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Abstract: There are three main problems for classical kernel density estimation in its application:
boundary problem, over-smoothing problem of high (low)-density region and low-efficiency problem
of large samples. A new improved model of multivariate adaptive binned quasi-interpolation density
estimation based on a quadtree algorithm and quasi-interpolation is proposed, which can avoid the
deficiency in the classical kernel density estimation model and improve the precision of the model.
The model is constructed in three steps. Firstly, the binned threshold is set from the three dimensions
of sample number, width of bins and kurtosis, and the bounded domain is adaptively partitioned
into several non-intersecting bins (intervals) by using the iteration idea from the quadtree algorithm.
Then, based on the good properties of the quasi-interpolation, the kernel functions of the density
estimation model are constructed by introducing the theory of quasi-interpolation. Finally, the binned
coefficients of the density estimation model are constructed by using the idea of frequency replacing
probability. Simulation of the Monte Carlo method shows that the proposed non-parametric model
can effectively solve the three shortcomings of the classical kernel density estimation model and
significantly improve the prediction accuracy and calculation efficiency of the density function for
large samples.

Keywords: large samples; kernel density estimation; quasi-interpolation; quadtree algorithm; adaptive

MSC: 62G07; 41A63

1. Introduction

Density estimates are a common technique in modern data analysis. They are usually
used to analyze statistical characteristics, such as skewness and multimodality of sam-
ples, and quantify uncertainties. They have been widely used in engineering, economics,
medicine, geography and other fields. The methods of density estimation contain the
parametric method and nonparametric method. The parametric method requires strong
assumptions for the prior model to restrict the probability density function drawn from a
given parametric family of distribution, and then calculates the corresponding parameter
estimates from the samples. The main problem of the parametric method is that inac-
curate setting of the prior parameter model may lead to wrong conclusions. Moreover,
in the process of testing the posterior model, there is a common situation that multiple
assumptions of prior models can pass a posterior test, which greatly affects the accuracy
and efficiency of data analysis. Therefore, to avoid the defects in the parametric method,
Fix and Hodges [1] first eliminate the strong assumptions of the parametric method by
introducing the idea of discriminant analysis, which is also the fundamental thought source
of the nonparametric method. The simplest histogram method is an intuitive embodiment
of this idea. Nonparametric methods do not require any prior assumptions and can predict
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the real distribution of samples only by a data-driven method. Because of their simplicity
and efficiency, nonparametric methods have attracted wide attention. As a classical non-
parametric method, the kernel density estimator was first proposed by Rosenblatt [2] and
Parzen [3]. It requires only a finite linear combination of a given kernel centered on the
samples, while it has optimal convergence rate, optimality and regularization properties
and, thus, it is the most widely studied and applied nonparametric format at present. How-
ever, since actual samples usually come from the bounded region, the prediction results of
the classical kernel density estimator near boundary points are often poor, called boundary
problems. In addition, the selection of bandwidth for the kernel density estimator is very
important. It will lead to an over-smoothing phenomenon in high (low)-density regions
and lack local adaptivity.

In order to eliminate the boundary problem of the classical kernel density estimator,
Schuster [4] proposed a data reflection method to obtain a complete dataset through
reflection processing of data near the endpoints of bounded intervals, thus, avoiding the
boundary problem. However, the data reflection method only applies to the case where
the derivative of true density function is zero at the end of the bounded interval, because
it actually corrects the inconsistency of classical kernel estimation on bounded intervals.
Compared with the limitation of the data reflection method on the boundary derivative
of the true density function, the boundary kernel method was first proposed by Gasser
and Muller [5] as another more general solution and has been further extended. It can
adapt to the density function of any shape. A disadvantage of the boundary kernel method
is that the estimated value obtained may be negative. Jones and Foster [6] proposed a
non-negative boundary kernel estimator to solve this defect by combining the advantages
of the local linear estimator and re-normalized kernel estimator. Another problem with
the boundary kernel method increases the variance in the estimator. In order to improve
this problem, there are some methods proposed, such as transformation method, pseudo
data method, generalized reflection method and so on. In particular, Chen [7,8] attempted
to provide a simpler method to eliminate the boundary problem without sacrificing the
nonnegativity of density estimation. He further proposed a Beta kernel estimator on the
support [0, 1] and a Gamma kernel estimator on the support [0, ∞], while he denoted that
they have smaller variances. The proposal of a Beta kernel estimator and Gamma kernel
estimator has attracted wide attention. Markovich [9] discussed the good characteristics
of the Gamma kernel estimator and extended it to the estimation of multivariate density
functions and their partial derivatives. Based on the Gamma estimator, Lin [10] discussed
the relationship between temperature and number of potential novel coronavirus infections
in China. However, Zhang [11,12] showed that the Beta kernel estimator and Gamma
kernel estimator have serious boundary problems and perform worse than the well-known
boundary kernel estimation method, when the true density function does not meet the
shoulder condition (that is, the first derivative of the density function at the boundary is
0). Cherfaoui [13] et al. further discussed the properties of Gamma kernels in the case
that the density function does not satisfy the shoulder condition. Therefore, the boundary
problem of kernel density estimation still has a lot of room for improvement. Moreover,
the above density estimates method to eliminate the boundary problem generally faces the
complexity of kernel function construction or requires some certain applicable conditions,
while they are low efficiency in dealing with large samples.

