and natural barrier (granitic
host rock). In subsequent arguments, the fractional advection diffusion models will be
presented to modelling the radionuclide anomalous migration in each layer.
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Figure 1. Deep geological disposal concept of the HLW repository.

2.2. Fractional Advection Diffusion Equations

The diffusive flux arises due to diffusion that is approximated by the fractional Fick’s
law [22]

Jdiff(x, t) = −D
∂1−α

∂t1−α

(
∂C(x, t)

∂x

)
. (1)

In addition, there is an associated flux called advective flux resulting from fluid
advection, i.e.,

Jadv(x, t) = uC(x, t), (2)

where J(x, t) = Jdiff(x, t) + Jadv(x, t) is the total flux, C(x, t) is the concentration, D denotes
the generalized diffusion coefficient

(
m2/sα

)
, u is the average velocity of fluid flow (m/s),

and ∂α

∂tα represents the fractional derivative in the definitions of Caputo [23], Caputo–
Fabrizio [24] and Atangana–Baleanu [25] as follows.

CDα f (t) =
1

Γ(1− α)

∫ t

0

f ′(τ)
(t− τ)α dτ (3)
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CFDα f (t) =
1

1− α

∫ t

0
f ′(τ) exp

{
−α(t− τ)

1− α

}
dτ, 0 < α ≤ 1. (4)

ABDα f (t) =
1

1− α

∫ t

0
f ′(τ)Eα

{
−α(t− τ)α

1− α

}
dτ, 0 < α ≤ 1, (5)

where Eα(x) =
∞
∑

k=0

xk

Γ(αk+1) is the Mittag–Leffler function. Obviously, when α = 1 these

fractional derivatives in Equations (3)–(5) reduce to the classical derivative of the first order;
detailed derivations also can be referred to in reference [23–25].

Incorporating the above constitutive relations Equations (1) and (2) into the continuity
equation, i.e.,

∂C(x, t)
∂t

+
∂J(x, t)

∂x
= 0 (6)

can lead to the one-dimensional fractional advection diffusion equation (FADE) for fluid
flow and radionuclide migration in each layer, i.e.,{

∂C(x,t)
∂t + u ∂C(x,t)

∂x = D ∂1−α

∂t1−α
∂2C(x,t)

∂x2

C(x, 0) = 0, ∂C(x,t≥0)
∂x = 0.

(7)

which is subjected to the initial and boundary value conditions resulting from the engi-
neering practice. In addition, results from the different features of the mentioned three
fractional derivatives, we believe that the presented FADE models in terms of different
fractional derivative definition can depict numerous anomalous transport processes arising
from the engineering.

2.3. Analytical Solutions for FADE in Two Layers

Inverting the FADE (7) to a fractional diffusion equation via the transforms x′ = x − ut,
then employing the Laplace transform with respect to t leads to

Cx′x′(x′, s) = Q(s)C(x′, s) (8)

where s is Laplace variable, and the Laplace transforms of fractional derivative in terms of
different definitions are given by

L
[

∂α f (t)
∂tα

]
(s) =


sαL[ f (t)](s)− sα−1 f (0), Caputo derivative;
sL[ f (t)](s)− f (0)

(1−α)s+α
, Caputo-Fabrizio derivative;

sαL[ f (t)](s)−sα−1 f (0)
(1−α)sα+α

, Atangana-Baleanu derivative.

(9)

Therefore, in the case of the fractional derivatives invoking the Caputo, Caputo–
Fabrizio, and Atangana–Baleanu’s definitions, Q(s) in Equation (8) denotes the following
different formulations, respectively.

Q(s) =


sα

D , Caputo derivative;
1−α+αs

D , Caputo-Fabrizio derivative;
(1−α)sα+αs

D , Atangana-Baleanu derivative.

(10)

The general solution of the second-order ordinary differential Equation (8) is known as

C(x′, s) = C1 exp(
√

Qx′) + C2 exp(−
√

Qx′), (11)

where C1 and C2 are parameters in terms of s and depend on the initial conditions.
As shown in Figure 1, the two adjacent bentonite and granite layers characterized

by two different diffusion coefficients D1 and D2, respectively. The thickness of the first
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engineering barrier is 0 ≤ x ≤ l. The solutions in the Laplace domain for the presented
FADE models in each layer can be derived as follows:

According to Equation (11), one can obtain

C1(x′, s) = C11 exp
(√

Q1x′
)
+ C12 exp

(
−
√

Q1x′
)

, 0 ≤ x ≤ l. (12)

C2(x′, s) = C21 exp
(
−
√

Q2x′
)

