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1. Introduction

Classical orthogonal polynomials can be considered eigenfunctions of a Sturm–Liouville
problem [1–3] of the form

d
dx

(
k(x)

dy
dx

)
−
(
λρ(x) + q(x)

)
y = 0, (1)

on an open interval, say (a, b), with the boundary conditions

α1y(a) + β1y′(a) = 0,

α2y(b) + β2y′(b) = 0,
(2)

in which α1, α2 and β1, β2 are given constants and the functions k(x) > 0 , q(x) and ρ(x) > 0
in (1) are assumed to be continuous for x ∈ [a, b]. The boundary value problem (1) and (2)
is called singular [4] if one of the points a and b is singular, i.e., k(a) = 0 or k(b) = 0.
Sturm–Liouville problems appear in various branches of physics, engineering and biology
and are usually studied in three different continuous, discrete and q-discrete spaces; see,
for example, [5].

Let yn(x) and ym(x) be two solutions of Equation (1). Following the Sturm–Liouville
theory [4,6], they are orthogonal with respect to the positive weight function ρ(x) on (a, b)
under the given conditions (2), i.e.,

∫ b

a
ρ(x)yn(x)ym(x) dx =

(∫ b

a
ρ(x)y2

n(x) dx
)

δn,m, (3)
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where

δn,m =

{
0 (n 6= m),
1 (n = m).

Many special functions in theoretical and mathematical physics are solutions of a
regular or singular Sturm–Liouville problem, satisfying the orthogonality condition (3) [4,7].

There are totally six sequences of real polynomials [5] that are orthogonal with respect
to the Pearson distributions family

W
(

d∗, e∗

a, b, c
x
)
= exp

(∫ d∗x + e∗

ax2 + bx + c
dx
)

(a, b, c, d∗, e∗ ∈ R). (4)

Three of them (i.e., Jacobi, Laguerre and Hermite polynomials [3]) are infinitely or-
thogonal with respect to three special cases of the positive function (4) (i.e., beta, gamma
and normal distributions [8]) and three other ones are finitely orthogonal limited to some
parametric constraints with respect to F-Fisher, inverse gamma and generalized T-student
distributions [8]. Table 1 shows the main properties of these six sequences.

Table 1. Characteristics of six sequences of classical orthogonal polynomials.

Polynomial
Notation

Distribution Weight Function Kind Interval
Parameters Constraint

P(α,β)
n (x) Beta

W
(
−α− β, −α + β
−1, 0, 1 x

)
= (1− x)α(1 + x)β

Infinite
[−1, 1]

∀n, α > −1, β > −1

L(α)
n (x) Gamma

W
(
−1, α
0, 1, 0 x

)
= xα exp(−x)

Infinite
[0, ∞)

∀n, α > −1

Hn(x) Normal
W
(
−2, 0
0, 0, 1 x

)
= exp(−x2)

Infinite
(−∞, ∞)

—

M(p,q)
n (x) Fisher F

W
(
−p, q
1, 1, 0 x

)
= xq(x + 1)−(p+q)

Finite
[0, ∞)

max n < (p− 1)/2
q > −1

N(p)
n (x)

Inverse
Gamma

W
(
−p, 1
1, 0, 0 x

)
= x−p exp(−1/x)

Finite
[0, ∞)

max n < (p− 1)/2

J(p,q)
n (x)

Generalized
T

W
(
−2p, q
1, 0, 1 x

)
= (1 + x2)−p exp(q arctan x)

Finite
(−∞, ∞)

max n < p− 1/2

It was shown by S. Bochner [7,9] that if an infinite sequence of polynomials {Pn}∞
n=0

satisfies a second-order eigenvalue equation of the form

σ(x)P′′n (x) + τ(x)P′n(x) + r(x)Pn(x) = λnPn(x) n = 0, 1, 2, . . . ,

then σ(x), τ(x) and r(x) must be polynomials of degree 2, 1 and 0, respectively. Moreover,
if the sequence {Pn}∞

n=0 is an orthogonal set, then it has to be one of the classical Jacobi,
Laguerre or Hermite polynomials, which satisfy a second order differential equation of the
form [9–11]

σ(x)y′′n(x) + τ(x)y′n(x)− λnyn(x) = 0, (5)
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where
σ(x) = ax2 + bx + c and τ(x) = dx + e,

and
λn = n

(
d + (n− 1)a

)
,

is the eigenvalue depending on n = 0, 1, 2, . . .. However, there are three other sequences of
hypergeometric polynomials that are solutions of Equation (5) but finitely orthogonal [12].

It is the presumption in the theory of special functions that any orthogonal polynomial
system starts with a polynomial of degree 0. Nevertheless, from the Sturm–Liouville theory
point of view, such a restriction is not necessary, and that point gives birth to the so-called
‘exceptional orthogonal polynomials’. In this sense, two families of exceptional orthogonal
polynomials were recently introduced in [13,14] as solutions of a second-order eigenvalue
equation of the form

(
k2(x− b)2 + k1(x− b) + k0

)
y′′n(x) +

ax− ab− 1
x− b

(
k1(x− b) + 2k0

)
y′n(x)

−
( a

x− b
(
k1(x− b) + 2k0

)
+ λn

)
yn(x) = 0,

for n ≥ 1, where
λn = (n− 1)(nk2 + ak1),

and k0 6= 0, k1, k2 are real constants. It was also shown in [13] that if a self-adjoint second-
order operator has a polynomial eigenfunctions of type {Pi(x)}∞

i=1, then it can be X1-Jacobi

polynomials P̂(α,β)
n (x) with the weight function

Ŵα,β(x) =
(

x− β + α

β− α

)−2
(1− x)α(1 + x)β for x ∈ (−1, 1), (6)

where α, β > −1, α 6= β, sgn α = sgn β, and/or X1-Laguerre polynomials L̂(α)
n (x) with the

weight function

Ŵα(x) =
(

x + α
)−2xαe−x for x ∈ (0, ∞) and α > 0. (7)

Exceptional orthogonal polynomials were recently of interest due to their important
applications in exactly solvable potentials and supersymmetry, Dirac operators minimally
coupled to external fields and entropy measures in quantum information theory [15,16].

This paper is organized as follows. In the next section, we consider six sequences
of orthogonal X1-polynomials as particular solutions of a generic differential equation in
the form

(x− r)
(

a2x2 + a1x + a0

)
y′′n(x) +

(
b2x2 + b1x + b0

)
y′n(x)

−
(
λn(x− r) + c∗0

)
yn(x) = 0, n ≥ 1, (8)

where r is a real parameter such that a2r2 + a1r + a0 6= 0 and the roots of b2x2 + b1x + b0
are supposed to be real, see Section 3 for more details. Both infinite and finite types of
nonsymmetric exceptional orthogonal X1-polynomials can be extracted from Equation (8).
Although some infinite polynomial sequences were investigated in [17] for particular values
of r, the finite cases of nonsymmetric exceptional X1-polynomials orthogonal on infinite
intervals are introduced in this paper for the first time. A key point in this sense is that
the weight functions corresponding to these six sequences are exactly a multiplication of
the Pearson distributions family introduced in Table 1. Hence, in Section 2, we first have a
review on six classical orthogonal polynomials in order to present a unified classification for
nonsymmetric exceptional orthogonal X1-polynomials in Section 3. In Section 4, we study
a series of solutions of the generic Equation (8) in order to find some of its polynomial-
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type solutions. In Section 5, six extended differential equations, as particular cases of
the main Equation (8), are introduced, and it is shown that their polynomial solutions
are X1-orthogonal. Finally in Section 6, we apply the generic Equation (8) once again to
establish a symmetric Sturm–Liouville equation of the form

A(x) y′′n(x) + B(x) y′n(x) +
(

λn C(x) + D(x) +
1− (−1)n

2
E(x)

)
yn(x) = 0,

and then to introduce four main classes of symmetric orthogonal X1-polynomials.

2. Classical Orthogonal Polynomials: A Brief Review

It is shown in [5] that the monic polynomial solution of Equation (5) can be repre-
sented as

yn(x) = P̄n

(
d, e

a , b , c

∣∣∣∣x) =
n

∑
k=0

(
n
k

)
G(n)

k (a, b, c, d, e) xk, (9)

where

G(n)
k =

(
2a

b +
√

b2 − 4ac

)k−n

2F1

(
k− n, 2ae−bd

2a
√

b2−4ac
+ 1− d

2a − n

− d
a + 2− 2n

∣∣∣∣∣ 2
√

b2 − 4ac
b +
√

b2 − 4ac

)
,

and

2F1

(
a, b

c

∣∣∣∣x) =
∞

∑
k=0

(a)k(b)k
(c)k

xk

k!
,

denotes the Gauss hypergeometric function for (a)k = a(a + 1) . . . (a + k− 1).
The general Formula (9) is a suitable tool to compute the coefficients of xk for any fixed

degree k and arbitrary a, so that after simplifying it, we obtain

P̄n

(
d, e

a, b, c

∣∣∣∣ x
)
= xn +

(
n
1

)
e + (n− 1)b

d + 2(n− 1)a
xn−1

+

(
n
2

)
(e + (n− 1)b)(e + (n− 2)b) + c(d + 2(n− 1)a)

(d + 2(n− 1)a)(d + (2n− 3)a)
xn−2 + . . .

+

(
n
n

)(
b +
√

b2 − 4ac
2a

)n

2F1

 −n, 1− n− b d−2a e
2a
√

b2−4 a c
− d

2 a

2(1− n)− d
a

∣∣∣∣∣∣ 2
√

b2 − 4ac
b +
√

b2 − 4ac

.