Compared with the kernel density estimator calculated directly, the binned kernel
density estimator is beneficial to save a lot of calculation. By pre-grouping samples on
isometric grids and applying an appropriate kernel density estimator to the sample data
after pre-classification, the calculation is greatly reduced. Moreover, some researchers have
shown that a large binned number will not affect the mean integrated squared error of
the kernel density estimator [14]. Hall [15] studied the accuracy of density estimation of
binned kernel under general binned rules. He provided the minimum mesh size required
to obtain a given accuracy level by discussing the influence for accuracy from binned rules
and the smoothness of the kernel function. Luo [16] improved the accuracy of the kernel



Mathematics 2022, 10, 2402 3 of 15

density estimator method based on the resampling strategy of a multi-point grid. Harel [17]
discussed the asymptotic normality of a binned kernel density estimator for non-stationary
random variables. Peherstorfer [18] proposed a density estimation based on sparse grid,
which can be viewed as improved binned rules. It used a sparse grid instead of full grid to
reduce the bins. Although the binned kernel density estimator improves the processing
efficiency of large sample data through the binned strategy, it still faces the boundary
problem of the kernel density estimator in essence. In addition, there are some other
methodologies to apply kernel density estimation to large datasets. Cheng [19] proposed a
quick multivariate kernel density estimation for massive datasets by viewing the estimator
as a two-step procedure: first, kernel density estimator in sub-interval and then function
approximation based on pseudo data via the Nedaraya–Watson estimator. However, the
research of Gao [20] demonstrated that the generalized rational form estimators provide a
low convergence rate. Moreover, the computation of pseudo data using a kernel density
estimator brings more computation than the above binned rule and does not consider the
boundary problem of the kernel density estimator. Zheng [21] focused on the choice method
of samples from large data to produce a proxy for the true data with a prescribed accuracy,
which is more complex than the direct binned rule. Moreover, the research does not pay
much attention to the discussion of the kernel density estimator. Therefore, the binned
method is very simple and clear. Recently, we proposed a kernel density estimator based
on quasi-interpolation and proved its theoretical statistical properties, but the research does
not provide a solution for the over-smoothing phenomenon [22].

Another problem (over-smoothing phenomenon) for kernel density estimators is
caused by the improper selection of bandwidth, and different scholars have adopted
different methods to reduce the occurrence of this phenomenon. The most classical method
to choose the bandwidth is the thumb rule, which calculates the optimal bandwidth by the
standard deviation and dimension of the samples. Due to the simplicity of this method,
it is regarded as a common tool in most application studies of kernel density estimators.
However, the actual samples are usually random and uneven, and the optimal bandwidth
obtained by the thumb rule is fixed. It only provides a calculation criterion of an optimal
bandwidth in a sense and has a very limited improvement effect on the over-smoothing
phenomenon. An adaptive bandwidth approach is used to ameliorate this phenomenon
viewed as a correction to the thumb rule, which consists of two steps. Firstly, the evaluated
function is calculated with a fixed bandwidth and the quantitative relationship between
the pointwise function value of samples and the geometric mean value of the samples
is established. Then, according to the quantitative relationship, the pointwise correction
coefficient is determined to modify bandwidth. The final kernel density estimator can be
obtained based on these modified bandwidth. The adaptive bandwidth method improves
the accuracy of kernel density estimators for a fixed bandwidth, but it is difficult to apply to
large samples because each sample will affect the determination of the correction coefficient
and the computational efficiency is low. Barreiro Ures [23] proposed a bandwidth selection
method for large samples via using subagging. The subagging can be viewed as an
improvement on the cross-validation method. Therefore, it is difficult to capture local
changes in samples. Moreover, the research does not consider the boundary problem.

