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Abstract: In this paper, a multivalued self-mapping is defined on the union of a finite number of
subsets p(≥ 2) of a metric space which is, in general, of a mixed cyclic and acyclic nature in the
sense that it can perform some iterations within each of the subsets before executing a switching
action to its right adjacent one when generating orbits. The self-mapping can have combinations of
locally contractive, non-contractive/non-expansive and locally expansive properties for some of the
switching between different pairs of adjacent subsets. The properties of the asymptotic boundedness
of the distances associated with the elements of the orbits are achieved under certain conditions of
the global dominance of the contractivity of groups of consecutive iterations of the self-mapping,
with each of those groups being of non-necessarily fixed size. If the metric space is a uniformly
convex Banach one and the subsets are closed and convex, then some particular results on the
convergence of the sequences of iterates to the best proximity points of the adjacent subsets are
obtained in the absence of eventual local expansivity for switches between all the pairs of adjacent
subsets. An application of the stabilization of a discrete dynamic system subject to impulsive effects
in its dynamics due to finite discontinuity jumps in its state is also discussed.

Keywords: cyclic self-mappings; cyclic contractions; mixed cyclic/acyclic self-mappings; uniformly
convex Banach space; impulsive dynamic systems; stabilization

MSC: 47H04; 47H10; 47H09; 93D20

1. Introduction

There are abundant results on the best proximity points available in the background
literature for different kinds of cyclic contractions and quasi-contractions. For instance,
in [1], an important investigation is performed for 2-cyclic contractive self-mappings on the
union of a set of non-empty, closed and convex subsets, which do not necessarily intersect
at a uniformly convex Banach space. It is also found that the sequences built with the
iterations of the self-mapping converge to unique best proximity points. On the other
hand, an algorithm is provided to find the best proximity points in [2]. See also [3] for
some related discussion on best proximity point results for some contractive mappings in
uniform spaces. Some results on cyclic quasi-contractions and strong-quasi-contractions
are given in [4–9] and some of the references therein. On the other hand, in [10], quasi
non-expansive results for metric-like spaces were obtained. Additionally, best proximity
point theorems for p(≥ 2)-cyclic Meir–Keeler contractions are given in [11] for uniformly
convex Banach spaces. Sufficient-type conditions for the existence of a best proximity
point and the convergence of sequences to it are also given in this paper. Furthermore, a
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useful notion of cyclic orbital Meir–Keeler contractions is given together with sufficient
conditions for the existence of best proximity points and fixed points in [12]. This work
generalizes previous results obtained in [13], which, in turn, generalizes some mentioned
results of [1] to Meir–Keeler cyclic contractions. On the other hand, some general cyclic
contraction mappings of the rational type are discussed in [14,15], including a particular
study of the case when the involved subsets intersect. Additionally, the problem of the
existence of best proximity point results in multivalued non-self-mappings is focused on
in [16,17] by using optimization tools. In particular, this problem is investigated in [17] for
contraction multivalued non-self-mappings in metric spaces as well as for non-expansive
ones in Banach spaces which have an appropriate geometric property.

On the other hand, a solution of a Fredholm integral equation in b-metric-like spaces
is found in [18] through the involvement of a particular of a technique based on the use of
rational contractive mappings.

In [19], an existence and uniqueness result for a common solution of a second-order
two-point boundary differential system based on the properties of the study’s newly
introduced concept of cyclic p-contraction pairs. Additionally, best proximity results are
proved in that paper concerned with mappings defined on proximally complete pairs of
subsets of a metric space. This research extends a previous one reported in [20] on the
proposed new concept of p-contractions. It is also proved in [20] that any p-contraction
self-mapping possesses a unique fixed point in a complete metric space.

It is well-known that sometimes differential or difference dynamic systems can be sub-
ject to different parameterizations which describe the dynamical behavior around different
operation points. When the parameterization of the differential system changes abruptly,
there are discontinuities in the differential equations which describe the system dynamics.
If the state has finite jump-type discontinuities, then the differential system is impulsive
and vice-versa. See, for instance, [21]. Therefore, some typical control problems, such as,
for instance, controllability or stabilization, become much more difficult to solve in the
presence of either state discontinuities or impulsive controls at certain time instants. Some
phenomena are sometimes associated with parameterization jumps or state discontinuities
related to practical requirements. This often happens, for instance, in dynamics of chemical
engineering processes along different phases of processing and monitoring a complete
complex process or in discrete dynamic systems when the sampling rate is non-uniform, as
in [22,23]. Therefore, the stabilization problem under either configurations or state switches
has received important attention in the study of continuous-time, discrete-time, hybrid
and time-delayed systems. Close problems often appear concerning the properties of the
controllability and reachability of dynamic systems. See, for instance, [24–28] and some of
the references therein as well as the recent works [29–34].

In this paper, we define and study a very general class of multivalued self-mappings
defined on the union of a finite set of subsets of a metric space which is of a mixed cyclic
and acyclic nature. The mixed nature is that the mappings can generate iterations in one
of the subsets before eventual switching to their right adjacent one. The main purpose of
defining and addressing such a mapping is to have in mind its potential application to the
stabilization of dynamic systems submitted to state discontinuities in their state, which
causes the differential systems of the equations which describe their dynamics to become
impulsive at certain time instants.

The considered self-mapping has the following specific characteristics in the most
general formal setting:

(a) It is multivalued since it applies to each subset in the union set of itself with its right
adjacent one and each domain point can have, in general, several image points in both
such subsets;

(b) It is of mixed cyclic and acyclic nature since it can perform several consecutive
iterations within each of the subsets before switching to its right adjacent one;

(c) The number of such consecutive iterations within each of the subsets before switching
to its right adjacent one may vary dynamically around each cycle of complete running
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of the self-mapping on all the subsets. This fact facilitates the formal use of monitored
iteration-dependent switches in stabilization applications;

(d) It is not necessarily contractive between all the pairs of adjacent subsets of the config-
uration, although the most relevant properties are proved if the switches related to at
least one of the pairs of adjacent subsets are contractive;

(e) It can have also local non-expansive (being, furthermore, non-contractive) local prop-
erties between some of the pairs of adjacent subsets or even local expansive ones for
some of the switches between the pairs of adjacent subsets;

(f) The contractive, non-expansive or expansive constants associated with each of the
subsets and in-between adjacent subsets which characterize the mapping are not
necessarily identical and the distances between each pair of adjacent subsets are not
necessarily identical either. Some of the results concerning the boundedness and
the asymptotic boundedness of the distances between orbital points generated by
the self-mapping iteration do not require specific conditions such as closeness or
convexity on the involved subsets of the metric space or the uniform convexity of
this one.

The paper is organized as follows. Section 2 gives a preliminary study for the mixed
2-cyclic/acyclic multivalued mapping (that is, being defined on two subsets of the metric
space). The asymptotic boundedness of distances in the orbits from initial points in the
union of sets are proved under certain global contractivity conditions of the whole mapping
for groups of non-necessarily constant numbers of consecutive iterations. That property
is proved without requiring that the involved subsets are closed. Section 3 extends and
completes the former results for mixed p(≥ 2)-cyclic/acyclic multivalued mappings. Some
specific related results are presented in Section 4 on the convergence of iterated sequences
to best proximity points. The particular cases focused on in this section are that of the
absence of local expansivity and the one of potential statement of monitored switching
between adjacent subsets. Such a monitoring process is governed by a switching rule which
operates in tandem with mixed p-cyclic/acyclic self-mapping and which establishes the
iterations for switching between adjacent subsets to take place. Afterwards, some numerical
examples concerned with an application for the stabilization of a discrete dynamic system
subject to impulsive controls with monitored switching are discussed in Section 5. Finally,
our conclusions end the paper.

Notation

Z0+ = {z ∈ Z : z ≥ 0}, Z+ = {z ∈ Z : z > 0}, n = {1, 2, . . . , n};

R0+ = {r ∈ R : r ≥ 0}, R+ = {r ∈ R : r > 0};

cl A denotes the closure of a set A and cardA is the cardinal of the set A;
if T : ∪i∈p Ai → ∪i∈p Ai is multivalued then Tx is the image set of x ∈ ∪i∈p Ai through T
which is, in particular, a singleton if T is single-valued. In the same way, (Tx)i ⊂ Ai is the
image set of x in Ai through T;
distances between points and distances between sets under a metric d : X× X → R0+ in
a metric space (X, d) are denoted with the same notation, i.e., d(x, y) for x, y ∈ X and
d(A, B) = in f

x∈A,y∈B
d(x, y) for A, B being subsets of X.

2. Problem Statement for Two Subsets of Metric Space

Following [1], we define the following concepts for non-empty subsets A1, A2 ⊂ X,
where (X, d) is a metric space:

PAi (x) = {y ∈ X : d(x, y) = d(x, Ai)} for i = 1, 2

D = d(A1, A2) = in f {d(x, y) : x ∈ A1, y ∈ A2}
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A01 = {x ∈ A1 : d(x, y) = D for some y ∈ A2}

A02 = {y ∈ A2 : d(x, y) = D for some x ∈ A1}

Thus, PA1(A02) = {y ∈ X : d(A02, y) = d(A02, A1)} and PA2(A01) = {y ∈ X : d(A01, y)
= d(A01, A2)}. Note that, for the sake of simplicity, the distances between sets and the
distances from a point to a set via the d-metric are referred to with the same notation d(., .)
as the one used for distance between points. The sets of best proximity points A01 ⊆ A1 and
A02 ⊆ A2 are non-empty if A1 is compact and A2 is approximatively compact with respect
to A1, that is, every sequence {xn}∞

n=0 ⊂ A2, such that d(y, xn)→ d(y, A2) as n→ ∞ for
some y ∈ A1, has a convergent subsequence. It can be pointed out that there are examples
where A02 or B02 may be empty even if A1 and A2 are non-empty. See, for instance, [2,3].
The following definition is quoted from the cyclic mappings in [1–13] and renamed “ad
hoc” by indicating with “2” the particular cyclic context involving just two subsets of the
metric space and the contraction constant.

Definition 1 ([3–6]). Let A1 and A2 non-empty subsets of a metric space (X, d) and let
T : A1 ∪ A2 → A1 ∪ A2 , such that D = d(A1, A2), and T(A1) ⊆ A2 and T(A2) ⊆ A1. Then,
T is said to be a 2-cyclic contraction if, for all x ∈ A1 and y ∈ A2 and some k ∈ [0, 1),

d(Ty, Tx) ≤ k d(y, x) + (1− k)D (1)

In the same way, if k = 1 then d(Tx, Ty) ≤ d(x, y) and T : A1 ∪ A2 → A1 ∪ A2 is non-
expansive and if d(Tx, Ty) > d(x, y), then T : A1 ∪ A2 → A1 ∪ A2 is expansive.

We now investigate some properties of boundedness and convergence of sequences
of a multi-valued self-mapping T : A→ A , where A = A1 ∪ A2 with non-empty sets
A1 and A2 being subsets of a metric space (X, d). Note that self-mapping T : A→ A is
not, in general, cyclic since the constraints T(A1) ⊆ A2 and T(A2) ⊆ A1 do not hold in
such a way that each generated sequence through T from any initial point in A can have
several successive iterated points in either A1 or A2 before switching either to A2 or to A1.
Therefore, the mapping is mixed cyclic and acyclic. Assume through the manuscript that
T : A→ A satisfies the subsequent stipulations for x, y ∈ A:

Tx = {(Tx)1, (Tx)2}; (Tx)i( 6= ∅) ⊂ Ai for i = 1, 2; ∀x ∈ A (2)

k0 d(y, x) ≤ d
(
x′1, y′1

)
= d((Ty)1, (Tx)1) ≤ k1 d(y, x) (3)

for some k0, k1(≥ k0) > 1 if x, y ∈ A1 for some x′1 ∈ (Tx)1, y′1 ∈ (Ty)1,

d
(
x′2, y′2

)
= d((Ty)2, (Tx)2) ≤ k2 d(y, x) (4)

for some k2 ∈ [0, 1) if x, y ∈ A2 for some x′2 ∈ (Tx)2, y′2 ∈ (Ty)2,

d
(

x′3, y′3
)
= d((Ty)2, (Tx)1) ≤ k12 d(y, x) + (1− k12)D (5)

for some k12 ∈ [0, 1] if x, y ∈ A1 for some (x′3, y′3) ∈ (Tx)1 × (Ty)2 ∪ (Tx)2 × (Ty)1
provided that d(x, y) ≥ D,

d
(

x′4, y′4
)
= d((Ty)1, (Tx)2) ≤ k21 d(y, x) + (1− k21)D (6)

for some k21 ∈ [0, 1] if x, y ∈ A2 for some (x′4, y′4) ∈ (Tx)1 × (Ty)2 ∪ (Tx)2 × (Ty)1
provided that d(x, y) ≥ D,

d
(

x′5, y′5
)
= d((Ty)1, (Tx)2) ≤ kcd(y, x) + (1− kc)D (7)

for some kc ∈ [0, 1] if (x, y) ∈ A1 × A2 ∪ A2 × A1 for some (x′5, y′5) ∈ (Tx)1 × (Ty)2 ∪
(Tx)2 × (Ty)1.
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Then, given (x, y) ∈ A × A, we can choose (x′, y′) ∈ (Tx)i × (Tx)j ⊂ Tx × Ty ⊂
A1 × A2 ∪ A2 × A1 for i, j = 1, 2, which satisfies one of the inequalities (3) to (6). The
constraint (2) implies that each point in A has at least one image in A1 and one image in A2
through T : A→ A .

