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Abstract: Bimodal distributions have rarely been studied although they appear frequently in datasets.
We develop a novel bimodal distribution based on the triangular distribution and then expand it to
the multivariate case using a Gaussian copula. To determine the goodness of fit of the univariate
model, we use the Kolmogorov–Smirnov (KS) and Cramér–von Mises (CVM) tests. The contributions
of this work are that a simplistic yet robust distribution was developed to deal with bimodality in
data, a multivariate distribution was developed as a generalisation of this univariate distribution
using a Gaussian copula, a comparison between parametric and semi-parametric approaches to
modelling bimodality is given, and an R package called btld is developed from the workings of
this paper.
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1. Introduction

Bimodality in data can be described as the presence of two distinct modes and many
examples of bimodal data can be found in nature. Bimodality can occur in a variety of
circumstances. Firstly, it can occur when there are two or more latent attributes of the data
which might result in bimodality. For instance, if we consider the frequency of cars crossing
a bridge in a 24 h period, two modes manifest because two peak traffic hours are latently
reflected [1]. Moreover, as determined by [2], if we review the spread of tree cover in a
desert, specific attributes about the geography in the area latently influence the spread of
the trees. In both cases, the bimodality in the data is generated from a single population
with multiple latent attributes.

Secondly, bimodality could occur if there are attributes of sub-populations present in
the data. An example of this can be the spread of height amongst college students. If we
ignore gender and just record the height of students, we can expect bimodality to reflect in
histograms of the data.

A common approach to handle bimodality is to use mixture distributions, which are
semi-parametric models that yield density estimations as well as clustering solutions [3].
This approach requires the estimation of five parameters: the means and standard devia-
tions of the two normal distribution, and the mixing parameter. Alternatively, one could fit
a bimodal parametric distribution to the data.

Both of these approaches pose benefits and challenges to the modeller. Bimodal
parametric models result in a mathematical formulation for the cumulative distribution
function (CDF) which is convenient for hypothesis testing and calculation of confidence
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intervals. The challenge is to find the exact estimates of the parameters. Mixture models
come with relaxed parametric assumptions, but the choice of number of components is not
always intuitive and the computational complexity increases as the number of components
increases [4].

In this paper, we propose a mathematically concise and simplistic approach to mod-
elling bimodal data. We use the well-known triangular distribution as the initial point of
reference and then extend it to what we call the bimodal triangular-linked distribution
(BTLD). This newly formulated distribution accommodates bimodality without considering
mixture models.

We generalise this distribution to a multivariate context using a Gaussian copula.
Copulas join or “couple” univariate distribution functions, say F(x) and G(y), to form a
multivariate distribution function H(x, y) = C(F(x), G(x)). Modelling the joint distribu-
tion is done by mixing the marginal distributions using a bivariate function (known as a
copula) C : (u, v)→ C(u, v) which captures and reflects the dependence pattern of X and
Y [5].

To determine the goodness of fit of the univariate model, we use the Kolmogorov–
Smirnov (KS) and Cramér–von Mises (CVM) tests. The KS test is a nonparametric test that
uses the maximum absolute distances between the empirical distribution and the proposed
null distribution to test if the proposed null distribution truly fits the data in the test [3,6].
The CVM test is an alternative to the KS test and has been suggested to use the data more
effectively [7,8]. The null hypothesis is the same for both tests and the discrepancy in the
tests lies in the way that the test statistics, d for the KS and ω2 for the CVM, are calculated [8].
We use both tests to ensure the consistency of our testing framework. The contributions of
this paper are as follows:

1. A simplistic yet robust distribution geared to handle bimodality in its parameters is
developed from a fusion of uniform and triangular distributions which we called the
bimodal triangular-linked (BTL) distribution,

2. A multivariate extension is developed using a copula to model the dependance struc-
tures of multiple variables. A simulation is shown as well as comparison to a multi-
variate Gaussian mixture model (GMM),

3. A comparison between parametric and semi-parametric approaches to dealing with
bimodality in data is illustrated in the form of an application to gene expression data,

4. An R package is constructed from the workings of this paper called btld. An explana-
tion of the functionality of this package is included in Appendix B. All generations
and computations regarding the BTL are done using this package.

