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Abstract: Consider the following problem. In a school with three classes containing n students
each, given that their genders are unknown, find the minimum possible number of triples of same-
gender students—not all of which are from the same class. Muaengwaeng asked this question and
conjectured that the minimum scenario occurs when the classes are all boys, all girls and half-and-half.
In this paper, we solve many generalizations of the problem including when the school has more than
three classes, when triples are replaced by groups of larger sizes, when the classes are of different
sizes, and when gender is replaced by other non-binary attributes.
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1. Introduction

A hypergraph is a pair (V, E) where V is a finite set of vertices and E is a collection of
subsets of V. Each subset in E is called an edge. An r-uniform hypergraph contains only
edges of size r, and if it contains all possible edges of size r, this r-uniform hypergraph is
said to be complete. According to the definition, an edge of a hypergraph is a collection
of vertices.

From the time that hypergraphs were introduced, many researchers have been study-
ing hypergraphs as a generalization of graphs, and many theorems in graph theory have
been extended to hypergraphs (see [1–5]). Paths and cycles of hypergraphs were also
extended and studied (see [6]). Coloring, as one of the most popular topics in graph theory,
was also a part of those interesting extensions (see [7,8]). This also led to a new way of
studying chromatic numbers; for example, Brooks’s Theorem, another famous coloring
theorem, was also successfully extended to hypergraphs (see [9]).

Usually, the term ‘monochromatic’ is used to describe a collection of edges of the same
color (see [10,11]), but here, we color the vertices and consider a monochromatic collection
of vertices. Given a hypergraph, an m-coloring is an assignment of a color to each vertex of
the hypergraph from m available colors. An edge is said to be monochromatic if all vertices
in it have the same color. Some research (see [12]) focused on proper coloring and defective
coloring, which involve colorings where monochromatic edges do not exist or exist only
in some limited amount (see [13,14]). Some hypergraphs might have no desired defective
coloring; however, we could determine the coloring that gives the fewest monochromatic
edges with a given amount of colors.

The complexity of general hypergraphs has led to studies focusing on hypergraphs
that have an orderly and symmetric structure, such as k-partite hypergraphs. A balanced
k-partite r-uniform hypergraph has k vertex classes V1, V2, . . . , Vk of the same size. There
are two natural generalizations of k-partite graphs to hypergraphs. First, each edge is an

r-subset of
k⋃

i=1

Vi, all of whose vertices are from different classes. The second definition of
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edges is that each edge is an r-subset, not all of whose vertices are from the same class. In
the paper, we will use the latter definition.

The problem in the abstract can be restated in the language of hypergraphs as follows.

Problem 1. Which 2-coloring minimizes the number of monochromatic edges of a balanced complete
tripartite 3-uniform hypergraph?

This question was asked by Muaengwaeng [15]. Given that those two colors are red
and blue, she conjectured that the minimum coloring occurs when those three classes are all
blue, all red and half-and-half. In this paper, we solve many generalizations of Problem 1.
First, we study a balanced complete k-partite r-uniform hypergraph.

Theorem 1. Let n > r > 3 and k > 2. The 2-coloring minimizing the number of monochro-
matic edges of a balanced complete k-partite r-uniform hypergraph with n vertices in each class is
as follows:

1. Color all vertices of the first b k
2c classes with red;

2. Color all vertices of the last b k
2c classes with blue;

3. If there is another class, color the vertices of that class such that the number of red and blue
vertices are as equal as possible.

Moreover, this coloring is unique up to a permutation of colors and classes.

The case where r = k = 3 was presented in a conference [16] by the second author.
The key idea is to calculate the change in the number of monochromatic edges when a
vertex is recolored. We use this to find the minimum coloring among those with a fixed
number of red vertices. Then, we compare these minimum colorings.

The proof of Theorem 1 gives a clue on how to prove a more general case when each
class does not contain the same number of vertices.

Theorem 2. For any unbalanced complete tripartite 3-uniform hypergraph H with the numbers of
vertices of the first, second and third classes, n1 6 n2 6 n3, where n3 > 3 and n1 + n2 + n3 = N,
a 2-coloring minimizing the number of monochromatic edges of H is as follows:

1. If n1 + n2 > n3, color all vertices in the second and third classes with blue and red,

respectively, and color
⌈

N2−3N−n2
1−2n1n3+3n1+4n3
2(N−n1)

⌉
− n3 vertices in the first class with red.

2. If n1 + n2 6 n3, then color all vertices in the first and second classes with red and color the
third class with blue.

Moreover, each coloring is unique up to a permutation of colors unless (n1, n2, n3) = (2, n, n + 1)
for n > 2 in which case there is another extremal coloring, namely a coloring such that vertices in
the third class are all red, all vertices in the second class are all blue and the first class has one red
and one blue vertex.

The proof consists of two parts. First, by swapping a red vertex and a blue vertex in
different classes, we conclude that a minimum coloring must be in one of the 12 canonical
forms. Then, we compare the numbers of monochromatic edges between the forms.

Finally, we study the number of monochromatic edges of balanced complete k-partite
r-uniform hypergraphs except, this time, up to three colors will be available. The problem
of minimizing the number of monochromatic edges becomes more complicated as it is not
a simple two-way comparison between red and blue. The results are divided upon the
remainder of the number of vertex classes, k, divided by 3. We are able to solve the cases
k ≡ 0, 1 (mod 3).

Theorem 3. Let n > r > 3 and k > 3. For any balanced complete k-partite r-uniform hypergraph,
H, with n vertices in each class, if k ≡ 0 (mod 3), the 3-coloring minimizing the number of
monochromatic edges of H is as follows:



Mathematics 2022, 10, 2353 3 of 29

1. Color all vertices of the first k
3 classes with red;

2. Color all vertices of the next k
3 classes with blue;

3. Color all vertices of the last k
3 classes with green.

If k ≡ 1 (mod 3), the 3-coloring minimizing the number of monochromatic edges of H is
as follows:

1. Color all vertices of the first
⌊

k
3

⌋
classes with red;

2. Color all vertices of the next
⌊

k
3

⌋
classes with blue;

3. Color all vertices of the next
⌊

k
3

⌋
classes with green;

4. Color all vertices of the last class such that the number of red, blue and green vertices are as
equal as possible.

Moreover, each coloring is unique up to a permutation of colors.

We use a similar idea to prove Theorem 3, but we need to develop some new lemmas
to construct the canonical forms of the colorings.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and useful properties that will be used throughout the paper. Later, we consider some
straightforward cases. Sections 3–5 are devoted to proving Theorems 1–3, respectively.
Finally, we conclude in Section 6 with a discussion of some open problems.

2. Counting Monochromatic Edges

First, we will introduce some notations that will be used throughout the paper. Later,
we will mainly discuss some useful properties of binomial coefficients and some trivial
cases of the problem.

2.1. The Number of Monochromatic Edges of a 2-Coloring of Balanced Complete k-Partite
r-Uniform Hypergraphs

Let H be a balanced complete k-partite an (r + 1)-uniform hypergraph with n ver-
tices in each class. We consider (r + 1)-uniform instead of an r-uniform hypergraph for
simple calculation. Let c be a coloring of H with xi red vertices in the ith class and let
X = x1 + x2 + · · ·+ xk. Let M(H, c) be the number of monochromatic edges of H with
coloring c. Then,

M(H, c) =

[(
X

r + 1

)
−

k

∑
i=1

(
xi

r + 1

)]
+

[(
kn− X
r + 1

)
−

k

∑
i=1

(
n− xi
r + 1

)]
.

This function is the main method to count the number of monochromatic edges.
However, this function alone is not enough for comparing the numbers of monochromatic
edges of all colorings. Let4i M(H, c) be the change in the number of monochromatic edges
when a blue vertex in the ith class is recolored (if possible). The change is equal to the
difference between the number of monochromatic edges containing the vertex that will be
recolored before and after the recoloring. Then,

4i M(H, c) =
[(

X
r

)
−
(

xi
r

)]
−
[(

kn− X − 1
r

)
−
(

n− xi − 1
r

)]
.

We sometimes simply write4M(H, c) instead of4i M(H, c) if the class of the color-
changing vertex is clear.

2.2. The Number of Monochromatic Edges of a 2-Coloring of Unbalanced Complete Tripartite
3-Uniform Hypergraphs

Let H be an unbalanced complete tripartite 3-uniform hypergraph with the numbers
of vertices of the first, second and third classes equal to n1 6 n2 6 n3, respectively, and
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let N = n1 + n2 + n3. Let c be the coloring of H with the number of red vertices of the
first, second and third classes equal to x1, x2 and x3, respectively, and let X = x1 + x2 + x3.
Then,

M(H, c) =

[(
X
3

)
−

3

∑
i=1

(
xi
3

)]
+

[(
N − X

3

)
−

3

∑
i=1

(
ni − xi

3

)]
,

and

4i M(H, c) =
[(

X
2

)
−
(

xi
2

)]
−
[(

N − X − 1
2

)
−
(

ni − xi − 1
2

)]
.

2.3. The Number of Monochromatic Edges of a 3-Coloring of Balanced Complete k-Partite
r-Uniform Hypergraphs

Let H be a balanced complete k-partite (r + 1)-uniform hypergraph with n vertices in
each class. Let c be the 3-coloring of H with the numbers of red, blue and green vertices of
the ith class equal to ri, bi and gi, respectively, and let R, B and G be the total numbers of red,
blue and green vertices, respectively. Note that R = ∑k

i=1 ri, B = ∑k
i=1 bi and G = ∑k

i=1 gi.
Moreover, n = ri + bi + gi for each i = 1, 2, . . . , k and kn = R + B + G. Then,

M(H, c) =

[(
R

r + 1

)
−

k

∑
i=1

(
ri

r + 1

)]
+

[(
B

r + 1

)
−

k

∑
i=1

(
bi

r + 1

)]
+

[(
G

r + 1

)
−

k

∑
i=1

(
gi

r + 1

)]
.