Moreover, by referring to the Nikiforov and Uvarov approach [6] and considering
Equation (5) as a self-adjoint form, the Rodrigues representation of the monic polynomials
is derived as

P̄n

(
d, e

a, b, c

∣∣∣∣ x
)
=

1( n
∏

k=1
d + (n + k− 2)a

)
W
(

d, e
a, b, c

∣∣∣∣ x
)

×
dn
(
(ax2 + bx + c)nW

(
d, e

a, b, c

∣∣∣∣ x
))

dxn , (10)

where

W
(

d, e
a, b, c

∣∣∣∣ x
)
= exp

( ∫ (d− 2a)x + e− b
ax2 + bx + c

dx
)

.

Using the Formula (9) or (10), we can also obtain a generic three term recurrence
equation as [5]
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P̄n+1(x) =
(

x +
2n(n + 1)ab + (d− 2a)(e + 2nb)

(d + 2na)(d + (2n− 2)a)

)
P̄n(x)

+ n(d + (n− 2)a)

(
c(d + (2n− 2)a)2 − nb2(d + (n− 2)a) + (e− b)(a(e + b)− bd)

)
(d + (2n− 3)a)(d + (2n− 2)a)2(d + (2n− 1)a)

P̄n−1(x),

in which P̄n(x) denotes the monic polynomials of (9) with the initial values

P̄0(x) = 1 and P̄1(x) = x +
e
d

.

Finally, the norm square value of the monic polynomials (9) can be calculated as
follows: Let [L, U] be a predetermined orthogonality interval which consists of the zeros of
σ(x) = ax2 + bx + c or ±∞. By noting the Rodrigues representation (10), we have

‖P̄n‖2 =
∫ U

L
P̄2

n

(
d, e

a, b, c

∣∣∣∣∣ x

)
W

(
d, e

a, b, c

∣∣∣∣∣ x

)
dx

=
1

n
∏

k=1
d + (n + k− 2)a

∫ U

L
P̄n

(
d, e

a, b, c

∣∣∣∣∣ x

)
dn

dxn

(
(ax2 + bx + c)

n
W

(
d, e

a, b, c

∣∣∣∣∣ x

))
dx. (11)

Hence, integrating by parts from the right hand side of (11) eventually yields

‖P̄n‖2 =
n! (−1)n

n
∏

k=1
d + (n + k− 2)a

∫ U

L
(ax2 + bx + c)

n(
exp

∫
(d− 2a)x + e− b

ax2 + bx + c
dx
)

dx.

Although the Jacobi polynomials

P̄(α,β)
n (x) = P̄n

(
−α− β− 2, β− α

−1, 0, 1

∣∣∣∣x),

Laguerre polynomials

L̄(α)
n (x) = P̄n

(
−1, α + 1

0, 1, 0

∣∣∣∣x),

and Hermite polynomials

H̄n(x) = P̄n

(
−2, 0
0, 0, 1

∣∣∣∣x),

are three polynomial solutions of Equation (5), there are three other sequences of hy-
pergeometric polynomials that are finitely orthogonal with respect to the generalized T,
inverse Gamma and F distributions [12] and are solutions of Equation (5). The first finite
sequence, i.e.,

M̄(p,q)
n (x) = P̄n

(
2− p, 1 + q

1, 1, 0

∣∣∣∣x),

satisfies the differential equation

(x2 + x)y′′n(x) +
(
(2− p)x + q + 1

)
y′n(x)− n(n + 1− p)yn(x) = 0,

and is finitely orthogonal with respect to the weight function

W1(x; p, q) = xq(1 + x)−(p+q),

on [0, ∞) if and only if [12]

p > 2{max n} + 1 and q > −1.
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The second finite sequence, i.e.,

N̄(p)
n (x) = P̄n

(
2− p, 1
1, 0, 0

∣∣∣∣x),

satisfies the differential equation

x2y′′n(x) +
(
(2− p)x + 1

)
y′n(x)− n(n + 1− p)yn(x) = 0,

and is finitely orthogonal with respect to the weight function [12]

W2(x; p) = x−pe−
1
x ,

on (0, ∞) for n = 0, 1, 2, . . . , N < p−1
2 . The third finite sequence, which is finitely orthogonal

with respect to the generalized T-student distribution weight function

W3(x; p, q) =
(

1 + x2
)−p

exp(q arctan x),

is defined on (−∞, ∞) as

J̄(p,q)
n (x) = P̄n

(
2− 2p, q

1, 0, 1

∣∣∣∣x),

satisfying the equation

(1 + x2) y′′n(x) +
(
2(1− p)x + q

)
y′n(x)− n(n + 1− 2p) yn(x) = 0,

and the orthogonality property holds if

n = 0, 1, 2, . . . , N < p− 1
2

and q ∈ R.

3. A Unified Classification of Nonsymmetric Exceptional Orthogonal X1-Polynomials

Using identity, which is valid for every real A, B, C, x, r

Ax2 + Bx + C = A(x− r)2 + (2Ar + B)(x− r) + Ar2 + Br + C,

another form of Equation (8) is as

(x− r)
(

a2(x− r)2 + (2a2r + a1)(x− r) + a2r2 + a1r + a0

)
y′′n(x)

+
(

b2(x− r)2 + (2b2r + b1)(x− r) + b2r2 + b1r + b0

)
y′n(x)

−
(

λn(x− r) + c∗0
)

yn(x) = 0, n ≥ 1. (12)

We choose λn in (12) so that the relative eigenfunction yn is a polynomial of degree n.
Hence, we first consider a subspace of the whole space of polynomials of degree at most
n as

Πn,r,ν = span
{
(x− r− ν), (x− r)2, . . . , (x− r)n

}
,

in which ν is a real constant. By substituting y1(x) = x− r− ν and yn(x) = (x− r)n for
n ≥ 2 into (12), we respectively obtain(

b2 − λ1
)
(x− r)2 +

(
2 b2 r + b1 − c∗0 + ν λ1

)
(x− r) + b2 r2 + b1 r + b0 + ν c∗0 = 0, (13)
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and

n(n− 1)
(

a2(x− r)2 + (2a2r + a1)(x− r) + a2r2 + a1r + a0

)
(x− r)n−1

+ n
(

b2(x− r)2 + (2b2r + b1)(x− r) + b2r2 + b1r + b0

)
(x− r)n−1

−
(

λn(x− r) + c∗0
)
(x− r)n = 0 n ≥ 2.

Therefore,
λn = n

(
(n− 1)a2 + b2

)
for n ≥ 1,

and, using Equation (13) with n = 1,2b2r + b1 − c∗0 + νb2 = 0,

b2r2 + b1r + b0 + νc∗0 = 0.
(14)

Solving the system (14) gives

ν =
−b1 ±

√
b2

1 − 4b0b2

2b2
− r =

{
r1 − r,
r2 − r,

where r1, r2 are roots of b2x2 + b1x + b0, and

c∗0 = c∗0
{

r; b2, b1, b0

}
=

1
2

(
2b2r + b1 ∓

√
b1

2 − 4b0b2

)
=


b2(r− r2),

b2(r− r1).

Corollary 1. If we take b2x2 + b1x + b0 = b2(x− r1)(x− r2) for b2 6= 0 and

Πn,r,ν = span{ek(x)}n
k=1,

then
(i) e1(x) = x− r1 and

{
ek(x)

}∞
k=2 =

{
(x− r)k}∞

k=2 lead to c∗0 = b2(r− r2).

(ii) e1(x) = x− r2 and
{

ek(x)
}∞

k=2 =
{
(x− r)k}∞

k=2 lead to c∗0 = b2(r− r1).

Also note that for b2 = 0, we respectively have c∗0 = b1 and ν = −r− b0
b1

.

We can now show that the polynomial solutions of Equation (12) in Πn,r,ν are orthogo-
nal on an interval, say [L, U], with respect to a weight function in the form

ρ(x) = (x− r)ω(x),

where ω(x) satisfies the equation

ω′(x)
ω(x)

=
(b2 − 3a2)x2 + (b1 − 2a1 + 2a2r)x + b0 − a0 + a1r

(x− r)
(
a2x2 + a1x + a0

) . (15)

To prove the orthogonality, we first consider the self-adjoint form of Equation (12) as(
ω(x)(x− r)

(
a2x2 + a1x + a0

)
y′n
)′

= ω(x)
(

λn(x− r) + c∗0
)

yn(x), (16)

and for the index m as(
ω(x)(x− r)

(
a2x2 + a1x + a0

)
y′m
)′

= ω(x)
(

λm(x− r) + c∗0
)

ym(x). (17)
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Multiplying by ym(x) and yn(x) in relations (16) and (17) respectively, subtracting
them and then integrating from both sides yields

[
ω(x)(x− r)

(
a2x2 + a1x + a0

)(
y′n(x)ym(x)− y′m(x)yn(x)

)]U

L

= (λn − λm)
∫ U

L
(x− r)ω(x)yn(x)ym(x) dx. (18)

Now if the following conditions

ω(L)(L− r)
(
a2L2 + a1L + a0

)
= 0,

ω(U)(U − r)
(
a2U2 + a1U + a0

)
= 0,

hold, the left hand side of (18) is equal to zero and therefore∫ U

L
(x− r)ω(x)yn(x)ym(x) dx = 0 m 6= n,

which approves the orthogonality of polynomial sequence {yn(x)}∞
n=1 with respect to the

weight function ρ(x) = (x− r)ω(x).
On the other hand, the explicit solution of Equation (15) is as

ω(x) = exp

(∫
(b2 − 3a2)x2 + (b1 − 2a1 + 2a2r)x + b0 − a0 + a1r

(x− r)
(
a2x2 + a1x + a0

) dx

)
. (19)