The rest of the paper is structured as follows: In Section 2, we review related work in
the fields of bimodal distributions and mixture model. Section 3 covers important back-
ground theory on the triangular model. This section also motivates the use of Kolmogorov–
Smirnov and Cramér–von Mises test as goodness of fit tests. The bimodal triangular-linked
model with its statistical properties is introduced in Section 4. The generalisation to
the multivariate context is enabled through copulas which are introduced in Section 3.3.
The multivariate generalisation, the Multivariate triangular-linked distribution is intro-
duced in Section 5 after which its application is illustrated in Section 6. Section 7 concludes
with a discussion of results and future work.

2. Related Work

Bimodal data are very relevant as it occurs often in practice. The two main approaches
used to to model such data are the use of mixture models or special parametric distributions
which inherently capture bimodality. Mixture models are semi-parametric models that
yield density estimations [3]. Although not strictly bimodal, mixture models may yield
bimodality in the densities if the data provide for it. Mixture models are constructed by
taking a weighted sum of two or more distributions. There is a vast number of distribu-
tions to choose from, thus when it comes to creating a mixture model, there are virtually
endless possibilities and the final decision will typically depend on the data and the needs
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of the practitioner. Sheng et al. [9] demonstrated that mixture models can be used in
pharmacodynamic studies in which bimodal count data arise. They found that the two
generalized Poisson mixture model was the best fit for their bimodal dataset consisting of
the number of times that a rodent licked an oral medication in a palatability study. Bimodal
distributions have also been used in cancer studies. Irace and Batatia [10] demonstrated the
effectiveness of the univariate and bivariate mixtures of Poisson distributions in automatic
image segmentation of 4-D bimodal PET-CT images used for cancer diagnoses. A mixture
of bivariate negative binomial-normal distributions has also been considered for the same
purpose [11]. In genetics, Gaussian mixture models have been used to identify genes with
bimodal expression patterns in tumors [12]. Other applications where mixture models have
been used for bimodal data include modelling ratings from Tripadvisor.com [13],

Over the last two decades, many researchers have proposed new distributions for
bimodal data based on the skew normal distribution [14]. The skew normal distribution
is an extension of the normal distribution which includes an additional parameter to in-
duce asymmetry. Based on this idea of modifying a normal distribution, Elal-Olivero [15]
developed a new skewed distribution called the alpha-skewed-normal (ASN) distribu-
tion by introducing a parameter which allows for the added flexibility of modelling
both unimodal and bimodal data. A further extension to the ASN that allowed at most
four modes, called the alpha-beta skewed normal (ABSN) distribution, was later pro-
posed by Shafiei et al. [16]. This ABSN was used to model the bimodal acidity indices
of lakes in Northeastern United States [16]. More recently, using a methodology advo-
cated by Balakrishnan [17], the Balakrishnan-alpha-skewed-normal (BASN2) distribution
was proposed [18] as well as its extension, the Balakrishnan alpha-beta skewed normal
(BABSN2) [19] which is able to model up to four modes. A BASN2 distribution was fit to a
bimodal dataset consisting of 69 samples of N latitude degrees from world lakes and was
found to outperform several other skewed distributions, including the ASN and ABSN,
based on AIC and BIC [19]. This approach of using skewed distributions to model bimodal
data is very common. Other examples of such distributions include the alpha-skew Laplace
distribution [20], the alpha-skew-logistic distribution [21,22], bimodal skew-elliptical dis-
tributions [23], flexible generalized skew normal and t distributions [24], as well as some
multivariate skewed distributions presented in [25–27]. See also [28–37] for other related
work. Skewed distributions have also been used in the construction of mixture models.
For instance, the skew normal mixture model (SNMIX) was shown to produce batter AIC
and BIC scores than traditional normal mixture models on two real-world datasets [38].
To address the SNMIX’s possible lack of robustness in the presence of outliers, Lin et al. [39]
proposed the skew t mixture (STMIX).

3. Background Theory

We first provide background theory on the triangular distribution, goodness-of-fit
tests, and copulas which are main points of reference for the rest of the paper.

3.1. Triangular Distribution

The Triangular distribution on the (0, 1) space has one parameter θ also lying in
(0, 1). Taken from Kotz and van Dorp [40], the probability density function (PDF) for the
triangular distribution is defined as

f (x) =


2x
θ 0 ≤ x ≤ θ

2(1−x)
1−θ θ ≤ x ≤ 1

0 otherwise.

