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Abstract: In this paper we shall give another proof of a special case of Gao’s theorem for generating
integrally indecomposable polygons in the sense of Minkowski. The approach of proving this
theorem will enable us to give an effective algorithm for construction integrally indecomposable
convex integral polygons with arbitrary many vertices. In such a way, classes of absolute irreducible
bivariate polynomials corresponding to those indecomposable Newton polygons are generated.
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1. Introduction

Geometrical approach to irreducibility testing of bivariate polynomials via associated
polygons originates at geometrical generalization of some irreducibility criterions for
univariate polynomials. Dumas [1], J. Kurschak [2], O. Ore [3–5] and T. Rella [6] have
generalized Eisenstein irreducibility criterion [7] using Newton polygons and enabled
geometrical approach in further research of irreducibility of multivariate polynomials.
Lipkovski [8] associates a polynomial to an unbounded Newton polyhedron, which is a
direct analogue of Newton polygon in higher dimensions. Schmidt [9] gives a method for
constructing some classes of absolutely irreducible bivariate polynomials. A theoretical
basis for geometrical approach in research into the irreducibility of polynomials in more
than two variables is given by Ostrowski [10,11]. The relationship between the absolute
irreducibility of multivariate polynomials and integral indecomposibility of associated
Newton polytopes, in the sense of Minkowski, is fully explained by Gao in [12]. However,
Erich Kaltofen [13] and Sturmfels [14] emphasized importance of solving the reverse
problem, finding possible factorizations for multivariate polynomials with decomposable
Newton polytopes. Koyuncu [15] discusses possible factorizations for bi- and tri-variate
polynomials with decomposable Newton polytopes depending on the characteristic of the
field. The necessary and sufficient condition for the existence of a non-trivial factorization
of an arbitrary bivariate polynomial with integer coefficients into factor-polynomials with
integer coefficients is given in [16]. An effective factorization algorithm based on this result
is presented in [17].

Definition 1. A polynomial over a field F is called absolutely irreducible if it remains irreducible
over every algebraic extension of F.
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The convex hull of a set S in R2 (denoted by conv(S)) is the smallest convex set that
contains the set S. Graham [18] presented an algorithm for construction of the convex hull
of a finite planar set.

Definition 2. Let f (x, y) ∈ Z[x, y]:

f (x, y) = ∑ Ce1e2 xe1 ye2 .

Consider an exponent vector (e1, e2) as a point in Z2. The Newton polygon of the polynomial
f (x, y) , denoted by Pf , is defined as the convex hull in R2 of all the points (e1, e2) with Ce1e2 6= 0.

Definition 3. For two arbitrary sets A, B ⊂ R2, the set A + B = {a + b | a ∈ A, b ∈ B} is
called the Minkowski sum of sets A and B .

A point in R2 is called integral if both of its coordinates are integers. A polygon in R2

is called integral if all of its vertices are integral.

Definition 4. An integral polygon C is called integrally decomposable if there exist integral
polygons A and B such that C = A + B, where both A and B have at least two points. Otherwise,
C is called integrally indecomposable.

Theorem 1 ([10]). Let F be a field. Let f , g, h ∈ F[x, y] with f = gh. Then Pf = Pg + Ph.

Theorem 2 ([12]). Let f (x, y) be a non-zero polynomial over an arbitrary field F, non-divisible
either by x or by y. If the Newton polygon of the polynomial f (x, y) is integrally indecomposable,
then f (x, y) is absolutely irreducible over F.

For an arbitrary integral point a = (ax, ay), GCD(ax, ay) is denoted by GCD(a).
For arbitrary integral points a and b, GCD(GCD(a), GCD(b)), is denoted by GCD(a, b).
In [19] necessary and sufficient conditions for integral indecomposability in the sense of
Minkowski for line segments and triangles are given.

Theorem 3 ([19]). Let a1 and a2 be integer points from R2. Line segment [a1, a2] is integrally
indecomposable in the sense of Minkowski if and only if GCD(a2 − a1) = 1.

Theorem 4 ([19]). A triangle conv(v1, v2, v3) in R2 with integer vertices v1, v2, v3 is integrally
indecomposable in the sense of Minkowski if and only if:

GCD(v1 − v2, v1 − v3) = 1.