In conclusion, a classical kernel density estimator is a convenient vehicle and it is
widely used in many branches of science and technology. However, the majority of research
usually did not consider the constraints of the kernel density estimator model itself. These
limitations and deficiencies for the kernel density estimator need to be further considered.
In addition, previous methods of kernel density estimators are not synthetically considered
among the boundary problem, smooth problem and large sample computation efficiency.
Therefore, in view of the insufficiency of the classical kernel density estimator, this paper
proposes a new modeling process of multivariate adaptive binned kernel density estimators
based on the quadtree algorithm and quasi-interpolation, which significantly improves the
prediction accuracy of the estimation density function. Research works in this paper are
summarized as follows:
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(1) Aiming at the boundary problem of the classical kernel density estimator defined
over bounded region a new set of asymmetric kernel functions is introduced based on the
quasi-interpolation theory to avoid the boundary problem.

(2) To improve the computational efficiency of the classical kernel density estimator for
large samples, the idea of binned kernel density estimation is introduced. The coefficient
explicit expression of the density estimator under the binned rule of data is derived, which
greatly reduces the computation and improves the computational efficiency of the model.

(3) To alleviate the over-smoothing phenomenon of classical kernel density estimators,
this paper proposes an adaptive strategy based on the segmentation thought of quadtree
algorithm. We set the segmentation thresholds from sample size, bin width and kurtosis
to achieve adaptive computation for the amount of bin and bin width. It can effectively
avoid the over-smoothing phenomenon in the high (low)-density area and increase local
adaptability in the model for samples and further improve the accuracy in the model.

(4) We extend the univariate model based on the quadtree algorithm to the multivariate
model. The numerical simulation based on Monte Carlo shows that the constructed models
in this paper perform well in the boundary problem, large samples and over-smoothing
phenomenon, which are significantly better than the current widespread use of kernel
density estimation methods.

2. Univariate Adaptive Quasi-Interpolation Density Estimator
2.1. Univariate Quasi-Interpolation Density Estimator

Let X1, X2, · · · , Xn be a set of random samples subject to the probability distribution
of an unknown probability density function f (x). The classical non-parametric kernel
density estimator is defined as:

f1,n(x) =
1

nh

n

∑
i=1

K
(

x− Xi
h

)
(1)

where h denotes bandwidth and K(x) denotes kernel function or weight function. There
are some common symmetric kernel functions shown in Table 1:

Table 1. Common kernel functions.

Type of Kernel Function Expression of Kernel Function

Gaussian kernel K(x) =
1√
2π

exp
(
−x2/2

)
Epanechnikov kernel K(x) =

3
4
(
1− x2), |x| ≤ 1

Triangular kernel K(x) = 1− |x|, |x| ≤ 1

Uniform kernel K(x) =
1
2

, |x| ≤ 1

Exponential kernel K(x) =
1
2

λexp(−λ|x|)

According to Equation (1), the classical kernel density estimator requires one to
calculate the distance between the predicted point and each sampling point to allot weight
function. It means that the computation increases rapidly with the increase in sample
size. We can note that the prediction points are mainly influenced by the samples in the
limited bandwidth domain, while the samples outside the bandwidth domain have very
little influence. The pointwise calculation of large samples outside the bandwidth domain
greatly reduces the computational efficiency. Therefore, the binned kernel density estimator
was proposed:

g1,n(x) =
1

nh ∑
j∈Z

njK
( x− tj

h

)
. (2)
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where tj denotes the centers of the j-th bin and nj denotes the number of samples dropped
in the j-th bin, satisfying ∑ nj = n. For clarity, we remind readers: Xi denotes random
sample and tj represents center of bin. According to Equation (2), it can be found that
the binned kernel density estimator transforms the pointwise calculation of the classical
kernel density estimator into the calculation for bin centers. Its essential idea is to treat
the samples in a small region as a whole and the central points of each region as the core
samples. Therefore, it can ignore the bandwidth difference between each individual sample
and the central point of the region. In this way, unnecessary detailed calculation in the
classical kernel density estimator can be reduced and the computational efficiency can be
improved on the premise of ensuring accuracy.