(1)
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The cumulative distribution function (CDF) is obtained by integrating Equation (1),

F(x) =


0 x < 0
x2

θ 0 ≤ x < θ

1− (1−x)2

1−θ θ ≤ x < 1
1 x ≥ 1.

(2)

The inverse CDF (ICDF) is,

F−1(u) =


√

θu 0 ≤ u < θ

1−
√
(1− θ)(1− u) θ ≤ u < 1

0 Otherwise.

(3)

The ICDF transform method [41] is used to simulate random variables from the trian-
gular distribution as illustrated in Figure 1. For clarity, we overlay a kernel density estimate
and the PDF of the triangular distribution on the histogram of the random variables.

Figure 1. Histogram and density plots of the triangular distribution with θ = 0.25.

3.2. Kolmogorov–Smirnov Goodness-of-Fit

In many cases it is not possible to make assumptions about the underlying distribution
of a given dataset and one needs to consider non-parametric or semi-parametric methods.
A non-parametric model postulates that observations come from some distribution function
F not constrained by any parameters. However, the interpretability of these models are
not so clear and semi-parametric models might be considered as a compromise [3]. First,
consider the estimate of a distribution function, i.e., the empirical cumulative distribution
function, F∗n (x). It is formally calculated, at some point x, by taking the proportion of
sample observations less than or equal to that point,

F∗n (x) :=
1
n

n

∑
i=1

I(Xi ≤ x) (4)

where I(·) is the indicator function. The indicator function is defined as

I(Xi ≤ x) =

{
0 if Xi ≤ x
1 if Xi > x

(5)
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It has been proven that the empirical CDF is an unbiased and consistent estimator of the
true CDF. That is to say the following properties can be drawn about the estimator,

• (F∗n (x)) = F(x)

• (F∗n (x)) = F(x)(1−F(x))
n ∴ as n −→ ∞ =⇒ (F∗n (x)) −→ 0 such that F∗n (x) is an

unbiased and consistent estimator for F(x)

The Kolmogorov–Smirnov (KS) test of goodness of fit is a non-parametric test that
uses a proposed distribution function F0(x) versus the observed cumulative function Sn(x),
alternatively known as the empirical CDF (ECDF). Our null hypothesis is that the sample
can be modelled using F0(x). The crux of this test is that we expect the observed CDF and
the proposed CDF to be very close to each other for all N observations. If the distributions
are too distinct from each other then we can conclude that the proposed distribution is
not appropriate for modelling the sample. That is, we reject our null hypothesis [6]. Our
hypotheses are generally constructed as follows,

H0 : F(x) = F0(x),

Ha : F(x) 6= F0(x).

Formally, if F0(x) is the population cumulative distribution function, and SN(X) = k/N
where k is the cumulative index of x, then let Kolmogorov’s D be defined as follows,

D = sup
x∈(−∞,∞)

|F0(x)− SN(x)|. (6)

Large values of this statistic suggest with a high level of probability that we will reject
the null hypothesis and the converse applies for small values [3]. Furthermore, note that
Equation (6) is independent of F0(x) if F0 is continuous. To make conclusions about D we
use tables that yield critical points of the distribution of D for differing sample sizes. We
reject the null hypothesis if D > dα(N) where α is the level of significance for our test.

3.3. Copulas

Most standard probability distributions are generalised to the multivariate context
such as the multivariate Gaussian distribution. The multivariate generalisation is important
in order to model dependencies between variables. We run into the problem that multi-
variate generalisations do not exist for all distributions and furthermore, one might want
to model the dependency between two different distributions for which the mathematical
formulation does not exist either.

Copulas are mathematical functions that describe the dependency structure between a
finite set of univariate marginal distributions [42]. The main idea is that marginal properties
can be separated from correlation properties. Under the hood, copulas are multivariate
distributions with uniform marginals. Using the inverse probability transform [41,42] any
distribution can be generated from the uniform distribution.

The basis of taking a set of correlated uniform random variates (which is the copula
itself) and transforming these into a multivariate distribution with arbitrary marginals is
based on Sklar’s theorem which proofs that we can extract the correlation structure from
marginal distributions and used to create a set of marginals and a copula [42,43].

The dependence structure is independent of the marginals and is fully described by
the copula. Furthermore, transformations that preserve the ranks will preserve the copula,
since the copulas are linked to the ranks of random variables. The main purpose of a copula
is to describe the dependence between the marginal distributions. Furthermore, the copula
can be used to calculate conditional probabilities and predictions. At first sight, this might
not seem to make a huge difference, but the effect is typically amplified in the tails of the
dependency structure.