It is also assumed in the sequel that the best proximity sets of Ai with respect to
Aj; i, j( 6= i) = 1, 2 are non-empty, that is, A0j = {x ∈ Aj : d(x, y) = D for some y ∈ Ai;
i, j( 6= i) = 1, 2} 6= ∅; j = 1, 2.

The following technical assumption is made through the manuscript:

Assumption 1. The metric d : X× X → R0+ of the metric space (X, d) is assumed to
be homogeneous.

The above assumption is not necessary for the whole set of obtained results, in partic-
ular, for those referred to the upper-bounds of the distances associated with the mappings
through the iterated calculations. However, it facilitates some of the mathematical proofs,
in particular, those referred to excluding potential asymptotic unboundedness of distances
from the implication that bounded distances can imply that of the sequences of points of
X involved in the calculations of such distances. In particular, it can be pointed out that
homogeneous and translation-invariant distances are norm-induced distances. A metric is
said to be homogeneous if d(αx, αy) = |α|d(x, y) for α ∈ R and ∀x, y ∈ X. It is said to be
translation-invariant if d(x + z, y + z) = d(x, y); ∀x, y, z ∈ X properties are jointly fulfilled,
for instance, by norm-induced metrics on linear or vector spaces X since:

d(α(x + z), α(y + z)) = |α|‖x + z− (y + z)‖ = |α|d(x, y) = |α|‖x− y‖; ∀x, y, z ∈ X, α ∈ R.

Typical widely-used metrics in applications such as, for instance, Euclidean and taxi-
cab metrics fulfill those joint properties. Note also that the property that distances can
asymptotically grow, leading to infinity limits (if some of the involved sequence of the
points of X involved in their calculations is unbounded), is intuitively attractive and very
useful in practical problems. This property is fulfilled by many usual distances, such
as Euclidean distance, taxi-cab distance, Minkowski’s distance and others, but it is not
inherent to the definition of distance. For instance, the discrete metric is never unbounded,
irrespective of the involved pairs of points, since it is not greater than unity by definition.
However, a homogenous distance is characterized by the property d(αx, αy) = |α|d(x, y)
so that d(αx, y) = |α|d(x, y/|α|)→ |α|d(x, 0) = |α|‖x‖ and to infinity as α→ ±∞ . Note
that homogeneous distances are termed as absolutely homogeneous distances in some of
the background literature.

Remark 1. The above constraints (2)–(7) imply that the mapping is expansive on A1, contractive
on A2 and cyclic contractive for switchings between both sets if both kij ∈ [0, 1). If kij = 1,
then the switching from Ai to Aj when building the iteration step is not necessarily contractive,

but it is non-expansive. Note that d
(
Ti+2x, Ti+1x

)
= min

1≤i,j≤2
d
((

Ti+1x
)

i,
(
Ti+1x

)
j

)
; ∀i ∈ Z0+;

j, k = 1, 2 for any x ∈ A. In particular, (3) is expansive, which applies to the images in A1 of
T : A→ A of the couples of the points x, y in A1, while (4) is a contraction which applies to the
images in A2 of T : A→ A of the couples of the points x, y in A2. Equation (5) is non-expansive,
since k12 ≤ 1, in particular, contractive if k12 < 1, for the images of two points x, y in A1, which are
one in A1 and the other one in A2. In the same way, the non-expansive (6) applies for images of the
two points x, y in A2, which are one in A1 and the other one in A2. Finally, (7) is a non-expansive
or contractive rule which applies to points x, y, each in one of the sets A1 and A2 with images each
in one of the sets but not necessarily alternated with respect to each of the original points. In the
particular case that the images are alternated, the mapping is also cyclic according to (7).

Remark 2. The various orbits O(x0) = {x0, x1, x2, . . .} of initial point x0 ∈ A might be generated
according to xi+1 ∈ (Txi)j ⊂ Txi ⊂ Ti+1x0 for some j ∈ {1, 2}, ∀i ∈ Z0+ with T : A→ A
being subject to one of the stipulations (2)–(7) for each successive iteration.
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Note from (5) and (6) that if x, y ∈ A1 or if x, y ∈ A2, then switches of T : A→ A the
form (Tx, Ty) ∈ A1 × A2 do not take place if d(x, y) < D, implying that both x and y are either
in A1 or in A2, since, in this case, (5) and (6) would lead to the contradiction d(Tx, Ty) < D if
k12 ∈ (0, 1] or, respectively, k21 ∈ (0, 1]. In order to also allow switchings of T : A→ A when
d(x, y) < D (requiring necessarily x, y ∈ A or x, y ∈ B) so that the constraint d(x, y) ≥ D
is removed from (5) and (6) while keeping T : A→ A to be non-expansive at (x, y), except if
d(x, y) < D, the stipulations (5) and (6) on T : A→ A can be changed to the following ones:

[((x, y) ∈ A) ∧ (((Tx)1, (Ty)2) ∈ A1 × A2) ∧ (d(x, y) ≥ D)]⇒d((Ty)2, (Tx)1) ≤ k12d(y, x) + (1− k12)D
for some k12 ∈ [0, 1]

(8)

[((x, y) ∈ A) ∧ (((Tx)2, (Ty)1) ∈ A2 × A1) ∧ (d(x, y) ≥ D)]⇒d((Ty)1, (Tx)2) ≤ k21d(y, x) + (1− k21)D
for some k21 ∈ [0, 1]

(9)[
((x, y) ∈ A) ∧

((
x′, y′

)
∈ Tx× Ty

)
∧ (d(x, y) < D)

]
⇒
[(

x′, y′
)
∈ (Tx)1 × (Tx)2 ∪ (Tx2)× (Tx)1

]
(10)

Note that, since d(x, y) < D implies that both Tx and Ty are in the same subset A1 or A2,
Equation (9) is identically expressed as follows:

[((x, y) ∈ A1 × A1 ∪ A2 × A2) ∧ ((Tx, Ty) ∈ A1 × A2 ∪ A2 × A1) ∧ (d(x, y) < D)]⇒d(Ty, Tx) ≥ D.

In the following, the main results are conducted under the stipulations (2)–(6) for the
sake of exposition simplicity. Let us denote the sequel Ki as the i-iteration constant for
a sequence generated from any initial point in A and which can take any of the values
k1, k2, k12 and k21. Then, the following result holds for boundedness and convergence of
distances between iterates of an orbit O(x0) = (x0, x1, x2, . . .) of x0 ∈ A for some sequence
{xi+1(∈ Txi)}∞

i=0; ∀i ∈ Z0+.

Theorem 1. Consider the orbits O(x0) = {x0, x1, x2, . . .} of x0 ∈ A = A1 ∪ A2 generated
according to xi+1 ∈ (Txi)j ⊂ Txi ⊂ Ti+1x0 for some j ∈ {1, 2}, ∀i ∈ Z0+ with T : A→ A
being subject to the stipulations (2)–(7). Then, the following properties hold:

(i)
d(xi+1, xi) ≤ K(i, 1)d(x0, x1) + M(i, 1) ≤ K(i, 1)d(x0, x1) + (1− K(i, 1))D; ∀i ∈ Z+ (11)

where

K(i, 1) = ∏i
k=1[Kk]; M(i, 1) = ∑i

k=1

(
∏i

`=k+1[K`]
)

Mk; ∀i ∈ Z+ (12)

where:

(a) Ki = k j and Mi = 0 if xi, xi+1 ∈ Aj; j = 1, 2,

(b) Ki = k`j and Mi =
(

1− k`j

)
D if xi, xi+1 ∈ Aj and (xi+1, xi) ∈ (Txi)j ×

(Txi−1)` ⊂ Aj × A`; `, j( 6= `) ∈ {1, 2},
(c) Ki = kc and Mi = (1− k)D if (xi−1, xi) ∈ A1 × A2 ∪ A2 × A1 and (xi+1, xi) ∈

(Txi)1 × (Txi−1)2 ∪ (Txi−1)2 × (Txi)1 ⊂ A1 × A2 ∪ A2 × A1.

(ii) If Assumption 1 holds, then {d(xi+1, xi)}∞
i=0 is bounded for x0 ∈ A such that d(x0, x1) is

finite and

max

{
sup
i∈Z+

K(i, 1), sup
i∈Z+

M(i, 1)

}
< +∞; max

{
lim sup

i→∞
K(i, 1), lim sup

i→∞
M(i, 1)

}
< +∞ (13)

(iii) If Assumption 1 holds and d(x0, x1) is finite, then {d(xi+1, xi)}∞
i=0 is bounded if it does

not exist, a strictly increasing sequence of positive integers {Nk}∞
k=1 with N1 finite such

that d
(

xNk+1 , xNk

)
> d

(
xNk+1, xNk

)
; ∀Nj ∈

{
Nj
}∞

j=1. Otherwise, if one such a sequence

{Nk}∞
k=1 exists, then {d(xi+1, xi)}∞

i=0 is unbounded.
(iv) Under Assumption 1, assume that d(x0, x1) is finite. Then {d(xi+1, xi)}∞

i=0 is bounded if the
following constraints hold:
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(C1) it exists a finite set or a sequence {Nk}
χ
k=1 ⊂ Z+, with N1 being finite and 1 ≤ χ ≤ ∞

such that
(C1a) the incremental sequence {Nk+1 − Nk}

χ−1
k=1 is bounded if χ ≤ ∞, and Nχ − Nχ−1 is

bounded if χ < ∞, while Nχ − Nχ−1 is infinity if χ = ∞ (implying that Nχ = ∞) and

(C1b) M(Nk+1, Nk) ≤ (1− K(Nk+1, Nk))D ≤ (1− K(Nk+1, Nk))d
(
xNk+1, xNk

)
; ∀k ∈ χ (14)

under the necessary condition K(Nk+1, Nk) ≤ 1; ∀k ∈ χ. A sufficient condition for (14) to
hold if D 6= 0 is

M(Nk+1, Nk)/D ≤ 1− K(Nk+1, Nk); ∀k ∈ χ (15)

where

K(Nk+1, Nk) = ∏Nk+1
j=Nk

[
Kj
]
; M(Nk+1, Nk) = ∑Nk+1

i=Nk

(
∏Nk+1

`=Nk+1[K`]
)

Mi; ∀k ∈ χ (16)

(C2) Furthermore, if χ < ∞ then
{

Tix
}

i≥Nχ+m ⊂ A ∪ B0 for some positive integer m.

(v) If d(x0, x1) is finite for a given x0 ∈ A2, x1 ∈ (Tx0)2 ⊂ A2 and xi+1 ∈ (Txi)2 ⊂(
Ti+1x0

)
2 ⊂ A2; ∀i ∈ Z0+ then {d(xi+1, xi)}∞

i=0 is bounded and d(xi+1, xi)→ 0 as
i→ ∞ . The same property holds for the sequence of distances between consecutive points on
an orbit O(x0) = {x0, x1, . . . , xN , xN+1, . . .} if x0 ∈ A2 is such that d(x0, (Tx0)2) is finite
with xi ∈

(
Tix0

)
1 ∪
(
Tix0

)
2 for i ∈ N and xi ∈

(
Tix0

)
2; ∀i(> N) ∈ Z0+ for some finite

nonnegative integer N.