We write4i M(H, c) for the change in the number of monochromatic edges when a
blue vertex in the ith class is recolored to red (if possible). Then,

4i M(H, c) =
[(

R
r

)
−
(

ri
r

)]
−
[(

B− 1
r

)
−
(

bi − 1
r

)]
.

The change can be calculated similarly for any recoloring with other color combinations.

2.4. Properties of Binomial Coefficients

We will additionally introduce some standard tools that will be applied throughout
this paper.

Proposition 1. For any non-negative integers a, b, c and d with c 6 a 6 b 6 d, if a + b 6 c + d,
then (a

r) + (b
r) 6 (c

r) + (d
r) for any positive integer r. Moreover, the equality holds if and only if

(a = c and b = d) or d < r.

Note that the inequality trivially holds when all upper indices of binomial coefficient
terms are less than the lower index. This trivial condition will be found occasionally
throughout our proofs of the main theorems.

Proposition 2. For any non-negative integers x1, x2, . . . , xn whose sum is constant and for any
non-negative integer r, ∑n

i=1 (
xi
r ) is smallest if and only if x1, x2, . . . , xn are as equal as possible or

max{x1, x2, . . . , xn} < r .

Proposition 3. For any non-negative integers x1, x2, . . . , xn whose sum is constant, and for any
non-negative integer r, ∑n

i=1 (
xi
r ) is largest if and only if all but one xi are zeros or ∑n

i=1 xi < r.

Proposition 1 is the main tool to compare binomial coefficients, while Propositions 2 and 3
are generalizations of Proposition 1, which we will apply to prove some trivial cases of the
problems in the next subsections.
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2.5. Colorings of Hypergraphs with the Size of Each Class Fewer than the Size of an Edge

In our theorems, we assume that the size of each class must be at least the size of
an edge; otherwise, an edge cannot be contained in a class and our hypergraphs are just
complete hypergraphs. In this subsection, we will note that the problem is trivial when
n < r and determine a coloring that has the minimum number of monochromatic edges.
Let H be a complete r-uniform hypergraph, and let c be a coloring of H. Then,

M(H, c) =
(

R
r

)
+

(
B
r

)
if c is a 2-coloring with R red and B blue vertices, and

M(H, c) =
(

R
r

)
+

(
B
r

)
+

(
G
r

)
if c is a 3-coloring with R red, B blue and G green vertices.

By Proposition 1, M(H, c) is smallest if R, B (and G) are as equal as possible. Hence,
a coloring such that the numbers of vertices of each color are as equal as possible has the
minimum number of monochromatic edges.

2.6. Colorings of Hypergraphs with the Number of Classes Fewer than or Divisible by the Number
of Colors

In this subsection, we will consider colorings where the number of classes is fewer
than or divisible by the number of colors and determine the colorings with the minimum
number of monochromatic edges. We consider not only the colorings with 2 or 3 colors but
also m-colorings with m greater than 3.

First, we consider the hypergraphs with the number of classes fewer than the number
of colors. There are no monochromatic edges of a fixed color only when all vertices of that
color are contained in at most one class, or the number of vertices of that color is fewer
than r. Hence, the colorings such that each color appears in at most one class or appears on
fewer than r vertices are the only colorings with no monochromatic edges. Such colorings
exist when the number of classes is fewer than the number of colors.

The determination of the minimum coloring of the remaining case is straightforward
from the Propositions 1 and 2.

Proposition 4. Let n > r and let k be divisible by m. The m-coloring minimizing the number of
monochromatic edges of a balanced complete k-partite r-uniform hypergraph with n vertices in each
class is the coloring with equal numbers of vertices of each color and no polychromatic class.

Proof. Suppose that n > r. Let H be a balanced complete k-partite r-uniform hypergraph
with n vertices in each class, and let c be an m-coloring of H such that k is divisible by m.
Let xli be the number of vertices with the lth color in the ith class, and let Xl be the total
number of vertices with the lth color. Then,

M(H, c) =
m

∑
l=1

[(
Xl
r

)
−

k

∑
i=1

(
xli
r

)]
.

We will show that the coloring c∗ with equal numbers of vertices of each color and
no polychromatic class is the minimum coloring by directly comparing the numbers of
monochromatic edges of c and c∗. By Propositions 1 and 2,
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M(H, c) =
m

∑
l=1

[(
Xl
r

)
−

k

∑
i=1

(
xli
r

)]

> m
( 1

m ∑m
l=1 Xl
r

)
−

k

∑
i=1

(
∑m

l=1 xli
r

)

= m
( kn

m
r

)
−

k

∑
i=1

(
n
r

)
= M(H, c∗).

The equality only holds when (Xi =
kn
m for each i and each class is monochromatic)

or n < r, but the latter is impossible. Hence, c∗ is the unique coloring with the minimum
number of monochromatic edges.

The proof in this subsection is a straightforward comparison due to the simplicity of
color distribution. However, in other general cases, they are much more complicated.

3. Proof of Theorem 1

Let H be a balanced complete k-partite (r + 1)-uniform hypergraph with n > r + 1
vertices in each class where k > 2 and r > 2. Let c be a coloring of H with xi red vertices
in the ith class, and let X = x1 + x2 + · · ·+ xk. We may assume that X 6 b kn

2 c; otherwise,
we relabel the names of the colors. Note that if k is even, the proof is completed by
Proposition 3. However, we will not need to assume that k is odd in the following proof.

We will calculate M(H, c) in a new manner by summing each change when a blue
vertex is recolored into red one by one starting from the all-blue hypergraph until we reach
c. Let c0 be the all-blue coloring, and let cj be the coloring after the jth change in H. Thus,

M(H, c) = M(H, c0) +
X − 1

∑
j=0
4M(H, cj) =

(
kn

r + 1

)
− k
(

n
r + 1

)
+

X − 1

∑
j=0
4M(H, cj).

We suppose that the vertices in the first class of the all-blue hypergraph will be
recolored first to match the first class of c and then continue to the next class. Note that
cj has j red vertices. Let the ith class be the class containing the blue vertex that will be
recolored, and let x be the number of red vertices in that class. Then, from Section 2.1,

4M(H, cj) =

[(
j
r

)
−
(

x
r

)]
−
[(

kn− j− 1
r

)
−
(

n− x− 1
r

)]
=

[(
j
r

)
−
(

kn− j− 1
r

)]
−
[(

x
r

)
−
(

n− x− 1
r

)]
.

Note that while each vertex in the changing class is being recolored, the term x ascends
from 0 to xi − 1. Thus,

M(H, c) =
(

kn
r + 1

)
− k
(

n
r + 1

)
+

X − 1

∑
j=0
4M(H, cj)

=

(
kn

r + 1

)
− k
(

n
r + 1

)
+

X − 1

∑
j=0

[(
j
r

)
−
(

kn− j− 1
r

)]
−

k

∑
i=1

xi−1

∑
x=0

[(
x
r

)
−
(

n− x− 1
r

)]
.

In this way, if we consider only the colorings with X red vertices, then the terms(
kn

r + 1

)
− k
(

n
r + 1

)
+

X − 1

∑
j=0

[(
j
r

)
−
(

kn− j− 1
r

)]

in the function M(H, c) are constant. Only the term
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k

∑
i=1

xi−1

∑
x=0

[(
x
r

)
−
(

n− x− 1
r

)]
is distinct, and we denote this term by S(x1, x2, . . . , xk). Hence, the coloring with a maxi-
mum value of S(x1, x2, . . . , xk) will have the minimum number of monochromatic edges.

Claim 1. Among the colorings with a constant total number X of red vertices, the coloring c∗X with
the minimum number of polychromatic classes has the minimum number of monochromatic edges.
Moreover, the minimum coloring is unique up to a permutation of classes.

Proof. Consider a coloring with the number of red vertices in the ith class equal to xi,
where x1 + x2 + · · ·+ xk = X and x1 > x2 > · · · > xk. Suppose that the coloring is not c∗X .
Therefore, there exist classes l < m such that xl 6= n and xm 6= 0. Next, we will compare
the terms

S(x1, . . . , xl , . . . , xm, . . . , xk)

and
S(x1, . . . , xl + 1, . . . , xm − 1, . . . , xk).

which corresponds to swapping a red vertex from the mth class with a blue vertex from the
lth class. Thus, since xl > xm,

S(x1, . . . , xl + 1, . . . , xm − 1, . . . , xk)− S(x1, . . . , xl , . . . , xm, . . . , xk)

=
xl + 1−1

∑
x=0

[(
x
r

)
−
(

n− x− 1
r

)]
+

xm−1−1

∑
x=0

[(
x
r

)
−
(

n− x− 1
r

)]

−
xl−1

∑
x=0

[(
x
r

)
−
(

n− x− 1
r

)]
−

xm−1

∑
x=0

[(
x
r

)
−
(

n− x− 1
r

)]
=

[(
xl
r

)
−
(

xm − 1
r

)]
+

[(
n− xm

r

)
−
(

n− xl − 1
r

)]
> 0.