The most common copula is the Gaussian copula which forms part of the collection of
copulas known as elliptical copulas from the shape the copula structure makes.Another
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elliptical copula is the Student’s t copula [44]. Popular copulas in the Archimedian family
of copulas include the Gumbel, Frank copula, the Cook-Johnson copula and the Clayton
copula.

Alternative approaches to measuring the dependence structures of copulas may be
taken instead of the widely known Pearson’s linear correlation coefficient because the
structure of the marginals can change the linear correlation coefficient, but not so for
non-parametric dependence measures such as Kendall’s tau and Spearman’s rho. These
measures capture the dependency inherent in the copula structure, not that just presented
by the marginals. One may opt to use the Clayton copula if one is interested in having a
high lower tail dependence structure. This is useful for modelling unlikely events, i.e., ones
that tend to occur in the lower tail. Conversely, for a Gaussian copula, the dependence
breaks down in the tails [45].

Figure 2 illustrates the conditional distributions that can be generated from copulas:
Given a particular observation in one of the marginals, we can determine the probability
and cumulative distributions for the other.

(a)

(b)

Figure 2. Conditonal Copula CDFs. (a) Contours of Gaussian Coupla with Marginal Distributions
(See legend in (b). (b) Marginal Conditional Distributions of the Gaussian Copula.

4. Bimodal Triangular-Linked Distribution

We derive the Bimodal triangular-linked (BT L) distribution as an extension of the
triangular PDF defined in Equation (1). The mode of the triangular distribution is θ.
Pulling the two triangle legs apart—left and right of the mode—results in a distribution
with two modes, say θ1 and θ2. The introduction of the two parameters α1 and α2 has
the implication that the density is zero between the two modes θ1 and θ2. If we allow
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the density between the modes, denoted as f (x) = α0, to follow a uniform distribution
as part of the probability density over this area such that

∫ 1
0 f (x)dx = 1, it implies that

α0 = (1− 1
2 θ1α1 − 1

2 (1− θ2)
2α2)

/
θ2 − θ1. That is, the uniform density α0 can be rewritten

in terms of parameters of the distribution. Note that θ = [θ1, θ2] is defined such that it
satisfies the following,

0 < θ1 ≤ θ2 < 1.

Therefore, if we substitute these values of θ and introduce multiplicative scaling
factors α1 and α2 into Equation (1), we find that the BTL distribution takes on form,

f (x) =


α1x
θ1

0 ≤ x ≤ θ1

α0 θ1 ≤ x ≤ θ2
α2(1−x)

1−θ2
θ2 ≤ x ≤ 1

0 otherwise.

(7)

4.1. Triangular-Linked Statistics

Some statistics of the TL distribution—apart from being bimodal with modes θ1 and
θ2 are the first and second moments. The mean is:

E(X) =
1
4

α1θ4
1 +

1
3

α2(θ2 − θ1) +
1
2

α2(θ
2
2 − 1)− 1

3
α0(θ

3
2 − 1) (8)

and {
E(X)

}2
=

1
3

α1θ2
1 +

1
3

α2(θ
3
2 − θ3

1)−
1
3

α2(1− θ2)
3 − 1

2
α0(1− θ2)

4. (9)

Also useful to note is that if θ1 = 0 and θ2 = 1, the distribution becomes a UNF(0, 1)
with α1 = 1, α2 = 1.

4.2. Derivation of the CDF

Using Equation (7), we can derive the CDF for the BTL distribution.

Proof. For x < 0 :

F(x) =
∫ x

−∞
f (t) dt

=
∫ x

−∞
0 dt (10)

= 0

For 0 ≤ x < θ1 :

F(x) =
∫ x

−∞
f (t) dt

=
∫ x

0

α1t
θ1

dt + F(0)

=
α1t2

2θ1

∣∣∣∣x
0
+ 0 (11)

= α1
(x)2 − (0)2

2θ1

=
α1x2

2θ1
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For θ1 ≤ x < θ2 :

F(x) =
∫ x

−∞
f (t) dt

=
∫ x

θ1

α0 dt + F(θ1) (12)

= α0t
∣∣∣∣x
θ1

+
α1θ2

1
2θ1

= α0(x− θ1) +
α1θ1

2

For θ2 ≤ x < 1 :