Definition 5. Let f (x, y) ∈ Z[x, y]. The non-extended lattice of nodes of the polynomial
f (x, y) consists of all the points (e1, e2)i, i = 1, . . . , k corresponding to the monomials of f (x, y)
with non-zero coefficients. If the Newton polygon of f (x, y) contains some integer points in its
inner area or on its edges different from (e1, e2)i, i = 1, . . . , k, some of these points, together with
(e1, e2)i, i = 1, . . . , k, form an extended lattice of nodes of the polynomial f (x, y).

Definition 6. Let f (x, y) ∈ Z[x, y] and let P = {A1, A2, . . . , An} be the lattice of nodes of the
polynomial f (x, y) possibly extended by some integer points that lay inside Newton polygon of the
polynomial f (x, y) or on its edges. Without loss of generality, we can assume that after the construction
of the Newton polygon of f (x, y), A1, A2, . . . , Ak, k ≥ 2, become its vertices, and Ak+1, . . . , An do
not. We say that the grouping G1, . . . , Gl , l ≥ 2, of the set P is a super-covering of P if:

1. Each group Gi, i = 1, . . . , l, contains the same number of points not less than two,

2.
l⋃

i=1
Gi = P,

3. Points A1, A2, . . . , Ak appear in exactly one of the sets G1, . . . , Gl ,
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4. Points Ak+1, . . . , An appear in at least one of the sets G1, . . . , Gl ,
5. Sets G2, . . . , Gl are obtained from G1 by translation.

Definition 7. Let f (x, y) ∈ Z[x, y] and let P = {A1, A2, . . . , An} be the lattice of nodes of the
polynomial f (x, y) possibly extended by some integer points that lay inside the Newton polygon of
the polynomial f (x, y) or on its edges. Let

G1 = conv(Ai1,1 , . . . , Ai1,k ), . . . , Gl = conv(Ail,1 , . . . , Ail,k ), l ≥ 2,

{i1,1, . . . , i1,k, . . . , il,1, . . . , il,k} = {1, . . . , n}, be a super-covering of P by l congruent k−gons.
Furtherly, let G2 = τ2(G1),. . . ,Gl = τl(G1). Then :

conv(Ai1,1 , τ2(Ai1,1), . . . , τl(Ai1,1)), . . . , conv(Ai1,k , τ2(Ai1,k ), . . . , τl(Ai1,k ))

is also a super-covering of P by k congruent l−gons, called dual super-covering of the aforementioned
super-covering.

Remark 1. Notions of extended lattice of nodes, non-extended lattice of nodes, super-covering and
dual super-covering are not necessary related to the Newton polygon of a bivariate polynomial.
These notions can be defined completely analogously for an arbitrary integral convex polygon.

For a convex polygon in the Euclidean plane, there is a finite sequence of vectors
associated with it in the following way. Let v0, v1, . . . , vm−1 be the vertices of the poly-
gon in the counterclockwise direction. The edges of P are represented by the vectors
Ei = vi − vi−1 = (ai, bi) for 1 ≤ i ≤ m, where ai , bi ∈ Z and the indices are taken modulo
m. A vector Ei is called an edge vector. A vector v = (a, b) ∈ Z2 is called a primitive
vector if gcd(a, b) = 1. Let ni = gcd(ai, bi) and let ei = (ai/ni, bi/ni). Then Ei = niei where
ei is a primitive vector, 1 ≤ i ≤ m. Each edge Ei contains precisely ni+1 integral points
including its endpoints. The sequence of vectors {niei}1≤i≤m is called the edge sequence or
a polygonal sequence. By its edge sequence each polygon is determined uniquely up to
translation determined by v0. As the boundary of the polygon is a closed path, we have
that ∑1≤i≤m niei = (0, 0).

Lemma 1 ([20]). Let P be a polygon with edge sequence niei1≤i≤m where ei ∈ Z2 are primitive
vectors. Then an integral polygon is a summand of P iff its edge sequence is of the form {kiei}1≤i≤m,
0 ≤ ki ≤ ni, with ∑1≤i≤m niei = (0, 0).

2. Main Results

Lemma 2. Each non-trivial decomposition of an integral polygon in the sense of Minkowski induces
super-covering of the extended lattice of nodes of the polygon.

Proof. Let P be an integral polygon and P = Q + R its non-trivial decomposition, with
polygons Q and R having at least two points. Suppose that Q = conv(q1, q2, . . . , q2+k),
k ≥ 0. It is obvious that τq1(R), τq2(R), . . . , τq2+k (R), k ≥ 0, is a super-covering of the
extended lattice of nodes of the polygon P.