Proof. One obtains from (2)–(7) that

d(yi, xi) = d
((

Tiy0

)
j
,
(

Tix0

)
k

)
≤ Kid(yi−1, xi−1) + Mi; ∀i ∈ Z+; ∀x, y ∈ A; j, k = 1, 2 (17)

where T0 is the identity map and

(1) Ki = k j and Mi = 0 if xi−1 ∈ (Txi−2)j ⊂
(
Ti−1x0

)
j ⊂ Aj, yi−1 ∈ (Tyi−2)j ⊂(

Ti−1y0
)

j ⊂ Aj with xi ∈ (Txi−1)j ⊂
(
Tix0

)
j ⊂ Aj, yi ∈ (Tyi−2)j ⊂

(
Tiy0

)
j ⊂ Aj for

some j = 1, 2.
(2) Ki = k`j and Mi =

(
1− k`j

)
D if xi−1 ∈ (Txi−2)j ⊂

(
Ti−1x0

)
j ⊂ Aj, yi−1 ∈

(Tyi−2)j ⊂
(
Ti−1y0

)
j ⊂ Aj for some j = 1, 2 with (xi, yi) ∈

(
Tix0

)
1 ×

(
Tiy0

)
2 ∪(

Tix0
)

2 ×
(
Tiy0

)
1 ⊂ A1 × A2 ∪ A2 × A1

(3) Ki = kc and Mi = (1− k)D if (xi−1, yi−1) ∈ (Txi−2)1 × (Tyi−2)2 ∪ (Txi−2)2 ×
(Tyi−2)1 ⊂ A1 × A2 ∪ A2 × A1 with (xi, yi) ∈ (Txi−1)1 × (Tyi−1)2 ∪ (Txi−1)2 ×
(Tyi−1)1 ⊂

(
Tix0

)
1 ×

(
Tiy0

)
2 ∪
(
Tix0

)
2 ×

(
Tiy0

)
1 ⊂ A1 × A2 ∪ A2 × A1

In the same way, one obtains by taking y0 ∈ Tx0,

d(xi+1, xi) = d
((

Ti+1x0
)

j,
(
Tix0

)
k

)
≤ Kid(xi, xi−1) + Mi = Kid(xi−1, (Txi−1)k) + Mi;

∀x0 ∈ A, ∀i ∈ Z+; j, k = 1, 2
(18)

where xi ∈
(
Tix0

)
k and xi+1 ∈

(
Ti+1x0

)
j for j, k ∈ {1, 2} and Mi = 0 and Ki = k j if j = k

and Mi =
(

1− kkj

)
D or Mi =

(
1− k jk

)
D or Mi = (1− kc)D if j 6= k in view of (5)–(7)

depending on the allocations in A1 or in A2 of the images of the original points and on
the fact that those original points are in the same or in distinct sets A1 or A2 according to
(5)–(7). Then, one obtains recursively from (17) that:

d(yi, xi) ≤ Ki(Ki−1d(yi−2, xi−2) + Mi−1) + Mi

= Ki

(
Ki−1d

((
Ti−1y

)
j,
(
Ti−1x

)
k

)
+ Mi−1

)
+ Mi

(19)
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⇒ d(yi, xi) ≤ Ki(i, i− 1)d(yi−2, xi−2) + M(i, i− 1)
≤ . . . ≤K(i, 1)d(x0, y0) + M(i, 1); ∀x0, y0 ∈ A, i ∈ Z+; j, k = 1, 2

(20)

with K(i, i− 1) = KiKi−1 and M(i, i− 1) = Ki−1Mi−1 + Mi and one obtains (11), from (20)
via (14), by taking y0 = x1 ∈ (Tx0)j, some j ∈ {1, 2}. Then, properties (i) and (ii)

follow directly. Property (iii) is direct since if
{

Nj
}∞

j=1 exists with d
(

xNk+1+1, xNk

)
>

d
(

xNk+1, xNk

)
, then {d(xi+1, xi)}∞

i=0 is unbounded since it has one strictly increasing sub-
sequence

{
d
(

xNk+1, xNk

)}∞
k=0. Otherwise, if no such a sequence

{
Nj
}∞

j=0 exists such

that d
(

xNk+1+1, xNk

)
> d

(
xNk+1, xNk

)
, then {d(xi+1, xi)}∞

i=0 is bounded if d(x0, x1) =

d
(

x0, (Tx0)j

)
is finite for some x1 ∈ (Tx0)j and some j ∈ {1, 2}, being the second point of

the orbit of x0 since all its subsequences are bounded. To prove property (iv), note that if
{d(xi+1, xi)}∞

i=0 is bounded, then it has (at least) a finite maximum d
(

xN1+1, xN1

)
at a finite

iteration step N1. If such a maximum is zero, then the sequence is identically zero and the
proof follows directly. Assume now that d

(
xN1+1, xN1

)
, while it also has to exist that either

a finite set or an infinity sequence of nonnegative integers {Nk}
χ
k=1 ⊂ Z+ 1 ≤ χ ≤ ∞, with

the incremental sequence {Nk+1 − Nk}
χ
k=1 being bounded if χ = ∞ and {Nk+1 − Nk}

χ−1
k=1

being bounded and Nχ = ∞, is bounded if χ < ∞ so that

d
(

xNk+1+1, xNk

)
≤ K(Nk+1, Nk)d

((
TNk+1 x0

)
j,
(
TNk x0

)
`

)
+ M(Nk+1, Nk) ≤ d

(
xNk+1, xNk

)
≤ d

(
xN1+1, xN1

)
= max

i∈Z0+
(d(x0, x1)); ∀k ∈ χ

(21)

for some j, ` ∈ {1, 2} since d
(
xN1+1, xN1

)
is the finite maximum of consecutive distances be-

tween points of the orbit O(x0) = {x0, x1, x2, . . .} of the initial point x0, where K(Nk+1, Nk)
and M(Nk+1, Nk) are defined in (17). In order that (21) holds, the following constraint
is required:

M(Nk+1, Nk) ≤ (1− K(Nk+1, Nk))d
(
xN+1, xNk

)
; ∀k ∈ χ (22)

Since M(Nk+1, Nk) ≥ 0 with M(Nk+1, Nk) = 0 if and only if D = 0, that is, if and only
if cl A1 ∩ cl A2 = ∅; ∀k ∈ χ and then (22) also holds under the stronger condition:

M
(

Nj+1, Nj
)
≤
(
1− K

(
Nj+1, Nj

))
D ≤

(
1− K

(
Nj+1, Nj

))
d
(

TNj+1x, TNj x
)

; ∀j ∈ χ− 1 (23)

then, if K(Nk+1, Nk) ≤ 1; ∀k ∈ χ and, furthermore, M(Nk+1, Nk)/D ≤ 1− K(Nk+1, Nk);
∀j ∈ χ if D 6= 0. Property (iv) has been proved. The proof of property (v) follows directly
from property (iv) since there is no switch from A2 to A1, then K(i, 1) = ki

2 < 1, M(i, 1) = 0;
∀i ∈ Z+, K(i, 1)→ 0 as i→ ∞ . The same property also holds for any orbit which does not
contain points of the mapping iterates in A2, after some finite number of iterations, for any
given initial point x0 in A such that d(x, (Tx)2) is finite generates the sequence. �

Remark 3. For the distance sequences generated from any finite initial point x0 ∈ A1 ∪ A2, some
intuitive consequences of Theorem 1 are:

(1) It is not relevant that the sets A1 and A2 be necessarily either bounded or closed for the eventual
boundedness of any iterated sequence of distances generated from any point x0 ∈ A1 ∪ A2

such that d(x0, x1) = d
(

x0, (Tx0)j

)
is finite for some x1 ∈ (Tx0)j and some j ∈ {1, 2}.

This is an “a priori” hypothesis, equivalent in fact to the initial distance to be defined in
order to give conditions for the sequence of distances between consecutive iterates not to be
unbounded.

(2) The distance sequences is unbounded if x0 ∈ A1 and T(A1) ⊆ A1, i.e., all the iterations are in
A1 from (3) since, from (14), K(i, 1) = ki

1 > 1 and M(i, 1) = 0; ∀i ∈ Z+ and K(i, 1)→ ∞
as i→ ∞ . The same happens if all the iterations are in A1 after a finite iteration step N.

(3) The distance sequence is bounded and convergent to zero if x0 ∈ A2 and T(A2) ⊆ A2, i.e.,
all the iterations are in A2 from (4) since, from (14), K(i, 1) = ki1

2 < 1 and M(i, 1) = 0;
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∀i ∈ Z+ and K(i, 1)→ 0 as i→ ∞ . The same happens if all the iterations are in A2 after a
finite step N.

(4) The distance sequence is bounded if, after some finite iteration step N, each member alternates
switches iteration-to-iteration from A1 to A2 and from A2 to A1 since the distance is bounded
after the finite number N of iterations prior to the first switching (if the initial generating point
x0 is such that d(x0, x1) is finite) and since the mapping T : A1 ∪ A2 → A1 ∪ A2 is both
non-expansive and cyclic for the successive iterations i > N from (5) and (6) since kij ≤ 1 for
i, j = 1, 2 so that

D ≤ d(xi+1, xi) = d
(

xi, (Txi)j

)
= d

(
(Txi−1)k, (Txi)j

)
≤ d(xi, xi−1) = d((Txi−1)k, xi−1) ≥ D

xi+1 ∈ (Txi)j, xi ∈ (Txi−1), ∀x0 ∈ A, j, k( 6= j) ∈ {1, 2}, i(> N) ∈ Z+.

(5) In order for (15) to hold for some sequence {Nk}
χ
k=1 ⊂ Z+ with N1 finite, 1 ≤ χ ≤ ∞, with

the incremental sequence {Nk+1 − Nk}
χ
k=1 being bounded such that the distance sequence

boundedness conditions (15) or (16) hold, it is sufficient that:

(a) either the mapping becomes cyclic after a finite number of steps (see the above
Remark 3(4)), or

(b) it remains confined to iterations within A2 after a finite number of steps or, if there are
non-successive switches from A1 to A2 and from A2 to A1, then switches are ruled to
satisfy the conditions (15) or (16) of Theorem 1 (iv).

(6) The condition C2 of Theorem 1(iv),
{

Tix0
}

i≥Nχ+m ⊂ A2 ∪ A01 if χ < ∞, means that, after
a finite number of iterations, the successive iterates only are in A or in the best proximity set
of A1 with respect to A2. In other words, if infinitely many iterates of

{
Tix0

}
are alternated

in A2 and A1\A01, then χ = ∞, that is, the sequence {Nk}
χ
k=1 is infinite to ensure the

boundedness of the distance sequence.

The following result gives explicit conditions on particular conditions for successive
iterates for Theorem 1 (iv) to hold:

Proposition 1. Under Assumption 1, assume also that d(x0, x1) is finite for a given x0 ∈ A and
consider orbits O(x0) = {x0, x1, x2, . . .} of x0 ∈ A generated by xi+1 ∈ (Txi)j ⊂ Txi ⊂ Ti+1x0

for some j ∈ {1, 2}, ∀i ∈ Z0+, with T : A→ A being subject to the stipulations (2)–(7).

(1) Let pjk ∈ Z0+ be the total number of (non-necessarily consecutive) iterations
(
Tix0

)
j from

xi−1, xi ∈ Aj to xi+1 ∈ Aj; j ∈ {1, 2} for iteration indices i ∈ [Nk, Nk+1], k ∈ χ according
to (3) and (4);

(2) let pj`k ∈ Z0+ be the total number of iterations from xi−1, xi ∈ A` to xi+1 ∈ Aj for
`, j( 6= `) = 1, 2 for iteration indices i ∈ [Nk, Nk+1], k ∈ χ satisfying the constraints (5) and
(6); and

(3) let pck ∈ Z0+ be the total number of (non-necessarily consecutive) iterations
(
Tix0

)
j from

(xi−1, xi) ∈ A1 × A2 to xi+1 ∈ A1 and from (xi−1, xi) ∈ A2 × A1 to xi+1 ∈ A2 for
iteration indices i ∈ [Nk, Nk+1], k ∈ χ according to (7).

Then, {d(xi+1, xi)}∞
i=0 is bounded if, for some real constant 0 ≤ a ≤ 1, there exists a

non-negative real sequence {ak}
χ
k=1 ⊂ [0, a] such that

p1k ≤
1

lnk1
(p2k|lnk2|+ p12k|lnk12|+ p21k|lnk21|+ pck|lnkc| − ln|ak|); ∀k ∈ χ (24)

if D = 0 or if D > 0 and p12k = p21k = pck = 0; ∀k ∈ χ, and

p1k <
1

lnk1
(p2k|lnk2|+ p12k|lnk12|+ p21k|lnk21|+ pck|lnkc| − ln|ak|); ∀k ∈ χ (25)

if D > 0 and p12k + p21k + pck > 0; ∀k ∈ χ.
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Proof. Note from (12) and (17), and K(Nk+1, Nk) ≤ 1; ∀k ∈ χ in Theorem 1 (iv) that

K(Nk+1, Nk) = ∏Nk+1
j=Nk

[
Kj
]
= kp1k

1 kp2k
2 kp12k

12 kp21k
21 kpck

c ≤ 1; ∀k ∈ χ (26)

subject to the constraint:

Nk+1 − Nk + 1 = p1k + p2k + p12k + p21k + pck; ∀k ∈ χ (27)

where p1k, p2k, p12k, p21k, pck ∈ Nk+1 − Nk + 1∪ {0} are the respective non-necessarily con-
secutive numbers of iterations

(
Tix0

)
j for i ∈ [Nk, Nk+1], j ∈ {1, 2}; ∀k ∈ χ satisfying the

constraints (1)–(7). Define also:

K(Nk+1, Nk) = k
p1k
1 k

p2k
2 k

p12k
12 k

p21k
21 k

pck
c ; ∀k ∈ χ (28)

with kj = 1, kc = kc, k`j = kl j; `, j( 6= `) = 1, 2, which allows us to rewrite compactly
M(Nk+1, Nk) as

M(Nk+1, Nk) = kp1k
1 kp2k

2
(
1− K(Nk+1, Nk)

)
D = kp1k

1 kp2k
2

(
1− k

p12k
12 k

p21k
21

)
D; ∀k ∈ χ (29)

after rewriting the upper-bounds of (2)–(7) under the equivalent forms:

k j d(y, x) +
(

1− kj

)
D; k`j d(y, x) +

(
1− k`j

)
D; `, j( 6= `) = 1, 2; kc d(y, x) +

(
1− kc

)
D (30)

since K(Nk+1, Nk) = kp12k
12 kp21k

21 if p12k + p21k + pck > 0 and K(Nk+1, Nk) = 1 if p12k + p21k +
pck = 0(⇔ p12k = p21k = pck = 0); ∀k ∈ χ.

