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Abstract: An approximation of orbit rendezvous is usually used in the global optimization of multi-
target rendezvous missions, which can greatly affect the efficiency of optimization process. A fast
neural network-based surrogate model is proposed to approximate the optimal velocity increment of
perturbed orbit rendezvous in low Earth orbits. According to a dynamic analysis, the initial and target
orbits together with the flight time are transformed into a nine-dimensional normalized vector that is
used as the input layer of the neural network. An existing approximation method is introduced to
quickly generate the training data. In simulations, different numbers of layer nodes and hidden layers
are tested to choose the best parameters. The proposed neural network model demonstrates high
precision and high efficiency compared with previous approximation methods and neural network
models. The mean relative error is less than 1%. Finally, a case of an optimization of a multi-target
rendezvous mission is tested to prove the potential application of the neural network model.

Keywords: neural network; perturbed orbit rendezvous; trajectory optimization
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1. Introduction

The fast approximation of orbit rendezvous is a basis for the global optimization
of a multi-target rendezvous mission [1]. Due to the drift of the right ascension of the
ascending node (RAAN) and argument of perigee [2], the rendezvous velocity increment is
closely related to the flight time for perturbed orbit rendezvous in low Earth orbits (LEOs),
which makes it difficult to obtain an analytical solution. Numerical methods based on
evolutionary algorithms can obtain a high-precision solution, but applying them for the
global optimization of a multi-target rendezvous sequence is time-consuming [3,4] because
the global search needs to evaluate the velocity increments required for orbit transfers
between the different targets at different times for many instances to find the global optimal
order and arrival time of each target.

To obtain efficient methods that quickly calculate the optimal velocity increment,
several studies have focused on analytical methods based on dynamic approximations.
A simple strategy is to calculate the orbit differences between the initial and target orbits
and add them to the velocity increment separately [5,6]. It is fast enough, but cannot
deal with the coupling terms between the different components of the orbit elements. As
differences in the semi-major axis and inclination may cause the RAAN to drift due to
perturbations, it can be used to indirectly change the RAAN instead of a normal impulse
maneuver. Cerf [7] proposed a traversal method to search for the optimal RAAN drift rate
to minimize the total impulses. Huang [8,9] established an equal constraint optimization
model of different impulse components and derived an extremality condition based on
the minimum principle. Shen [10] and Chen [11] separately proposed similar methods by
rewriting the objective function to obtain the analytical expression of the optimal solution.

With the development of artificial neural networks [12–14], several studies have
employed neural networks to approximate the solution of complex dynamic equations.
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Li [15] proposed a surrogate model of low-thrust transfer between asteroids in deep space.
Zhu [16,17] also studied the application of artificial neural networks in low-thrust and
impulsive orbit transfers. Due to the effect of perturbations on the orbit elements in
low Earth orbits, it is more difficult to find all the features that determine the optimal
velocity increment of the rendezvous. In [15,16], the residuals of the neural networks for
transfers in deep space were less than 1%. By contrast, in [17], the residual of the neural
network for perturbed rendezvous with a similar structure was more than 2%. Moreover,
in [17], multiple man-made combinations of characteristic parameters were tested to find
the optimal input layer of the neural network for perturbed orbit rendezvous. However,
a few of the candidate parameters lacked physical meanings and the orbit rendezvous
was divided into three types corresponding with three different neural networks to be
trained, which made the process more time-consuming. Therefore, we focused on a neural
network structure that precisely reflected the optimization of orbit rendezvous using the
fewest parameters.

The major contribution of this study is the proposition of a novel neural network
model for the approximation of long-duration perturbed orbit rendezvous. According to
the existing analytical methods, the feature vector that completely determines the optimal
velocity increment was exacted and normalized to be used as the input layer. The efficiency
of the training data generation processes was also improved. The simulation results
indicated that the relative error of the neural network was less than 1% and the calculation
time was much less. It can be reasonably applied to the global optimization of multi-target
rendezvous sequences.

2. Problem Description of Orbit Rendezvous

In this study, we addressed time-fixed impulsive orbit rendezvous in low Earth orbits
with small eccentricities. The spacecraft was deemed to be in an initial orbit and needed to
transfer to a given target orbit. The rendezvous time and flight time were fixed. Thus, the
optimal velocity increment was the minimum summary of impulses that transferred the
spacecraft to the target orbit under the gravity of the Earth and other perturbations. The
dynamics equations can be described as follows [8]:

.
r = v
.
v = − µ

r3 r + ap
(1)

where r and v are the position and velocity of the spacecraft, respectively; r is the magnitude
of r; µ is the gravity constant of the Earth; and ap is the acceleration of perturbations, which
included the non-sphere perturbation of the Earth, the gravities of the sun and the moon,
solar radial pressure, and the drag of the atmosphere [2].