Lemma 3. Let P be an integral polygon that has non-trivial decomposition. Each edge of P that does
not contain integer points except its vertices is covered by each super-covering or its dual super-covering
of the extended lattice of nodes of the polygon P by a line segment or as an edge of a polygon.

Proof. Let conv(xk, xk+1) be an edge of P that does not contain integer points except xk
and xk+1 and consider an arbitrary super-covering of the extended lattice of nodes of the
polygon P. If conv(xk, xk+1) in super-covering, the assertion holds. If conv(xk, xk+1) is not
in some super-covering, let us prove that conv(xk, xk+1) is in the super-covering which is
dual of that one. Suppose the opposite, i.e., τi(xk) 6= xk+1, for any translation τi, determined
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by super-covering. It follows that τi(xl) = xk+1, for some τi and some l 6= k. It is obvious that
τi(xk) is not on the same side of the line determined with xk and xk+1 as the point xl , that is
contradiction to the construction of the convex hull of a finite planar set described in [18].

Definition 8. Let conv(x1, x2, . . . , xn) be an arbitrary convex polygon with integer vertices. Let
x1 be the vertex of the polygon with the smallest x−coordinate having simultaneously the largest
y−coordinate and let xk be the vertex of the polygon with the smallest y−coordinate having
simultaneously the largest x−coordinate. Consider the line determined by x1 and xk. Vertices of the
polygon that lay on the same side of the line as origin are called inner vertices. Other vertices of
the polygon are called outer vertices.

The following theorem is a direct consequence of Theorem 4.11 from [12]. We shall
give two different proofs of the theorem that give an idea for the construction of an effective
algorithm which generates integrally indecomposable Newton polygons with arbitrary
many vertices.

Theorem 5. Let conv(x1, x2, . . . , xn) be an arbitrary convex polygon with integer vertices and let
xl be an arbitrary outer vertex of the polygon. Let xn+1 be an integer point such that:

1. Line segment conv(xl , xn+1) does not contain any integer points except xl and xn+1,
2. All the points x1, . . . , xn except xl are on the same side of the line determined by points xl and

xn+1,
3. Line segment conv(xl , xn+1) is larger than any parallel line segment whose vertices are

integer points from conv(x1, x2, . . . , xn+1),

Then polygon conv(x1, x2, . . . , xn+1) is integrally indecomposable in the sense of Minkowski.

First proof. Suppose the opposite, conv(x1, x2, . . . , xn+1) is integrally decomposable in the
sense of Minkowski. From Lemma 2 it follows that extended lattice of nodes of the polygon
has super-covering. Due to the point 2 in Theorem 5, line segment conv(xl , xn+1) is an edge
of the polygon conv(x1, x2, . . . , xn+1). From point 1 in Theorem 5 and Lemma 3 it follows
that line segment conv(xl , xn+1) is covered by that super-covering or dual super-covering.
Consider the super-covering having conv(xl , xn+1). Then there exists a line segment whose
vertices are from extended lattice of nodes of the polygon conv(x1, x2, . . . , xn+1) different
from xl and xn+1 that is congruent and parallel to the line segment conv(xl , xn+1), that is in
contradiction to point 3 in Theorem 5.

Second proof. Let B1, . . . , Bk be vertices of the polygon conv(xl , . . . , xn+1) in counterclock-
wise order, where B1 and Bk correspond to the points xl and xn+1. Let {ciei}1≤i≤k be the
edge sequence and the intersection of the lines l(B1, B2) and l(Bk, Bk−1) is the point C. Let q
be the line of symmetry of the angle ∠B1CBk. Note thet, according to the condition 1, ck = 1
holds. Denote with prq

p(K) the set of points belonging to the line p which are projections of
the points of a set K on the line p in the direction determined by q.

According to the point 2 in Theorem 5 and point 3 in Theorem 5, the point C exists
and lays on the same side of the line l(B1, Bk) as the remaining vertices of the constructed
polygon and P = conv(x1, x2, . . . , xn+1) ⊆ conv(B1, C, Bk). Let F = {prq

p(conv(BiBi+1)) |
1 ≤ i ≤ n− 1}. Then all the elements of F are real line segments (not points) and intersection
of any two elements from F the one neighboring point at most. Hence,

∑
x∈K
| x |=| B1Bk | .