F(x) =
∫ x

−∞
f (t) dt

=
∫ x

θ2

f (t) + F(θ2)

=
∫ x

θ2

α2(1− t)
1− θ2

+ α0(θ2 − θ1) +
α1θ1

2

=
−α2(1− t)2

2(1− θ2)

∣∣∣∣x
θ2

+ α0(θ2 − θ1) +
α1θ1

2
(13)

=
−α2(1− x)2

2(1− θ2)
+

α2(1− θ2)
2

2(1− θ2)
+ α0(θ2 − θ1) +

α1θ1

2

=
−α2(1− x)2

2(1− θ2)
+

α2(1− θ2)

2
+ α0(θ2 − θ1) +

α1θ1

2︸ ︷︷ ︸
=1

= 1− α2(1− x)2

2(1− θ2)

Note that the expression that gets reduced to 1 in the second last line of the above
derivation is proven in Appendix A. For x ≥ 1 :

F(x) =
∫ x

−∞
f (t) dt

=
∫ x

1
0 dt + F(1)

= 1− α2(1− 1)2

2(1− θ2)
(14)

= 1

Therefore the CDF of the BT L is,

F(x) =



0 x ≤ 0
α1x2

2θ1
0 < x ≤ θ1

α0(x− θ1) +
α1θ1

2 θ1 < x ≤ θ2

1− α2(1−x)2

2(1−θ2)
θ2 < x ≤ 1

1 x > 1

(15)

4.2.1. Sample Estimates of Parameters

The CDF values of θ1 and θ2 can be determined using Equation (15). Thus,
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F(θ1) = α1
θ2

1
2θ1

= α1
θ1

2
=⇒ α1 =

2F(θ1)

θ1
(16)

F(θ2) = α0(θ2 − θ1) +
α1θ1

2
=⇒ F(θ2) = 1− α2(1− θ2)

2

=⇒ α2 =
2(1− F(θ2))

1− θ2
(17)

Note that the expression for F(θ2) is derived from Equation (A2) in Appendix A. These
values are pivotal in determining sample estimates of αi and θi. If the empirical CDF of the
function is known, the breakpoints on the plot will be indicative of the modal parameters θi.
Once the breakpoint values θ̂1 and θ̂2, and their corresponding function values F(θ̂1) and
F(θ̂2) are determined, it is trivial to determine the scaling parameters αi using the formulae
derived above.

4.2.2. Derivation of the ICDF, F−1(u)

Proof. Let U ∼ U (0, 1). Then

For 0 ≤ u ≤ F(θ1) : u = F(F−1(u))

u =
α1F−1(u)2

2θ1

2θ1u = α1F−1(u)2 (18)√
2θ1u

α1
= F−1(u)

For F(θ1) ≤ u ≤ F(θ2) : u = F(F−1(u))

u =
α0(F−1(u)− θ1)

+
α1θ1

2
u− α1θ1

2
α0

= (F−1(u)− θ1) (19)

θ1 +
u− α1θ1

2
α0

= F−1(u)

For F(θ2) ≤ u ≤ 1 : u = F(F−1(u))

u = 1− α2(1− F−1(u))2

2(1− θ2)

2(1− θ2)(1− u) = α2(1− F−1(u))2 (20)

1−

√
2(1− θ2)(1− u)

α2
= F−1(u)

Therefore the ICDF of the BTL distribution is,

F−1(u) =



√
2θ1u

α1
0 ≤ u ≤ F(θ1)

θ1 +
u− α1θ1

2
α0

F(θ1) ≤ u ≤ F(θ2)

1−
√

2(1−θ2)(1−u)
α2

F(θ2) ≤ u ≤ 1

0 Otherwise.

(21)
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Using the ICDF, we can generate the random variates from the BT L distribution
which is illustrated in Figure 3. To showcase the exact shape of the BTL, we overlay the
PDF of the generated variates as well as a KDE estimate. This is done to illustrate the exact
bimodal distribution as well as the approximate bimodal distribution.

Figure 3. Histogram and Density plots of BT L Distribution with θ1 = 0.3, θ2 = 0.8, α1 = α2 = 3.