However, since actual samples are usually sampled from the bounded domain, the
above two classes of the kernel density estimator face the same problem; that is, the
boundary problem will occur when a fixed symmetric kernel function is used to predict the
true density function defined over a bounded domain. The main reason for the boundary
problem is that the weight is allotted outside the density support when smoothing near the
boundary point by using a fixed symmetric kernel function. A natural strategy is to use a
kernel that has no weight allotted outside the support. Therefore, under the framework of
numerical approximation, combining with the theory of quasi-interpolation and the binned
idea to improve the above models, this paper proposes a new binned quasi-interpolation
density estimator, which can not only improve the computation efficiency of large samples,
but also eliminate the boundary problem.

Let us start with some definitions and lemmas:

Definition 1. Let [a, b] be a bounded interval, and a, b be known, a = t0 < t1 < · · · < tn = b be a
set of scattered centers on the interval [a, b], f

(
tj
)n

j=0 be the discrete function values corresponding

to scattered centers. Let c be the positive shape parameter, φj(x) =
√

c2 +
(

x− tj
)2 be the MQ

function first constructed by Hardy [24], then we have a quasi-interpolation (LD operator).

LD f (x) =
n

∑
j=0

f
(
tj
)
ψj(x),

where
{

ψj
}n

j=0are the asymmetric MQ kernels

ψ0(x) = 0.5 +
φ1(x)− (x− t0)

2(t1 − t0)
,

ψ1(x) =
φ2(x)− φ1(x)

2(t2 − t1)
− φ1(x)− (x− t0)

2(t1 − t0)
,

ψj(x) =
φj+1(x)− φj(x)

2
(
tj+1 − tj

) −
φj(x)− φj−1(x)

2
(
tj − tj−1

) , j = 2, 3, · · · , n− 2,

ψn−1(x) =
(tn − x)− φn−1(x)

2(tn − tn−1)
− φn−1(x)− φn−2(x)

2(tn−1 − tn−2)
,

ψn(x) = 0.5 +
φn−1(x)− (tn − x)

2(tn − tn−1)
.

(3)

Here, these kernels satisfy 0 < ψj(x) < 1 and
n
∑

j=0
ψj(x) = 1.

In addition, we obtain the following error estimates, which can be found in Wu and
Schaback [25].
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Lemma 1. For any function f ∈ C2[a, b], let h = max
{

tj+1 − tj
}n−1

j=0 , c be a positive shape
parameter, there exists some constant K1, K2, K3 independent of h and c, such that the following
inequality

|| f − LD f ||∞ ≤ K1h2 + K2ch + K3c2|log h|

holds.

According to lemma 1, for any shape parameter c satisfying 0 ≤ c ≤ O
(

h/
√
|log h|

)
,

the convergence rate O
(
h2) for the whole bounded interval can be provided by quasi-

interpolation LD. Furthermore, the research of Ling [26] shows that the multivariate
LD operator by the tensor product technique(dimension-splitting) can provide the same
convergence rate as the univariate case. Inspired by the convergence characteristics of quasi-
interpolation and the idea of the binned kernel density estimator, we construct a univariate
adaptive quasi-interpolation density estimator based on the quadtree algorithm, which
consists of three steps. Suppose that X is a random variable, {Xk}n

k=1 are the n independent
samples in the random variable X. There is an unknown density function f (x) on the
bounded interval. The first step is to divide the interval [a, b] into N bins

{[
tj, tj+1

)}N−1
j=0 .

Let nj denote the number of samples {Xk}n
k=1 dropping into the corresponding bin

[
tj, tj+1

)
.

In the second step, we construct a new univariate binned density estimator as follows:

Q1,D f (x) =
N

∑
j=0

αj( f )ψj(x), x ∈ [a, b]. (4)

Here,
{

ψj
}N

j=0 denote the asymmetric MQ kernels defined by Equation (3), and the

coefficients
{

αj( f )
}N

j=0 are defined as

α0( f ) =
t2 + t1 − 2t0

(t2 − t0)(t1 − t0)

n0

n
+

t0 − t1

(t2 − t0)(t2 − t1)

n1

n
,

αj( f ) =
tj − tj−1(

tj+1 − tj
)(

tj+1 − tj−1
) nj

n
+

tj+1 − tj(
tj − tj−1

)(
tj+1 − tj−1

) nj−1

n
, j = 1, 2, · · · , N − 1,

αN( f ) =
2tN − tN−1 − tN−2

(tN − tN−1)(tN − tN−2)

nN−1

n
+

tN−1 − tN

(tN − tN−2)(tN−1 − tN−2)

nN−2

n
.