The constraint (15) with K(Nk+1, Nk) ≤ 1 of Theorem 1 (iv) for guaranteeing the
boundedness of the distance sequences are kp1k

1 kp2k
2 kp12k

12 kp21k
21 kpck

c ≤ a(Nk) ≤ a ≤ 1, from

(26) by taking into account that lnk2 = −|lnk2|, lnkc = −|lnkc| and lnk j` = −
∣∣∣lnkl j

∣∣∣ for
j, `( 6= j) ∈ {1, 2}, or equivalently from (24), provided that D = 0, that is, clA1 ∩ clA2 6= ∅,
or under the strict inequality kp1k

1 kp2k
2 kp12k

12 kp21k
21 kpck

c < a(Nk) < a ≤ 1, equivalent to (25),
provided that both D > 0, that is, clA1 ∩ clA2 = ∅, and p12j = p21j = pck = 0, so that
K(Nk+1, Nk) = 0 in (27), implying that there is no crossed iteration from A1 to A2 or
vice-versa. �

It turns out that Proposition 1 still holds under the non-strict inequality (24) if the
total number of crossed iterations from A1 to A2 or vice-versa are finite. Thus, one has the
subsequent direct extension of Proposition 1:

Proposition 2. Under Assumption 1, {d(xi+1, xi)}∞
i=0 is bounded under the stipulations of

Proposition 1 if, for some real constant 0 ≤ a ≤ 1, there exists a non-negative real sequence
{ak}

χ
k=1 ⊂ [0, a] such that (24) holds and D = 0 or, if D > 0 and ∑∞

k=1(p12k + p21k) < ∞.

It turns out that, in order for the sequences of distances between consecutive points
of any orbit for some initial point x0 ∈ A, it is necessary that T : A→ A can have image
points in A2 for such a x0 ∈ A1.

Proposition 3. A multi-valued mapping T : A→ A which has bounded distance sequences
according to Proposition 1, or to Theorem 1(iv), for any orbit O(x0) = {x0, x1, x2, . . .} from some
given initial point x0 ∈ A1 has to fulfill TN1 x0 ∩ A2 6= ∅ for some finite integer N1 = N1(x0).
The above property holds for any orbit O(x0) = {x0, x1, x2, . . .} from any given initial point
x0 ∈ A1 if and only if TN1(x0)x0 ∩ A2 6= ∅ for finite integer N1 = N1(x0) depending on each
x0 ∈ A1.
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Proof. It follows since if Tnx0 ∈ A1 for x0 /∈ F(T) ∩ A1, n ≥ N and any finite non-negative

integer N, then
{

d
((

Ti+1x0
)

1,
(
Tix0

))
1

}∞

i=0
→ ∞ , since ki−N

0 d
((

TN x0
)

1,
(
TN+1x0

)
1

)
→ ∞

as i→ ∞ N so that it is not possible to fulfill either the constraints (24) and (25) of Proposi-
tion 1 or the conditions of Theorem 1 (iv). �

Definition 2. The partial orbit O[0,i](x0) of the orbit O(x0) of x0 ∈ A through T : A→ A

is an ordered set defined recursively by O[0,i](x0) =
{

O[0,i](x0), xi

}
for some xi ∈ Tix0 with

O[0,0](x0) = {x0} =
{

T0x0
}

; ∀i ∈ Z+.

Remark 4. Note that if Tix0 belongs to A` and Ti+1x0 belongs to Aj; j, `( 6= j) ∈ {1, 2}, then
the partial orbit O[0,i+1](x0) = {Oi(x0), xi+1} xi+1 ∈

(
Ti+1x0

)
j ⊂ Ti+1x0 with O[0,0](x0) =

{x0} =
{

T0x0
}

; ∀i ∈ Z0+ has a switch of set in the generation of its last member. Thus, one of the
non-expansive constraints (5) or (6) has been used to incorporate the new element of the orbit. Note
also that unconditional switchings from A1 to A2 or vice-versa are not allowed at any arbitrary
iteration if T : A→ A is single-valued. Therefore, the results of Theorem 1 and Propositions 1–3
concerning the boundedness and the convergence of the distance sequences cannot be monitored
towards the fulfilment of Theorem 1or Propositions 1–3.

It turns out that the particular cases k21 = k1 > 1 and k12 = k2 = kc < 1 are also
covered by the above more general formulation. This suggests that switchings from A2 to
A1 are expansive as they are the successive iterates within A1, while switchings from A1 to
A2 are contractive as they are the successive iterates within A2. The lost on non-expansivity
of switches from A2 to A1 does not modify the essence of the above given results. This
is seen in short as follows. Assume that k21 = k1 > 1 and take x0 ∈ A, x1 ∈ (Tx0)2 and
x2 ∈ (Tx1)1 that satisfy:

d(x2, x1) ≤ k1d(x1, x0) + (1− k1)D = k1d(x1, x0)− (k1 − 1)D

The necessary condition d(x2, x1) ≥ D is compatible with the above upper-bound
since k1d(x1, x0)− (k1 − 1)D ≥ D ⇔ (k1 − 1)D ≥ 0 . At the same time the fact that the
mapping is expansive from x1 to x2 such that

d(x1, x0) < d(x2, x1) ≤ k1d(x1, x0)− (k1 − 1)D

agrees with d(x1, x0) > D, while it keeps as locally non-expansive if d(x2, x1) = d(x1, x0) = D,
i.e., if x1 ∈ (Tx0)2 ∩ A02, and x2 ∈ (Tx1)1 ∩ A01 under the necessary assumption that
(Tx0)j ∩ A0j 6= ∅ for j = 1, 2. Thus, once a switching to A2 holds which is expansive
if d(x1, x0) > D, it can remain in A2 leading to the orbit to be contractive in A2 and
converging to some x2 ∈ F(T) if F(T) ∩ A2 6= ∅ and A2 is closed.

3. Problem Statement for p Subsets of a Metric Space

Now, define p non-empty subsets Ai ⊂ X with Di = d(Ai, Ai+1) for i ∈ p and Ap+1 ≡
Ap (p ≥ 2), where (X, d) is a metric space and consider a self-mapping T : ∪i∈p Ai → ∪i∈p Ai .
The terminology is used such that Ai and Ai+1 are adjacent subsets, Ai+1 is the right ad-
jacent subset to Ai, while Ai is the left adjacent subset to Ai+1; ∀i ∈ p. In order to keep a
simple notation, we will denote in the sequel by T : Ai → (Ai ∪ Ai+1) for any given i ∈ p
the restricted multivalued map from a set to the union to itself with its right adjacent one
T :
(
∪j∈p Aj

)∣∣Ai → ∪j∈p Aj
∣∣(Ai ∪ Ai+1) .

Through this section, the main ideas of the former section are kept but, in order to
simplify the exposition, the following assumptions are made:

(A1) The multivalued mapping T : ∪i∈p Ai → ∪i∈p Ai is mixed p-cyclic/acyclic in the
sense that T(Ai) ⊆ Ai ∪ Ai+1 for i ∈ p with Ap+1 ≡ A1 such that for each x0 ∈ Ai and
each i ∈ p, Tx0 =

{
(Tx0)i, (Tx0)i+1

}
with (Tx0)i( 6= ∅) ⊂ Ai.
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(A2) A finite number ni ∈ Z0+ of iterated images of x0 in Ai may happen before
switching to its right adjacent subset Ai+1 when constructing an orbit. That is, a partial
orbit O[0,ni+1](x0) with initial point x0 in Ai is Oi(x0) =

(
x0, x1, . . . , xni , xni+1

)
, where

xj ∈
(
T jx0

)
i for j ∈ ni, x0 =

(
T0x0

)
i and xni+1 ∈

(
Tni+1x0

)
i+1. If ni is infinity, then

Ai is the terminal set with no further switchings of T : Ai → (Ai ∪ Ai+1)|Ai to its right
adjacent subset.

The number ni is admitted to be varying for each cycle of T : ∪i∈p Ai → ∪i∈p Ai run-
ning all the subsets Ai; ∀i ∈ p.

(A3) p = pc ∪ pne ∪ pe with pe, pne and pc being pair-wise disjoint defined by:

pc = {i ∈ p such that T : Ai → Ai ∪ Ai+1 satisfies condition Cc} ⊂ p

pne = {i ∈ p such that T : Ai → Ai ∪ Ai+1 satisfies condition Cne} ⊂ p

pe = { i ∈ p such that T : Ai → Ai ∪ Ai+1 satisfies condition Ce} ⊂ p

which are indexing the disjoint subsets Sc = {Ai : i ∈ pc}, Sne = {Ai : i ∈ pne} and
Se = {Ai : i ∈ pe}, where T : Ai → (Ai ∪ Ai+1)|Ai are contractive, non-expansive being
non-contractive and expansive, respectively, where:

(a) the contraction condition Cc is defined as follows:

d((Tx)i, (Ty)i) ≤ kid(x, y); max
(
d
(
(Tx)i+1, (Ty)i

)
, d
(
(Tx)i, (Ty)i+1

))
≤ kid(x, y) + |1− k′ i|Di;

∀x, y ∈ Ai for i ∈ pc and some real constants ki ∈ [0, 1), k′ i ∈
[
ki, ki

)
; ∀i ∈ pc

(31)

(b) the non-expansivity condition is defined as follows:

d((Tx)i, (Ty)i) ≤ kid(x, y); max
(
d
(
(Tx)i+1, (Ty)i

)
, d
(
(Tx)i, (Ty)i+1

))
≤ kid(x, y) + |1− k′ i|Di;

∀x, y ∈ Ai for i ∈ pne and some real constants ki = 1, k′ i ∈
[
1, ki

)
; ∀i ∈ pne

(32)

(c) the expansivity condition Ce is defined as follows:

k0id(x, y) ≤ d((Tx)i, (Ty)i) ≤ kid(x, y);
k0id(x, y) + (k′0i − 1)Di ≤ min

(
d
(
(Tx)i+1, (Ty)i

)
, d
(
(Tx)i, (Ty)i+1

))
≤ max

(
d
(
(Tx)i+1, (Ty)i

)
, d
(
(Tx)i, (Ty)i+1

))
≤ kid(x, y) + (k′ i − 1)Di;

∀x, y ∈ Ai for i ∈ pe and some real constants k0i, ki(≥ k0i) > 1, k′ i ∈
[
ki, ki

)
, k′0i ∈

[
k′ i, k

′
0i

)
; ∀i ∈ pe

(33)

(d) The switching from Ai to its right adjacent subset Ai+1 in (33), and in (31) and (32) if

ki
′ > 1, are performed only provided that d(x, y) > ki

′−1
ki
′ Di if x, y ∈ Ai for any i ∈ p.

Note that, in order to simplify the exposition, the contractive or expansive constants for
iterations within subsets k(.) are assumed identical to their counterparts related to switching
from a subset to its right adjacent one. Note also that, although contractive conditions are
also inherently non-expansive, we consider each one of them, in the above characterization,
specifically as “contractive· or as “non expansive” according to the constant ki being either
less than unity or unity. Thus, by convenience, the set Sc is not included in the set Sne so
that Sc ∩ Sne 6= ∅. It turns out that from the above constraints the restricted images of
T : Ai → (Ai ∪ Ai+1)|Ai (i.e., the mapping T from the respective subset Ai to itself) are
contractive, non-expansive and expansive, respectively. However, the respective restrictions
to each reach right adjacent subset T : Ai → (Ai ∪ Ai+1)|Ai+1 are not guaranteed to be
contractive or non-expansive since ki can exceed unity. This tries to reflect the practical fact
that switching actions from a subset to its right adjacent one can have an instability cost
due to the switching itself even if iterations within that right adjacent subset are contractive.
We can think here, for instance, about the modeling through ordinary differential equations
of a dynamical system subject to impulsive controls which can make the state norm to grow
by huge amounts at the sampling instants where impulses happen.
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Note that the condition d(x, y) > ki−1
ki

Di if x, y ∈ Ai for switching to Ai+1 any i ∈ p
ensures that the upper-bounds in the conditions (31)–(33) are well posed since k′ id(x, y) +
|1− k′ i|Di > 0 for any i ∈ p.

Proposition 4. A sufficient condition guaranteeing that the expansivity condition Ce is well posed
is that, for any Ai ∈ Se, Assumption A4 below holds:

(A4) diamAi+1 ≤ k′0idiamAi if k′0i = 2

Di ≥ max
(

0,
k′0idiam Ai − diamAi+1

2− k′0i

)
if k′0i 6= 2

Proof. It follows since, for the first inequality of (33) to hold in the worst case, that is, for
the largest possible value of d(x, y) for x, y ∈ Ai, which is d(x, y) = sup

x,y∈Ai

d(x, y) = diam Ai,

it is sufficient that for (i ∈ Pe)⇔ (Ai ∈ Se) : k′0idiam Ai + (k′0i − 1)Di ≤ diamAi+1 + Di
which gives the result. �

Remark 5. Since we will usually work only with conditions for the boundedness and convergence of
sequences, only the upper-bound of (24) will be addressed through the constants ki and ki

′. However,
note that the upper-bound does not guarantee directly that the mapping T : Ai → Ai ∪ Ai+1 is
expansive but just that it is not guaranteed to be non-expansive.