The key point in this relation is that ω(x) is exactly a multiplication of the Pearson
distribution given in (4), because if the integrand function of (19) is written as a sum of two
fractions with linear and quadratic denominators in the form

(b2 − 3a2)x2 + (b1 − 2a1 + 2a2r)x + b0 − a0 + a1r
(x− r)(a2x2 + a1x + a0)

=

b2r2+b1r+b0
a2r2+a1r+a0

− 1

x− r

+

(
b2 − a2(2 +

b2r2+b1r+b0
a2r2+a1r+a0

)
)
x + b1 + b2r− ( b2r2+b1r+b0

a2r2+a1r+a0
)(a1 + a2r)− a1

a2x2 + a1x + a0
,

then we obtain

ω(x) = (x− r)
b2r2+b1r+b0
a2r2+a1r+a0

−1

× exp

∫ (
b2 − a2(2 +

b2r2+b1r+b0
a2r2+a1r+a0

)
)

x + b1 + b2r− ( b2r2+b1r+b0
a2r2+a1r+a0

)(a1 + a2r)− a1

a2x2 + a1x + a0
dx



= (x− r)
b2r2+b1r+b0
a2r2+a1r+a0

−1

× W

 b2 − a2(2 +
b2r2+b1r+b0
a2r2+a1r+a0

), b1 + b2r− ( b2r2+b1r+b0
a2r2+a1r+a0

)(a1 + a2r)− a1

a2 , a1 , a0

x

,

and accordingly,

ρ(x) = (x− r)
b2r2+b1r+b0
a2r2+a1r+a0

×W

 b2 − a2(2 +
b2r2+b1r+b0
a2r2+a1r+a0

), b1 + b2r− ( b2r2+b1r+b0
a2r2+a1r+a0

)(a1 + a2r)− a1

a2 , a1 , a0

x

. (20)
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Corollary 2. The polynomial solutions of the generic equation

(x− r)
(
a2x2 + a1x + a0

)
y′′n(x) +

(
b2x2 + b1x + b0

)
y′n(x)

−
(

n
(
b2 + (n− 1)a2

)
(x− r) + c∗0(r; b2, b1, b0)

)
yn(x) = 0, (21)

where (−1)
b2r2+b1r+b0
a2r2+a1r+a0 = 1 and n ≥ 1 are nonsymmetric exceptional X1-polynomials orthogonal

with respect to the weight function (20).

Now let us assume that the polynomial solution of Equation (21) is symbolically
indicated as

yn(x) = Qn,r

(
b2, b1, b0

a2, a1, a0
x

)
. (22)

By referring to the Pearson distributions family (4), an inverse process can also be
considered as follows.

Suppose that a simplified case of the weight function (20) is given as

ρ(x) = (x− r)θ W

(
d∗, e∗

a , b , c
x

)
, (23)

in which (−1)θ = 1. Then, by noting Equation (21), the unknown polynomials p2(x) and
q2(x) of degree 2 in the differential equation

(x− r)p2(x)y′′n(x) + q2(x)y′n(x)−
(
λn(x− r) + c∗0

)
yn = 0, (24)

can be directly derived by computing the logarithmic derivative of the function

ρ(x)
x− r

= (x− r)θ−1W

(
d∗, e∗

a , b , c
x

)
= (x− r)θ−1W(x),

as (
(x− r)θ−1W(x)

)′
(x− r)θ−1W(x)

=
θ − 1
x− r

+
W ′(x)
W(x)

=
θ − 1
x− r

+
d∗x + e∗

ax2 + bx + c

=

(
d∗ + (θ − 1)a

)
x2 +

(
e∗ − rd∗ + (θ − 1)b

)
x− re∗ + (θ − 1)c

(x− r)(ax2 + bx + c)
,

and then equating the result with

q2(x)−
(
(x− r)p2(x)

)′
(x− r)p2(x)

,

so that we finally obtain
p2(x) = ax2 + bx + c, (25)

and

q2(x) =
(
d∗ + (θ + 2)a

)
x2 +

(
e∗ − r(d∗ + 2a) + (θ + 1)b

)
x + θc− r(e∗ + b), (26)
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provided that the roots of q2 are real. Relations (25) and (26) show that the polynomial
solution of Equation (24) with λn = n

(
(n + 1 + θ)a + d∗

)
can be written in terms of the

symbol (22) as

yn(x) = Qn,r

(
d∗ + (θ + 2)a, e∗ − r(d∗ + 2a) + (θ + 1)b, θc− r(e∗ + b)

a, b, c
x

)
.

Additionally, according to the Corollary 1, c∗0 in (24) directly depends on the roots of
q2(x) in (26) and is therefore computed as

c∗0 = 2θ(ar2 + br + c)
(
d∗ + (θ + 2)a

)(
e∗ + rd∗ + (θ + 1)(2ra + b)

∓
√(

e∗ − r(d∗ + 2a) + (θ + 1)b
)2 − 4

(
d∗ + (θ + 2)a

)(
θc− r(e∗ + b)

))−1
.

As we observed, ρ(x) was indeed the product of (x− r)θ for

θ =
b2r2 + b1r + b0

a2r2 + a1r + a0
,

and a special case of the Pearson distributions family. This means that we can classify the
nonsymmetric exceptional orthogonal X1-polynomials into six main sequences.

Corollary 3. By referring to Table 1 and relation (23), there are, in total, six sequences of nonsym-
metric orthogonal X1-polynomials as follows:

1. Infinite X1-Jacobi polynomials orthogonal with respect to the weight function

ρ1(x) = (x− r)θ(1− x)α(1 + x)β, (−1 ≤ x ≤ 1).

2. Infinite X1-Laguerre polynomials orthogonal with respect to the weight function

ρ2(x) = (x− r)θ xα exp(−x), (0 ≤ x < ∞).

3. Infinite X1-Hermite polynomials orthogonal with respect to the weight function

ρ3(x) = (x− r)θ exp
(
−x2

)
, (−∞ < x < ∞).

4. Finite X1-polynomials orthogonal with respect to the weight function

ρ4(x) = (x− r)θ xq(x + 1)−(p+q), (0 ≤ x < ∞).

5. Finite X1-polynomials orthogonal with respect to the weight function

ρ5(x) = (x− r)θ x−p exp
(
− 1

x

)
, (0 ≤ x < ∞).

6. Finite X1-polynomials orthogonal with respect to the weight function

ρ6(x) = (x− r)θ
(

1 + x2
)−p

exp(q arctan x), (−∞ < x < ∞).

In all six above-mentioned cases, r ∈ R and θ is a real parameter such that (−1)θ = 1.

Remark 1. For θ = −2 in the first and second kind of the above corollary, the weight functions
represented in (6) and (7) are retrieved when r = (β + α)/(β− α) and r = −α, respectively.
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4. On the Series Solutions of Equation (12)

Let us reconsider Equation (12) in the form

y′′n(x) +
b2x2 + b1x + b0

(x− r)
(
a2x2 + a1x + a0

)y′n(x)−
λn(x− r) + c∗0

(x− r)
(
a2x2 + a1x + a0

)yn(x) = 0. (27)

The indicial equation corresponding to (27) is

t2 +
( b2r2 + b1r + b0

a2r2 + a1r + a0
− 1
)

t = 0.

Hence, using the Frobenius method, we can obtain the series solutions of Equation (12)
when

t1 = 1− b2r2 + b1r + b0

a2r2 + a1r + a0
= 1− θ,

for different values of θ.
If θ /∈ Z, the two basic solutions of Equation (27) are, respectively, in the forms

yn,1(x) =
∞

∑
k=0

Ck(x− r)k, C0 6= 0,

and

yn,2(x) = (x− r)1−θ
∞

∑
k=0

dk(x− r)k, d0 6= 0.

If θ ∈ Z, three cases can occur for the basis solutions:

(i) If θ = 1, then 
yn,1(x) =

∞
∑

k=0
Ck(x− r)k, C0 6= 0,

yn,2(x) = yn,1(x) ln |x− r|+
∞
∑

k=1
dk(x− r)k.

(ii) If θ < 1, then,
yn,1(x) = (x− r)1−θ

∞
∑

k=0
Ck(x− r)k, C0 6= 0,

yn,2(x) = wyn,1(x) ln |x− r|+
∞
∑

k=0
dk(x− r)k, d0 6= 0, w ∈ R.

(iii) Finally, if θ > 1, then
yn,1(x) =

∞
∑

k=0
Ck(x− r)k, C0 6= 0,

yn,2(x) = wyn,1(x) ln |x− r|+ |x− r|1−θ
∞
∑

k=0
dk(x− r)k, d0 6= 0, w ∈ R.

In either case, there is at least one series solution, that it may assume the form

yn(x) =
∞

∑
k=0

Ck(x− r)k−θ+1, (θ ∈ Z, θ < 1). (28)
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Substituting

y′n(x) =
∞

∑
k=0

(k− θ + 1)Ck(x− r)k−θ ,

y′′n(x) =
∞

∑
k=0

(k− θ + 1)(k− θ)Ck(x− r)k−θ−1,

in Equation (12) eventually leads to the three-term recurrence relation

((k− θ) (a2(k− θ − 1) + b2)− λn)Ck−1

+ ((k− θ + 1)((2a2r + a1)(k− θ) + (2b2r + b1))− c∗0)Ck

+ (k− θ + 2)
(
(a2r2 + a1r + a0)(k− θ + 1) + (b2r2 + b1r + b0)

)
Ck+1 = 0. (29)

Note that, in a similar way, for θ ∈ Z and θ ≥ 1, or θ /∈ Z the assumption

yn(x) =
∞

∑
k=0

Ck(x− r)k,

eventually leads to the same as recurrence relation (29) for θ = 1.