(5)

According to Equation (4) and lemma 1, we can note that the introduction of asym-
metric MQ kernels can avoid the boundary problem caused by the weight allotted outside
the support when the traditional kernel function smooths near the boundary points. More-
over, Equation (5) shows that nj/n represents the frequency of samples falling into the
corresponding bin

[
tj, tj+1

)
. Through the linear combination of frequencies between adja-

cent bins, the explicit expression of coefficients of the estimator under the binned rule is
given, which can effectively improve the calculation efficiency in the model. Thirdly, the
over-smoothing phenomenon in the kernel density estimator is considered. In the above
two steps, we built a univariate binned quasi-interpolation density estimator. Based on the
known samples and interval, the interval was divided into a certain number of bins, and
then the estimated density function could be calculated by the endpoint position of the
bin and the number of samples in the bins. If the number of bins is too few, the predicted
result is over-smoothing, which differs greatly from the actual scenario. If the number of
bins is too great, the calculation efficiency will be greatly reduced. How to determine the
number and width of bins is the key to both model accuracy and calculation efficiency. The
most common method is the thumb rule, which takes the idea of a fixed bandwidth and
calculates the bandwidth as follows:

h =

(
4

d + 2

)1/(d+4)
σn−1/(d+4). (6)
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Here, d denotes the dimension and σ denotes standard deviation of samples. In
particular, to maintain notational clarity, we remind readers: d denotes dimension and
D is a mark of LD operator. The number of bins is calculated by ceiling (b− a)/h. This
method uses equal bandwidth, and similar equal bandwidth methods include the unbiased
cross-validation method and insertion method, etc. However, due to the strong randomness
and uneven distribution of actual samples, the equal bandwidth method generally has the
problem of insufficient description of details for the high-density area, which causes the
over-smoothing phenomenon. Therefore, it is expected that the bandwidth can be adjusted
adaptively with the density of samples. The bandwidth should be smaller in high-density
areas to enhance local characterization and improve accuracy. In addition, the bandwidth
should be larger in the gentle area to avoid excessive calculation and improve calculation
efficiency. A common adaptive method determines the number of bins according to the
thumb rule and obtains the estimated value of bin centers. Then, the ratio between each
estimated value and the geometric mean of each estimated value is taken as the correction
coefficient of bandwidth, so as to achieve the purpose of taking smaller bandwidth in the
intensive area and larger bandwidth in the sparse area. This adaptive method is simple
and easy to operate, but it also has three disadvantages: First, this method is based on the
estimation of thumb rule, and the adaptive process does not change the number of bins,
which can be regarded as the optimal configuration of bandwidth in essence. Second, the
degree of adaptive refinement is insufficient and the determination of bandwidth correction
coefficient is too rough, which is susceptible to extreme values. Moreover, it is difficult
to distinguish sharp peaks from wide peaks. Third, the adaptive effect of multi-peak
distribution is poor. In addition, the density near the boundary is usually small, and
increasing the width of the bin easily aggravates the boundary problem. Therefore, this
paper proposes a new adaptive binned method.

2.2. Adaptive Binned Method Based on Quadtree Algorithm

The quadtree algorithm, as a space partition index technology, is widely used in the
image processing field [27]. The key idea is an iterated segmentation of data space. The
number of iterations depends on the number of samples in bins and bin-width threshold.
Therefore, the density of samples can be characterized by the number and width of bins. The
area with dense samples has more iterated segmentation and the area with sparse samples
has less iterated segmentation. Therefore, according to the idea of quadtree segmentation,
we can adaptively adjust the bin number and bin width in the quasi-interpolation density
estimator via a data-driven method. The high-density area is divided into more bins to
obtain a smaller bin width, which can more keenly capture the distribution details of the
area, while the gentle area is divided into fewer bins to save the cost of calculation, so as
to achieve a reasonable distribution of bins and improve the accuracy in the model. The
adaptive binned method based on the quadtree algorithm is shown in Figure 1:

First of all, the sample space is divided into four bins and the number of samples
{ni}4

i=1 in each bin and the bin widths {Li}4
i=1 are recorded. Secondly, we set the threshold

of sample number nmax and bin width Lmax. The setting of sample number threshold
nmax captures distribution details in the high-density area with more bins and improves
computing efficiency in the gentle area with less bins. It not only solves the over-smoothing
problem but also takes into account computing efficiency. The setting of the bin-width
threshold ensures the segmentation level of the whole domain and avoids an insufficient
number of bins, which leads to the large estimation error or boundary problem. Following
the thumb rule, we set the bin-width threshold to 1.06σn−1/5. In addition, we set a kurtosis
threshold to identify the peak distribution of samples and improve the accuracy. Finally,
the number of samples and bin width in each bin are compared with the number of sample
number threshold nmax, bin-width threshold Lmax and kurtosis threshold. The segmentation
is finished when all of these conditions are met.
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3. Multivariate Adaptive Binned Quasi-Interpolation Density Estimator