Now, consider an orbit O(x0) from an initial point x0 ∈ ∪i∈p Ai such that x0 = T0x0,
xj+1 ∈

(
Txj
)

i ∪
(
Txj
)

i+1 ⊂ T jx0 ⊂ ∪i∈p Ai provided that xj ∈ Ai for some i ∈ p; ∀j ∈ Z0+.
Denote the partial orbit of O[k,k+Nk ]

(x0) on [k, k + Nk] for some Nk ∈ Z0+ and a given
k ∈ Z0+ as O[k,k+Nk ]

(x0) =
(
xk, xk+1, . . . , xk+Nk

)
. Then, all the points of the partial orbit

belong to A`, Al+1, . . . , Aj for some `, j(≥ `) ∈ p with eventual ni = ni(x0) ∈ Z0+ iterations
within of the various sets Ai, for each i ∈ [`, j], together with eventual iteration switches
i→ i + 1 to their right adjacent ones.

The following result holds which implies that the sequence of distances is bounded
provided that pe is non-empty, that is, there is at least one subset Ai for i ∈ p, where
T : Ai → (Ai ∪ Ai+1)

∣∣Ai is contractive, according to (31), and that each cycle has a suffi-
ciently large number of iterations in Sc = {Ai : i ∈ pc}.

Theorem 2. Under Assumptions A1 to A4, the following properties hold:

(i) Consider a complete cycle of Nk consecutive iterations on all the subsets Ai, ∀i ∈ p on the

integer interval [k, k + Nk] starting from xk ∈
(

Tkx0

)
`
⊂ Tkx0 ∩ A` for some x0 ∈ ∪i∈p Ai,

some ` = `(k) ∈ p and some k ∈ Z0+ which has ni(k, k + Nk) consecutive iterations within
Ai before switching to Ai+1 for each i ∈ p. Thus, one has for the partial orbit O

[k,k+Nk ]
(x0) on

[k, k + Nk] the following relation of distances:

d
(

xk+Nk+1, xk+Nk

)
≤ K1(k, k + Nk)d(xk+1, xk) + ∑p

i=1 Ki+`(k, k + Nk)
∣∣1− k′ i+`−1

∣∣Di+`−1 (34)

≤ K1(k, k + Nk)

(
d(xk+1, xk) + D̂

(
∑p

i=1 1/
(

∏i−1
j=1

[
k

nj(k,k+Nk)

j k′ j

])))
(35)

under the identities ki+` = ki+`−p, k′ i+` = k′ i+`−p and Di+` = Di+`−p, if i + ` > p;
∀i, ` ∈ p, where Nk = p + ∑

p
i=1 ni(k, k + Nk) and

Ki(k, k + Nk) = ∏p
j=i

[
k

nj(k,k+Nk)

j k′ j

]
= K1(k, k + Nk)/

(
∏i−1

j=1

[
k

nj(k,k+Nk)

j k′ j

])
; ∀i ∈ p (36)

(ii) Assume, in addition, that
{

Nk+j−1

}χ

j=0
⊂ Z+ (χ ≤ ∞) with Nk−1 = k for the given

k ∈ Z0+ is the sequence of integers with the associated incremental sequence
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{
Nk+j − Nk+j−1

}χ

j=0
, which contains element-to-element the number of iterations, each

of them being associated with a complete cycle on all the subsets Ai for i ∈ p, that is,

Nk+1 = Nk + p + ∑
p
i=1 ni(Nk, Nk+1) with Nk, Nk+1, Nk+2 ∈

{
Nk+j−1

}χ

j=0
and

1 ≤ δk = δ + ∑`+δ

i=`
ni(Nk+1, Nk+1 + δk) < Nk+2 − Nk+1 (37)

where δ ∈ p− 1 contains δ switches between right adjacent subsets and δk is the total
number of switches which have happened since the iteration Nk+1. Then, the distances
d
(

xNk+1+1, xNk+1

)
and d

(
xNk+1+δ, xNk+1+1

)
for δ ∈ p− 1, related to the two pairs of el-

ements
(

xNk+1+1, xNk+1

)
and

(
xNk+1+δ, xNk+1+1

)
of the partial orbit O

[Nk ,Nk+1+δ]
(x0) on

[Nk, Nk+1 + δ], satisfy the constraints:

d
(

xNk+1+1, xNk+1

)
≤ K1(Nk, Nk+1)d

(
xNk+1, xNk

)
+ ∑

p
i=1 Ki+`(Nk, Nk+1)|1− k′ i+`−1|Di+`−1

= K1(Nk, Nk+1)d(xk+1, xk) + ∑
`+p−1
i=` Ki+1(Nk, Nk+1)|1− k′ i|Di

(38)

d
(

xNk+1 + δk, xNk+1 + δk − 1
)
≤ K1(Nk+1, Nk+1 + δk)d

(
xNk+1+1, xNk+1

)
+ ∑δ

i=1 Ki+`(Nk+1, Nk+1 + δ)| 1− k′ i+`−1|Di+`−1
= K1(Nk+1, Nk+1 + δk)d

(
xNk+1+1, xNk+1

)
+ ∑`+δ−1

i=` Ki+1(Nk+1, Nk+1 + δk)|1− k′ i|Di
(39)

for xNk , xNk+1 ∈
(
TNk x0

)
` ⊂ TNk x0 ⊂ A`; some ` ∈ p, ∀k ∈ Z0+, where:

Ki+`(Nk, Nk+1) = ∏`+p−1
j=i+`

[
k

nj(Nk ,Nk+1)

j k′ j

]
; ∀i ∈ p, ∀` ∈ p (40)

Ki+`(Nk+1, Nk+1 + δk) = ∏`+δ−1
j=i+`

[
k

nj(Nk+1,Nk+1+δk)

j k′ j

]
; ∀i ∈ p, ∀` ∈ p, δ ∈ p− 1 (41)

(iii) Assume furthermore that, for the sequence
{

Nk+j−1

}χ

j=0
⊂ Z+ of property (ii),

sup
`∈Z0+

K1

(
Nj+`−2, Nj+`−1

)
≤ 1− ε, for some ε ∈ (0, 1), and assume also that

d(xk+1, xk) ≥ sup
`∈Z0+

K1(Nk+`−2, Nk+`−1)D̂
1− K1(Nk+`−2, Nk+`−1)

∑i−1
j=1

1

∏i−1
j=1

[
k

nj(Nk+`−2,Nk+`−1)

j k′ j

]
 (42)

with Nk−1 = k for the given k ∈ Z0+ such that xk ∈
(

Tkx0

)
`
⊂ Tkx0 ∩ A` for some

` = `(k) ∈ p and assume also that d(x0, xk) is finite. Then, sup
`∈Z0+

d
(
xNk+l+1, xNk+l

)
≤

d(xk+1, xk). If sup
j∈Z0+

d
(

xNk+j+1, xNk+j

)
≤ d(xk+1, xk) and if

(1) either sup
j∈Z0+

∑
p
i=1 ni

(
Nk+j−2, Nk+j+1

)
≤ n < ∞ and χ = ∞ (i.e., there are infinity

many switches from a subset to its right adjacent one but not infinitely many iterations
in a subset Ai prior to switching to the right adjacent one), or

(2) if χ < ∞ and there are infinitely many iterations ni within in a final set Ai being
either non-expansive (including the contractive case) subject, furthermore, to k

′
i ≤ 1,

Then the sequence of distances {d(xi, xi+1)}∞
i=0 for adjacent points of the orbit O(x0) is

bounded. Furthermore,

lim sup
j→∞

d
(

xNk+j+1, xNk

)
≤ 1

ε ∑p
i=1 sup

j∈χ

(
Ki+`

(
Nj, Nj+1

)∣∣ 1− k′ i+`−1
∣∣Di+`−1

)
< +∞ (43)

As a result, all sequences of distances
{

d
(
xi, xi+j

)}∞
i=0; ∀j ∈ Z0+ are also bounded.
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Proof. Properties [(i) and (ii)] follow directly from the application of (31)–(34) where
k ∈ Z0+ is arbitrary, with d(x0, xk), being finite and ` = `(k) ∈ p is such that xk ∈(

Tkx0

)
`
⊂ Tkx0 ∩ A`, and

{
Nj
}χ

j=0 ⊂ Z+ (χ ≤ ∞), with N0 = k, is the sequence of com-
plete iterations along the p subsets Ai. Property (iii) follows since (42) under the constraint
K1(Nk+`−2, Nk+`−1) ≤ 1 − ε yields sup

`∈Z0+

d
(
xNk+`+1, xNk+`

)
≤ d(xk+1, xk). Furthermore,

if sup
j∈Z0+

∑
p
i=1 ni

(
Nk+j−2, Nk+j+1

)
≤ n < ∞ and χ = ∞, then the sequence of distances

{d(xi, xi+1)}∞
i=0 cannot be unbounded for intermediate iterations within the sequence of

finite intervals {Nk+1 − Nk}
χ
k=0 so that it is bounded. It also follows from (38) that

d
(

xNk+j+1, xNk

)
≤ K j

1(Nk, Nk+1)d
(
xNk+1 , xNk

)
+∑

j−1
`=1 ∑

p
i=1 K`

1(Nk, Nk+1)sup
j∈χ

(
Ki+`

(
Nj, Nj+1

)
|1− k′ i+`−1|Di+`−1

)
≤ (1− ε)jd

(
xNk+1, xNk

) (44)

+
1− (1− ε)j

ε ∑p
i=1 sup

j∈χ

(
Ki+`

(
Nj, Nj+1

)∣∣ 1− k′ i+`−1
∣∣Di+`−1

)
(45)

and (43) holds since (1− ε)j → 0 as j→ ∞ . A similar result is found if χ < ∞, that is there
is some subset Ai for i ∈ p where infinitely many terminal iterations take place with no
later switch to its right adjacent one Ai+1 under the assumption that max

(
ki, k

′
i

)
≤ 1, that

is, the terminal iterations are non-expansive (eventually contractive) with k
′
i ≤ 1. �

Note that the conditions sup
`∈Z0+

K1

(
Nj+`−2, Nj+`−1

)
≤ 1− ε and sup

j∈Z0+

∑
p
i=1 ni(Nk+j−2,

Nk+j+1) ≤ n < ∞ are key stipulations for the boundedness of the distances between
consecutive points of the orbit O(x0) in Theorem 2 (iii). This can be fulfilled with at
least one of the subsets in Sc = {Ai : i ∈ pc} and a sufficiently large ni, for Ai ∈ Sc,
compared to n being dependent on the value of the contractivity condition ki ∈ [0, 1).
On the other hand, note that any distances

{
d
(
xi, xi+j+1

)}∞
i=0 for any finite j ∈ Z0+ are

bounded from the use of the triangle inequality for distances and the above proved property
sup
`∈Z0+

d
(

xNk+`+1, xNk+`

)
≤ d(xk+1, xk) for the given k ∈ Z0+ since for some finite real

constant M > 1:

d
(

xi+j+1, xi
)
≤∑j

`=0 d(xi+`+1, xi+`) ≤ Md
(
xNk+m+1 , xNk+m

)
≤ Md(xk+1, xk) < +∞

for some m = m(i, j) ∈ Z0+ and some Nk ∈ {Nk}
χ
k=0. However, according to (43), the

above result also holds for any (even infinity) j ∈ Z0+.

Example 1. Note that d
(

xNk+j+1, xNk

)
in (43) has to be not smaller than the corresponding

distance between adjacent subsets provided that the involved points belong to adjacent subsets.
For instance, assume that p = 2, k1 = k1

′ ≥ k′01 > 1 and k2 = k′2 < 1, that is, the mapping
T : A1 ∪ A2 → A1 ∪ A2 is expansive in A1 and contractive in A2. Assume that all the cycles
have the same number of iterations en each of the subsets taken as n1 = 0 within A1 and n2 = 1
within A2. Under Theorem 2 (iii), K1 = k2

2k1 < 1 for each cycle of iterations on both subsets to

be contractive. Identifying d
(

xNk+j+1, xNk

)
with d

(
xj+1, xj

)
with one of each points within one

subset, one obtains from (43) that

lim sup
j→∞

d
(
xj+1, xj

)
≥ D̂ =

k2
2(k1 − 1) + 1− k2

1− k2
2k1

D ≥ d(A1, A2) = D
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under the necessary assumption that k2(2k1 − 1) ≥ 1, which, together with k2
2k1 < 1, yields

1/
√

k1 > k2 ≥ 1/(2k1 − 1), subject to 1 < k1 < (2k1 − 1)2.
Now, consider the alternative problem without iterations within neither A1 nor A2 so that

n1 = n2 = 0. In this case, k2 < 1/k1 and an “ad hoc” redefinition of D̂ leads to
D̂ = k2(k1−1)+1−k2

1−k2k1
D ≥ D under the necessary condition k2(2k1 − 2) ≥ 0, which holds since

k1 > 1 if k2 < 1/k1 < 1. It turns out that the maximum allowable k2 is smaller than the one for
the above case.