Some Polynomial Solutions of Equation (21)

According to Corollary 1, the coefficients of the polynomial B(x) = b2x2 + b1x + b0
in (21) have a significant role in determining the value c∗0 in the system (14). In this section,
we investigate six special cases of B(x) based on its roots and the real value r, leading
to particular cases of Equation (21). First, suppose that b2 6= 0 and r is a root of B(x).
So b2r2 + b1r + b0 = 0, and relations (14) reduce to2b2r + b1 − c∗0 + νb2 = 0,

νc∗0 = 0.
(30)

The equation ν c∗0 = 0 in (30) gives three different cases as follows:

• Case 1. ν = 0 and c∗0 = 2b2r + b1 = B′(r) 6= 0,

• Case 2. c∗0 = 0 and ν = −2b2r + b1

b2
= −B′(r)

b2
6= 0,

• Case 3. c∗0 = 0 and ν = 0, leading to B′(r) = 2b2r + b1 = 0 which means that r is a
multiple root of B(x).

Second, suppose that b2 = 0 and b1 6= 0. So, relations (14) reduce toc∗0 = b1,

νc∗0 = −(b1r + b0).

Now, if r is a root of B(x), we have νc∗0 = 0 leading to

• Case 4. c∗0 = b1 6= 0 and ν = 0, which is indeed a particular case of the first Case 1 for
b2 = 0.

Otherwise, we obtain

• Case 5. c∗0 = b1 6= 0 and ν = − b1r + b0

c∗0
= −B(r)

b1
6= 0.
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Finally, suppose that b2 = b1 = 0. In this case, relations (14) reduce toc∗0 = 0,

b0 + νc∗0 = 0,

which yield b0 = 0 leading to B(x) ≡ 0. Therefore, the last case can be considered

• Case 6. c∗0 = 0 and ν is arbitrary.

Now we consider each of these six cases:
For Case 1. Under the conditions stated in Case 1, the differential Equation (21) reads

with b0 = −b1r− b2r2, as(
a2x2 + a1x + a0

)
y′′n(x) +

(
b2x + b2r + b1

)
y′n(x)

−
(

n
(
b2 + (n− 1)a2

)
+

2b2r + b1

x− r

)
yn(x) = 0, (31)

for n ≥ 1, whose solutions belong to the space

Πn,r,0 = span
{
(x− r), (x− r)2, . . . , (x− r)n

}
. (32)

Relation (32) shows that the solution of Equation (31) can be considered as follows:

yn(x) = (x− r)An−1(x− r) = (x− r)
n−1

∑
k=0

dk(x− r)k. (33)

Hence, replacing{
y′n = An−1(x− r) + (x− r)A′n−1(x− r),
y′′n = 2A′n−1(x− r) + (x− r)A′′n−1(x− r)

in (31) yields

(x− r)2(a2x2 + a1x + a0)A′′n−1 +
(

2(x− r)
(
a2(x− r)2 + (2a2r + a1)(x− r) + a2r2 + a1r + a0

)
+ (x− r)2(b2x + b2r + b1)

)
A′n−1 − (n− 1)(b2 + na2)(x− r)2 An−1 = 0. (34)

Now, if in (34), we assume that a2r2 + a1r + a0 = 0, which is equivalent to

a0 = −r(a2r + a1),

then Equation (34) is simplified as

(
a2x2 + a1x− r(a2r + a1)

)
A′′n−1 +

(
(2a2 + b2)x + (2a2 + b2)r + 2a1 + b1

)
A′n−1

− (n− 1)(b2 + na2)An−1 = 0. (35)

By comparing Equation (35) and Equation (5) and referring to the polynomial solu-
tion (9) and also relation (33), we can finally conclude that the polynomial solution of
Equation (31) for a0 = −r(a2r + a1) is as

yn(x) = (x− r)Pn−1

(
2a2 + b2, (2a2 + b2)r + 2a1 + b1

a2, a1, −r(a2r + a1)

∣∣∣∣x− r
)

.
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In other words, we have

Q̄n,r

(
b2, b1, −r(b2r + b1)

a2, a1, −r(a2r + a1)

∣∣∣∣x)
= (x− r)P̄n−1

(
2a2 + b2, (2a2 + b2)r + 2a1 + b1

a2, a1, −r(a2r + a1)

∣∣∣∣x− r
)

.

For cases 2, 3 and 6: The differential Equation (21) respectively reads as(
a2x2 + a1x + a0

)
y′′n(x) +

(
b2x + b2r + b1

)
y′n(x)− n

(
b2 + (n− 1)a2

)
yn(x) = 0,(

a2x2 + a1x + a0
)
y′′n(x) + b2(x− r)y′n(x)− n

(
b2 + (n− 1)a2

)
yn(x) = 0,(

a2x2 + a1x + a0
)
y′′n(x)− n(n− 1)a2 yn(x) = 0,

which are all particular cases of the well-known Equation (5). Finally, for the Case 5, The
differential Equation (21) reduces to

(
a2x2 + a1x + a0

)
y′′n(x) +

(
b1 +

b1r + b0

x− r

)
y′n(x)−

(
n(n− 1)a2 +

b1

x− r

)
yn(x) = 0, (36)

with the polynomial solution space

Πn,r,ν = span
{(

x +
b0

b1

)
, (x− r)2, . . . , (x− r)n

}
.

5. On the Differential Equations of Six Nonsymmetric Exceptional Orthogonal
X1-Polynomials

Noting the Corollary 3, in this section, we consider six special cases of the main
Equation (21) and study their orthogonal polynomial solutions. For finite cases, we also
determine some necessary conditions in order to satisfy the orthogonality relations.

5.1. On the Differential Equation of Exceptional X1-Jacobi Polynomials

As a generalization of the Jacobi differential equation for θ = 0, consider the following
equation

(x− r)(1− x2)y′′n(x) +
(
− (α + β + θ + 2)x2 +

(
β− α + r(α + β + 2)

)
x + θ − r(β− α)

)
y′n(x)

+
(

n(n + α + β + θ + 1)(x− r)− c(P)
0

)
yn(x) = 0 n ≥ 1, (37)

where r, θ, α, β are real parameters such that α, β > −1, (−1)θ = 1 and

c(P)
0 = 2θ(1− r2)(α + β + θ + 2)

(
(α + β + 2θ + 2)r + α− β

±
√(

(α + β + 2)r + β− α
)2

+ 4(α + β + θ + 2)
(
θ − r(β− α)

) )−1
.

According to Section 3, the polynomial solution of Equation (37), i.e.,

yn(x) = P(α,β)
n,r,θ (x) = Qn,r

 −(α + β + θ + 2), β− α + r(α + β + 2), θ − r(β− α)

−1, 0, 1
x

,

is orthogonal with respect to the weight function

ρ1(x; r, α, β, θ) = (x− r)θ W
(
−α− β, β− α
−1, 0, 1

x
)
= (x− r)θ(1− x)α(1 + x)β,



Mathematics 2022, 10, 2464 15 of 30

on [−1, 1]. Additionally, for θ = 0, r = −1 or r = 1 in (37), c(P)
0 = 0 and the weight

function ρ1(x; r, α, β, θ) will be a special case of the beta distribution. In fact, in each of
these circumstances, Equation (37) is simplified as

(1− x2) y′′n(x) +
(
− (α + β + 2)x + β− α

)
y′n(x) + n(n + α + β + 1) yn(x) = 0,

for θ = 0 and

(1− x2) y′′n(x) +
(
− (α + β + θ + 2)x + β + θ− α

)
y′n(x) + n(n + α + β + θ + 1) yn(x) = 0,

for r = −1 and

(1− x2) y′′n(x) +
(
− (α + β + θ + 2)x + β− θ− α

)
y′n(x) + n(n + α + β + θ + 1) yn(x) = 0,

for r = 1 with the following Jacobi-type polynomial solutions

P(α,β)
n,r,0 (x) = P(α,β)

n (x),

P(α,β)
n,−1,θ(x) = P(α,β+θ)

n (x),

P(α,β)
n,1,θ (x) = P(α+θ,β)

n (x).

5.2. On the Differential Equation of Exceptional X1-Laguerre Polynomials

As a generalization of Laguerre differential equation for θ = 0, consider the following
equation

x(x− r)y′′n(x) +
(
− x2 + (α + r + θ + 1)x− r(α + 1)

)
y′n(x)

+
(
n(x− r)− c(L)

0
)
yn(x) = 0 n ≥ 1, (38)

where r, θ, α are real parameters such that α > −1, (−1)θ = 1 and

c(L)
0 = 2 r θ

(
r− α− θ − 1±

√
(r + θ)2 + (α + 1)(α + 1 + 2θ − 2r)

)−1
.

According to the Section 3, the polynomial solution of Equation (38), i.e.,

yn(x) = L(α)
n,r,θ(x) = Qn,r

 −1, α + r + θ + 1, −r(α + 1)

0, 1, 0
x

,

is orthogonal with respect to the weight function

ρ2(x; r, α, θ) = (x− r)θ W
(
−1, α
0, 1, 0

x
)
= (x− r)θ xαe−x,

on [0, ∞). Also, for θ = 0 or r = 0 in (38), c(L)
0 = 0 and the weight function ρ2(x; r, α, θ) will

be a special case of Gamma distribution. In fact, in each of these circumstances Equation (38)
is simplified as

x y′′n(x) + (−x + α + 1) y′n(x) + n yn(x) = 0,

for θ = 0 and
x y′′n(x) + (−x + α + θ + 1) y′n(x) + n yn(x) = 0,

for r = 0 with the following Laguerre-type polynomial solutions

L(α)
n,r,0(x) = L(α)

n (x),
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and
L(α)

n,0,θ(x) = L(α+θ)
n (x).