4.2.3. Goodness of Fit Test

We continue with the simulated example to illustrate the goodness of fit tests for the BTL
distribution. Given a simulated sample x1, . . . , xn of size n from the TL(θ, α) distribution,
the estimation of the parameters is fairly easy using the empirical estimate of F(x) which
is shown in Figure 4. It is almost identical to the true df. Testing the fit of the model was
conducted in R for simulated data from the bimodal triangular-linked distribution. The null
hypothesis and alternative hypotheses for both cases are presented as follows:

• HCase 1
0 : the distribution, F0(x), follows a BTL distribution with parameters θ1, θ2, α1, α2

• HCase 1
a : the distribution does not follow a BTL distribution

The test can be conducted using p-values as well where a specified level of significance
is used. The null hypothesis is rejected if p < α. Illustrated in Figure 3, the KS-test
statistic is observed to be D = 0.02 which is quite small. Using goftest, we calculate
the p-value = P(D ≥ q) = 0.6264 which is larger than even a lenient significance level of
α = 0.1. Therefore, we do not reject the null.

Figure 4. Graphical illustration of the KS Test for bimodal univariate case.
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5. Multivariate Triangular-Linked Distribution

Copulas equip us with the mathematics to generalise the Bimodal triangular-linked
distribution to the multivariate case and we use the theory above to derive the multivariate
triangular-linked (MVTL), MVT L, distribution. Let U be a random Gaussian copula,
CGauss

P (u), with ui = φi(Xi), by the probability integral transform, [46] being the marginals
where X ∼MVN d(0d×1, Pd×d) [42], N is the sample size we are considering and d repre-
sents the dimensionality of the random variables. By the standard inverse transform [46], let
Yi = F(ui) where the marginals Yi ∼ BT L(θi, αi), for i = 1, . . . , d. Note that θi = [θ1i, θ2i]
and αi = [α1i, α2i]. Therefore, let the distribution of Y be defined as follows

Yn×d ∼MVT L(Θd×2, Ad×2, Rd×d) (22)

where Θd×2 is a d-by-2 matrix containing the modal parameters; Ad×2 is the d-by-2 matrix
containing the scaling factors for the distribution (explained in previous sections) and;
Rd×d) is the positive definite correlation matrix, with dimensions of d-by-d, of the Gaussian
copula required to generate this multivariate distribution. Fitting this distribution as a
proposed model implies we must determine sample estimates. We explain how to do
this below.

• Rd×d can be estimated by calculating the sample correlation matrix R̂ = (Y). Pearson’s
correlation coefficient is calculated and used as the sample estimate.

• To determine the modes, they can be read off the ECDF at the break points θ̂i1 and θ̂i2.
These points correspond to estimates of the CDF, F(θ̂i1) and F(θ̂i2).

• The scale parameters estimates α̂i1 and α̂i2, can be determined using Equations (16)
and (17), respectively. After some algebraic manipulation of these equations, formulae
for these parameters can be determined.

Generated Example

Let the parameter and correlation matrices be defined as follows:

A =

1 5
3 3
5 1

, Θ =

0.3 0.7
0.3 0.7
0.3 0.7

 and R =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

.

A dataset of size 1000 is simulated and a matrix plot is constructed in Figure 5 for
X ∼ MVT L(A, Θ, R) so as to showcase the marginal distributions of X, their shape
and contours. In the lower triangular section we have scatterplots of all the marginals
of X which we will denote as X1 ∼ BT L(0.3, 0.7, 1, 5) , X2 ∼ BT L(0.3, 0.7, 3, 3) and
X3 ∼ BT L(0.3, 0.7, 5, 1).

The ECDFs of the marginals are plotted in Figure 6. This plot, which we call the H-plot,
is used to read off the density values associated with the mode parameters. Let Θ̂ denote
the observed estimate of Θ. Θ̂ and their associated density values, F(Θ̂), are determined
from the breakpoints for each ECDF.

Therefore,

Θ̂ =

0.27 0.7
0.3 0.7
0.3 0.7

, F(Θ̂) =

0.17 0.23
0.43 0.53
0.73 0.82

 and R̂ =

 1 0.5124 0.2503
0.5124 1 0.5377
0.2503 0.5377 1

.

where R̂ is the Pearson correlation coefficient of the observed data. Finally, the scale
parameters are determined using the expressions obtained in Equations (16) and (17).
Therefore, the estimate of A, i.e., Â, is as follows,

Â =

1.2593 5.1333
2.8667 3.1333
4.8667 1.2
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Figure 5. MVTL matrix plot with marginals X1, X2, X3.