Example 2. Consider p = 3 for subsets Ai with none internal iterations within any of the subsets
before switching to each right adjacent subset, i.e., ni = 0 for i ∈ 3, subject to k1 = k1

′ ≥ k′01 > 1
and 0 < ki = k′ i < 1 for i = 2, 3. Assume four possible cases to guarantee that D̂ = max

1≤i≤3
Di:

(a) Di = D = d(Ai, Ai+1); ∀i ∈ 3 with A4 ≡ A1. Then,

D̂ =
k3k2(k1 − 1) + k3(1− k2) + 1− k3

1− k3k2k1
D ≥ D

which holds trivially identical to 2k3k2(k1 − 1) ≥ 0 since k1 > 1.
(b) Di = d(Ai, Ai+1) can be eventually distinct subject to D1 ≥ D2 = D3 so that

D̂ =
k3k2(k1 − 1)D1 + (1− k3k2)D2

1− k3k2k1
≥ D1

which holds if
(k3k2(k1 − 1) + k3k2k1 − 1)D1 + (1− k3k2)D2 ≥ 0

for which it is sufficient that, since D1 ≥ D2, k3k2(k1 − 1) + k3k2k1 − k3k2 ≥ 0, which
holds directly since k1 > 1.

(c) D1 < D2 = D3 so that D̂ ≥ D2 > D1 so that

D̂ =
k3k2(k1 − 1)D1 + (1− k3k2)D2

1− k3k2k1
≥ D2 > D1

which holds if

k3k2(k1 − 1)D1 + (1− k3k2)D2 − D2 + k3k2k1D2 ≥ 0

for which it is sufficient, since D2 > D1, k3k2(k1 − 1)D1 + k3k2D1 + k3k2k1D1 ≥ 0, which
holds directly since 2k1D1 ≥ 0.

(d) Now assume that ki = k′ i = k < 1 for i ∈ 3 so that the redefined D̂ is

D̂ =
k2(1− k) + k(1− k) + 1− k

1− k3 D =
k2 − k3 + k− k2 + 1− k

1− k3 D =
1− k3

1− k3 D = D

which is a known property of 3-cyclic contractions.

Example 3. The convergence of the distances to the best proximity points is not possible if the
mapping is expansive for switching actions from a set to its adjacent one, and there is one expansive
contraction that is not possible for the case of only two sets A1 and A2, i.e., p = 2 when the closures
of such sets (or themselves if they are closed) do not intersect; i.e., the constraint D̂ = D1 = D is
not feasible. Note that at the limit for infinitely many iterations, the subsequent relations

k′01D +
(
k′01 − 1

)
D ≤ D̂ ≤ min

i=1,2

(
k′ iD +

(
1− k′ i

)
D
)
= k′2D +

(
1− k′2

)
D = D

should hold, that is 2(k′01 − 1)D ≤ 0, which only holds if and only if D = 0, i.e., if and only if
clA1 ∩ clA2 6= ∅ since k′01 > 1.
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If there are three involved sets A1, A2 and A3, i.e., p = 3, with one expansive mapping
T : A1 ∪ A2 ∪ A3 → A1 ∪ A2 ∪ A3 for the switches from A1 to A2, while those from A2 to A3
and from A1 to A3 are contractive, one has the following limit constraint relations to guarantee the
eventual convergence of the distances for D̂ = D2 if D2 = D3 = λD, D1 = D:

k′01D +
(
k′01 − 1

)
D ≤ D̂ ≤ λ min

i=1,2

(
k′ iD +

(
1− k′ i

)
D
)
= λ

(
k′2D +

(
1− k′2

)
D
)
= λD

implying that 2(k′01 − λ)D ≤ 0 so that either D = 0, that is, clA1 ∩ clA2 6= ∅, or λ > k′01 so
that D2 = D3 = λD > k′01D so that, even, if D̂ = D2 = D3, then D̂ 6= D1 = D, and then the
convergence of the distances to D1 or that of the involved points to the best proximity points of A1
and A2 is not possible.

Note that Theorem 2 (iii) also implies the boundedness of the elements of any orbit O(x0),
what is now termed as such an orbit being bounded, as it is now specifically addressed:

Theorem 3. Under Assumptions A1 to A4, consider any orbit O(x0) with bounded initial point
x0 = T0x0 ∈ ∪i∈p Ai, xj+1 ∈

(
Txj
)

i ∪
(
Txj
)

i+1 ⊂ T jx0 ⊂ ∪i∈p Ai. If Theorem 2 (iii) holds,
then such an orbit O(x0) is bounded.

Proof. It is obvious from generation of the orbit O(x0), for some given initial point x0 ∈
∪i∈p Ai, that xj ∈

(
T jx0

)
` ⊂ T jx0 ⊂ A`j

for some `j = `(j) ∈ p, j ∈ k and any given
finite k ∈ Z0+. The partial orbit O[0,k](x0) = {Ok−1(x0), xk} is bounded since k ∈ Z0+ is
finite and x0 is bounded. Since k is finite then d(x0, xk) is finite. Now, assume that there
is some sequence {xn}∞

n=0 ⊂ ∪i∈p Ai which has an unbounded subsequence {xnm}
∞
m=0

with n0 ≥ k. Since lim sup
j→∞

d
(

xNk+j+1, xNk

)
< ∞, take Nk to be sufficiently closer to nk by

taking the advantage that the incremental sequence
{

Nk+j − Nk+j−1

}χ

j=0
with Nk−1 = k,

for the given k ∈ Z0+, is bounded and one obtains also from (43) that if the subsequence
{xnm}

∞
m=0 ⊂ {xn}∞

n=0 is unbounded, then the following contradiction holds since xk ∈(
Tkx0

)
`
⊂ Tkx0 ⊂ A` for some ` = `(k) ∈ p and some finite k ∈ Z0+, so that xk is finite:

+ ∞ = lim sup
m→∞

d(xnm , xk) ≤ lim sup
m→∞

d(xnm , xNm) + lim sup
m,j→∞

d
(
xk, xNnm

)
≤ lim sup

m→∞
d(xnm , xNm) + C < +∞

Therefore, any sequence {xn}∞
n=0 ⊂ ∪i∈p Ai is bounded. �

Note that Theorem 2 (iii) assumes that d(x0, xk) is finite as an “a priori” stipulation for
the boundedness of the sequence of distances in-between adjacent elements of the orbit
O(x0). However, Theorem 3 assumes that the initial point x0 of the considered orbits is
finite in order to guarantee that the partial orbit of a finite number of elements starting
by x0 is bounded. This assumption would not be invoked if the subsets Ai for i ∈ p
were bounded.

4. Some Particular Results: The Case of Non-Expansivity and That of
Monitored Switching

It is proved for p = 2 in [1] (Lemma 3.8 based on Lemma 3.8), irrespective of the
properties of the single-valued contractive 2-cyclic mapping T : A1 ∪ A2 → A1 ∪ A2 , that if
(X, ‖‖) is an uniformly convex Banach space and the subsets A1 and A2 of X are non-empty,
closed and convex then:

[(
{xn}∞

n=0 ⊂ Ai
)
∧
(
{zn}∞

n=0 ⊂ Ai
)
∧
(
{yn}∞

n=0 ⊂ A2
)
∧
(
{‖xn − yn‖}∞

n=0 → D
)
,
(
{‖zn − yn‖}∞

n=0 → D
)]

⇒
(
{‖zn − yn‖}∞

n=0 → 0
)
; ∀i ∈ p

(46)
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Such a property holds irrespective of the mapping being single-valued or multi-
valued and without invoking whether it is contractive or not. It is also proved in [1]
that if, furthermore, T : A1 ∪ A2 → A1 ∪ A2 is single-valued and 2-cyclic contractive then
there is a unique best proximity point z ∈ A1 such that ‖z− Tz‖ = D and if z0 ∈ A1
then

{
T2nz0

}∞
n=0 → z and

{
T2n+1z0

}∞
n=0 → Tz , and

{
T2nz0

}∞
n=0 and

{
T2n+1z0

}∞
n=0 are

Cauchy sequences.
The subsequent result firstly establishes some best proximity results in the case that

there are no iterations of the mixed p-cyclic/acyclic multivalued mapping
T : ∪i∈p Ai → ∪i∈p Ai , p ≥ 2, within each of the subsets Ai provided that the complete
metric space that the subsets Ai for i ∈ p belong to is a uniformly convex Banach space and
that the mapping is contractive at least from one switching of one of the subsets to its right
adjacent one in the event that it is not expansive from any of the subsets to its right adjacent
one. Since there are no iterations between each subset before switching to its right adjacent
one, the p-cyclic/acyclic mapping T : ∪i∈p Ai → ∪i∈p Ai is, in particular, a multivalued
p-cyclic mapping due to the absence of internal iterations within each of the subsets. Later
on, in the second property of the theorem, a new result generalizes the results to the case
when T : ∪i∈p Ai → ∪i∈p Ai has iterations within the subsets before switching to the right
adjacent ones (i.e., it is of cyclic/acyclic nature) under certain conditions of Theorem 2.

Theorem 4. Assume that:
(A1) {Ai : i ∈ p} are non-empty closed and convex subsets of a uniformly convex Banach

space (X, ‖‖).
(A2) Assume that T : ∪i∈p Ai → ∪i∈p Ai is a mixed p-cyclic/acyclic mapping, subject to

T(Ai) ⊆ Ai ∪ Ai+1; ∀ ∈ p with respect to the norm-induced metric d : X× X → R0+ ; ∀i ∈ p, by
the norm of (X, ‖‖), which satisfies (31) and (32), under the constraints Sc = {Ai : i ∈ pc} 6= ∅,
Se = {Ai : i ∈ pe} = ∅ (so that ∪i∈p Ai = Sc ∪ Sne and p = pc ∪ pne), ki = k′ i < 1;
∀i ∈ pc, Di = D, ni(k, Nk) = 0; ∀i ∈ p, ∀k ∈ Z0+ such that for each x ∈ Ai and each i ∈ p,
Tx = (Tx)i+1 with (Tx)i+1( 6= ∅) ⊂ Ai+1; ∀i ∈ p.

Then, the following properties hold:

(i) There is a best proximity point zi in Ai with respect to Ai+1, that is, d
(
zi, (Tzi)i+1

)
= D;

∀i ∈ p. Furthermore, for any i ∈ p, if x ∈ Ai, then
{(

Tpn+jx
)

i+j

}∞

n=0
→ zi+j ∈ Ai+j for

j ∈ p− 1 is a best proximity point in Ai+j with respect to Ai+j+1, and zi ∈ (Tpzi)i is also a
fixed point in Ai of the composite mappings Tp : ∪i∈p Ai

∣∣Aj → ∪i∈p Ai
∣∣Aj ; ∀j ∈ p.

(ii) If Assumption A2 holds under the subsequent generalizations: (a) ni(Nk, Nk+1) ≥ 0; ∀i ∈ p,
for some given k ∈ Z0+ with Nk−1 = k,

{
Nj
}∞

j=0 ⊂ Z0+ being strictly increasing and the

incremental sequence
{

Nj − Nj−1
}∞

j=0 ⊂ Z0+ being uniformly bounded and covering a whole
cycle of iterations covering all the subsets Ai for i ∈ p, such that for each x ∈ Ai and each
i ∈ p, Tx =

{
(Tx)i, (Tx)i+1

}
with (Tx)i+1( 6= ∅) ⊂ Ai+1, ∀i ∈ p and (Tx)i1( 6= ∅) ⊂

Ai in the case when ni(Nk, Nk+1) > 0 for some Nk ∈ {Nk}∞
k=0; and

sup
Nk∈{Nj}∞

j=0

lnK1(Nk, Nk+1)

p
< 0 (47)

where K1(Nk, Nk+1) = ∏
p
j=1

[
k

nj(Nk ,Nk+1)+1
j

]
.

Proof. Since Sc =
{

Aj : j ∈ Pc
}
6= ∅, it exists Ai ∈ Sc for some i ∈ p. Consider, with

no loss in generality, initial points x1, y1 ∈ Ai of the sequences
{

Tnp+jx1
}∞

n=0 ⊂ Ai+j

and
{

Tnp+jy1
}∞

n=0 ⊂ Ai+j; ∀j ∈ p− 1∪ {0} generated by T : ∪i∈p Ai → ∪i∈p Ai under the
constraint ni = 0; ∀i ∈ p, which makes T(Ai) ⊆ Ai ∪ Ai+1 become T(Ai) ⊆ Ai+1; ∀i ∈ p.
The choice of x1 and y1 in Ai is without loss of generality since for any given x01, y01 ∈
∪i∈p Ai, there are nonnegative integers j, k ∈ p such that one can fix x1 ∈ T jx01 ⊂ Ai and
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y1 ∈ Tkx01 ⊂ Ai for any prefixed subset Ai ∈ Sc of ∪i∈p Ai. Since Ai ∈ Sc, k′ j = k j, ∀j ∈ p
and ∪i∈p Ai = Sc ∪ Sne, it turns out that ∏

p
j=1

[
k j
]
≤ ki < 1 so that:

d
(

Tnp+jx1, Tnp+j+1y1

)
≤ kn

i d(x1, y1) + (1− kn
i )D (48)

d
(

T(n+k)p+jy1, T(n+k)p+j+1y1

)
≤ kn+k

i d(Ty1, y1) +
(

1− kn+k
i

)
D (49)

Then,
{

d
(
Tnp+jx1, Tnp+j+1y1

)}∞
n=0 → D and

{
d
(

T(n+k)p+jy1, T(n+k)p+j+1y1

)}∞

n=0

→ D for any given x1, y1( 6= x1) ∈ Ai, ∀k ∈ Z0+ with
{

T(n+k)p+j+1x1

}∞

k=0
⊂ Ai+j+1

and
{

T(n+k)p+j+1y1

}∞

k=0
⊂ Ai+j+1 for any k ∈ Z0+. Since (X, ‖‖) is a uniformly Ba-

nach space, and Aj(j ∈ p) are closed and convex and Ai ∈ Sc, one concludes also that{
d
(

Tnpx1, T(n+k)py1

)}∞

n=0
→ 0 and that

{
T(n+k)px1

}∞

n=0
→ zi ∈ Ai is a Cauchy sequence.