5.3. On the Differential Equation of Exceptional X1-Hermite Polynomials

As a generalization of Hermite differential equation for θ = 0, consider the equation

(x− r)y′′n(x) + (−2x2 + 2rx + θ)y′n(x)

+
(

2n(x− r)− 2θ

r±
√

r2 + 2θ

)
yn(x) = 0, n ≥ 1, (39)

where r, θ are real parameters and (−1)θ = 1. The polynomial solution of Equation (39),
i.e.,

yn(x) = Hn,r,θ(x) = Qn,r

 −2, 2r, θ

0, 0, 1
x

,

is orthogonal with respect to the weight function

ρ3(x; r, θ) = (x− r)θ W
(
−2, 0
0, 0, 1

x
)
= (x− r)θe−x2

,

on (−∞, ∞) and for θ = 0, the solution of Equation (39) is the same as classical Her-
mite polynomials.

5.4. The First Finite Sequence of Exceptional Orthogonal X1-Polynomials

Consider the differential equation

x(x− r)(x + 1)y′′n(x) +
(
(θ + 2− p)x2 +

(
q + θ + 1 + r(p− 2)

)
x− r(q + 1)

)
y′n(x)

−
(

n(n + 1 + θ − p)(x− r) + c(M)
0

)
yn(x) = 0 n ≥ 1, (40)

where r, θ are real parameters, (−1)θ = 1 and

c(M)
0 =

2θr(r + 1)(p− θ − 2)

rp− q− (θ + 1)(2r + 1)±
((

q + θ + 1 + r(p− 2)
)2

+ 4r(q + 1)(θ + 2− p)
) 1

2
.

Here we show that the polynomial solution of Equation (40), i.e.,

yn(x) = M(p,q)
n,r,θ (x) = Qn,r

 θ + 2− p, q + θ + 1 + r(p− 2), −r(q + 1)

1, 1, 0
x

,

is finitely orthogonal with respect to the weight function

ρ4(x; r, p, q, θ) = (x− r)θ W
(
−p, q
1, 1, 0

x
)
= (x− r)θ xq(x + 1)−(p+q),

on [0, ∞) if and only if

p > 2{max n}+ θ + 1 and q > −1.

In other words, if the self-adjoint form of Equation (40) is written as
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(
(x− r)θ xq+1(x + 1)1−(p+q)y′n(x)

)′
= (x− r)θ−1xq(x + 1)−(p+q)

(
n(n + 1 + θ − p)(x− r) + c(M)

0

)
yn(x), (41)

and for the index m as(
(x− r)θ xq+1(x + 1)1−(p+q)y′m(x)

)′
= (x− r)θ−1xq(x + 1)−(p+q)

(
m(m + 1 + θ − p)(x− r) + c(M)

0

)
ym(x), (42)

then multiplying (41) and (42) by ym(x) and yn(x), respectively and subtracting them and
finally integrating the resulting equation on the interval [0, ∞) gives[

(x− r)θ xq+1(x + 1)1−(p+q)(y′n(x)ym(x)− y′m(x)yn(x)
)]∞

0

=
(
n(n + 1 + θ − p)−m(m + 1 + θ − p)

) ∫ ∞

0
(x− r)θ xq(x + 1)−(p+q)yn(x)ym(x) dx. (43)

Now, since

max deg {y′n(x)ym(x)− y′m(x)yn(x)} = m + n− 1,

if
q > −1 and p > 2N + θ + 1 for N = max{m, n},

the left hand side of (43) tends to zero and for m, n ≥ 1, we obtain∫ ∞

0

(x− r)θ xq

(x + 1)p+q M(p,q)
n,r,θ (x) M(p,q)

m,r,θ(x) dx = 0

⇔ m 6= n, N = max{m, n} < p− 1− θ

2
, q > −1 and (−1)θ = 1.

Note that for θ = 0, r = −1 or r = 0, ρ4(x; r, p, q, θ) reduces to a special case of the
F-Fisher distribution. Indeed, in each of these circumstances, c(M)

0 = 0 and Equation (40)
reads as

x(x + 1)y′′n(x) +
(
(2− p)x + q + 1

)
y′n(x)− n(n + 1− p)yn(x) = 0,

for θ = 0 and

x(x + 1)y′′n(x) +
(
(θ + 2− p)x + q + 1

)
y′n(x)− n(n + 1 + θ − p)yn(x) = 0,

for r = −1 and

x(x + 1)y′′n(x) +
(
(θ + 2− p)x + q + θ + 1

)
y′n(x)− n(n + 1 + θ − p)yn(x) = 0,

for r = 0 with the following polynomial solutions

M(p,q)
n,r,0 (x) = M(p,q)

n (x),

M(p,q)
n,−1,θ(x) = M(p−θ,q)

n (x),

and
M(p,q)

n,0,θ (x) = M(p−θ,q+θ)
n (x).
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5.5. The Second Finite Sequence of Exceptional Orthogonal X1-Polynomials

Consider the equation

(x− r)x2y′′n(x) +
(
(θ + 2− p)x2 +

(
1 + r(p− 2)

)
x− r

)
y′n(x)

−
(

n(n + 1 + θ − p)(x− r) + c(N)
0

)
yn(x) = 0 n ≥ 1, (44)

where r, θ are real parameters, (−1)θ = 1 and

c(N)
0 =

2θr2(p− θ − 2)

r
(

p− 2(θ + 1)
)
− 1±

((
1 + r(p− 2)

)2
+ 4r(θ + 2− p)

) 1
2

.

It can be shown that the polynomial solution of Equation (44), i.e.

yn(x) = N(p)
n,r,θ(x) = Qn,r

 θ + 2− p, 1 + r(p− 2), −r

1, 0, 0
x

,

is finitely orthogonal with respect to the weight function

ρ5(x; r, p, θ) = (x− r)θ W
(
−p, 1
1, 0, 0

x
)
= (x− r)θ x−pe−

1
x ,

on [0, ∞) if and only if
p > 2{max n}+ θ + 1,

because if the self-adjoint form of Equation (44) is written as(
(x− r)θ x−p+2e−

1
x y′n(x)

)′
= (x− r)θ−1x−pe−

1
x

(
n(n + 1 + θ − p)(x− r) + c(N)

0

)
yn(x), (45)

and for the index m as(
(x− r)θ x−p+2e−

1
x y′m(x)

)′
= (x− r)θ−1x−pe−

1
x

(
m(m + 1 + θ − p)(x− r) + c(N)

0

)
ym(x), (46)

then multiplying (45) and (46) by ym(x) and yn(x), respectively and subtracting them and
finally integrating the resulting equation over [0, ∞) gives

[
(x− r)θ x−p+2e−

1
x
(
y′n(x)ym(x)− y′m(x)yn(x)

)]∞

0

=
(
n(n + 1 + θ − p)−m(m + 1 + θ − p)

) ∫ ∞

0
(x− r)θ x−pe−

1
x yn(x)ym(x) dx. (47)

Now, if
p > 2N + θ + 1 for N = max{m, n},

the left-hand side of (47) tends to zero and for m, n ≥ 1 we obtain

∫ ∞

0
(x− r)θ x−pe−

1
x N(p)

n,r,θ(x) N(p)
m,r,θ(x) dx = 0

⇔ m 6= n, N = max{m, n} < p− θ − 1
2

and (−1)θ = 1.

Note that for θ = 0 or r = 0, ρ5(x; r, p, θ) reduces to a special case of inverse Gamma
distribution and in each of these circumstances c(N)

0 = 0 so that Equation (44) changes to

x2y′′n(x) +
(
(2− p)x + 1

)
y′n(x)− n(n + 1− p)yn(x) = 0,
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for θ = 0 and

x2y′′n(x) +
(
(θ + 2− p)x + 1

)
y′n(x)− n(n + 1 + θ − p)yn(x) = 0,

for r = 0 with the following polynomial solutions

N(p)
n,r,0(x) = N(p)

n (x),

and
N(p)

n,0,θ(x) = N(p−θ)
n (x).

5.6. The Third Finite Sequence of Exceptional Orthogonal X1-Polynomials

Consider the differential equation

(x− r)(1 + x2)y′′n(x) +
(
(θ + 2− 2p)x2 +

(
q + 2r(p− 1)

)
x + θ − rq

)
y′n(x)

−
(

n(n + 1 + θ − 2p)(x− r) + c(J)
0

)
yn(x) = 0 n ≥ 1, (48)

where r, θ are real parameters, (−1)θ = 1 and

c(J)
0 =

2θ(r2 + 1)(2p− θ − 2)

2r(p− θ − 1)− q±
((

q + 2r(p− 1)
)2 − 4(θ + 2− 2p)(θ − rq)

) 1
2

.