, l ≤ x ≤ ∞. (13)

where C2(x′, s) is in the result of the convergent of concentration distribution for x → ∞ .
Assuming the initial diffusion concentration C1(0, t) = C0, the concentrations in each

layer are continuous at the interface boundary x = l, i.e., C1(x = l, t) = C2(x = l, t)
and C1x(x = l, t) = C2x(x = l, t). Based on these initial and boundary conditions, the
parameters in Equations (12) and (13) are given by

C11 =
C0

s

(√
Q1 +

√
Q2
)[

sinh(2
√

Q1l) + cosh(2
√

Q1l)
]

√
Q1 −

√
Q2 +

(√
Q1 +

√
Q2
)[

cosh
(
2
√

Q1l
)
+ sinh

(
2
√

Q1l
)] , (14)

C12 =
C0

s

√
Q1 −

√
Q2√

Q1 −
√

Q2 +
(√

Q1 +
√

Q2
)[

cosh
(
2
√

Q1l
)
+ sinh

(
2
√

Q1l
)] , (15)

C21 =
C0

s
2
√

Q1
[
sinh

(
(
√

Q1 +
√

Q2)l
)
+ cosh

(
(
√

Q1 +
√

Q2)l
)]

√
Q1 −

√
Q2 +

(√
Q1 +

√
Q2
)[

cosh
(
2
√

Q1l
)
+ sinh

(
2
√

Q1l
)] , (16)

where sinh(x) and cosh(x) represent hyperbolic sine and cosine function, respectively.
Substituting C11, C12, C21 into Equations (12) and (13) leads to

C1(x′, s) =
C0

s

(√
Q1 +

√
Q2
)[

sinh(2
√

Q1l) + cosh(2
√

Q1l)
]

exp
(√

Q1x′
)
+
(√

Q1 −
√

Q2
)

exp
(
−
√

Q1x′
)

√
Q1 −

√
Q2 +

(√
Q1 +

√
Q2
)[

cosh
(
2
√

Q1l
)
+ sinh

(
2
√

Q1l
)] , (17)

C2(x′, s) =
C0

s
2
√

Q1
[
sinh

(
(
√

Q1 +
√

Q2)l
)
+ cosh

(
(
√

Q1 +
√

Q2)l
)]

exp
(
−
√

Q2x′
)

√
Q1 −

√
Q2 +

(√
Q1 +

√
Q2
)[

cosh
(
2
√

Q1l
)
+ sinh

(
2
√

Q1l
)] . (18)

Subsequently, one can apply the Bromwich–Hankel integration path shown in
Figure 2 to obtain the inverse Laplace transform of Equations (17) and (18). Assuming
Fj(s) = Cj(x′, s) exp(st), j = 1, 2 and according to the residue theorem one can derive

1
2πi

∫
Γ

Fj(s)ds = ΣN
k=1ResFj(sk), (19)

where Γ represents the Bromwich–Hankel integration path, and ResFj(sk) denotes the
residues of Fj(s) at the singular point sk. N is the number of singular points. When R→ ∞
and r → 0 in ResFj(sk), Equation (19) is inverted to

1
2πi

∫ γ+iβ

γ−iβ
Fj(s)ds− 1

2πi

∫ ∞

0

[
Cj
(

x′, W−(ξ)
)
− Cj

(
x′, W+(ξ)

)]
exp(−ξt)dξ = ΣN

k=1ResFj(sk), (20)

where W±(ξ) = ξe±iπ . The first term of the left side of Equation (20) gives the inverse
Laplace transform of Cj(x′, s), i.e.,

Cj(x′, t) = ΣN
k=1ResFj(sk) +

1
2πi

∫ ∞

0

[
Cj(x′, W−(ξ))− Cj(x′, W+(ξ))

]
exp(−ξt)dξ. (21)
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It is noted that Fj(s) only has one singular point s = 0, accordingly,

ΣN
k=1ResFj(sk) = ResFj(s = 0) = lim

s→0
sFj(s) = C0. (22)

Therefore, on the basis of Equations (21) and (22), the concentration distribution of
each layer can be represented as

Cj(x, t)
C0

= 1 +
1

2πi

∫ ∞

0

[
M+

j (x, ξ)−M−j (x, ξ)
]exp(−ξt)

ξ
dξ, j = 1, 2, (23)

where j = 1, 2 corresponding to the two adjacent layers 0 ≤ x ≤ l and l ≤ x ≤ ∞, respectively.
Furthermore, M±j (x, ξ) depends on the definitions of fractional derivative, and is

expressed by

M±1 (x, ξ)