Based on the idea of the above univariate adaptive binned quasi-interpolation density
estimator, we extend it to the multivariate model. Following the above process, we first
construct the multivariate binned density estimator. The classical multivariate kernel den-
sity estimator and multivariate binned density estimator are extended from the univariate
model via the tensor product technique. They are defined as follows:

fd,n(x) =
1

nH

n

∑
i=1

Kd(x− Xi),

where x = (x1, x2, · · · , xd), H =
d

∏
j=1

hj, Kd(x− Xi) = K
((

x1 − Xi1
)
/h1

)
K
((

x2 − Xi2
)
/h2

)
· · ·K

((
xd − Xid

)
/hd

)
.

gd,n(x) =
1

nH ∑
j1∈Z

∑
j2∈Z
· · · ∑

jd∈Z
nj1, j2,··· , jd K

( x1 − tj1
h1

)
· · ·K

( xd − tjd
hd

)
, (7)

where ∑ · · ·∑ nj1, j2, ··· , jd = n. Based on the above univariate binned quasi-interpolation
density estimator, we also extended it to the multivariate binned quasi-interpolation density
estimator via tensor product technique:

Let X be a d-dimension random variable with an unknown density function f defined

on a bounded hyperrectangle Id =
d

∏
i=1

[ai, bi], ai < bi ∈ R. Let {Xk}n
k=1 be the n independent
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samples of random variable X. Inspired by the idea of histogram, Id is divided into N sub-

intervals
{

d
∏
i=1

[
ti, ji , ti, ji+1

)}
, ai = ti,0 < ti,1 < · · · < ti,Ni = bi, 1 ≤ i ≤ d. Here, {Ni}d

i=1 are

positive integers, 0 ≤ ji ≤ Ni − 1, 1 ≤ i ≤ d. Then, the frequency of {Xk}n
k=1 dropping

into each bin
d

∏
i=1

[
ti, ji , ti, ji+1

)
can be calculated by nj1, j2, ··· , jd /n. A multivariate (bivariate)

quasi-interpolation density estimator via the tensor product technique is as follows:

Q2,D f (x) =
N1

∑
j1=0

N2

∑
j2=0

αj1, j2 ( f )ψj2(x2)ψj1(x1), (8)

For 1 ≤ ji ≤ Ni − 1, i = 1, 2, · · · , d, the coefficient αj1, j2( f ) is

αj1, j2( f ) = β j1, j2
nj1−1, j2−1

n
(
t1, j1 − t1, j1−1

)(
t2, j2 − t2, j2−1

)
+β j1+1, j2

nj1−1, j2−1 + nj1, j2−1

n
(
t1, j1+1 − t1, j1−1

)(
t2, j2 − t2, j2−1

)
+β j1, j2+1

nj1−1, j2−1 + nj1−1, j2

n
(
t2, j2+1 − t2, j2−1

)(
t1, j1 − t1, j1−1

) ,

where

β j1, j2 =

(
t2, j2+1 − t2, j2

)(
t1, j1+1 + t1, j1−1 − 2t1, j1

)
−
(
t1, j1+1 − t1, j1

)(
t2, j2 − t2, j2−1

)(
t1, j1+1 − t1, j1

)(
t2, j2+1 − t2, j2

) ,

β j1+1, j2 =
t1, j1 − t1, j1−1

t1, j1+1 − t1, j1
,

β j1, j2+1 =
t2, j2 − t2, j2−1

t2, j2+1 − t2, j2
.

For ji ∈ {0, Ni}, i = 1, 2, · · · , d, the coefficient αj1, j2( f ) is

αj1, j2( f ) = γj1, j2
nj1, j2

n
(
t1, j1+1 − t1, j1

)(
t2, j2+1 − t2, j2

)
+γj1+1, j2

nj1, j2 + nj1+1, j2

n
(
t1, j1+2 − t1, j1

)(
t2, j2+1 − t2, j2

)
+γj1, j2+1

nj1, j2 + nj1, j2+1

n
(
t1, j1+1 − t1, j1

)(
t2, j2+2 − t2, j2

) ,

(9)

where

γj1, j2 =
t1, j1+1

(
t2, j2+1 − t2, j2

)
− t1, j1+1

(
t2, j2+1 − t2, j2

)
+ t1, j1

(
t2, j2+1 − t2, j2+2

)(
t1, j1+1 − t1, j1+2

)(
t2, j2+1 − t2, j2

) ,

γj1+1, j2 =
t1, j1+1 − t1, j1

t1, j1+1 − t1, j1+2
,

γj1, j2+1 =
t2, j2+1 − t2, j2

t2, j2+1 − t2, j2+2
.