Suppose the opposite, i.e., that the polygon P is decomposable in the sense of Minkowski
sum. Let P = Q + R. Without loss of generality, according to Lemma 1 it follows that
{diei}1≤i≤k is the edge sequence of Q different from the edge sequence of P, with 0 ≤ di ≤ ci
for 1 ≤ i ≤ k− 1 and dk = ck = 1. Then we will have | B1Bk |≤ ∑1≤i≤n−1 | diei |< ∑x∈K |
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x |=| B1Bk | (the inequality is strict due to the fact that prq
p(ei) are real line segments, not

the points), that is an obvious contradiction.

Remark 2. Inner vertices of the polygon, as well as the vertex of the polygon with the smallest
x−coordinate having simultaneously the largest y−coordinate and the vertex of the polygon with
the smallest y−coordinate having simultaneously the largest x−coordinate, are also vertices of the
polygon conv(x1, x2, . . . , xn+1). Therefore, absolute irreducible bivariate polynomials generated by
conv(x1, x2, . . . , xn+1) have non-zero monomials corresponding to those vertices.

Example 1. Consider the line segment:

conv((2, 1), (0, 9)).

It is obvious that:

GCD((0, 9)− (2, 1))) = GCD(−2, 8) = 2.

From Theorem 3 it follows that line segment conv((2, 1), (0, 9)) shown in Figure 1 is integrally
decomposable.

The point (0, 9) is outer vertex. Due to the fact that:

GCD((13, 0)− (0, 9)) = GCD(13,−9) = 1,

from Theorem 3 it follows that line segment conv((0, 9), (13, 0)) does not contain any integer
points except (0, 9) and (13, 0). It is obvious that conditions of Theorem 5 are satisfied, so triangle
conv((13, 0), (0, 9), (2, 1)) (see Figure 2) is integrally indecomposable.

Therefore, the polynomial

f (x, y) = a1x13 + a2y9 + a3x2y,

a1, a2, a3 ∈ F\{0}, is absolutely irreducible over an arbitrary field F. It remains absolutely irre-
ducible over F if some monomials whose exponent vectors lay inside the triangle conv((13, 0), (0, 9),
(2, 1)) or on its edge are added. In other words, each polynomial:

f (x, y) = a1x13 + a2y9 + a3x2y + ∑ cijxiyj,

with a1, a2, a3 ∈ F\{0}, (i, j) ∈ conv((13, 0), (0, 9), (2, 1)) \ {(13, 0), (0, 9), (2, 1)} is absolutely
irreducible over F.

Analogously, e.g., by adding point (17,14) to the triangle conv((13, 0), (0, 9), (2, 1)), in-
tegrally indecomposable quadrilateral conv((13, 0), (0, 9), (2, 1), (17, 14)) shown in Figure 3
is obtained.

Therefore, each polynomial:

f (x, y) = a1x13 + a2y9 + a3x2y + a4x17y14 + ∑ cijxiyj,

with a1, a2, a3, a4 ∈ F\{0}, (i, j) ∈ conv((13, 0), (0, 9), (2, 1), (17, 14)) is absolutely irreducible
over F.
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Figure 1. Integrally decomposable line segment conv((2, 1), (0, 9)).
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Figure 2. Integrally indecomposable triangle conv((13, 0), (0, 9), (2, 1)).
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Figure 3. Integrally indecomposable quadrilateral conv((13, 0), (0, 9), (2, 1), (17, 14)).
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3. Constructions of Integrally Indecomposable n-Gons

Lemma 4. Let i, j be natural numbers, such that GCD(i, j) = 1, i > 1. Let p be the line determined
by iy− jx = 0 and A(c, d) be an integer point laying above the line p. Then, for an arbitrary
natural number k, there exists an integer point B(x0, y0) below the line p, such that the angle
between the line p and the line containing line segment AB is less than arctan 2−k − arctan 2−k−1

and line segment AB contains no integer points except its vertices.

Proof. As i > 1, it follows that there exists a natural number m such that the point
C(0, j− im) is at a greater distance from the line p than the point A (see Figure 4). The
previous holds for the big enough natural number m.

O

p

A(c, d)

C(0, j− im)

q

D(xt0 , yt0)

B(x0, y0)

Figure 4. Line segment AB containing no integer points except its vertices.

Let q be the line determined by iy− jx = i(j− im). Line q contains point C and is
parallel with the line p. For each natural number t, line q contains the point (xt, yt) =
(it · i, it · j + j − im). Also, for each natural number t, GCD(xt, yt) = 1 holds. From
Theorem 3 it follows that the line segment conv((xt, yt), (0, 0)) contains no integer points
except its vertices. There exists big enough natural number t0 such that for the point
D(xt0 , yt0), ∠pOD < arctan 2−k − arctan 2−k−1 holds.