The equality only holds when all upper indices of the binomial coefficient terms are
less than r. The swapping resulted in fewer or equal monochromatic edges. We will
continue swapping as long as possible to reduce the number of polychromatic classes.
The inequality is strict at some point since either xl will eventually equal n− 1, in which
case xl = n − 1 > r, or xm will eventually equal 1, in which case n − xm = n − 1 > r.
This implies that the original coloring has strictly more monochromatic edges than some
coloring. Hence, c∗X is the unique coloring with the minimum number of monochromatic
edges among those with X red vertices.

We have determined the minimum coloring for each value of X. Next, we will
make comparisons between colorings with different values of X. We will show that
M(H, c∗X) > M(H, c∗X+1) for all X 6 b kn

2 c − 1. Let c∗X be the minimum coloring with
X 6 b kn

2 c − 1 red vertices. Suppose that the polychromatic class of c∗X is the ith class, but if
c∗X has no polychromatic class, suppose the ith class is an all blue class. Observe that

M(H, c∗X+1)−M(H, c∗X) = 4i M(H, c∗X)

=

[(
X
r

)
−
(

xi
r

)]
−
[(

kn− X − 1
r

)
−
(

n− xi − 1
r

)]
=

[(
X
r

)
+

(
n− xi − 1

r

)]
−
[(

kn− X − 1
r

)
+

(
xi
r

)]
.

The following proof will be divided into two cases according to the value of xi.
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Case 1: n
2 6 xi < n.

Thus,

X− (kn− X − 1) = 2
(

X +
1
2
− kn

2

)
6 2

(⌊
kn
2

⌋
− kn

2
− 1

2

)
< 0,

and

(n− xi − 1)− xi = 2
(

n
2
− xi −

1
2

)
< 0.

Hence,4i M(H, c∗X) 6 0, but4i M(H, c∗X) 6= 0 since one of the upper indices is at least

r. Indeed, kn− X − 1 >
⌈

kn
2

⌉
> n > r because k > 2.

Case 2: 0 6 xi <
n
2 .

We will show that4i M(H, c∗X) < 0 by Proposition 1. As in Case 1,

X− (kn− X − 1) < 0.

Moreover,

(n− xi − 1)− xi = 2
(

n
2
− xi −

1
2

)
> 0.

Suppose that there are k∗ red classes in c∗X , i.e., X = k∗n + xi. Since X 6 b kn
2 c − 1, we

have k∗ 6 k−1
2 . Thus,

(X + n− xi − 1)− (xi + kn− X − 1) = 2
(

k∗n− k− 1
2

n
)
6 0.

Similarly, kn− X − 1 > r. Hence, by Proposition 1,4i M(H, c∗X) < 0.
By the two cases, c∗X contains strictly more monochromatic edges than c∗X+1 does,

given that X 6 b kn
2 c − 1. Consequently, we can conclude that the unique coloring with the

minimum number of monochromatic edges among all minimum colorings c∗X is c∗b kn
2 c

.

Together with the claim, c∗b kn
2 c

is the unique coloring with the minimum number of

monochromatic edges.
Note that, in the claim, we determine c∗X by means of determining the coloring with

maximum S(x1, x2, . . . , xk). On the contrary, we could determine the coloring with a
constant number X of red vertices that has the maximum number of monochromatic edges
by showing conversely that the coloring with minimum S(x1, x2, . . . , xk) is the coloring
such that x1, x2, . . . , xk are as equal as possible. However, this is out of our topic.

4. Proof of Theorem 2

Let H be an unbalanced complete tripartite 3-uniform hypergraph with the numbers
of vertices of the first, second and third classes n1 6 n2 6 n3, and let N = n1 + n2 + n3. Let
c be the coloring of H with the number of red vertices of the first, second and third classes
equal to x1, x2 and x3, respectively, and let X = x1 + x2 + x3.

We divide the proof into two subsections according to the size of the smallest class. In
the first subsection, a similar idea as in the proof of Theorem 1 is extended to determine
the minimum coloring when the number of vertices of each class is at least 3. The second
subsection is mainly about hypergraphs with some small classes.

4.1. Hypergraphs with n1 > 3

Assume that n1 > 3. Let4ii′M(H, c) be the change in the number of monochromatic
edges if a blue vertex in the ith class is recolored into red and a red vertex in the i′th class is
recolored into blue. The process will be called swapping, which results in a new coloring, say
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c′. We compute4ii′M(H, c) by comparing the number of monochromatic edges containing
those vertices undergone swapping before and after the swapping process. Thus,

4ii′M(H, c) =
[(

x1 + x2 + x3 − 1
2

)
−
(

xi
2

)
+

(
N − x1 − x2 − x3 − 1

2

)
−
(

ni′ − xi′

2

)]
−
[(

x1 + x2 + x3 − 1
2

)
−
(

xi′ − 1
2

)
+

(
N − x1 − x2 − x3 − 1

2

)
−
(

ni − xi − 1
2

)]
=

[(
xi′ − 1

2

)
+

(
ni − xi − 1

2

)]
−
[(

xi
2

)
+

(
ni′ − xi′

2

)]
.

A successful swapping is a swapping in such a way that the number of monochromatic
edges is reduced, i.e.,4ii′M(H, c) < 0.

Lemma 1. If4ii′M(H, c) 6 0, then4ii′M(H, c′) < 0.

Proof. Observe that

4ii′M(H, c′) =
[(

(xi′ − 1)− 1
2

)
+

(
ni − (xi + 1)− 1

2

)]
−
[(

xi + 1
2

)
+

(
ni′ − (xi′ − 1)

2

)]
6
[(

xi′ − 1
2

)
+

(
ni − xi − 1

2

)]
−
[(

xi
2

)
+

(
ni′ − xi′

2

)]
= 4ii′M(H, c) 6 0.

The equality holds only when (xi′ − 1 < 2 and ni − xi − 1 < 2) and (xi + 1 < 2 and
ni′ − xi′ + 1 < 2) and 4ii′M(H, c) = 0. Suppose that 4ii′M(H, c′) = 0. We have that
xi = 0 and xi′ < 3. Thus, ni = ni − xi < 3 and ni′ − 2 6 ni′ − xi′ < 1, i.e., ni′ < 3, which
contradicts 3 6 n1 6 n2 6 n3.

Lemma 1 means that if a swapping can be carried out without increasing the number
of monochromatic edges, another swapping in the same direction will be successful (if
there are red and blue vertices to be swapped). The process of successful swappings will
terminate when one of the two classes (or both) is monochromatic.

Lemma 2. If4ii′M(H, c) > 0, then4i′i M(H, c) < 0.

Proof. Observe that

4i′i M(H, c) =
[(

xi − 1
2

)
+

(
ni′ − xi′ − 1

2

)]
−
[(

xi′

2

)
+

(
ni − xi

2

)]
6
[(

xi
2

)
+

(
ni′ − xi′

2

)]
−
[(

xi′ − 1
2

)
+

(
ni − xi − 1

2

)]
= −4ii′ M(H, c) 6 0.

The equality holds only when (xi < 2 and ni′ − xi′ < 2) and (xi′ < 2 and ni − xi < 2)
and 4ii′M(H, c) = 0. Suppose that 4i′i M(H, c) = 0. We have that xi 6 1 and xi′ 6 1.
Thus, ni − 1 6= ni − xi < 2 and ni′ − 1 6 ni′ − xi′ < 2, i.e., ni < 3 and ni′ < 3, which
contradicts 3 6 n1 6 n2 6 n3.

Note that, for any coloring c, if c contains two classes, the ith and i′th, which are
polychromatic, then a swapping can be carried out in two directions as follows.

1. Swapping a red vertex of the ith class with a blue vertex of the i′th class.
2. Swapping a blue vertex of the ith class with a red vertex of the i′th class.

By Lemma 2, one of the two directions is successful. Moreover, by Lemma 1, we can
continue swapping in the same direction until one of the two classes is monochromatic
and has fewer monochromatic edges. Hence, the coloring with the minimum number of
monochromatic edges among colorings with a constant number of red vertices must have
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at most one polychromatic class. We will list all these forms in the following Table 1, which
will be the candidates for the coloring with the minimum number of monochromatic edges.

Table 1. The twelve canonical forms.

Canonical Forms 1st Class 2nd Class 3rd Class

F1 polychromatic blue blue
F2 blue polychromatic blue
F3 blue blue polychromatic
F4 red polychromatic blue
F5 red blue polychromatic
F6 polychromatic red blue
F7 blue red polychromatic
F8 polychromatic blue red
F9 blue polychromatic red
F10 red red polychromatic
F11 red polychromatic red
F12 polychromatic red red

The first column illustrates the list of 12 canonical forms, and the remaining columns
describe the colors of vertices in those classes. The terms red and blue mean all vertices in
those classes are monochromatic of red and blue, respectively. On the other hand, polychro-
matic means that this class is allowed to be polychromatic, but it may be monochromatic.
Note that a coloring can be considered in several canonical forms; for example, the all-blue
coloring is of the form F1, F2 or F3.

We may assume that X 6 bN
2 c. Consequently, both F11 and F12 are out of our interest

since the total numbers of red vertices, which are n1 + x2 + n3 and x1 + n2 + n3, respectively,
exceed bN

2 c, as shown:

n1 + x2 + n3 =
n1 + n3 + 2x2

2
+

n1 + n3

2
>

n2

2
+

n1 + n3

2
>
⌊

n1 + n2 + n3

2

⌋
and

x1 + n2 + n3 =
n2 + n3 + 2x1

2
+

n2 + n3

2
>

n1

2
+

n2 + n3

2
>
⌊

n1 + n2 + n3

2

⌋
.