Figure 6. Empirical marginal CDFs of X.

As an illustration, we plot the contours in 2D for two cases: one where we have a
MVTL and the dependance structure is captured by a Gaussian copula, and; two, where
the BTL marginals are independant. The distributions of these cases are plotted for all the
variable X1, X2 and X3 shown in Figure 7. Note that these contours are not the same which
means that by modelling the distribution using a copula, better captures any dependance
structures inherent in the data.
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(a)

(b)

Figure 7. Cont.
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(c)

Figure 7. These subfigures are bivariate density plots for variables X1, X2 and X3 plotted against
themselves in exhaustive pairs. The plots consider the cases when they independently generated
(Red contours) and the case when they are generated using a copula (Blue contours). (a) Contour plot
of X1 against X3. (b) Contour plot of X2 against X3. (c) Contour plot of X1 against X2.

6. Application
6.1. Gene Expression Data

Gene expression data have been directed towards a better understanding of a diverse
range of biological processes which can then be used to determine associations between
genetic information. If bimodality in the gene expressions are identified, then this can be
used to extract interesting insights into biological attributes of a particular cancer associated
with the tumor. The data we will use are extracted using developed software [12], which is
written in R. These data consist of expression and clinical data from 25 different tumor types
which is in turn harvested from the Cancer Genome Atlas (https://portal.gdc.cancer.gov/
accessed on 5 September 2021). In total the authors of [12], get expression values measured
in Fragments by Exon Kilobase per Millions of Mapped Fragments values (FPKM), for just
under 25,000 genes which yields more than 10 million observations.

In the paper presented by Justino, Gaussian mixture models (GMMs) is used to model
the overall density of the bimodal genes and provide a clustering solution. The GMM,
as highlighted in chapter in modelling the bimodal data, is that it allows one to extract an
overall density function for the bimodal data. We will consider the overall density modelled
by a GMM against the overall density modelled by the BTL. Since GMMs yield clustering
solutions as well as overall density functions, it could be a heavy handed approach if there
is no meaningful interpretation in the clustering solution. Furthermore, one could quite
easily reach an overfitted and overparameterized model by using a k-component mixture
model [47].

6.2. BTL vs. GMM

In Figure 8, we show the comparative fit of three GMMs against our parametric
model, the bimodal triangular-linked distribution. From the figure, it seems evident that
a two component mixture fits well to the data with three and four components not add
much difference to the overall density fit. Furthermore, the three component and four

https://portal.gdc.cancer.gov/
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component models do not converge in 1000 iterations which is troublesome, however,
the two component model just fits in 38 iterations. In Table 1, we have tabulated the
estimates used for α̂ and θ̂ for the BTL. These are calculated using the formulae provided
by Equations (16) and (17).

Figure 8. BTL vs. GMM from 2 to 4 components.

Table 1. Estimates of BTL.

α̂ θ̂

0.53 0.45
2.95 0.85

If we compare to the fit of the BTL, we find that it has a very good fit. Using the
Cramér–von Mises and the Kolmogorov–Smirnov tests, we find that the we do not reject
the null hypothesis comfortably, even with the penalty on the CVM for sample estimated
parameters (shown in Table 2). In Table 3, it an be seen that we also do not reject the null
hypothesis for the KS and CVM tests. To get to more distinctive quantitative results, we
look a the AIC and BIC scores in Table 4, where according to these relativistic metrics, the
GMM outperforms the BTL as a density model. Furthermore, we visually illustrate the
goodness of fit comparisons with the plots in Figure 9, showing a PP-plot and an ECDF
plot of the two models, BTL and GMM.

Table 2. KS and CVM testing with the CDF of the BTL.

BTL Test Statistic p-Value

ω2 0.48498 0.632

d 0.046772 0.2164

Table 3. KS and CVM testing using a pseudo-CDF for the GMM.

GMM Test Statistic p-Value

ω2 0.82751 0.1233

d 0.024848 0.9124
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Table 4. AIC and BIC scores.

AIC BIC

GMM −437.7647 −425.0615

BTL −376.8566 −368.3878

(a)

(b)

Figure 9. GOF tests. (a) ECDF, BTL CDF and GMM pseudo-CDF. (b) PP-plot of BTL and GMM.