=
(k1+k2)

[
sinh

(
2k1lU

1
2
± (ξ)

)
+cosh

(
2k1lU

1
2
± (ξ)

)]
exp

(
k1U

1
2
± (ξ)x′

)
+(k1−k2) exp

(
−k1U

1
2
± (ξ)x′

)

k1−k2+(k1+k2)

[
cosh

(
2k1U

1
2
± (ξ)l

)
+sinh

(
2k1lU

1
2
± (ξ)

)] , (24)

M±2 (x, ξ) =

2k1

[
sinh

(
(k1 + k2)lU

1
2
±(ξ)

)
+ cosh

(
(k1 + k2)lU

1
2
±(ξ)

)]
exp

(
−k2U

1
2
±(ξ)x′

)
k1 − k2 + (k1 + k2)

[
cosh

(
2k1U

1
2
±(ξ)l

)
+ sinh

(
2k1lU

1
2
±(ξ)

)] , (25)

where x′ = x− uξ, k1 = 1√
D1

, k2 = 1√
D2

and U±(ξ) is given by

U±(ξ) =


Wα
±(ξ), Caputo derivative;

1− α + αW±(ξ), Caputo-Fabrizio derivative;
(1− α)Wα

±(ξ) + αW±(ξ), Atangana-Baleanu derivative.

(26)

As a consequence, the analytical solutions of the FADE model in each layer are derived.
In actuality, the proposed FADE model is generalized from the classical ADE model using
a fractional-derivative approach. Therefore, it is necessary to consider the consistency
between the FADE and the ADE model in the particular case of the fractional-derivative
order α = 1. Specifically, in the case of α = 1, the fractional advection diffusion model in
Equation (7) reduces to the traditional ADE model. Meanwhile, the proposed FADE model
in Equation (23) regresses back into ADE model for two-layer porous media. The analytical
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solutions of the classical ADE model are recovered from the solutions of FADE when the
fractional derivative order α = 1, and is shown as follows:

C1(x,t)
C0

= 1 + 1
2πi
∫ ∞

0

[
M+

1 (x, ξ)−M−1 (x, ξ)
] exp(−ξt)

ξ dξ

= 1 + 1
2πi
∫ ∞

0

 k1k2

(
sinh[k1ξ

1
2 (l+x−uξ)]

)
k2

1 cosh2(k1ξ
1
2 l)−k2

2sinh2(k1ξ
1
2 l)

 exp(−ξt)
ξ dξ

, (27)

C2(x,t)
C0

= 1 + 1
2πi
∫ ∞

0

[
M+

2 (x, ξ)−M−2 (x, ξ)
] exp(−ξt)

ξ dξ

= 1 + 1
2πi
∫ ∞

0

−2k1

(
k1 cosh(k1ξ

1
2 l)sinh(Φ)−k2sinh(k1ξ

1
2 l) cosh(Φ)

)
k2

1 cosh2(k1ξ
1
2 l)−k2

2sinh2(k1ξ
1
2 l)

 exp(−ξt)
ξ dξ

, (28)

where Φ = k2ξ
1
2 (x− uξ).

It is worthwhile to note that the parameters, such as diffusion coefficients and advec-
tion velocity of the FADE model, need to be acquired from experimental data fitting or field
measurements. Furthermore, the relations between the fractional derivative order with
the geometric structure and fluid flow parameters of the selected porous media need to be
confirmed. The development of understanding radionuclide anomalous migration in mul-
tiple layers low-permeability porous media is an ongoing research program involving the
investigation of complex processes, usually involving coupled thermo-hydro-mechanical
effects. The precise mechanism of the FADE model for radionuclide anomalous transport
and the factors which control it remain controversial, and require further elucidation. The
numerical simulation and concentration prediction of parameters determined by the FADE
model are of great significance to the safety of the HLW repository, and are the main
directions of further study.

3. Conclusions

This work attempts to develop a FADE model for radionuclide migration in multiple
layers low-permeability porous media on the basis of the multiple barriers concept of deep
geological disposal of HLW. The presented FADE models in terms of different definitions
of fractional derivative among Caputo, Caputo–Fabrizio and Atangana–Baleanu are an-
alytically addressed via the Laplace integral transform method. This work provides a
theoretical foundation of fractional advection diffusion in multiple layers porous media. In
addition, it should be pointed out that the applicability of the proposed theoretical FADE
models for radionuclide migration in the multiple barriers system of the HLW repository
needs to be further validated in comparison with the experimental and field data.
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