Next, we will focus on the possibility of F10. If c has total red vertices to be

X = n1 + n2 + x3 6 bn1 + n2 + n3

2
c. Then,

n1 + n2 6 2
(⌊

n1 + n2 + n3

2

⌋
− n1 + n2

2

)
6 2

(
n1 + n2 + n3

2
− n1 + n2

2

)
= n3.

The necessary condition of a coloring c of a hypergraph H to be in the form F10 is that

n1 +n2 6 n3. Note that the condition n1 +n2 6 n3 is equivalent to n1 +n2 6 bn1 + n2 + n3

2
c

6 n3, and we call a hypergraph with this condition type A. On the other hand, the condition

n1 + n2 > n3 is equivalent to n3 6 bn1 + n2 + n3

2
c < n1 + n2, and we call a hypergraph

with this condition type B. Next, we will determine the minimum coloring among those
colorings with a constant number X of red vertices or c∗X from the candidates F1 to F9, and
F10 will be considered only when H is a type A hypergraph.

As in the proof of Theorem 1, we calculate M(H, c) by summing each change when
a blue vertex is recolored into red one by one starting from the all-blue hypergraph until
we reach c. Let c0 be the all-blue coloring and let cj be the coloring after the jth change in
H. Thus,
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M(H, c) = M(H, c0) +
X − 1

∑
j=0
4M(H, cj) =

(
N
3

)
−

3

∑
i=1

(
ni
3

)
+

X − 1

∑
j=0
4M(H, cj).

We suppose that the vertices in the first class of the all-blue hypergraph will be
recolored first to match the first class of c and then continue to the next class. Note that
cj has j red vertices. Let the ith class be the class containing the blue vertex that will be
recolored and x be the number of red vertices in that class. Then, from Section 2.2,

4M(H, cj) =

[(
j
2

)
−
(

x
2

)]
−
[(

N − j− 1
r

)
−
(

ni − x− 1
2

)]
=

[(
j
2

)
−
(

N − j− 1
2

)]
−
[(

x
2

)
−
(

ni − x− 1
2

)]
.

Note that while each vertex in the changing class is being recolored, the term x ascends
from 0 to xi − 1. Thus,

M(H, c) =
(

N
3

)
−

3

∑
i=1

(
ni
3

)
+

X − 1

∑
j=0
4M(H, cj)

=

(
N
3

)
−

3

∑
i=1

(
ni
3

)
+

X − 1

∑
j=0

[(
j
2

)
−
(

N − j− 1
2

)]
−

3

∑
i=1

xi−1

∑
x=0

[(
x
2

)
−
(

ni − x− 1
2

)]
.

Similarly, if we consider only the coloring with X red vertices, then the terms(
N
3

)
−

3

∑
i=1

(
ni
3

)
+

X − 1

∑
j=0

[(
j
2

)
−
(

N − j− 1
2

)]

in the function M(H, c) are constant. Only the term

3

∑
i=1

xi−1

∑
x=0

[(
x
2

)
−
(

ni − x− 1
2

)]
is distinct and we denote this term by S(x1, x2, x3). Hence, the coloring with maxi-
mum value of S(x1, x2, x3) will have the minimum number of monochromatic edges.
Remark that if xi = ni, then the term ∑xi−1

x=0

[
(x

2)− (ni−x−1
2 )

]
cancels itself out. Hence,

S(n1, x2, x3) = S(0, x2, x3) and similarly when x2 = n2 or x3 = n3.
Next, we will determine c∗X by considering and comparing only among possible

canonical forms according to the value X and type of H. We will divide into several cases.
Case 1: 0 6 X < n1 (See Table 2).

Table 2. Possible canonical forms for Case 1.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F1 X 0 0 S(X, 0, 0)
F2 0 X 0 S(0, X, 0)
F3 0 0 X S(0, 0, X)

We will compare among colorings in the forms F1, F2 and F3. Note that if n1 = n2, F1
and F2 are the same. Similarly, if n1 = n2 = n3, F1, F2 and F3 are the same. Then,
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S(0, X, 0) =
X − 1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]
6

X − 1

∑
j=0

[(
j
2

)
−
(

n1 − j− 1
2

)]
= S(X, 0, 0).

The equality holds only when n1 = n2 or n2 − 1 < 2. Since 3 6 n2 6 n3, we
can conclude that a coloring in the form F1 has fewer monochromatic edges than F2 and
similarly for F3. Hence, c∗X is in the form F1.

Case 2: n1 6 X < n1 + n2
2 (See Table 3).

Table 3. Possible canonical forms for Case 2.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F2 0 X 0 S(0, X, 0)
F3 0 0 X S(0, 0, X)
F4 n1 X− n1 0 S(n1, X− n1, 0)
F5 n1 0 X− n1 S(n1, 0, X− n1)

In this case, we must have that n1 < n2. Similarly to Case 1, we have that F2 has fewer
monochromatic edges than F3. Next, we will compare between colorings in the forms F4
and F5. If n2 = n3, then both forms are the same. Thus,

S(n1, 0, X− n1) = S(0, 0, X− n1) 6 S(0, X− n1, 0) = S(n1, X− n1, 0).

The equality holds only when n2 = n3 or n3 − 1 < 2. Since 3 6 n3, we have that F4
has fewer monochromatic edges than F5. Finally, we will compare between colorings in the
forms F2 and F4. Note that X− n1 < n1 + n2

2 − n1 = n2 − n1 + n2
2 < n2 − X. Then,

S(0, X, 0) =
X − 1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]

=
(X−n1)−1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]
+

[(
X− n1

2

)
+

(
X− n1 + 1

2

)
+ · · ·+

(
X − 1

2

)]
−
[(

n2 − X
2

)
+

(
n2 − X + 1

2

)
+ · · ·+

(
n1 + n2 − X − 1

2

)]
6

(X−n1)−1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]
= S(0, X− n1, 0) = S(n1, X− n1, 0).

The equality holds only when n1 + n2 − X − 1 < 2. Since X < n1 + n2
2 , this occurs

only when n1 + n2 6 3, i.e., n1 6 n2 < 3. Since 3 6 n2, we have that F4 gives fewer
monochromatic edges than F2, and c∗X is in the form F4.

Case 3: n1 + n2
2 6 X < n2 (See Table 4).

Table 4. Possible canonical forms for Case 3.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F2 0 X 0 S(0, X, 0)
F3 0 0 X S(0, 0, X)
F4 n1 X− n1 0 S(n1, X− n1, 0)
F5 n1 0 X− n1 S(n1, 0, X− n1)

Similarly, we must have n1 < n2 in this case. The comparisons between F2 and F3
and between F4 and F5 are similar to the previous case. Note that X− n1 > n1 + n2

2 − n1 =
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n2 − n1 + n2
2 > n2 − X. Next, we will show the comparison between F2 and F4, which gives

a contrary result as shown:

S(0, X, 0) =
X − 1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]

=
(X−n1)−1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]
+

[(
X− n1

2

)
+

(
X− n1 + 1

2

)
+ · · ·+

(
X − 1

2

)]
−
[(

n2 − X
2

)
+

(
n2 − X + 1

2

)
+ · · ·+

(
n1 + n2 − X − 1

2

)]
>

(X−n1)−1

∑
j=0

[(
j
2

)
−
(

n2 − j− 1
2

)]
= S(0, X− n1, 0) = S(n1, X− n1, 0).

The equality holds only when X = n1+n2
2 or X − 1 < 2. Since n1 + n2

2 6 X < n2 and
n1 < n2, the condition that X < 3 occurs only when n1 = 1 and n2 = 2 or 3. Since 3 6 n1,
we have that F2 gives fewer monochromatic edges than F4, and c∗X is in the form F2 when
X > n1+n2

2 . If X = n1+n2
2 ; both forms give the same number of monochromatic edges.

From now on, the cases will be divided by whether the hypergraph is of type A or B.
Case 4A: n2 6 X < n1 + n2 and H is a type A hypergraph (See Table 5).

Table 5. Possible canonical forms for Case 4A.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F3 0 0 X S(0, 0, X)
F4 n1 X− n1 0 S(n1, X− n1, 0)
F5 n1 0 X− n1 S(n1, 0, X− n1)
F6 X− n2 n2 0 S(X− n2, n2, 0)
F7 0 n2 X− n2 S(0, n2, X− n2)

Similarly to Case 2, we have that F4 has fewer monochromatic edges than F5. Next,
we will compare between colorings in the forms F6 and F7. If n1 = n2 = n3, then the forms
F4, F5, F6 and F7 are the same. Thus,

S(0, n2, X− n2) = S(0, 0, X− n2) 6 S(X− n2, 0, 0) = S(X− n2, n2, 0).

The equality holds only when n1 = n3 or n3 − 1 < 2. Since n3 > 3, we have that F6
has fewer monochromatic edges than F7. Next, we will compare between colorings in the
forms F4 and F6. If n1 = n2, then both forms are the same. Suppose that n1 < n2. Thus,
since X < n1 + n2,

S(n1, X− n1, 0) = S(0, X− n1, 0)

=

[(
0
2

)
+

(
1
2

)
+ · · ·+

(
X− n2 − 1

2

)]
−
[(

n1 + n2 − X
2

)
+

(
n1 + n2 − X + 1

2

)
+ · · · +

(
n1 − 1

2

)]
+

[(
X− n2

2

)
+

(
X− n2 + 1

2

)
+ · · ·+

(
X− n1 − 1

2

)]
−
[(

n1

2

)
+

(
n1 + 1

2

)
+ · · · +

(
n2 − 1

2

)]
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6
[(

0
2

)
+

(
1
2

)
+ · · ·+

(
X− n2 − 1

2

)]
−
[(

n1 + n2 − X
2

)
+

(
n1 + n2 − X + 1

2

)
+ · · · +

(
n1 − 1

2

)]
= S(X− n2, 0, 0) = S(X− n2, n2, 0).