It also holds that zi ∈ Ai is a fixed point of the composite mapping Tp : ∪j∈p Aj|Aj →
∪j∈p Aj|Ai, then zi ∈ (Tpzi)i. As a result, zi+j ∈

(
Tp+jzi

)
i+j =

(
Tp(T jzi

))
i+j =(

Tpzi+j
)

i+j ∈ Ai+j; ∀j ∈ p and zi+j ∈
(
T jzi

)
i+j ⊂

(
Tpzi+j

)
i+j is a fixed point of

Tp : ∪k∈p Ak

∣∣∣Ai+j → ∪k∈p Ak

∣∣∣Ai+j in Ai+j and also a best proximity point in Ai+j of Ai+j−1

since d
(
zi+j−1, zi+j

)
= D because Aj ∈ Sne ∪ Sc; ∀j ∈ p implies that D = d(Ai, Ai+1) ≥

d
(

Ai−j, Ai−j+1
)
= D; ∀j ∈ p and the given i ∈ pc such that Ai ∈ Sc.{

T(n+k)p+jx1

}∞

n=0
→ zi+j ∈ Ai+j and that

{
T(n+k)p+jx1

}∞

n=0
are convergent and

Cauchy sequences; ∀j ∈ p. Note that, since
{

T(n+k)px1

}
→ zi ∈ Ai if Ai ∈ Sc since Ai

is closed, and the sequences
{

T(n+k)p−1x1

}
and

{
T(n+k)p−1y1

}
for any given k ∈ Z0+ fulfill

that
{

d
(

T(n+k)p−1x1, T(n+k)px1

)}∞

n=0
→ D and

{
d
(

T(n+k)p−1y1, T(n+k)px1

)}∞

k=0
→ D ,

one obtains that
{

d
(

T(n+k)p−1x1, T(n+k)p−1y1

)}∞

n=0
→ 0 for any given x1, y1 ∈ A1 and{

T(n+k)p−1x1

}∞

n=0
is convergent to z′ i−1 ∈ Ai−1 ≡ Ap+i−1 since Ai−1 is closed. Continuing

with this process, one obtains that
{

T(n+k)p−jx1

}∞

n=0
→ z′ i−j ∈ Ai−j ≡ Ap+i−j ; ∀j ∈ p− 1 .

Assume that z′ i−1 6= zi−1 ∈ Ai. Then, one obtains that
{

d
(

T(n+k)p−1y1, T(n+k)px1

)}∞

k=0
→ D

and
{

d
(

T(n+k)p−1x1, T(n+k)p−1y1

)}∞

n=0
→ 0 with convergent sequences{

T(n+k)p−1x1

}∞

n=0
→ zi−1 and

{
T(n+k)p−1y1

}∞

n=0
→ z′ i−1 . However, then

lim in f
n→∞

{
d
(

T(n+k)p−1x1, T(n+k)p−1y1

)}∞

n=0
> 0 which is a contradiction to{

d
(

T(n+k)p−1x1, T(n+k)p−1y1

)}∞

n=0
→ 0 then zi−1 = z′ i−1. Continuing in the same way

with this process for i − p + 1 ≤ j ≤ i − 1, one concludes that zi ∈ Ai are unique best
proximity points in Ai of Ai+1, which are fixed points of the composite mapping Tp. As a
result, property (i) is proved.

To prove property (ii), note that under Assumption 1 and the given generalized
Assumption 2, and, since k′ j = k j ≤ 1; ∀j ∈ p and sup

Nk∈{Nj}∞
j=0

ln K1(Nk ,Nk+1)
p < 0, then

K1(Nk, Nk+1) = ∏p
j=1

[
k

nj(Nk ,Nk+1)

j k′ j

]
= ∏p

j=1

[
k

nj(Nk ,Nk+1)+1
j

]
≤ kni(Nk ,Nk+1)+1

i < 1 (50)

since Ai ∈ Sc then K1(Nk, Nk+1) ≤ Kp < 1 for some real constant K ∈ [0, 1) and any given
k ∈ Z0+. According to Theorem 2, Equations (35) and (36), one concludes in the same way
as getting (48) and (49) that, for any given x1, yi ∈ Ai ∈ Sc,
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d
(

T∑k+n
`=k−1 (N`+1−N`)+jx1, T∑k+n

`=k−1 (N`+1−N`)+j+1y1

)
≤ Knd(x1, y1) + (1− Kn)D; ∀j ∈ p, ∀n ∈ Z0+ (51)

d
(

T∑k+n
`=k−1 (N`+1−N`)+jy1, T∑k+n

`=k−1 (N`+1−N`)+j+1y1

)
≤ Knd(x1, y1) + (1− Kn)D; ∀j ∈ p, ∀n ∈ Z0+ (52)

so that

lim
j∈pn→∞

d
(

T∑k+n
`=k−1 (N`+1−N`)+jx1, T∑k+n

`=k−1 (N`+1−N`)+j+1y1

)
= lim

n→∞
d
(

T∑k+n
`=k−1 (N`+1−N`)+jy1, T∑k+n

`=k−1 (N`+1−N`)+j+1y1

)
= D (53)

lim
m∈Z0+ ,n→∞

d
(

T∑k+n
`=k−1 (N`+1−N`)x1, T∑k+mn

`=k−1 (N`+1−N`)y1

)
= 0 (54)

The remaining of the proof of property (ii) follows in a similar way to that of prop-
erty (i). �

Remark 6. If Se 6= ∅ in Theorem 4 so that values of the constants k j > 1 for Aj ∈ Se are
compensated by other contractive constant values k j < 1 for Aj ∈ Sc ∪ Sne while (47) holds then
(53) and (54) in Theorem 4 (ii) still hold. H, it cannot be proved, in general, the convergence of
sequences to the best proximity points of adjacent subsets Ai and Ai+1 for i ∈ p of X.

The statements of the given results until now consider the event that the number
of consecutive iterations within each subset Ai before switching to Ai+1 is either pre-
designed, including a fixed number of iterations, eventually being iteration-dependent,
within each Ai, or monitored in the sense that the switching be decided by a switching
rule σ : Z0+ → p such that if σ(k) = σ(k + 1) = i(∈ p), then there is not a switch at the
k-th iteration of T from Ai to Ai+1 for some i ∈ p and the partial orbit of any x0 ∈ ∪i∈p Ai

fulfills O[0,k+1](x0) =
(

O[0,k](x0), xk+1

)
with O[0,k](x0) = (x0, x1, · · · , xk) satisfying xk ∈

(Txk−1)i ⊂ Ai, xk+1 ∈ (Txk)i ⊂
(
T2xk−1

)
i ⊂ Ai.

On the other hand, if (p 3)i = σ(k) 6= σ(k + 1) = i + 1(∈ p), the mapping T
switches from Ai to Ai+1 at the k-th iteration so that the partial orbit O[0,k+1](x0) =(

O[0,k](x0), xk+1

)
=
(

O[0,k−1](x0), xk, xk+1

)
exhibits a switch in the allocation set from

xk ∈ Ai to xk+1 ∈ Ai+1.
The monitored strategy of switching between the subsets Ai; ∀i ∈ p of X according

some rule σ : Z0+ → p is of interest in certain applications. For instance, if the stabilization
of a discrete dynamic system cannot be achieved for successive iterations within a set
because of inherent instability within it, then it is convenient to assign it along certain
transients. Additionally, an instability problem could arise if a discrete system becomes
unstable under its current parameterization. This drawback can be eventually solved
by generating switches in its state, together eventually with parameterization switches,
which lead again the trajectory to a stable region. See, for instance, [24–30]. The following
immediate result establishes the convergence of sequences to a fixed point of any subset Ai,
where the mapping is contractive, under any monitored switching rule which confines the
successive iterations within such a subset after a finite number of iterations.

Theorem 5. Consider a pair (T, σ), where T : ∪i∈p Ai → ∪i∈p Ai is a self-mapping under as-
sumptions A1 and A2 of Theorem 4 and σ : Z0+ → p is a monitored switching rule between
a subset Aj and its right adjacent one Aj+1; ∀j ∈ p. Assume that for some finite k0 ∈ Z0+,
σ(k0 + `) = σ(k0) ∈ p; ∀` ∈ Z0+ such that Aσ(k0)

∈ Sc. Then, any sequence {Tnx0}∞
n=0 → gi

where gi ∈ (Tgi)i ⊂ Tgi ⊂ Ai is a fixed point of T for any given x0 ∈ ∪i∈p Ai.

Proof. It is obvious since the monitored switching rule σ : Z0+ → p determines that any
partial orbit O[k0,k](x0) =

(
xk0 , xk0+1, . . . , xk

)
of the orbit O(x0) is confined within Ai ∈ Sc,

which has a fixed point from since Ai is closed and (Tx)i is closed for any x ∈ Ai. If
T :
(
∪j∈p Aj

)∣∣Ai → ∪j∈p Aj
∣∣(Ai ∪ Ai+1) is single-valued, then gi = Tgi is unique since Ai

is closed and convex. �
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5. Numerical Simulations

This section is aimed at illustrating the previous obtained results concerning the
boundedness of sequences and orbits of cyclic/acyclic contractive/non-contractive self-
mappings. To this end, the case of a discrete-time dynamical system is discussed. Thus,
consider the dynamic system given by:

xk+1 = xkyk (55)

yk+1 = −xkyk (56)

; ∀k ∈ Z0+. The system is described by the self-mapping T(xk, yk) = xkyk(1,−1). This
self-mapping has a different behavior depending on |xkyk| > 1, |xkyk| = 1 or |xkyk| < 1,
generating the following three subsets:

A1 =
{
(x, y) ∈ R2

∣∣|xy| > 1
}
= A11 ∪ A21 ∪ A31 ∪ A41

A2 =
{
(x, y) ∈ R2

∣∣|xy| < 1
}
= A12 ∪ A22; A3 =

{
(x, y) ∈ R2

∣∣|xy| = 1
}

(57)

with

A11 =
{
(x, y) ∈ R2

∣∣∣|xy| > 1, x > 0, y > 0
}

; A21 =
{
(x, y) ∈ R2

∣∣∣|xy| > 1, x < 0, y > 0
}

A31 =
{
(x, y) ∈ R2

∣∣∣|xy| > 1, x < 0, y < 0
}

; A41 =
{
(x, y) ∈ R2

∣∣∣|xy| > 1, x > 0, y < 0
}

A12 =

{
(x, y) ∈ R2

∣∣∣∣∣−1 +
√

5
2

< x < − 2
1 +
√

5
, y = −1/x ∧− 2

1 +
√

5
≤ x ≤ 0, y =

1 +
√

5
2

}
; A22 = A2 − A12 (58)

The set A1 is disconnected and can be represented by the union of four connected
disjoint subsets. These subsets are called A11, A21, A31 and A41 as is displayed in Figure 1
where the blue lines depict the hyperbola y = 1/x. On the other hand, the set A2 is
connected and it is split into two subsets, namely A12 and A22, as in Figure 1.
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Figure 1. Different regions on the plane for the self-mapping (55) and (56).

Note that A1, A2 and A3 are disjoint unbounded subsets of R2, with A1 and A2 being
open and A3 being closed. Since those sets are disjoint, the sets of best proximity points
between each pair of them are empty, but because of the asymptotes defined in blue lines
which define the boundaries, the distances between adjacent subsets are zero. Note that
T is a self-mapping on R2 = A1 ∪ A2 ∪ A3 so that T : A1 ∪ A2 ∪ A3 → A1 ∪ A2 ∪ A3 and
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T(A3) ⊂ A3. Note also from (55) and (56) that, for any given initial point z0 = (x0, y0) ∈ R2,
the Euclidean distance between consecutive points of iterations through T satisfies with
zk = (xk, yk) ∈ R2; ∀k ∈ Z0+:

d(zk+1, zk) =
√
(xk+1 − xk)

2 + (yk+1 − yk)
2 =

√
(yk − yk+1)

2 + (yk+1 − yk)
2

=
√

2|yk+1 − yk| =
√

2|yk + xkyk| =
√

2|yk||1 + xk|
=
√

2|xk||1 + xk| =
√

2|yk||1− yk|; ∀k ∈ Z+

(59)

which becomes asymptotically unbounded as k→ ∞ if |xk| → ∞ , or if |yk| → ∞ , as
k→ ∞ . We can define the contractivity-, non-expansivity- and expansivity-point-dependent
constants as:

k(zk−1, zk) =
d(zk+1, zk)

d(zk, zk−1)
=

|xk||1 + xk|
|xk−1||1 + xk−1|

; ∀k ∈ Z+ (60)

Thus, the Euclidean distances between consecutive points of arbitrary orbits being
calculated via iterations through T from finite initial points in R2 are not necessarily
asymptotically bounded. Then, some monitoring of switching between the three subsets
A1, A2 and A3 should be performed to guarantee their asymptotic boundedness. Note the
following facts:

Fact 1. One obtains from (55) and (56) that xk ≤ 0 and yk = −xk ≥ 0; ∀k ∈ Z+. Therefore,
the second semi-open quadrant (0, 1]× (0, 1] of R2 is unreachable (or forbidden) for any sequence
solution of (55) and (56) except for initial points (x0, y0). As a result, there are forbidden subsets of
A11 and A22 (see (57) and (58) and Figure 1) which are unreachable except for the initial conditions.