The polynomial solution of Equation (48), i.e.,

J(p,q)
n,r,θ (x) = Qn,r

 θ + 2− 2p, q + 2r(p− 1), θ − rq

1, 0, 1
x

,

is finitely orthogonal with respect to the weight function

ρ6(x; r, p, q, θ) = (x− r)θ W
(
−2p, q
1, 0, 1

x
)
= (x− r)θ(1 + x2)−p exp(q arctan x),

on (−∞, ∞) if and only if

p > {max n}+ θ + 1
2

,

because if the self-adjoint form of Equation (48) is written as

(
(x− r)θ

(
1 + x2

)1−p
exp(q arctan x)y′n(x)

)′
= (x− r)θ−1

(
1 + x2

)−p
exp(q arctan x)

(
n(n + 1 + θ − 2p)(x− r) + c(J)

0

)
yn(x), (49)

and for the index m as(
(x− r)θ

(
1 + x2

)1−p
exp(q arctan x)y′m(x)

)′
= (x− r)θ−1

(
1 + x2

)−p
exp(q arctan x)

(
m(m + 1 + θ − 2p)(x− r) + c(J)

0

)
ym(x), (50)
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then multiplying (49) and (50) by ym(x) and yn(x), respectively and subtracting them and
finally integrating from both sides on (−∞, ∞) gives[

(x− r)θ
(

1 + x2
)1−p

exp(q arctan x)
(
y′n(x)ym(x)− y′m(x) yn(x)

)]∞

−∞

=
(
n(n + 1 + θ − 2p)−m(m + 1 + θ − 2p)

)
×
∫ ∞

−∞
(x− r)θ

(
1 + x2

)−p
exp(q arctan x) J(p,q)

n,r,θ (x)J(p,q)
m,r,θ (x) dx. (51)

Now, if

p > N +
θ + 1

2
for N = max{m, n},

the left-hand side of (51) tends to zero and for m, n ≥ 1 we have

∫ ∞

−∞
(x− r)θ(1 + x2)−p exp(q arctan x) J(p,q)

n,r,θ (x)J(p,q)
m,r,θ (x) dx = 0

⇔ m 6= n , N = max{m, n} < p− θ + 1
2

and (−1)θ = 1.

For θ = 0, ρ6(x; r, p, q, θ) reduces to the generalized T-Student distribution and Equa-
tion (48) reads as

(1 + x2)y′′n(x) +
(
2(1− p)x + q

)
y′n(x)− n(n + 1− 2p)yn(x) = 0,

with the polynomial solution
J(p,q)
n,r,0 (x) = J(p,q)

n (x).

6. A Unified Classification for Symmetric Exceptional Orthogonal X1-Polynomials

Fortunately, most of special functions in theoretical and mathematical physics which
are the solutions of Sturm–Liouville problems have the symmetry property, namely

Φn(x) = (−1)nΦn(−x).

These functions have usually interesting applications in physics and engineering;
see e.g., [4,6] for more details. Hence, if they can be extended when their orthogonality
property is preserved, new applications should naturally appear. The following theorem
shows this matter.

Theorem 1 ([18]). Let Φn(x) = (−1)nΦn(−x) be a sequence of independent symmetric functions
that satisfy the differential equation

A(x)Φ′′n(x) + B(x)Φ′n(x) +
(

λn C(x) + D(x) +
1− (−1)n

2
E(x)

)
Φn(x) = 0, (52)

where A(x) , B(x) , C(x) , D(x) and E(x) are real functions and {λn} is a sequence of constants.
If A(x) , (C(x) > 0), D(x) and E(x) are even functions and B(x) is odd, then∫ v

−v
W∗(x)Φn(x)Φm(x) dx =

(∫ v

−v
W∗(x)Φ2

n(x) dx
)

δn,m,

where W∗(x) denotes the corresponding weight function as

W∗(x) = C(x) exp
( ∫ B(x)− A′(x)

A(x)
dx
)
=

C(x)
A(x)

exp
( ∫ B(x)

A(x)
dx
)

. (53)
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Of course, the weight function defined in (53) must be positive and even on [−v, v] and x = v
must be a root of the function

A(x)K(x) = A(x) exp
( ∫ B(x)− A′(x)

A(x)
dx
)
= exp

( ∫ B(x)
A(x)

dx
)

,

i.e., A(v)K(v) = 0. Notice since K(x) =
W∗(x)
C(x)

is an even function, the relation A(−v)K(−v) = 0

follows automatically.

Based on the above theorem, many symmetric orthogonal functions were recently gen-
eralized; see, for example, [19]. In this section, by applying Theorem 1 and the polynomial
sequence (22), we establish a class of symmetric orthogonal X1-polynomials and introduce
four special cases of it in the sequel.

For this purpose, let us reconsider the differential Equation (21) for a0 = 0 as

(x− r)x(a2x + a1)y′′n(x) +
(
b2x2 + b1x + b0

)
y′n(x)

−
(

n
(
b2 + (n− 1)a2

)
(x− r) + c∗0

)
yn(x) = 0, (54)

in which

c∗0 = c∗0
{

r; b2, b1, b0

}
= b2r +

b1 ∓
√

b2
1 − 4b0b2

2
. (55)

To obtain a symmetric differential equation of type (52), we first substitute

Φ2n(x) = Qn,r

(
b2, b1, b0

a2, a1, 0
x2

)
,

into Equation (54) to obtain

x2(a2x2 + a1)(x2 − r)Φ′′2n(x) + x
(
(2b2 − a2)x4 + (2b1 − a1 + ra2)x2 + 2b0 + ra1

)
Φ′2n(x)

− 4x2
(

n
(
b2 + (n− 1)a2

)
(x2 − r) + c∗0

{
r; b2, b1, b0

})
Φ2n(x) = 0. (56)

In a similar manner, for

Φ2n+1(x) = x Qn,r

(
b∗2 , b∗1 , b∗0
a∗2 , a∗1 , 0

x2

)
,

we obtain

x2(a∗2 x2 + a∗1)(x2 − r)Φ′′2n+1(x)

+ x
(
(2b∗2 − 3a∗2)x4 + (2b∗1 − 3a∗1 + 3ra∗2)x2 + 2b∗0 + 3ra∗1

)
Φ′2n+1(x)

+
(
(3a∗2 − 2b∗2)x4 + (3a∗1 − 3ra∗2 − 2b∗1)x2 − 2b∗0 − 3ra∗1 − 4x2(n(b∗2 + (n− 1)a∗2)(x2 − r)

+ c∗0
{

r; b∗2 , b∗1 , b∗0
}))

Φ2n+1(x) = 0. (57)

Now, if for simplicity we assume that

a∗2 = a2, a∗1 = a1,

and
b∗2 = b2 + a2, b∗1 = b1 + a1 − ra2, b∗0 = b0 − ra1,
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the differential Equation (57) changes to

x2(a2x2 + a1)(x2 − r)Φ′′2n+1(x) + x
(
(2b2 − a2)x4 + (2b1 − a1 + ra2)x2 + 2b0 + ra1

)
Φ′2n+1(x)

+
(
(a2 − 2b2)x4 + (a1 − ra2 − 2b1)x2 − 2b0 − ra1

− 4x2(n(b2 + na2)(x2 − r) + c∗0
{

r; b2 + a2, b1 + a1 − ra2, b0 − ra1

}))
Φ2n+1(x) = 0, (58)

with the polynomial solution

Φ2n+1(x) = x Qn,r

(
b2 + a2, b1 + a1 − ra2, b0 − ra1

a2, a1, 0
x2

)
.

Therefore, by defining the symbol

σn =
1− (−1)n

2
,

and combining both equations (56) and (58) in a unique form, we finally obtain

x2(a2x2 + a1)(x2 − r)Φ′′n(x) + x
(
(2b2 − a2)x4 + (2b1 − a1 + ra2)x2 + 2b0 + ra1

)
Φ′n(x)

+
((

(a2 − 2b2)x4 +
(
a1 − ra2 − 2b1

− 4c∗0
{

r; b2 + a2, b1 + a1 − ra2, b0 − ra1

}
+ 4c∗0

{
r; b2, b1, b0

})
x2 − 2b0 − ra1

)
σn

− 4x2((n− σn)(2b2 + (n + σn − 2)a2))(x2 − r) + c∗0
{

r; b2, b1, b0

}))
Φn(x) = 0, (59)

with the symmetric polynomial solution

Φn(x) = xσn Q[ n
2 ],r

(
b2 + σna2, b1 + σn(a1 − ra2), b0 − σnra1

a2, a1, 0
x2

)
.

Once again, if for simplicity we set

2b2 − a2 = p2, 2b1 − a1 + ra2 = p1 and 2b0 + ra1 = p0,

then Equation (59) is finally simplified as

x2(a2x2 + a1)(x2 − r)Φ′′n(x) + x
(

p2x4 + p1x2 + p0
)
Φ′n(x)

−
((

p2x4 +
(

p1 + 4c∗0
{

r;
p2 + 3a2

2
,

p1 + 3a1 − 3ra2

2
,

p0 − 3ra1

2
}

− 4c∗0
{

r;
p2 + a2

2
,

p1 + a1 − ra2

2
,

p0 − ra1

2
})

x2 + p0
)
σn

+ 4x2((n− σn)(p2 + (n + σn − 1)a2)(x2 − r)

+ c∗0
{

r;
a2 + p2

2
,

a1 + p1 − ra2

2
,

p0 − ra1

2
}))

Φn(x) = 0. (60)

Note in (60) that

c∗0
{

r;
p2 + 3a2

2
,

p1 + 3a1 − 3ra2

2
,

p0 − 3ra1

2

}

=
1
4

(
3a1 + p1 + 3ra2 + 2rp2 ∓

(
(3a1 + p1 − 3ra2)

2 − 4(p0 − 3ra1)(3a2 + p2)
) 1

2
)

,



Mathematics 2022, 10, 2464 23 of 30

and

c∗0
{

r;
p2 + a2

2
,

p1 + a1 − ra2

2
,

p0 − ra1

2

}

=
1
4

(
a1 + p1 + ra2 + 2rp2 ∓

(
(a1 + p1 − ra2)

2 − 4(p0 − ra1)(a2 + p2)
) 1

2
)

,

are directly computed by referring to (55).