The model of the impulsive maneuver was expressed as:

r(tm
+) = r(tm

−)
v(tm

+) = v(tm
−) + ∆v

(2)

where tm
− and tm

+ are the instantaneous times before and after the maneuver, respectively,
and ∆v is the vector of impulse. Assuming that {∆vi}, i = 1, 2 . . . n is the sequence of
impulses that ensures that the spacecraft rendezvous with a target orbit, the optimization
problem is:

minJ =
n
∑

i=1
|∆vi|

s.t. r(t f ) = r f
v(t f ) = v f

(3)

where t f is the rendezvous time; r f and v f are the position and velocity of the target orbit,
respectively; and n is the number of impulses.

Equation (3) is a non-linear optimization model and evolutionary algorithms are
always required to obtain a high-precision solution. When searching for the best path and
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rendezvous times of each target in a multi-target sequence, the global optimization process
needs to frequently evaluate the velocity increments of the transfers between the different
targets with different flight times, which is extremely time-consuming. Most existing
studies have employed different forms of approximation to improve the efficiency [5–8,11].
However, such a problem still lacks a solution that is fast enough for global optimization.
In this study, we propose a new artificial neural network approach to approximate the
optimal velocity increment.

3. Methodology

In this section, the semi-analytical approximation method in [8] was reviewed first.
Based on this method, the features that fully determined the velocity increment were
extracted and validated by the sampling data of different orbit elements and transfer
durations. The feature vector was then employed as the input layer of a multi-layer neural
network. Meanwhile, the numerical high-precision solution in [9] was applied to generate
the sampling data for the training and validation. The process was as follows.

3.1. Approximation Method of the Perturbed Orbit Rendezvous Problem

To quickly evaluate the optimal velocity increment, Huang [8] proposed a semi-
analytical model that considered both efficiency and precision in which the analytical
dynamic equations of J2 perturbation were used and the changes in the orbit elements by
maneuvers were set as unknown parameters. We assumed that ∆a0, ∆i0 and ∆Ω0 were the
differences of the semi-major axis, inclination, and RAAN between the initial and target
orbits. ∆a1, ∆i1, and ∆Ω1 then denoted the changes in the semi-major axis, inclination, and
RAAN caused by the impulses at the beginning of the transfer. ∆a2, ∆i2, and ∆Ω2 denoted
the changes in semi-major axis, inclination, and RAAN caused by the impulses at the end
of the transfer. Thus, the equality constraint optimization model was obtained as:

min∆v =

√
(∆a1

2a0
)

2
+ (∆i1)

2 + ( ∆Ω1
sin i0

)
2
+

√
(∆a2

2a0
)

2
+ (∆i2)

2 + ( ∆Ω2
sin i0

)
2

g.t. g1 , ∆a1 + ∆a2 = ∆a0
g2 , ∆i1 + ∆i2 = ∆i0
g3 , ∆Ω1 + ∆Ω2 + ∆

.
Ω∆t = ∆Ω0

(4)

where ∆a1, ∆i1, ∆Ω1, ∆a2, ∆i2, and ∆Ω2 are unknowns and g1, g2, and g3 are the con-
straints required for rendezvous. a0 and i0 are the initial semi-major axis and inclination,
respectively; note that, in this paper, i0 could not be zero. In g3, ∆

.
Ω is used to denote the

difference of the RAAN drift rate between the drift orbit (meaning that the orbit had been
changed by ∆a1, ∆i1, and ∆Ω1) and target orbit; ∆

.
Ω can be calculated by ∆a1 and ∆i1 [8].

According to the minimum principle, L = ∆v + λ1g1 + λ2g2 + λ3g3 can denote the
Lagrange function where λ1, λ2, and λ3 are the Lagrange multipliers. The extreme condition
can be derived and easily solved by a non-linear algorithm [18]. The solution is locally
corrected by the differences in phase (∆u0) and eccentricity (∆ex0 and ∆ey0) to obtain a
near-optimal solution that meets all the constraints. An iterative process [9] was further
developed to transfer the approximate solution into a high-precision solution of numerical
dynamics via a group of analytical correction equations.

Such a method can be well-applied to the multi-target rendezvous sequence opti-
mization of active debris removal missions. The shortcoming is that the method cannot
be applied directly to global optimization because the calculation time is still not accept-
able when repeating it many times. Instead, it is used to generate a data grid before the
optimization and the evaluation of the velocity increment is calculated by interpolation.