7. Conclusions

The curse of dimensionality is a problem for all models. Working in higher dimensions
complicates the modelling process. This is even more true for bimodal data since very
few classical (i.e., normal, t) distributions that can accurately model bimodality in one
dimension, let alone multiple dimensions. Most often, researchers turn to finite mixture
models to capture bimodality. The use of finite mixture models does not provide five
number summary statisics directly, bare useful tools such as the CDF which can used
for prediction and confidence intervals and can be computationally expensive with k
components in d dimensions. Furthermore, the choice of mixtures is most often a heuristic
and in scenarios where the modes are close to each other, convergence of the EM algorithm
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is not guaranteed. Goodness-of-fit cannot be determined for mixture models and the only
way to measure the model is by using machine learning metrics such as RMSE, accuracy,
BIC and AIC.

In this paper, we introduce a simple mathematical model that addresses the issues with
existing models for bimodality. The approach is as follows: The modes can be determined
by identifying structural breaks in the empirical CDF. This is the only empirical information
needed in order to fully specify the model estimates. We will investigate alternative
approaches to determining the modes such as using KDEs as a proxy for mode estimate,
MLEs and Methods of moments estimates.

In order to generalise to the multivariate case, we use a Gaussian copula. Copulas have
found wide application in the field of actuarial modelling and investment management.
We only take advantage of the dependance modelling of copulas to build the multivariate
distribution as a fully fledged mathematical form of a multivariate distribution can necessi-
tate a PhD to develop. A simulation of the multivariate distribution was illustrated and a
comparison to a multivariate Gaussian mixture model was shown. An application in gene
expression data of the univariate BTL vs. a GMM is shown. Finally, a package called btld
was constructed from the workings of this paper.

Further research includes invesitgating the MVTL as a substitute for the compound
Dirichlet distribution in modelling word rates. Furthermore, we can look to alternate
copula structures to see how the multivariate distribution could change.
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Appendix A. Additional Reading

Here we show that α0 is a function of α1, α2, θ1, θ2

Proof. It is known that if we integrate Equation (7) from 0 to 1 that we will get 1, since
Equation (7) is a valid PDF. Therefore,

https://www.cair.org.za/
https://www.cair.org.za/
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If
∫ 1

0
f (x)dx = 1 =⇒

∫ θ1

0
f (x) dx +

∫ θ2

θ1

f (x) dx +
∫ 1

θ2

f (x) dx = 1

α1θ1

2
+
∫ θ2

θ1

α0 dx +
α2(1− x)2

2(1− θ2)
= 1 (A1)

α0(θ2 − θ1) = 1− α1θ1

2
− α2(1− θ2)

2

α0 =
1− α1θ1

2 −
α2(1−θ2)

2
θ2 − θ1

Therefore with some algebraic manipulation it can be shown that,

α0(θ2 − θ1) +
α1θ1

2
+

α2(1− θ2)

2
= 1. (A2)

Appendix B. btld: An R Package for Univariate and Multivariate Bimodal
Triangular-Linked Distributions

We developed an R package, btld, in order to fit all functions derived in this work.
The implementation is similar to the stats package by [48] with their q-,r-,p-,d-, func-
tionality. That is the function qbtld invokes the quantile function, the rbtld invokes the
ICDF, the pbtld the CDF function and finally the dbtld the density function. R functions
were scripted for the triangular (-tri) distribution with the same functionality as well as
for the multivariate distribution (-mvbtld).

A series of functions were created for rescaling the data and calculating the sample
parameters. A function called find.thetas was created to find the modal parameters
using the equations specified in Section 4.1. Once these were determined, we used the
ECDF of the data to find the cumulative densities of the modal parameters using empCDF
and find.fthetas. Then, once we have our CDF and modal values, we can calculate our
scale parameters using btld_scales. The entire parameter estimation framework is done
in a wrapper function called btld.params.kde where a kernel density function is used to
find the approximate modes. This is done since we do not have expressions for method
of moment or maximum likelihood estimates for the sample estimates, but this can be
investigated in future work. A function without the kernel density approximation is also
implemented as btld.params, however, this would require inputs of modes based on the
H-plot or a histogram.

A series of other wrapper functions are created for comparisons to mixture models
and compound distributions from the mixtools, MixAll and copula packages [49–51],
respectively. The package can be accessed at the following link https://github.com/tharris0
924/btld and installed into R using
devtools::install_github("tharris0924/btld").
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