Corollary 4. If in Theorem 1 we take

A(x) = x2(a2x2 + a1)(x2 − r),

B(x) = x(p2x4 + p1x2 + p0),

C(x) = x2(x2 − r),

D(x) = −4x2c∗0
{

r;
p2 + a2

2
,

p1 + a1 − ra2

2
,

p0 − ra1

2

}
,

E(x) = −p2x4
(

p1 + 4c∗0
{

r;
p2 + 3a2

2
,

p1 + 3a1 − 3ra2

2
,

p0 − 3ra1

2

}
− 4c∗0

{
r;

p2 + a2

2
,

p1 + a1 − ra2

2
,

p0 − ra1

2

})
x2 − p0

= −p2x4 −
(

p1 + 2a1 + 2ra2 ±
(
(a1 + p1 − ra2)

2 − 4(p0 − ra1)(a2 + p2)
) 1

2

∓
(
(3a1 + p1 − 3ra2)

2 − 4(p0 − 3ra1)(3a2 + p2)
) 1

2
)

x2 − p0,

and
λn = −4(n− σn)

(
p2 + (n + σn − 1)a2

)
,

then its symmetric polynomial solution, i.e.,

Φn(x) = xσn Q[ n
2 ],r

 p2+a2
2 + a2σn, p1+a1−ra2

2 + (a1 − ra2)σn, p0−ra1
2 − ra1σn

a2, a1, 0
x2

,

n ≥ 1, (61)

is orthogonal with respect to the weight function

ρ∗(x) =
1

a2x2 + a1
exp

(∫ p2x4 + p1x2 + p0

x(a2x2 + a1)(x2 − r)
dx
)

,

which can be simplified as

ρ∗(x) = (x2 − r)µ exp

(∫ (
p2 − 2a2(µ + 1)

)
x2 − p0

r
x(a2x2 + a1)

dx

)
, (62)

for

µ =
p2r2 + p1r + p0

2r(a1 + ra2)
.

Remark 2. If in (62) we take µ = 0, which is equivalent to p0 = −r(p2r + p1), then we will
reach a symmetric class of orthogonal polynomials. In other words, let p, q, r, s ∈ R and consider
the differential equation

x2(px2 + q)Φ′′n(x) + x(rx2 + s)Φ′n(x)−
(

n(r + (n− 1)p)x2 +
1− (−1)n

2
s
)

Φn(x) = 0,
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whose polynomial solution can be directly represented as [19]

Φn(x) = Sn

(
r, s
p, q

∣∣∣∣ x
)
=

[ n
2 ]

∑
k=0

(
[ n

2 ]

k

)[ n
2 ]−(k+1)

∏
i=0

(
2i + (−1)n+1 + 2 [ n

2 ]
)

p + r(
2i + (−1)n+1 + 2

)
q + s

xn−2k.

Additionally, the weight function corresponding to these polynomials is as [19]

W∗
(

r, s
p, q

∣∣∣∣ x
)
= exp

( ∫ (r− 2p)x2 + s
x(px2 + q)

dx
)

.

Now, replacing µ = 0 in (62) gives

ρ∗(x) = W∗
(

p2, p2r + p1
a2, a1

∣∣∣∣ x
)

.

Therefore, the symmetric polynomial (61) can be directly represented for p0 = −r(p2r + p1)
as follows

xσn Q[ n
2 ],r

( p2+a2
2 + a2σn, p1+a1−ra2

2 + (a1 − ra2)σn, − r
2
(
rp2 + p1 + (1 + 2σn)a1

)
a2, a1, 0

x2

)

= Sn

(
p2, p2r + p1
a2, a1

∣∣∣∣ x
)

.

There are four sequences of symmetric exceptional orthogonal X1-polynomials as fol-
lows.

6.1. First Symmetric Class

Assume in Corollary 4 that

(a2, a1, p2, p1, p0) =
(
− 1, 1,−2(a + b + µ + 1), 2(a + (a + b + 1)r− µ),−2ra

)
,

with the symmetric polynomial solution

Φn(x) = φ
(a,b)
n,r,µ(x) =

xσn Q[ n
2 ],r

 −(a + b + µ + 3
2 + σn), (a + b + 1)r + a + µ + (1 + r)( 1

2 + σn), −r(a + 1
2 + σn)

−1, 1, 0
x2

,

n ≥ 1. (63)

According to Theorem 1, the symmetric polynomials (63) are orthogonal with respect
to the weight function

ρ∗1(x) = (x2 − r)µ x2a(1− x2)b,

on [−1, 1] if (−1)µ = (−1)2a = 1, b > −1 and a > −( 1
2 + µ), (or a > − 1

2 ) if µ < 0, (or
µ ≥ 0).

By noting remark 2, there are three particular cases of the symmetric polynomial
φ
(a,b)
n,r,µ(x) for µ = 0, r = 0 and r = 1.

If µ = 0, then we have

φ
(a,b)
n,r,0 (x) = Sn

(
−2(a + b + 1), 2a

−1, 1

∣∣∣∣ x
)

.
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If r = 0, then

φ
(a,b)
n,0,µ(x) = Sn

(
−2(a + b + µ + 1), 2(a + µ)

−1, 1

∣∣∣∣ x
)

,

and, finally for r = 1, the corresponding symmetric polynomial is given by

φ
(a,b)
n,1,µ(x) = Sn

(
−2(a + b + µ + 1), 2a

−1, 1

∣∣∣∣ x
)

.

6.2. Second Symmetric Class

Assume in Corollary 4 that

(a2, a1, p2, p1, p0) =
(
0, 1,−2, 2(µ + a + r),−2ra

)
,

with the symmetric polynomial solution

Φn(x) = Φ(a)
n,r,µ(x)

= xσn Q[ n
2 ],r

(
−1, µ + a + r + 1

2 + σn, −r(a + 1
2 + σn)

0, 1, 0
x2

)
, n ≥ 1. (64)

According to Theorem 1, the symmetric polynomials (64) are orthogonal with respect
to the weight function

ρ∗2(x) = (x2 − r)µ x2ae−x2
,

on (−∞, ∞) if (−1)µ = (−1)2a = 1 and a > −( 1
2 + µ), (or a > − 1

2 ) if µ < 0, (or µ ≥ 0).
By noting remark 2, there are two particular cases of the symmetric polynomial

Φ(a)
n,r,µ(x) for µ = 0 and r = 0.

If µ = 0, then we have

Φ(a)
n,r,0(x) = Sn

(
−2, 2a
0, 1

∣∣∣∣ x
)

.

and for r = 0, the corresponding symmetric polynomial is given by

Φ(a)
n,0,µ(x) = Sn

(
−2, 2(a + µ)
0, 1

∣∣∣∣ x
)

.

6.3. Third Symmetric Class

Assume in Corollary 4 that

(a2, a1, p2, p1, p0) =
(

1, 1, 2(µ− a− b + 1), 2
(
µ− a + r(a + b− 1)

)
, 2ra

)
,

with the symmetric polynomial solution

Φn(x) = ϕ
(a,b)
n,r,µ(x) =

xσn Q[ n
2 ],r

 µ− a− b + 3
2 + σn, µ− a + r(a + b− 1) + (1− r)( 1

2 + σn), r(a− 1
2 − σn)

1, 1, 0
x2

,

n ≥ 1. (65)
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As three particular cases for µ = 0, r = 0 and r = −1, we respectively have

ϕ
(a,b)
n,r,0 (x) = Sn

(
−2a− 2b + 2, −2a

1, 1

∣∣∣∣ x
)

,

ϕ
(a,b)
n,0,µ(x) = Sn

(
−2(a− µ)− 2b + 2, −2(a− µ)

1, 1

∣∣∣∣ x
)

,

and

ϕ
(a,b)
n,−1,µ(x) = Sn

(
−2a− 2b + 4, −2a

1, 1

∣∣∣∣ x
)

.

According to Theorem 1, the symmetric polynomials (65),
{

ϕ
(a,b)
n,r,µ

}N

n=1
, are finitely

orthogonal with respect to the weight function

ρ∗3(x) = (x2 − r)µ x−2a(1 + x2)−b,

on (−∞, ∞) if

(−1)2a = (−1)µ = 1,

b > 0, a <
1
2
+ µ, (or a <

1
2
) if µ < 0, (or µ ≥ 0), and N ≤ a + b− µ− 1

2
.