3.2. Features Analysis of the Perturbed Orbit Rendezvous Problem

Equation (4) and other processes in [8] indicated that the key factors of ∆v were
the initial semi-major axis and inclination (a0, i0), the differences between the initial and
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target orbits (∆a0, ∆i0, ∆Ω0, ∆u0, ∆ex0, and ∆ey0), and the flight time ∆t. To validate this
assumption, the same initial orbit and target orbit given in Table 6 in [8] were used to obtain
the vector x = [a0, i0, ∆a0, ∆i0, ∆Ω0, ∆u0, ∆ex0, ∆ey0]. A group of random real numbers
were then generated to represent the initial RAAN, phase, and eccentricity (Ω0, u0, ex0, and
ey0) These corresponded with different orbit rendezvous problems with the same x.

Ω0 = 2πc1
u0 = 2πc2
ex0 = emaxc3 cos(2πc4)
ey0 = emaxc3 sin(2πc4)

(5)

where c1, c2, c3, and c4 are the real numbers in [0, 1] and emax = 0.02 is the maximum eccen-
tricity to analyze. The optimal velocity increments solved by the evolutionary algorithm
are illustrated in Figure 1. It can be seen that when ∆t was fixed to different values and x
remained the same, the relative deviation of the optimized ∆v was less than 1% although
the other orbit elements were randomly generated and not equal.
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Figure 1. Box diagram of optimized velocity increments with different orbits and the same x.

According to Figure 1, the feature vector of perturbed orbit rendezvous could be
defined as x together with ∆t. According to the range of orbit elements, it could be
normalized as yin:

yin = [
a0 − a
∆amax

,
i0 − i
∆imax

,
∆a0

∆amax
,

∆i0
∆imax

,
∆ex0

emax
,

∆ey0

emax
,

∆Ω0

π
,

∆u0

π
,

∆t
∆tmax

] (6)

where a and i are the middle values of the semi-major axis and the inclination of all
orbits that needed to be analyzed to obtain the approximate model of orbit rendezvous,
respectively; ∆amax and ∆imax are the maximum values of the changes in the semi-major
axis and inclination; and ∆tmax is the maximum transfer time. Each component of yin is
then within [−1, 1]. yin is used as an input layer to construct the neural network.
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3.3. Neural Network and Training

In this study, we applied a multi-layer fully connected neural network [15–17] to
obtain the surrogate model of the optimal velocity increment. The neural network structure
is illustrated in Figure 2.
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Figure 2. Structure of the multi-layer neural network.

In Figure 2, the dashed box shows the relationship between the nodes of neighboring
layers. The value of the ith node in the jth layer was a weighted sum of the nodes of the
previous layer and a constant bias:

yj
i = f (

N

∑
k=1

wi
kyj−1

i + bj
i) (7)

where N is the number of nodes that are connected to the current node, wi
k is the weight,

bj
i is the bias, and f is a non-linear function named the activation function. The output was

calculated by a given input through multiple layers.
In this study, the input layer was yin and the output layer was the optimal velocity

increment. The number of hidden layers was set to 2 and each layer had 60 nodes. A
standard rectified linear unit function was set as the activation function. The training
process was as follows.

First, a large amount of training data from different inputs was needed. Equation (8)
was used to generate the random flight time and the initial and target orbits.

a0 = a + k1∆amax
i0 = i + k2∆imax
ex0 = k3emax cos(k4π)
ey0 = k3emax sin(k4π)
Ω0 = k5π
u0 = k6π
a f = a + k7∆amax

i f = i + k8∆imax
ex f = k9emax cos(k10π)
ey f = k9emax sin(k10π)
Ω f = Ω0 + k11∆Ωmax
u f = k12π

∆t = ∆tmin + k13∆tmax

(8)
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where ki, i = 1, 2...12 are random real numbers within [−1, 1] and k13 is within (0, 1]. ∆Ωmax
is the upper limit of the RAAN difference. The optimization method in [9] was applied to
obtain the corresponding ∆v. Each group of yin and ∆v was recorded in the dataset.

The dataset was divided into training (90%) and validating data (10%). Keras, a well-
known neural network framework [19], was adopted to complete the training process. For
details on the training algorithm, refer to [19]. In this paper, we did not need to adjust the
hyperparameters of the neural network by the validating result. Therefore, the functions
of the testing data and validating data were almost the same; the validating data could,
therefore, prove the precision of the trained neural network.