Fact 2. If (xk−1, yk−1) ∈ A2, then |xk−1yk−1| < 1 and x2
k−1 = y2

k−1 < 1 since xk = −yk, and
then xk−1 ∈ (−1, 0]; ∀k(≥ 2) ∈ Z+. Thus, |xk| ≤ |xk−1| since |xk| = x2

k−1 ≤ 1; ∀k ∈ Z+.
Additionally, |xk| < |xk−1| and xk−1 ∈ (−1, 0]; ∀k ∈ Z+ imply that −1 < xk−1 < xk < 0;
∀k ∈ Z+. Then, the sequence {xk}∞

k=1 is non-positive and convergent to zero under a weak
contraction. Since {xk}∞

k=1 is non-positive convergent to zero, {yk}∞
k=1 is non-negative and

convergent to zero from (55) and (56).

Fact 3. (T is weakly contractive in A22 and a strict contraction in A12): One obtains from (55),
(56), (60) that

k(zk−1, zk) =
|xk|(1− |xk|)
|xk−1|(1− |xk−1|)

=
|xk| − |xk|2

|xk−1| − |xk − 1|2
=
|xk−1|2 − |xk−1|4

|xk−1| − |xk − 1|2
= |xk−1|+ |xk−1|2

Since {xk}∞
k=1 is convergent for any initial condition in A22, from Fact 2, for any given

real constant kc ∈ [0, 1), there is some finite r = r(kc) ∈ Z+ such that k(zk−1, zk) ≤ kc < 1;
∀k(≥ r) ∈ Z+. By checking the inequality p(|xk−1|) = |xk−1| + |xk−1|2 − 1 < 0 with and
since p(|xk−1|) is a convex parabola, one concludes that p(|xk−1|) < 0 with xk−1 ≤ 0 if xk−1 ∈(
− 1+

√
5

2 , 0
]
. As a result, any sequence {xk}∞

k=0, with (x0, y0) ∈ A22, is non-positive with strictly

decreasing modulus and, from (55) and (56), {yk}∞
k=0 is non-negative and strictly decreasing, both

sequences being convergent to zero. This implies that T is weakly contractive in A22 and it enters
into A12 after a finite number of iterations, where T is a (strict) contraction with the solution
{(xk, yk)}∞

k=0 → 0 for any (x0, y0) ∈ A2.

Fact 4. ((0, 0) is a fixed point of T and a global attractor of the solution for any initial condition
in A22). Additionally, if initial conditions are in the set A1, then the self-mapping is expansive.
The blue lines (set A3) define the boundaries between regions, where the self-mapping is neither
expansive nor contractive. The equilibrium points, which are the fixed points of T, are (0, 0) and
(−1, 1). Figure 2 displays the time evolution of the system when the initial conditions are in A22
and given by x0 = 0.2, y0 = 4.5. It is observed in Figure 2 how the sequence of iterates enters into
A12 and converges to the equilibrium point (0, 0).
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x(k)
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0

5

y
(k
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Figure 2. Evolution of the discrete-time dynamic system (55) and (56), when the initial conditions are
x0 = 0.2, y0 = 4.5.

Fact 5. (T is expansive in A1): For all k ∈ Z+, if (xk−1, yk−1) ∈ A1, then |xk−1yk−1| = 1,
x2

k−1 = y2
k−1 > 1 since xk = −yk, which implies that xk−1 < −1 and xk−1 > 1. Therefore,

xk = −|xk| = −|xk−1|2 < xk−1 = −|xk−1| so that |xk |
|xk−1|

> 1; ∀k ∈ Z+. It can also be

concluded that yk > yk−1 and |yk |
|kk−1|

> 1; ∀k ∈ Z+. Additionally, xk < xk−1 < −1 that
1+ xk < 1+ xk−1 < 0 and |1 + xk| > |1 + xk−1|. Thus, one obtains from (60) that T is expansive
in A1 since

k(zk−1, zk) =
|xk||1 + xk|
|xk−1||1 + xk−1|

>
|1 + xk|
|1 + xk−1|

>
|1 + xk−1|
|1 + xk−1|

≥ in f
k∈Z+

|1 + xk−1|
|1 + xk−1|

= 1; ∀k ∈ Z+.

Fact 6. (T is non-expansive and non-contractive in A3). For all k ∈ Z+, if (xk−1, yk−1) ∈ A3,
then |xk−1yk−1| = 1, x2

k−1 = y2
k−1 = 1 since xk = −yk, which implies that |xk| = |xk−1|2 =

|xk−1| = 1, xk−1 = xk < 0 and |xk |
|xk−1|

= 1. Then,

k(zk−1, zk) =
|xk||1 + xk|
|xk−1||1 + xk−1|

=
|1 + xk|
|1 + xk−1|

=
|1− |xk||
|1− |xk−1||

=
|1− |xk−1||
|1− |xk−1||

= 1; ∀k ∈ Z+

It is also observed that when the image of the self-mapping is included in A2, the
Euclidean distance between two consecutive iterations is bounded and the orbit converges
to the origin, as corresponds to a contractive self-mapping, in accordance with Theorem 1.
It should be to pointed out here that the distance between two consecutive iterations of the
self-mapping is given by the length of the arrow depicted in Figure 2, which corresponds
to the Euclidean distance. On the other hand, if initial conditions are in A31 ⊂ A1, for
instance, the self-mapping is expansive and the orbit diverges, as Figure 3 shows. Figure 3
displays how the length of the arrow increases resulting in an unbounded distance between
consecutive iterations. This happens because the value K(i, 1) in Equation (12) from
Theorem 1 is unbounded due to the expansive properties of the self-mapping.
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Figure 3. Evolution of the discrete-time dynamics system (55) and (56), when the initial conditions
are x0 = −0.5, y0 = −4.5.

It can also be seen that the image of the self-mapping changes the subset from A31 to
A34 and then to A32, where it remains afterwards. This system can be stabilized in different
ways. The clue to stabilizing this system is to include a mechanism in (55) and (56) to force
the self-mapping to be cyclic, that is, to include a mechanism to make the self-mapping
change its image from A1 to A2 so that any condition from Propositions 1, 2 or 3 is met.
For instance, if we force the system to change its image to the set A2 where it remains after
a finite number of changes, then the orbit of the system and the distance between two
consecutive iterations will both be bounded (Propositions 2 and 3, and their extensions to
the general case, Theorems 2 and 3). Two mechanisms are presented in this section for this
purpose: a feedback term added to this system and the impulsive control of states. Thus, a
feedback term working in the following way is added:

xk+1 = xkyk − δk
x2

ky2
k

1 + xkyk
(61)

xk+1 = −xkyk + δk
x2

ky2
k

1 + xkyk
(62)

with

δk =

{
1, |xkyk| > 1
0, otherwise

(63)

If the above feedback term is included in the system, the evolution of (55) and (56)
changes to the one depicted in Figure 4.
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Figure 4. Evolution of the discrete-time dynamic system (61)–(63), when the initial conditions are
x0 = −0.5, y0 = −4.5 and the feedback gain (63) is employed.

It is observed in Figure 4 that the feedback term acts moving the iteration from the
set A31 ⊂ A1, where the self-mapping is expansive, to the set A22 ⊂ A2, and finally to
A12 ⊂ A2, where the self-mapping is contractive and where it remains. Consequently,
according to Theorem 5, the distance between two consecutive iterations is bounded
and converges to zero asymptotically, as seen in Figure 4 by the length of the arrows.
Furthermore, this system could also be stabilized by applying an impulsive action to the
states so that the controlled system reads:

xk+1 = xkyk (64)

yk+1 = −xkyk (65){
x+k = 0.4x−k
y+k = 0.6y−k

, |xkyk| > 1, k is even (66)

where the value x−k stands for the value of the state prior to the impulse, while x+k represents
the value immediately after the impulse. This case corresponds to the situation when the
states of the system suffer an impulsive change whenever they are out of A2 and the
iteration is even. This is not the only impulsive action that could stabilize the system, but it
is certainly one able to do so. Similarly, the effect of feedback, the impulsive action, causes
the self-mapping to become cyclic, changing its image from set A1 to A2. The result of
applying this impulsive action is portrayed in Figure 5.
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Figure 5. Evolution of the discrete-time dynamics system (64)–(66), when the initial conditions are
x0 = −0.5, y0 = −4.5 and the impulsive action (66) is included in the system.

It is observed in Figure 5 how the impulsive action changes the image of the self-
mapping and moves it from A31 to A41 and then to A21 until it ends up in A12, where it
remains and the contractivity of the mapping causes the orbit to converge to the origin
(0, 0). Since A31 ∪ A41 ∪ A21 ⊂ A1 and A12 ⊂ A2 then the monitored mixed cyclic/acyclic
self-mapping T on A1 ∪ A2 ∪ A3 satisfies T(A1) ⊂ A1 ∪ A2, T(A2) ⊂ A2 and T(A3) ⊂ A3.
It is also observed that the length of the arrows is bounded and converges to zero, as
Theorem 5 predicts. Finally, we may consider the multivalued self-mapping given by:

xk+1 = ±
√
|xkyk| (67)

yk+1 = −|xk|yk (68)

There are two branches in (67), one corresponding to the positive sign for the square root
and another corresponding to the negative one. Figure 6 displays the evolution of the two
images of the self-mapping when the initial conditions are given by x0 = −0.5, y0 = −4.5.
The positive branch is depicted by asterisks in red, while the negative branch is portrayed
with plus symbols.

As Figure 6 shows, the multivalued mapping diverges and the distance between two
successive iterations increases and is not asymptotically bounded. However, if an impulsive
action is added to this system as:

xk+1 = ±
√
|xkyk| (69)

yk+1 = −|xk|yk (70){
x+k = 0.4x−k
y+k = 0.6y−k

, |xkyk| > 1, k is even (71)
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Figure 6. Evolution of the multi-valued discrete-time dynamic system (67) and (68), when the initial
conditions are x0 = −0.5, y0 = −4.5. The positive branch is depicted by asterisks in red, while the
negative branch is portrayed in blue plus symbols.

Then, the system stabilizes, as Figure 7 depicts:
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Figure 7. Evolution of the multi-valued discrete-time dynamic system (69)–(71), when the initial
conditions are x0 = −0.5, y0 = −4.5 and the impulsive action (71) is included in the system. The
positive branch is depicted by asterisks in red, while the negative branch is portrayed in blue
plus symbols.

The effect of the impulsive action is to force the image of the mapping to move from
A31 ⊂ A1 to A12 ⊂ A2, where the mapping is contractive. Under these circumstances,
we are in the condition of applying Theorem 5, and the distance between two successive
points reduces and the orbit converges to the origin and the stable equilibrium point of
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the system (0, 0) which is in A2. There is another fixed point, (−1, 1), which is an unstable
equilibrium point.

6. Conclusions

A multivalued self-mapping on the union of a finite number of subsets p(≥ 2) of a
metric space has been considered. Such a mapping might be of a mixed cyclic and acyclic
nature being able to perform some iterations within each of the subsets before switching to
its right adjacent one when generating orbits. The self-mapping is admitted to be either
locally contractive, non-expansive/non-contractive and even locally expansive for different
combinations of pairs of adjacent subsets. The properties of asymptotic boundedness of the
distances associated with the elements of the orbits are proved under certain conditions
of the global dominance of the contractivity for groups of consecutive iterations of the
self-mapping, each of those groups of non-necessarily fixed size. If the metric space is a
uniformly convex Banach space and the subsets are closed and convex, then some particular
results on the convergence of the sequences of iterates to the best proximity points of the
adjacent subsets are obtained in the absence of eventual local expansivity for switches
between all the pairs of adjacent subsets. An application for the stabilization of a discrete
dynamic system subject to impulsive effects in its dynamics due to finite discontinuity
jumps in its state is also discussed. For that purpose, the iterations being run by the
cyclic/acyclic self-mapping are subject to a monitoring process which is governed by a
switching rule between adjacent subsets of the configuration in order to compensate for
eventual instability of the solution under different system parameterizations and impulsive
controls. Numerical examples were also given and discussed.
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