The equality only holds when n2 − 1 < 2. Since n2 > 3, we have that F6 has fewer
monochromatic edges than F4. Finally, we will compare between colorings in the forms F3
and F6. Then, since n2 6 X < n1 + n2 6 n3,

S(0, 0, X) =

[(
0
2

)
+

(
1
2

)
+ · · ·+

(
X − 1

2

)]
−
[(

n3 − X
2

)
+

(
n3 − X + 1

2

)
+ · · · +

(
n3 − 1

2

)]
6
[(

0
2

)
+

(
1
2

)
+ · · ·+

(
X − 1

2

)]
−
[(

n3 − X
2

)
+

(
n3 − X + 1

2

)
+ · · · +

(
n3 − 1

2

)]
−
[(

X− n2

2

)
+

(
X− n2 + 1

2

)
+ · · ·+

(
X − 1

2

)]
+

[(
n3 − n2

2

)
+

(
n3 + n2 + 1

2

)
+ · · · +

(
n3 − 1

2

)]
−
[(

n1 + n2 − X
2

)
+

(
n1 + n2 − X + 1

2

)
+ · · ·+

(
n3 − X − 1

2

)]
+

[(
n1

2

)
+

(
n1 + 1

2

)
+ · · · +

(
n3 − n2 − 1

2

)]
=

[(
0
2

)
+

(
1
2

)
+ · · ·+

(
X− n2 − 1

2

)]
−
[(

n1 + n2 − X
2

)
+

(
n1 + n2 − X + 1

2

)
+ · · · +

(
n1 − 1

2

)]
=

(X−n2)−1

∑
j=0

[(
j
2

)
−
(

n1 − j− 1
2

)]
= S(X− n2, 0, 0) = S(X− n2, n2, 0).

The equality holds only when n3 − 1 < 2. Since n3 > 3, F6 gives fewer monochromatic
edges than F3, and c∗X is in the form F6.

Case 5A: n1 + n2 6 X 6 bN
2 c and H is a type A hypergraph (See Table 6).

Table 6. Possible canonical forms for Case 5A.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F3 0 0 X S(0, 0, X)

F10 n1 n2 X− n1 − n2
S(n1, n2, X−

n1 − n2)

Note that this is only the case that we will consider F10. We only compare between
colorings in the forms F3 and F10. Then, since X 6 b n1+n2+n3

2 c,

S(0, 0, X) =

[(
0
2

)
+

(
1
2

)
+ · · ·+

(
X − 1

2

)]
−
[(

n3 − X
2

)
+

(
n3 − X + 1

2

)
+ · · ·+

(
n3 − 1

2

)]
=

[(
0
2

)
+

(
1
2

)
+ · · ·+

(
X− n1 − n2 − 1

2

)]
−
[(

n1 + n2 + n3 − X
2

)
+

(
n1 + n2 + n3 − X + 1

2

)
+ · · · +

(
n3 − 1

2

)]
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+

[(
X− n1 − n2

2

)
+

(
X− n1 − n2 + 1

2

)
+ · · ·+

(
X − 1

2

)]
−
[(

n3 − X
2

)
+

(
n3 − X + 1

2

)
+ · · ·+

(
n1 + n2 + n3 − X − 1

2

)]
6
[(

0
2

)
+

(
1
2

)
+ · · ·+

(
X− n1 − n2 − 1

2

)]
−
[(

n1 + n2 + n3 − X
2

)
+

(
n1 + n2 + n3 − X + 1

2

)
+ · · · +

(
n3 − 1

2

)]
= S(0, 0, X− n1 − n2) = S(n1, n2, X− n1 − n2).

The equality holds only when X = N
2 or N − X − 1 < 2. Since X 6 bN

2 c, the
condition that N − X < 3 occurs only when N 6 4. This is impossible because n3 > 3.
If X = N

2 , then both forms have the same number of monochromatic edges. However, if
we relabel the names of the colors, then both forms are the same. Hence, F10 gives fewer
monochromatic edges than F3, and c∗X is in the form F10. Next, we will focus on the other
cases of type B hypergraphs.

Case 4B: n2 6 X < n3 and H is a type B hypergraph (See Table 7).

Table 7. Possible canonical forms for Case 4B.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F3 0 0 X S(0, 0, X)
F4 n1 X− n1 0 S(n1, X− n1, 0)
F5 n1 0 X− n1 S(n1, 0, X− n1)
F6 X− n2 n2 0 S(X− n2, n2, 0)
F7 0 n2 X− n2 S(0, n2, X− n2)

Similarly to Case 4A, F4 and F6 have fewer monochromatic edges than F5 and F7,
respectively, and F6 has fewer monochromatic edges than F4. Next, we have to compare
between F3 and F6 to determine which form c∗X is. Due to the complexity of the comparison,
we will conclude that c∗X is in the form F3 or F6.

Case 5B: n3 6 X 6 b n1+n2+n3
2 c and H is a type B hypergraph (See Table 8).

Table 8. Possible canonical forms for Case 5B.

Possible Forms x1 x2 x3 S(x1, x2, x3)

F4 n1 X− n1 0 S(n1, X− n1, 0)
F5 n1 0 X− n1 S(n1, 0, X− n1)
F6 X− n2 n2 0 S(X− n2, n2, 0)
F7 0 n2 X− n2 S(0, n2, X− n2)
F8 X− n3 0 n3 S(X− n3, 0, n3)
F9 0 X− n3 n3 S(0, X− n3, n3)

Similarly to Case 4A, F4 and F6 have fewer monochromatic edges than F5 and F7,
respectively, and F6 has fewer monochromatic edges than F4. Next, we will compare
between colorings in the forms F8 and F9. If n1 = n2, then both forms are the same. Thus,

S(0, X− n3, n3) = S(0, X− n3, 0) = S(X− n3, 0, 0) == S(X− n3, 0, n3).

The equality holds only when n1 = n2 or n2 − 1 < 2. Since 3 6 n2, we have that F8
gives fewer monochromatic edges than F9. Finally, we will compare between colorings
in the forms F6 and F8. If n2 = n3, then both forms are the same. We may suppose that
n2 < n3. Thus, since X 6 bN

2 c,
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S(X− n2, n2, 0) = S(X− n2, 0, 0)

=

[(
0
2

)
+

(
1
2

)
+ · · ·+

(
X− n3 − 1

2

)]
+

[(
X− n3

2

)
+

(
X− n3 + 1

2

)
+ · · ·+

(
X− n2 − 1

2

)]
−
[(

n1 + n2 − X
2

)
+

(
n1 + n2 − X + 1

2

)
+ · · · +

(
n1 + n3 − X − 1

2

)]
−
[(

n1 + n3 − X
2

)
+

(
n1 + n3 − X + 1

2

)
+ · · · +

(
n1 − 1

2

)]
6
[(

0
2

)
+

(
1
2

)
+ · · ·+

(
X− n3 − 1

2

)]
−
[(

n1 + n3 − X
2

)
+

(
n1 + n3 − X + 1

2

)
+ · · · +

(
n1 − 1

2

)]
= S(X− n3, 0, 0) = S(X− n3, 0, n3).

The equality holds only when X = N
2 or n1 + n3 − X − 1 < 2. First, if X = N

2 ,
then both forms have the same number of monochromatic edges. However, if we relabel
the names of the colors, then both forms are the same. We will focus on the condition of
n1 + n3 − X < 3, where 3 6 n1 6 n2 < n3 6 X < N

2 and n1 + n2 > n3. Suppose that
n1 + n3 − X < 3.

If N is even, then 3 > n1 + n2 − X > n1 + n3 −
(

N
2 − 1

)
= n1+n3−n2

2 + 1. Thus,
n1 + n3 − n2 < 4. Since 1 6 n3 − n2, we have that n1 < 3, which contradicts 3 6 n1.

If N is odd, then 3 > n1 + n2 − X > n1 + n3 −
(

N−1
2

)
= n1+n3−n2+1

2 . Thus, n1 + n3 −
n2 < 5. Since 1 6 n3− n2, we have that n1 < 4. Consequently, it is only possible when n1 =
3. Note that n2 < n3 and n1 + n2 = 3 + n2 > n3. For N = 3 + n2 + n3 to be odd, n2 and n3
must have the same parity. Thus, n3 = n2 + 2 and 5 > n1 + n3 − n2 = 3 + n2 + 2− n2 = 5,
which is a contradiction.

Now, we have that n1 + n3 − X > 3. Hence, F8 gives fewer monochromatic edges than
F6, and c∗X is in the form F8.

To sum up, we have already determined (as shown in Tables 9 and 10) the canonical
form c∗X that has the minimum number of monochromatic edges for each condition of
hypergraphs and range of the number of red vertices X.

Table 9. List of best canonical forms for Type A hypergraphs n1 + n2 6 n3.