The training process and the application of the trained neural network are illustrated
in Figure 3. To obtain the neural network model, a dataset of optimal velocity increments
with different input orbits was generated first. We then obtained the optimal input vector
of such a perturbed orbit rendezvous problem and constructed the neural network. The
dataset was then used to train the neural network and obtain the weights. Finally, the
weights and bias in the neural network were obtained and used in Equation (7) to predict
the optimal velocity increment with various input values.
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4. Experiments

To validate the proposed neural network design, the problem of the ninth Global
Trajectory Optimization Competition (GTOC9) [20] was tested, which provided 123 pieces
of debris in LEO that must be removed by multiple orbit transfer vehicles (OTVs) within a
given duration. The objective function was to minimize the total launch mass of all that
OTVs. It is a complex global optimization problem that has attracted many participants
even after the competition. Thus, in the simulation, we trained the neural network to help
evaluate the optimal velocity increment of the transfers between the different debris.

4.1. Dataset Generalization and Training Result

In GTOC9, the orbits of the debris are near-circular, the semi-major axis is centralized
at 7100 km, and the inclinations are centralized at 98◦. According to Equation (8), we set
a = 7100 km, i = 98◦, ∆amax = 200 km, ∆imax = 2◦, ∆Ωmax = 10◦, and ∆tmax = 30 d. A dataset
consisting of 130,000 groups of input orbits and flight times was generated and the optimal
∆v was calculated and recorded. The distribution of ∆v is illustrated in Figure 4.
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In the Keras framework, the training algorithm was set to “rmsprop” (root mean
square propagation), the loss function was “mse” (mean square error), and the batch size
was 32. A total of five cases with different numbers of hidden layers and nodes were tested;
the results are detailed in Table 1. The results indicated that 2 hidden layers of 60 nodes
were enough to obtain high precision. The mean relative error (MRE) was less than 1%
and the mean absolute error (MAE) was less than 4 m/s from the validation data, which
was an improvement of more than 50% compared with the results achieved in [17]. This
was because the feature vector was extracted more reasonably; the training data were also
more precise.

Table 1. Comparison of different neural network parameters.

Number
of Hidden

Layers

Number of
Nodes in Each
Hidden Layer

MRE (%) MAE
(m/s)

Time of
Each

Training
Epoch (s)

Training
Time (s)

Time of ∆v
Evaluation

(s)

2 30 1.34 5.3 4.6 1380 1.2 × 10−6

2 60 0.96 3.8 5.0 1500 4.8 × 10−6

2 90 0.89 3.7 5.2 1560 1.1 × 10−5

3 60 0.81 3.3 6.0 1800 8.9 × 10−6

4 60 0.79 3.2 7.0 2100 1.3 × 10−5

The velocity increments of all transfers using the same input orbits and durations of the
solution in [20] (from the Jet Propulsion Laboratory, which won GTOC9) were recalculated
by the neural network model presented in this paper. Compared with the results from the
Jet Propulsion Laboratory [20], the MRE was less than 4% and close to the semi-analytical
method [8].

The correlation between the ∆v predicted by the neural network and the optimized
∆v in [21] is illustrated in Figure 5, which indicated that the results of two methods were
close and the correlation was close to the function y = x. Moreover, the calculation time was
only 4.8 × 10−6 s using an AMD 4.2 GHz CPU, which demonstrated a higher efficiency
than previous approximation methods [8–11].
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where g is the gravity acceleration at the sea level, N  is the number of debris objects in 
sequence, im  represents the mass after the ith transfer, and Δ iv  is the velocity incre-
ment of the ith transfer. The problem is illustrated in Figure 6. 
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Figure 5. Correlation between the proposed neural network and approximate method in Petropou-
los 2018.

4.2. Application in Global Optimization

The performance of the proposed neural network was evaluated in the global op-
timization of a multi-target rendezvous sequence in the GTOC9 problem. Based on the
problem description, OTVs can be launched one by one to complete the debris removal
mission. Each OTV starts from one debris point and then rendezvous with several targets
sequentially. As the optimal velocity required for an orbit rendezvous between two debris
objects changes with the orbit elements and transfer time, it is difficult to find the global
optimal path of all targets. In the problem description, the maximum duration of the
flight time is 25 d between every two debris points; another 5 d is required for the OTV
to release a de-orbit package (∆mkit = 30 kg) after a rendezvous with target debris. The
specific impulse is Isp = 1000 s and the dry mass of the OTV is 2000 kg. Optimizing one
OTV is a sub-problem of GTOC9, which aims to find the best path and rendezvous times of
given targets to minimize the objective function (the total cost of the OTV mission per unit:
million Euro, also MEUR), defined as:

J = 2× 10−6(m0 − 2000)2 + 55 (9)

where m0 is the launch mass and can be calculated by the velocity increments of all transfers:

mi−1 = mie∆vi/(Ispg) + ∆mkit
mN = 2000 kg

(10)

where g is the gravity acceleration at the sea level, N is the number of debris objects in
sequence, mi represents the mass after the ith transfer, and ∆vi is the velocity increment of
the ith transfer. The problem is illustrated in Figure 6.