To observe that why the limitation on N is a + b− µ− 1
2 , first consider the differential

equation

x2(x2 + 1)(x2 − r)Φ′′n(x) + 2x
(
(µ− a− b + 1)x4 + (µ− a + r(a + b− 1))x2 + ra

)
Φ′n(x)

− 2
((

(µ− a− b + 1)x4 +
(
µ− a + r(a + b− 1) + 2d(r; a, b, µ)

)
x2 + ra

)
σn

+ 2x2(n(n + µ− a− b +
1
2
+ σn

)
(x2 − r)

+ c∗0
{

r;−a− b + µ +
3
2

,−a + µ +
1
2
+
(
a + b− 3

2
)
r,
(
a− 1

2
)
r
}))

Φn(x) = 0, (66)

in which c∗0{.} and d(r; a, b, µ) are, respectively, computed as

c∗0
{

r;−a− b + µ +
3
2

,−a + µ +
1
2
+
(
a + b− 3

2
)
r,
(
a− 1

2
)
r
}

=
1
2

(
µ− a− 2r(a + b− µ− 3

2
) + r(a + b− 3

2
) +

1
2

∓
(
(µ− a + r(a + b− 3

2
) +

1
2
)2 + 4r(a− 1

2
)(a + b− µ− 3

2
)
) 1

2
)

,

and

d(r; a, b, µ) = c∗0
{

r;−a− b + µ +
5
2

,−a + µ +
3
2
+
(
a + b− 5

2
)
r,
(
a− 3

2
)
r
}

− c∗0
{

r;−a− b + µ +
3
2

,−a + µ +
1
2
+
(
a + b− 3

2
)
r,
(
a− 1

2
)
r
}

=
1
2

(
r + 1±

(
(µ− a + r(a + b− 3

2
) +

1
2
)2 + 4r(a− 1

2
)(a + b− µ− 3

2
)
) 1

2

∓
(
(µ− a + r(a + b− 5

2
) +

3
2
)2 + 4r(a− 3

2
)(a + b− µ− 5

2
)
) 1

2
)

.
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Then write the self-adjoint form of Equation (66) as(
(x2 − r)µx−2a(x2 + 1)−b+1Φ′n(x)

)′
= 2(x2 − r)µ−1x−2a−2(x2 + 1)−b

×
((

(µ− a− b + 1)x4 +
(
µ− a + r(a + b− 1) + 2d(r; a, b, µ)

)
x2 + ra

)
σn

+ 2x2(n(n + µ− a− b +
1
2
+ σn

)
(x2 − r)

+ c∗0
{

r;−a− b + µ +
3
2

,−a + µ +
1
2
+
(
a + b− 3

2
)
r,
(
a− 1

2
)
r
}))

Φn(x), (67)

and for the index m as(
(x2 − r)µx−2a(x2 + 1)−b+1Φ′m(x)

)′
= 2(x2 − r)µ−1x−2a−2(x2 + 1)−b

×
((

(µ− a− b + 1)x4 +
(
µ− a + r(a + b− 1) + 2d(r; a, b, µ)

)
x2 + ra

)
σm

+ 2x2(m(m + µ− a− b +
1
2
+ σm

)
(x2 − r)

+ c∗0
{

r;−a− b + µ +
3
2

,−a + µ +
1
2
+
(
a + b− 3

2
)
r,
(
a− 1

2
)
r
}))

Φm(x). (68)

Multiplying by Φm(x) and Φn(x) in relations (67) and (68) respectively and subtracting
them and finally integrating from both sides on (−∞, ∞) gives

[
(x2 − r)µx−2a(x2 + 1)−b+1(Φ′n(x)Φm(x)−Φ′m(x)Φn(x)

)]∞

−∞

= 4
(
(m− n)

(
2(µ− a− b) + n + m− 1

)
− 2(σm − σn)(µ− a− b + 1)

)
×
∫ ∞

−∞
(x2 − r)µ x−2a(1 + x2)−b Φn(x)Φm(x) dx. (69)

Now, since

max deg {Φ′n(x)Φm(x)−Φ′m(x)Φn(x)} = m + n− 1,

if
N ≤ a + b− µ− 1

2
for N = max{m, n},

the left hand side of (69) tends to zero and for m, n ≥ 1, we obtain∫ ∞

−∞
(x2 − r)µ x−2a(1 + x2)−b

ϕ
(a,b)
n,r,µ(x) ϕ

(a,b)
m,r,µ(x) dx = 0, (m 6= n).

6.4. Fourth Symmetric Class

Assume in Corollary 4 that

(a2, a1, p2, p1, p0) =
(

1, 0, 2(µ− a + 1), 2
(
r(a− 1) + 1

)
,−2r

)
,

with the symmetric polynomial solution

Φn(x) = Φ
(a)
n,r,µ(x)

= xσn Q[ n
2 ],r

(
µ− a + 3

2 + σn, r(a− 3
2 − σn) + 1, −r

1, 0, 0
x2

)
, n ≥ 1. (70)
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As two particular cases for µ = 0 and r = 0, we respectively have

Φ
(a)
n,r,0(x) = Sn

(
−2a + 2, 2

1, 0

∣∣∣∣ x
)

,

and

Φ
(a)
n,0,µ(x) = Sn

(
−2(a− µ) + 2, 2

1, 0

∣∣∣∣ x
)

.

According to Theorem 1, the symmetric polynomials (70),
{

Φ
(a)
n,r,µ

}N

n=1
, are finitely

orthogonal with respect to the weight function

ρ∗4(x) = (x2 − r)µ x−2ae−
1

x2 ,

on (−∞, ∞) if (−1)µ = (−1)2a = 1 and N ≤ a− µ− 1
2 . To observe that why the limitation

on N is a− µ− 1
2 , first consider the differential equation

x4(x2 − r)Φ′′n(x) + 2x
(
(µ− a + 1)x4 + (r(a− 1) + 1)x2 − r

)
Φ′n(x)

− 2
((

(µ− a + 1)x4 +
(
r(a− 1) + 1 + 2d(r; a, µ)

)
x2 − r

)
σn

+ 2x2(n(n + µ− a +
1
2
+ σn

)
(x2 − r) + c∗0

{
r;−a + µ +

3
2

, 1 +
(
a− 3

2
)
r,−r

}))
Φn(x) = 0, (71)

in which c∗0{.} and d(r; a, µ) are respectively computed as

c∗0
{

r;−a + µ +
3
2

, 1 +
(
a− 3

2
)
r,−r

}
=

1
2

(
2r(µ− a +

3
2
) + r(a− 3

2
) + 1∓

(
(r(a− 3

2
) + 1)2 + 4r(µ− a +

3
2
)
) 1

2
)

,

and

d(r; a, µ) = c∗0
{

r;−a + µ +
5
2

, 1 +
(
a− 5

2
)
r,−r

}
− c∗0

{
r;−a + µ +

3
2

, 1 +
(
a− 3

2
)
r,−r

}
=

1
2

(
r±

(
(r(a− 3

2
) + 1)2 + 4r(µ− a +

3
2
)
) 1

2 ∓
(
(r(a− 5

2
) + 1)2 + 4r(µ− a +

5
2
)
) 1

2
)

.

Then write the self-adjoint form of Equation (71) as(
(x2 − r)µx−2a+2e−

1
x2 Φ′n(x)

)′
= 2e−

1
x2 (x2 − r)µ−1x−2a−2

((
(µ− a + 1)x4 +

(
r(a− 1) + 1 + 2d(r; a, µ)

)
x2 − r

)
σn

+ 2x2(n(n + µ− a +
1
2
+ σn

)
(x2 − r) + c∗0

{
r;−a + µ +

3
2

, 1 +
(
a− 3

2
)
r,−r

}))
Φn(x), (72)

and for the index m as(
(x2 − r)µx−2a+2e−

1
x2 Φ′m(x)

)′
= 2e−

1
x2 (x2 − r)µ−1x−2a−2

((
(µ− a + 1)x4 +

(
r(a− 1) + 1 + 2d(r; a, µ)

)
x2 − r

)
σm

+ 2x2(m(m + µ− a +
1
2
+ σm

)
(x2 − r) + c∗0

{
r;−a + µ +

3
2

, 1 +
(
a− 3

2
)
r,−r

}))
Φm(x). (73)
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Multiplying by Φm(x) and Φn(x) in relations (72) and (73) respectively and subtracting
them and finally integrating from both sides on (−∞, ∞) gives[

(x2 − r)µx−2a+2e−
1

x2
(
Φ′n(x)Φm(x)−Φ′m(x)Φn(x)

)]∞

−∞

= 4
(
(m− n)

(
2µ− 2a + n + m + 1

)
− 2(σm − σn)(2µ− 2a + 1)

)
×
∫ ∞

−∞
(x2 − r)µ x−2ae−

1
x2 Φn(x)Φm(x) dx. (74)

Now, again since

max deg {Φ′n(x)Φm(x)−Φ′m(x)Φn(x)} = m + n− 1,

if
N ≤ a− µ− 1

2
for N = max{m, n},

the left-hand side of (74) tends to zero and for m, n ≥ 1, we obtain∫ ∞

−∞
(x2 − r)µ x−2ae−

1
x2 Φ

(a)
n,r,µ(x)Φ

(a)
m,r,µ(x) dx = 0, (m 6= n).

Corollary 5. There are, in total, four sequences of symmetric orthogonal X1-polynomials as follows:

1. Infinite X1 symmetric polynomials orthogonal with respect to the weight function

ρ∗1(x) = (x2 − r)µx2a(1− x2)b, (−1 ≤ x ≤ 1).

2. Infinite X1 symmetric polynomials orthogonal with respect to the weight function

ρ∗2(x) = (x2 − r)µx2ae−x2
, (−∞ < x < ∞).

3. Finite X1 symmetric polynomials orthogonal with respect to the weight function

ρ∗3(x) = (x2 − r)µx−2a(1 + x2)−b, (−∞ < x < ∞).

4. Finite X1 symmetric polynomials orthogonal with respect to the weight function

ρ∗4(x) = (x2 − r)µx−2ae−
1

x2 , (−∞ < x < ∞).

In all four above-mentioned cases, r ∈ R and µ is a real parameter such that (−1)µ = 1.

7. Conclusions

In this paper, a unified classification of all exceptional orthogonal X1-polynomials of
symmetric and nonsymmetric types is established as a solution of generic second-order
differential equations. Ten extended differential equations are introduced, and it is shown
that they have polynomial solutions; six of them are X1-orthogonal and four of them
are X1-symmetric orthogonal. When it comes to the classification nonsymmetric types,
the key point is that the weight functions corresponding to the six sequences are exactly a
multiplication of Pearson distributions family. Moreover, the finite cases of nonsymmetric
exceptional X1-polynomials orthogonal on infinite intervals and the class of symmetric
orthogonal X1-polynomials are introduced in this paper for the first time. More interesting
properties of these polynomials and their applications in theoretical and computational [20]
mathematical physics can be investigated in future research.
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