Cases Number of Red Vertices Canonical Form

1 0 6 X < n1 F1

2 n1 6 X <
n1 + n2

2
F4

3 X =
n1 + n2

2
F2 or F4

n1 + n2
2

< X < n2 F2

4A n2 6 X < n1 + n2 F6
5A n1 + n2 6 X 6 b N

2 c F10

Note that, in Case 3, c∗X is only in the form F2 when n1+n2
2 < X < n2. However, if

X = n1+n2
2 , then F2 and F4 give the same number of monochromatic edges. Moreover, in

Case 4B, we have not compared the colorings in the form F3 and F6. The uniqueness of c∗X
of the other cases will be also considered. We can see that the inequalities in some cases
are equal when the sizes of some parts are equal, which means that those canonical forms
are equivalent. For example, in Case 1, if n2 = n3, F2 is equivalent to F3. The remaining
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inequalities are equal when X is equal to some certain value, such as in Case 5A and Case
5B when X = N

2 ; the colorings in the forms F3 and F10 are isomorphic up to a permutation
of the name of colors and so are colorings in the forms F6 and F8 in Case 5B.

Table 10. List of best canonical forms for Type B hypergraphs n1 + n2 > n3.

Cases Number of Red Vertices Canonical Form

1 0 6 X < n1 F1

2 n1 6 X <
n1 + n2

2
F4

3 X =
n1 + n2

2
F2 or F4

n1 + n2
2

< X < n2 F2

4B n2 6 X < n3 F3 or F6
5B n3 6 X 6 b N

2 c F8

Hence, apart from Case 3, where X = n1 + n2
2 , and Case 4B, a coloring with red vertices

in the form, according to the previous table, has fewer monochromatic edges than other
colorings with the same amount of red vertices and the uniqueness follows.

Next, we will make comparisons between colorings with different values of X. We
will show that any c∗X with X 6 bN

2 c − 1 has strictly more monochromatic edges than
some colorings. We, hence, would like to show that M(H, c∗X+1)−M(H, c∗X) < 0 for each
0 6 X < bN

2 c − 1. Note that, if c∗X and c∗X+1 are in the same canonical form, we will
consider4M(H, c∗X) instead. Again, we will divide into several cases conforming to the
value of X and the type of H.

Case 1: 0 6 X < n1.
We have that c∗X is in the form F1 with x1 = X, x2 = 0 and x3 = 0. Then,

41M(H, c∗X) =
[(

X
2

)
−
(

X
2

)]
−
[(

N − X − 1
2

)
−
(

n1 − X − 1
2

)]
6 0.

The equality holds only when N − X − 1 < 2, which is impossible.
Case 2: n1 6 X < n1 + n2

2 .
We have that c∗X is in the form F4 with x1 = n1, x2 = X− n1 and x3 = 0. Then,

42M(H, c∗X) =
[(

X
2

)
+

(
n1 + n2 − X − 1

2

)]
−
[(

X− n1

2

)
+

(
N − X − 1

2

)]
.

We will show that 42M(H, c∗X) < 0 by Proposition 1. We have X + (n1 + n2 −
X − 1) = n1 + n2 − 1 6 n3 + n2 − 1 = (X − n1) + (N − X − 1), X − n1 < X and
n1 + n2 − X − 1 < N − X− 1. Since 2 6 N − X − 1, we have that42M(H, c∗X) < 0.

Case 3: n1 + n2
2 6 X < n2.

We have that c∗X is in the form F2 or F4. We will show that42M(H, c∗X) < 0 for both
forms. If X = n1 + n2

2 and c∗X is in the form F4 with x1 = n1, x2 = X− n1 and x3 = 0, then
42M(H, c∗X) < 0 similarly as in Case 2.

If n1 + n2
2 6 X < n2 and c∗X is in the form F2 with x1 = 0, x2 = X and x3 = 0, then

42M(H, c∗X) =
[(

X
2

)
−
(

X
2

)]
−
[(

N − X − 1
2

)
−
(

n2 − X − 1
2

)]
6 0.

The equality holds only when N − X − 1 < 2, which is impossible.
Again, from this point, the cases will be divided by whether the hypergraph is of type

A or B.
Case 4A: n2 6 X < n1 + n2 and H is a type A hypergraph.
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We have that c∗X is in the form F6 with x1 = X− n2, x2 = n2 and x3 = 0. Then,

41M(H, c∗X) =
[(

X
2

)
+

(
n1 + n2 − X − 1

2

)]
−
[(

X− n2

2

)
+

(
N − X − 1

2

)]
.

We will show that 41M(H, c∗X) < 0 by Proposition 1. We have X + (n1 + n2 −
X − 1) = n1 + n2 − 1 6 n1 + n3 − 1 = (X − n2) + (N − X − 1), X − n2 < X and
n1 + n2 − X − 1 < N − X − 1. Since 2 6 N − X − 1, we have that41M(H, c∗X) < 0.

Case 5A: n1 + n2 6 X 6 bN
2 c and H is a type A hypergraph.

We have that c∗X is in the form F10 with x1 = n1, x2 = n2 and x3 = X− n1 − n2. Then,

43M(H, c∗X) =
[(

X
2

)
−
(

X− n1 − n2

2

)]
−
[(

N − X − 1
2

)
−
(

N − X − 1
2

)]
> 0.

The equality holds only when X < 2, which is impossible. This yields a contrary result:
The number of monochromatic edges increases when the number of red vertices increases.
Hence, F10 gives the minimum number of monochromatic edges when X = n1 + n2 instead.

Next, we will consider the last two cases of type B hypergraphs.
Case 4B: n2 6 X < n3 and H is a type B hypergraph.
We have that c∗X is in the form F3 or F6. We will show that43M(H, c∗X) < 0 for F3 and

41M(H, c∗X) < 0 for F6. If c∗X is in the form F3 with x1 = 0, x2 = 0 and x3 = X, then

43M(H, c∗X) =
[(

X
2

)
−
(

X
2

)]
−
[(

N − X − 1
2

)
−
(

n3 − X − 1
2

)]
6 0.

Note that the inequality is equal when N − X − 1 < 2, which is impossible. Next, if
c∗X is in the form F6 with x1 = X− n2, x2 = n2 and x3 = 0, then

41M(H, c∗X) =
[(

X
2

)
+

(
n1 + n2 − X − 1

2

)]
−
[(

N − X − 1
2

)
+

(
X− n2

2

)]
.

We will show that 41M(H, c∗X) < 0 by Proposition 1. We have X + (n1 + n2 −
X − 1) = n1 + n2 − 1 6 n1 + n3 − 1 = (N − X − 1) + (X − n2), X > X − n2 and
n1 + n2 − X − 1 < N − X − 1. Since 2 6 N − X − 1, we have that41M(H, c∗X) < 0.

Case 5B: n3 6 X 6 bN
2 c and H is a type B hypergraph.

We have that c∗X is in the form F8 with x1 = X− n3, x2 = 0 and x3 = n3. Then,

41M(H, c∗X) =
[(

X
2

)
−
(

X− n3

2

)]
−
[(

N − X − 1
2

)
−
(

n1 − (X− n3)− 1
2

)]
=

n2
1 + 2n1n3 + 2X(N − n1)− 3n1 + 3N − N2 − 4n3

2
.

Since we cannot apply any lemmas to41M(H, c∗X), we expand the binomial coefficient
terms and see when41M(H, c∗X) is fewer than 0. Consequently,41M(H, c∗X) < 0 if and
only if

X <

⌈
N2 − 3N − n2

1 − 2n1n3 + 3n1 + 4n3

2(N − n1)

⌉
.

Write X′ for
⌈

N2−3N−n2
1−2n1n3+3n1+4n3
2(N−n1)

⌉
. We have that the c∗X′ has the minimum num-

ber of monochromatic edges among all colorings in the form F8, and we will show that
X′ 6 N

2 .

X′ =

⌈
N2 − 3N − n2

1 − 2n1n3 + 3n1 + 4n3

2(N − n1)

⌉
6

N2 − Nn1 − 2n3 + 2n3

2(N − n1)
=

N
2

.
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Hence, we have shown all the comparisons between colorings, and we can conclude that:

1. If H is a type A hypergraph, then the coloring with n1 + n2 red vertices in the form
F10 has the minimum number of monochromatic edges.;

2. If H is a type B hypergraph, then the coloring with X′ red vertices in the form F8 has
the minimum number of monochromatic edges.

We have already proved that those minimum colorings are the unique colorings that
have the minimum number of monochromatic edges among colorings with the same, such
as red, vertices. Furthermore, we have shown that 4M(H, c∗X) is fewer than zero when
X is fewer than n1 + n2 in a type A hypergraph and when X is less than X′ in a type
B hypergraph. Hence, those minimum colorings are the unique colorings that have the
minimum number of monochromatic edges among all colorings.

4.2. Hypergraphs with n1 < 3 or n2 < 3

In this subsection, we will prove the remaining cases, which are unbalance complete
tripartite hypergraphs with some classes smaller than 3. These cases are easy and straight-
forward but contain fuzzy details. First, we will consider an unbalanced complete tripartite
3-uniform hypergraphs with n1 6 n2 < n3 > 3. There are three possibilities for these
hypergraphs:

Case i: n1 = n2 = 1 and n3 > 3.
Since we have that the first two classes are smaller than 3, no edge can be contained in

the first two classes. Thus,

M(H, c) =
(

X
3

)
+

(
N − X

3

)
−
(

x3

3

)
−
(

n3 − x3

3

)
.