In Equation (9), for i = 1, 2, · · · , d, there are Ni + 1 := Ni − 1 and Ni + 2 := Ni − 2.
To avoid the over-smoothing phenomenon, we use the advantage of the tensor product to
transform the multivariate adaptive binned problem into a univariate problem, and the
adaptive process is shown in Figure 2.
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Figure 2. Bivariate adaptive binned method based on quadtree algorithm.

First, we divide the domain into two bins for each dimension and record the number
of samples and the bin width in each bin from the univariate dimension. Secondly, they
are compared with the threshold of sample number, bin width and kurtosis to achieve
iterative segmentation. Finally, these bins in each dimension are spanned into some two-
dimensional bins via the tensor product technique, and the number of samples falling in
each two-dimensional bin is recorded.

4. Numerical Simulation

In order to verify the performance of the model proposed in this paper, the Monte
Carlo method is used for numerical simulation in this section. Maximal Mean Squared
Error (MMSE)

MMSE( f ) = supx∈[a,b] E
(

Q(∗) f (x)− f (x)
)2
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and Mean Integrated Squared Error (MISE)

MISE( f ) = E∑
(

Q(∗) f (x)− f (x)
)2

are used to quantify the difference between the estimated density function and the true
density function. Here, E denotes the expectation value, Q(∗) f (x) denotes estimated
density function and f (x) denotes true density function. MMSE and MISE error are used
to measure the local and overall accuracy in the model, respectively.

4.1. Univariate Test

As the first example, we test the prediction accuracy of the univariate model by using
the following test function:

f (x) =
1
2
N
(

1
2

,
1
6

)
+

2

∑
l=−2

21−l

31
N
(

2(l + 3) + 1
12

,
2−l

60

)
, x ∈ [0, 1].

Here, N(µ, σ) denotes a normal distribution with an expectation µ and variance
σ. The test function (called asymmetric claw distribution) is a combination of the five
different parameters’ normal distribution, which has five peaks and troughs of different
heights on the considered interval [0, 1]. Next, the comparison of the quasi-interpolation
density estimator (QIDE), univariate adaptive binned quasi-interpolation density estimator
(AQIDE) based on the quadtree algorithm, classical kernel density estimator (KDE) and
binned kernel density estimator (BKDE) are shown in Figure 3.
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Figure 3. Sketches of asymmetrical claw distribution.

Figure 3 shows the sketches of different density estimators when the sample number
is n = 12, 400 and the number of simulation experiments is 100. Furthermore, we provide a
comparison sketch of KDE under the larger sample number, n = 12, 400× 50 = 620, 000. In
these simulation experiments, the bandwidth selection for the KDE model and bin-width
selection of the BKDE model both adopt the thumb rule of Equation (6). The bin number
and bin width in the AQIDE model proposed in this paper are adaptively obtained by the
univariate quadtree segmentation algorithm designed in Section 3. The shape parameter is
selected as c = min(Li). The threshold of bin width Lmax is determined by using the thumb
rule Lmax = 1.06σn−0.2 from Equation (6). The threshold of bin number nmax is determined
by nmax = nLmax based on the thumb rule, and the kurtosis threshold is determined as 3.
In addition, to compare the performance of the quasi-interpolation model after an adaptive
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processing proposed in this paper, the same bin number and shape parameters are selected
for the QIDE model and AQIDE model.

In Figure 3, the blue dashed line denotes the true density function, while the turquoise,
black, red and green lines represent the results by the KDE, BKDE, QIDE and AQIDE
models, respectively. The black dashed line denotes the result of KDE for larger samples.
We can note that the ability of classical KDE to catch the last two high peaks is poor. It
performs nearly as well as our QIDE only when the sample number is increased to 620,000.
The MMSE error and MISE error corresponding to each model are shown in Table 2.
According to Figure 3 and Table 2, the binned technique does not affect the fitting accuracy.
Moreover, the KDE and BKDE models both have a serious over-smoothing phenomenon,
and the prediction effect of peaks and troughs is poor. The QIDE and AQIDE models
in this paper can alleviate the problem. The fitting effect of peaks and troughs performs
significantly better than the KDE and BKDE models. In addition, according to the adaptive
algorithm proposed in this paper, we calculate the bin number, and then we provide the
results of the equidistant QIDE and AQIDE model under the same bin number. These
results show that the AQIDE model performs better than the QIDE model when the bin
number is the same. It means that the proposed adaptive method based on the quadtree
algorithm can better capture the distribution details than the case of equidistance bin width
and improve the fitting accuracy of the model by increasing or reducing adaptive bins in
the high-density or gentle area.