Let x0 = xt0 + c, y0 = yt0 + d and let B(x0, y0). Due to the fact that the angle between
the line p and the line containing the line segment AB is less than arctan 2−k − arctan 2−k−1,
point B lays below the line p and the line segment AB contains no integer points except
its vertices.

The following corollary is a consequence of Lemma 4.

Corollary 1. Let p be the line determined by iy− jx = i f − je, with i, j, e, f natural numbers
such that GCD(i, j) = 1 and i > 1. Let A(c, d) be an integer point that lays above the line p.
Then for an arbitrary natural number k there exists an integer point B(x0, y0) under the line p,
such that the angle between the line p and the line containing the line segment AB is less than
arctan 2−k − arctan 2−k−1 and the line segment AB contains no integer points except its vertices.

Theorem 6. There exist an infinite sequence of monomials p1, p2, . . . , pn, . . . such that the poly-
nomial fn = ∑n

j=1 pi is absolutely irreducible over F for each natural number n > 1 and the
corresponding Newton polygon has n vertices.

Proof. Let us denote by Ai vertex corresponding to the monomial pi, i = 1, 2, . . .. From
Theorems 3 and 4 it follows that there exist monomials p1, p2, p3 such that A1 lays on the
x-axis and A2 lays on the y-axis, polynomials f2 and f3 are absolutely irreducible over
F and slope coefficient of the line that contains the line segment A2 A3 is less than 1 (see
Figure 5). There exists natural number k such that 2−k is less than the slope coefficient of
the line that contains the line segment A2 A3.
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Let us prove by induction, for n > 3, that there exist integer points A4, A5, . . . , An in
the first quadrant that satisfy conditions of the Corollary 1 and slope coefficient of the line
that contains the line segment An−1 An is greater than 2−k−n+3, for each n > 3.

O A1

A2

A3

A4

q4

f q4

Pf3

Figure 5. Integrally indecomposable polygon conv(A1, A2, A3, A4) in the sense of Minkowski.

Consider the line q4 that contains the point A1 and has the same slope coefficient as
the line that contains the line segment A2 A3. From Corollary 1 it follows that there exists
point A4 that lays on the other side of the line q4 than the polygon Pf3 , A3 A4 has no integer
points except its vertices and the angle between the line q4 and the line containing the line
segment A3 A4 is less than arctan 2−k − arctan 2−k−1. The slope coefficient of the line that
contains the line segment A3 A4 is greater than 2−k−1. The projection of the polygon Pf3 in
direction of the line q4 on the line containing the line segment A3 A4 is contained in the line
segment A3 A4. From Theorem 5 it follows that polygon conv(A1, A2, A3, A4) is integrally
indecomposable in the sense of Minkowski and has four vertices.

Let us suppose that there exist integer points A4, A5, . . . , An−1 in the first quadrant
that satisfy conditions of the induction hypothesis and slope coefficients of the lines that
contain line segments Ai−1 Ai are bigger than 2−k−i+3, for each 3 < i < n (see Figure 6). Let
qn be the line that contains point A1 and has the same slope coefficient as the line segment
An−2 An−1 bigger than 2−k−n+4. From Corollary 1 it follows that there exists a point An that
lays on the other side of the line qn than the polygon Pfn−1 , An−1 An has no integer points
except its vertices and the angle between the line qn and the line containing the line segment
An−1 An is less than arctan 2−k−n+4 − arctan 2−k−n+3. The slope coefficient of the line that
contains the line segment An−1 An is greater than 2−k−n+3. The projection of polygon Pfn−1
in the direction of the line qn on the line An−1 An is contained in the line segment An−1 An.
According to Theorem 5 polygon conv(A1, A2, . . . , An) is integrally indecomposable in the
sense of Minkowski and has n vertices.
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O A1

A2

A3

An−2

An−1

e

f

An

qnPfn−1

Figure 6. Integrally indecomposable polygon conv(A1, A2, . . . , An) in the sense of Minkowski.

4. Conclusions

Proving a special case of Gao’s theorem presented in the paper enabled construction of
an effective algorithm for building integrally indecomposable convex integral polygons with
arbitrary many vertices and thus generating classes of absolute irreducible bivariate polynomials.
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