We have that M(H, c) > 0. Suppose that M(H, c) = 0. Since X > x3 and N − X >
n3 − x3, we have that (X

3) = (x3
3 ) and (N−X

3 ) = (n3−x3
3 ). Since N = n1 + n2 + n3 = 1 + 1 +

n3 > 5, at least three vertices are colored the same, such as red, i.e., X > 3. Then, X = x3,
which implies that N−X = n3 + 2−X > n3− x3. Consequently, 3 > N−X = n3 + 2− x3,
i.e., n3 = x3. This means that c is a coloring such that the third class contains all red vertices
and no blue vertex, and the first two classes are all blue. Hence, we have already determined
the minimum coloring and showed that it is unique up to a permutation of colors and
classes.

Case ii: n1 = 1, n2 = 2 and n3 > 3.
Again, no edge can be contained in the first two classes. Thus,

M(H, c) =
(

X
3

)
+

(
N − X

3

)
−
(

x3

3

)
−
(

n3 − x3

3

)
.

We will show that M(H, c) > 1. We have that X > x3 and N − X > n3 − x3. Since
N = n1 + n2 + n3 = 1 + 1 + n3 > 6, at least three vertices are colored the same, such as
red, i.e., X > 3. If X > x3, then M(H, c) > 0. Suppose that X = x3. Then, N − X =
n3 + 3− x3 > n3 − x3 > 3. Hence, M(H, c) > 0. Next, suppose that M(H, c) = 1. If
X > x3, then

1 6
(

X − 1
2

)
6
(

X
3

)
−
(

x3

3

)
6
(

X
3

)
+

(
N − X

3

)
−
(

x3

3

)
−
(

n3 − x3

3

)
= M(H, c).

This implies that X = 3, and so, N − X > 3; moreover, (N−X
3 ) = (n3−x3

3 ). Hence,
N− X = n3 − x3. Now, we have N− 3 = N− X = n3 − x3 = N− 3− x3, i.e., x3 = 0. This
means c is a coloring such that the third class contains no red vertices, and the first two
classes are all red.

Suppose that X = x3. Then,

1 = M(H, c) =
(

X
3

)
+

(
N − X

3

)
−
(

x3

3

)
−
(

n3 − x3

3

)
=

(
n3 − x3 + 3

3

)
−
(

n3 − x3

3

)
.
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It is only possible when n3 − x3 = 0 or when c is a coloring such that the third class
contains all red vertices and no blue vertex and the first two classes are all blue. Note that
if we relabel the names of colors, then both colorings are the same. Hence, we have already
determined the minimum coloring and showed that it is unique up to a permutation of
colors and classes.

Case iii: n1 = 2, n2 = 2 and n3 > 3.
Similarly, no edges can be contained in the first two classes. Thus,

M(H, c) =
(

X
3

)
+

(
N − X

3

)
−
(

x3

3

)
−
(

n3 − x3

3

)
.

We will show that M(H, c) > 4. We have that X > x3 and N − X > n3 − x3. If there is
a color, say red, such that all vertices of that color are only in the third class, then, we have
X = x3 and N − X = n3 + 4− x3 > 4. Thus,

M(H, c) =
(

N − X
3

)
−
(

N − X− 4
3

)
=

(
N − X − 1

2

)
+

(
N − X− 2

2

)
+

(
N − X− 3

2

)
+

(
N − X− 4

2

)
>
(

3
2

)
+

(
2
2

)
= 4.

The equality holds only when N − X = 4, i.e., n3 = x3. Hence, if M(H, c) = 4, then c
is a coloring such that the third class contains all red vertices but no blue vertex and the
first two classes are all blue.

Suppose that there is no color such that all vertices of that color are only in the third
class, i.e., X > x3 and N − X > n3 − x3. Since N = n1 + n2 + n3 = 2 + 2 + n3 > 7, at least
four vertices are colored the same, such as red, i.e., X > 4. If X > 5, then

M(H, c) >
(

X
3

)
−
(

x3

3

)
>
(

X
3

)
−
(

X − 1
3

)
=

(
X − 1

2

)
>
(

4
2

)
= 6.

If X = 4, then N − X > 3 and

M(H, c) >
(

X
3

)
−
(

x3

3

)
+ 1 >

(
X
3

)
−
(

X − 1
3

)
+ 1 =

(
X − 1

2

)
+ 1 = 4.

The equality holds only when N − X = 3 and x3 = X − 1, i.e., N = 7 and x3 = 3.
This means that n3 = 3. Hence, if M(H, c) = 4, then c is a coloring of H, which has seven
vertices such that the third class is all red, the second class is all blue and the first class has
one red and one blue vertex. This implies that when n3 = 3, minimum colorings are not
unique.

Finally, the last class is a hypergraph such that only the first class is smaller than 3.
Case iv: n1 < 3 and 3 6 n2 6 n3.
Fortunately, this case conforms to almost all cases in the previous subsection since we

assume that n2 > 3. However, there are two points that we use the fact that n1 > 3. The first
one is in the last part of Case 3 where we compare and determine which form of F2 and F4
has fewer monochromatic edges. Since we do not have that n1 > 3, it is possible that both
forms have the same number of monochromatic edges. This is not problematic because
both of them have strictly more monochromatic edges than some coloring according to
the next comparisons. The next case is in the last part of Case 5B where we compare and
determine which form of F6 and F8 has fewer monochromatic edges. Again, since we do not

have that n1 > 3, we may have that n1 + n3 − X < 3, where n2 < n3 6 X <
n1 + n2 + n3

2
and n1 + n2 > n3. If this condition occurs, we will have that F6 and F8 have the same
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number of monochromatic edges. Since n1 < 3, the condition is possible only when N is
even and n1 < 3 or N is odd and n1 6 3.

Suppose that N is even. If n1 = 1, then we have that n3 < n1 + n2 = n2 + 1. Since
n2 < n3, there is no choice for n3. If n1 = 2, then we have that n3 < n1 + n2 = n2 + 2. Since
n2 < n3, n3 = n2 + 1. However, for N to be even, n2 and n3 must have different parities,
which is impossible.

Suppose that N is odd. Again, it is impossible for n1 = 1. Since n1 < 3, we have
n1 = 2. Similarly, n3 = n2 + 1 and N = n1 + n2 + n3 = 2 + n2 + n2 + 1 = 2(n2 + 1) + 1,
which is odd. Consequently, the condition is possible only here and F6 and F8 have the
same number of monochromatic edges. Hence, if H is a hypergraph with n1 = 2 and
3 6 n2 = n3 − 1, then there are only two colorings (each unique up to a permutation of
colors and classes) that have a minimum number of monochromatics, which are colorings
with X = bN

2 c in the form F6 and F8.
Now, we have determined the minimum colorings of all unbalanced complete tripartite

3-uniform hypergraphs.

5. Proof of Theorem 3

Assume that k > 2. Let H be a balanced complete k-partite (r+ 1)-uniform hypergraph
with n > r + 1 vertices in each class, and let N = kn. Let c be a red/blue/green coloring
of H with the numbers of red, blue and green vertices of the ith class equal to ri, bi and
gi, respectively, and let R, B and G be the total numbers of red, blue and green vertices,
respectively.

Let 4ii′M(H, c, r, b) be the change in the number of monochromatic edges if a red
vertex in the ith class is recolored into blue and a blue vertex in the i′th class is recolored
into red. The definitions are similar for other color combinations. The process will be
called swapping, which results in a new coloring, say c′. As a result of the process, the
number of red vertices in the ith class decreases by 1, and the number of red vertices in
the i′th class increases by 1, while the total number of red vertices remains the same. In
other words, the coloring c′ has ri − 1 and ri′ + 1 red vertices in the ith and i′th classes,
respectively. Likewise, the coloring c′ has bi + 1 and bi′ − 1 blue vertices in the ith and i′th
classes, respectively.

We can compute4ii′M(H, c, r, b) by comparing the numbers of monochromatic edges
containing those vertices that underwent swapping before and after the swapping process.
Thus,

4ii′M(H, c, r, b) =
[(

B− 1
r

)
−
(

bi
r

)
+

(
R− 1

r

)
−
(

ri′

r

)]
−
[(

R− 1
r

)
−
(

ri − 1
r

)
+

(
B− 1

r

)
−
(

bi′ − 1
r

)]
=

[(
ri − 1

r

)
+

(
bi′ − 1

r

)]
−
[(

bi
r

)
+

(
ri′

r

)]
.

A successful swapping is a swapping in such a way that the number of monochromatic
edges is reduced, i.e., 4ii′M(H, c, r, b) < 0. Note that if 0 < ri < n, < bi < n, ri′ = n− 1
and bi′ = 1, then

4ii′M(H, c, r, b) =
[(

ri − 1
r

)
+

(
bi′ − 1

r

)]
−
[(

bi
r

)
+

(
ri′

r

)]
=

[(
ri − 1

r

)
+

(
1− 1

r

)]
−
[(

bi
r

)
+

(
n− 1

r

)]
.

Since ri < n, 0 < bi and n− 1 > r, we have that 4ii′M(H, c, r, b) < 0. This implies
that a swapping resulting in fewer polychromatic classes is always successful.

Lemma 3. If4ii′M(H, c, r, b) 6 0, then4ii′M(H, c′, r, b) 6 0.
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The proof of this lemma is similar to that of Lemma 1. Lemma 3 means that if
swapping can be carried out without increasing the number of monochromatic edges,
another swapping in the same direction will be successful (if there is a red and blue vertices
to be swapped). The process of successful swappings will terminate when the ith class has
no red vertex or the i′th class has no blue vertex.

Lemma 4. If4ii′M(H, c, r, b) > 0, then4ii′M(H, c, b, r) 6 0.