Table 2. Accuracy of univariate model.

Model MMSE MISE

KDE 1.1197 0.0559
BKDE 1.1333 0.0587
QIDE 0.7065 0.0166

AQIDE 0.6601 0.0105

4.2. Bivariate Test

In order to further test the performance of the multivariate model proposed in this
paper, we choose the following modified bivariate density function as the test function:

f (x1, x2) = G·
(

3
4

e−((9x1−2)2+(9x2−2)2)/4 +
3
4

e−((9x1+1)2/49−(9x2+1)/10)

+
1
2

e−((9x1−7)2+(9x2−3)2)/4 − 1
5

e−((9x1−4)2+(9x2−7)2)

)
, x1, x2 ∈ [0, 1].

The function originates from the classic Franke function, which is difficult to approx-
imate due to two Gaussian peaks of different heights and a small dip. Therefore, it is
widely used as a test function in numerical analysis. In the test function, a constant G
is introduced to ensure that the final test function f is the density function defined over
the domain [0, 1]2. A comparison of the adaptive multivariate binned quasi-interpolation
density estimator (AMQIDE), multivariate binned quasi-interpolation density estimator
(MQIDE), classical multivariate kernel density estimator (MKDE) and multivariate binned
kernel density estimator (MBKDE) is shown in Figure 4.

Figure 4 shows the sketches of different multivariate density estimators under the
samples N = 300, 000 and the number of simulation experiments is 50. In these simulation
experiments, the bandwidth of the MKDE model and the bin width of the MBKDE model
both adopt the thumb rule from Equation (6). The bin number and bin width in the AQIDE
model are calculated by the multivariate adaptive quadtree algorithm. The shape parameter
is chosen as c = h and the threshold of the bin width Lmax is given by the thumb rule
Lmax = σn−1/6 from Equation (6). The threshold of the sample number nmax is determined
by nmax = nLmax based on the thumb rule, and the kurtosis threshold is determined as 3.
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In addition, the QIDE model chooses the same bin number and shape parameter as the
AQIDE model.
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The Figure 4a is the real density function. Figure 4b,c are the estimated density
functions obtained by the AMQIDE model and MQIDE model, while Figure 4d,e are the
estimated density functions obtained by the MKDE model and MBKDE model. In addition,
corresponding MMSE errors and MISE errors in the four models are provided in Table 3.
From Figure 4 and Table 3, it can be noted that the kurtosis in the Franke density function
is small, and the estimated results of the MQIDE model and AMQIDE model are consistent,
meaning that our adaptive method can effectively identify high-density areas. The results
of the MKDE model and MBKDE model are similar to the univariate situation, which
perform poorly with a serious boundary problem. The performance is much lower than
the MQIDE and AMQIDE models proposed in this paper.

Table 3. Accuracy of bivariate model.

Model MMSE MISE

MKDE 1.3906 0.0211
MBKDE 1.3891 0.0204
MQIDE 0.0680 2.3017 × 10−4

AMQIDE 0.0680 2.3017 × 10−4

5. Conclusions

This paper proposes a multivariate adaptive quasi-interpolation density estimation
model based on the quadtree algorithm. The key goal to achieve the adaptive segmenta-
tion for samples via the quadtree algorithm and obtain the proper binned number and
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bin width. The method can be adjusted adaptively according to the distribution of the
samples. It not only identifies details of distribution in the high-density area, but also
avoids the inefficiency of large bins, which can effectively avoid the over-smoothing phe-
nomenon. Moreover, based on the good properties of quasi-interpolation, the theory of
quasi-interpolation is introduced to construct the kernel function for the density estimator,
which can avoid the boundary problem of the classical kernel density estimator. Finally,
the idea of frequency approximation probability is used to construct the coefficient of the
binned density estimator, which can handle large samples and improve computational
efficiency. The simulation of Monte Carlo shows that the proposed nonparametric model
has strong robustness and can estimate the density function with high performance.
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