The optimization method in [21] was adopted and the neural network was employed
to replace the evaluation of ∆vi corresponding with orbit rendezvous between different
targets with different transfer times. In the optimization model, the dimension of the
decision variables was 2N. The integer variables {xi}, i = 1, 2 . . . N represented the order
of the rendezvous and the real number variables

{
∆ti
}

, i = 1, 2 . . . N represented the flight
times between two debris points. Thus, the start time tstart

i and arrival time tarrivel
i of the ith

transfer could be calculated as Equation (11) and the orbit elements of the corresponding
targets could be obtained.
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tstart
i =

{
tarrivel
i−1 + ∆tkit, i > 1

t0, i = 1
tarrivel
i = tstart

i + ∆ti

(11)

where t0 is the given initial time of the OTV mission and ∆tkit = 5 d is the time required to
release the de-orbit package. Equation (6) was then sequentially applied to calculate the
input feature vector. The approximate ∆vi could then be obtained by the trained neural
network. After all the velocity increments were known, the objective function could be
calculated by Equation (9).
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The differential evolutionary algorithm was then used to solve this model and obtain
the optimal order of the debris and optimal rendezvous times. The results to rendezvous
with the same debris objects achieved by the different approximation methods of ∆vi are
listed in Table 2, which indicates that the optimal J achieved by the neural network was
comparable with other results, but required less calculation using the same AMD 4.2 GHz
CPU. Moreover, the test was single-threaded and could be further accelerated because a
neural network is easy to parallelize.

Table 2. Comparison of different methods.

Model of Velocity
Increment Optimal Order of Debris Total ∆v

(m/s)
J

(MEUR)
Computational

Time (s)

Method in [20] 72, 107, 61, 10, 28, 3, 64, 66, 31, 90, 73, 87,
57, 35, 69, 65, 8, 43, 71, 4, 29 3409.5 97.1 >3600

Method in [21] 72, 107, 61, 73, 3, 69, 64, 66, 31, 10, 90, 87,
57, 35, 28, 65, 8, 43, 71, 4, 29 3357.0 95.6 600

Neural network model
in this paper

72, 61, 107, 73, 3, 69, 64, 66, 31, 10, 90, 87,
57, 35, 28, 65, 8, 43, 71, 4, 29 3407.5 97.1 120

5. Conclusions

In this study, we proposed a novel neural network surrogate model for orbit ren-
dezvous between near-circular orbits in low Earth orbits. Most previous methods focused
on analytical approximation forms, which require an optimization process and thus lead
to an efficiency bottleneck. A few of the latest studies have employed neural networks,
but the structures have a lack of theoretical references. In this study, we designed an input
layer based on orbit dynamics and normalization was applied to improve the performance.
Based on an efficient data generalization process, the network was constructed using a
normal training process. The simulation results demonstrated the precision and efficiency
of the neural network model. The relative error was less than 1% and was better than that
achieved by a similar work [17] based on neural networks. Moreover, the calculation time
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was 5.8 × 10−6 s using an ordinary desktop processor and could be directly applied to the
global optimization of multi-target rendezvous missions.
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Nomenclature

a0 Semi-major axis of initial orbit
i0 Inclination of initial orbit
∆a0 Difference of semi-major axis between initial and target orbits
∆i0 Difference of inclination axis between initial and target orbits
∆Ω0 Difference of RAAN axis between initial and target orbits
∆u0 Difference of phase axis between initial and target orbits
∆ex0 Difference of e cosω between initial and target orbits
∆ey0 Difference of e sinω between initial and target orbits
.

Ω0 Initial drift rate of RAAN
emax Upper limit of eccentricity
∆amax Upper limit of change in semi-major axis
∆imax Upper limit of change in inclination
∆Ωmax Upper limit of change in RAAN
∆tmax Upper limit of flight time
a Mean value of semi-major axis
i Mean value of inclination
∆v Velocity increment of orbit rendezvous
OTV Orbit transfer vehicle
m0 Launch mass of OTV
mN Dry mass of OTV
∆mkit Mass of de-orbit package released at each debris point
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