The proof of this lemma is similar to that of Lemma 2. However, in contrast to
Lemma 2, it is possible that the equality holds. Note that if c contains two classes, the ith
and i′th, such that both of them contain at least one red vertex and one blue vertex, then
there are two directions of swapping as follows:

1. Swapping a red vertex of the ith class with a blue vertex of the i′th class;
2. Swapping a blue vertex of the ith class with a red vertex of the i′th class.

By Lemma 4, one of the two directions can be achieved without increasing the number
of monochromatic edges. Moreover, by Lemma 3, we can continue swapping in the same
direction until the ith class has no red vertex or the i′th class has no blue vertex, and the
number of monochromatic edges does not increase. Note that we obtain the same result
when considering swapping relating to other color combinations. Hence, the coloring with
the minimum number of monochromatic edges among colorings with a constant number
of red, blue and green vertices is the coloring such that, for any two classes, they must have
at most one color of vertices to be in common. We will list all these forms in Table 11.

Table 11. The five canonical forms for three colors.

Canonical Forms Descriptions

F1
The first class contains three colors while the other classes

are monochromatic.

F2
The first class contains a pair of colors while the other classes

are monochromatic.

F3
The first and second classes contain different pairs colors while the other

classes are monochromatic.

F4
The first, second and third classes contain different pairs colors while the

other classes are monochromatic.

F5 All classes are monochromatic.

The first column illustrates the list of five canonical forms, and the second column
describes the colors of vertices in each class.

Suppose that ri 6 bi′ . Let4ii′MT(H, c, r, b) be the change in the number of monochro-
matic edges if all red vertices in the ith class are recolored into blue and ri blue vertices in
the i′th class are recolored into red. The process will be called total swapping, which results
in a new coloring, say c′. We can compute4ii′MT(H, c, r, b) by summing the change in the
number of monochromatic edges of the swappings. Thus,

4ii′MT(H, c, r, b) =
ri−1

∑
k=0

[(
ri − 1− k

r

)
+

(
bi′ − 1− k

r

)]
−
[(

bi + k
r

)
+

(
ri′ + k

r

)]
=

[(
0
r

)
+

(
1
r

)
+ · · ·+

(
ri − 1

r

)]
+

[(
bi′ − ri

r

)
+

(
bi′ − ri + 1

r

)
+ · · ·+

(
bi′ − 1

r

)]
−
[(

bi
r

)
+

(
bi + 1

r

)
+ · · ·+

(
bi + ri − 1

r

)]
−
[(

ri′

r

)
+

(
ri′ + 1

r

)
+ · · ·+

(
ri′ + ri − 1

r

)]
.

A successful total swapping is a total swapping in such a way that the number of
monochromatic edges is reduced.
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Lemma 5. Suppose that 1 6 ri 6 bi′ . Then,4ii′MT(H, c, r, b) 6 0 if c satisfies at least one of the
following conditions:

1. bi′ < ri + bi;
2. bi′ < ri + ri′ .

Proof. Suppose that 1 6 ri 6 bi′ . If bi′ < ri + bi, then

4ii′MT(H, c, r, b)

6
[(

0
r

)
+

(
1
r

)
+ · · ·+

(
ri − 1

r

)]
−
[(

ri′

r

)
+

(
ri′ + 1

r

)
+ · · ·+

(
ri′ + ri − 1

r

)]
6 0.

The equality holds only when bi + ri − 1 < r and ri′ + ri − 1 < r, i.e., bi + ri < r + 1
and ri + ri′ < r + 1. If bi′ < ri + ri′ , then

4ii′MT(H, c, r, b) 6
[(

0
r

)
+

(
1
r

)
+ · · ·+

(
ri − 1

r

)]
−
[(

bi
r

)
+

(
bi + 1

r

)
+ · · ·+

(
bi + ri − 1

r

)]
6 0.

The equality holds only when bi + ri − 1 < r and ri′ + ri − 1 < r, i.e., bi + ri < r + 1
and ri + ri′ < r + 1.

Note that if we consider a class with only two colors—say ri + bi = n > r + 1—then
4ii′MT(H, c, r, b) is strictly less than zero in both cases. We will use Lemma 5 to obtain
more information from the canonical forms. From this point, the term quadruple refers to a
collection of four values that are the numbers of vertices of any pair of colors in any pair
of classes, e.g., (ri, bi, ri′ , bi′). Consequently, in each coloring in the forms any canonical
forms, all quadruples contain at least one zero. Suppose that c contains the ith and i′th
classes such that they have a color in common, but the ith class contains a color that the i′th
class does not; for example, we focus on (ri 6= 0, bi 6= 0, ri′ = 0, bi′ 6= 0). If c is a minimum
coloring with ri + bi = n, then we can conclude from Lemma 5 that

1. If ri 6 bi′ , then bi′ > ri + bi and bi′ > ri + ri′ = ri;
2. If ri > bi′ , then ri > bi + bi′ and ri > ri′ + bi′ = bi′ .

We will call these quadruple conditions.
Next, we will focus on the possibility of F4. Suppose that c is the coloring that has

the minimum number of monochromatic edges, which is in the form F4 such that, without
loss of generality, the first class has g1 6= 0 green and r1 6= 0 red vertices, the second
class has g2 6= 0 green and b2 6= 0 blue vertices and the third class has r3 6= 0 red and
b3 6= 0 blue vertices, where g1 is the maximum among those values. We will apply
quadruple conditions to the quadruple (g1, b1 = 0, g2, b2). Since g1 > b2 and g2 + b2 = n,
n = g2 + b2 6 g1 = n− r1 < n, which is a contradiction. Hence, a minimum coloring
cannot be in the form F4, and this form will be out of our interest. Consequently, we will
search for the minimum colorings only from F1, F2, F3 and F5.

We will divide this into two cases upon the remainder of the number k of vertex classes
divided by three. For simplicity, we define a type i hypergraph to be a hypergraph with
k ≡ i (mod 3) classes for i = 0, 1, 2. We will consider a type 0 hypergraph first.

Case 0: H is a type 0 hypergraph.
Since the number of classes is divisible by the number of colors, it is conducted using

Proposition 3.
Case 1: H is a type 1 hypergraph.
Case 1.1: The coloring c is in the form F3.
In this case, our aim is to show that all colorings in the form F3 have more monochro-

matic edges than some coloring in the form F2. We have that c has two classes that are
polychromatic—say the first class contains green and red vertices and the second class
contains green and blue vertices—while the rest of the classes are monochromatic. The
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number of vertices of each color and the number of monochromatic classes of each color
are shown in Tables 12 and 13.

Table 12. The number of vertices of each color for the first two classes.

Polychromatic
Classes

Number of Red
Vertices

Number of Blue
Vertices

Number of Green
Vertices

1 r1 6= 0 0 g1 6= 0
2 0 b2 6= 0 g2 6= 0

Table 13. The number of monochromatic classes of each color.

Number of Red Classes Number of Blue Classes Number of Green Classes

kr kb kg

We will show that the coloring where kr, kb and kg are as equal as possible has a
smaller number of monochromatic edges than the coloring which is not. Without loss of
generality, suppose that c has kg green classes and kr red classes such that kg − kr > 2. We
will recolor all vertices in a green class into red and obtain a new coloring c′. Thus,

M(H, c) =
(

nkr + r1

r + 1

)
+

(
nkb + b2

r + 1

)
+

(
nkg + g1 + g2

r + 1

)
−
(

r1

r + 1

)
−
(

b2

r + 1

)
−
(

g1

r + 1

)
−
(

g2

r + 1

)
− (k− 2)

(
n

r + 1

)
and

M(H, c′) =
(

n(kr + 1) + r1

r + 1

)
+

(
nkb + b2

r + 1

)
+

(
n(kg − 1) + g1 + g2

r + 1

)
−
(

r1

r + 1

)
−
(

b2

r + 1

)
−
(

g1

r + 1

)
−
(

g2

r + 1

)
− (k− 2)

(
n

r + 1

)
.

Then,

M(H, c′)−M(H, c) =
[(

n(kr + 1) + r1

r + 1

)
+

(
n(kg − 1) + g1 + g2

r + 1

)]
−
[(

nkr + r1

r + 1

)
+

(
nkg + g1 + g2

r + 1

)]
.

We will show that M(H, c′)−M(H, c) < 0 by Proposition 1. We have [n(kr + 1) + r1] +[
n(kg − 1) + g1 + g2

]
= [nkr + r1] +

[
nkg + g1 + g2

]
, nkr + r1 < n(kr + 1) + r1 6 n(kg −

1) + r1 < nkg + g1 + g2 and nkr + r1 < n(kr + 1) + g1 + g2 6 n(kg − 1) + g1 + g2 <
nkg + g1 + g2. Since nkg + g1 + g2 > r + 1, we have that M(H, c′)−M(H, c) < 0. Note
that we only use the fact that r1 < n and g1 + g2 > 0.

Since (k− 2) ≡ 2 (mod 3), colorings such that kr, kb and kg are as equal as possible
must have one of these conditions:

1. kr + 1 = kb = kg;
2. kr = kb + 1 = kg;
3. kr = kb = kg + 1.

We will show that a coloring with the last condition has more monochromatic edges
than a coloring with either of the first two conditions (with the same polychromatic classes).
Suppose that c is a coloring such that kr = kb = kg + 1. We consider (g1, r1, g2, 0) of
c. Since g1 + r1 = n, if g2 > r1, then g2 > r1 + g1. This leads to a contradiction since
n = r1 + g1 6 g2 = n − b2 < n. Hence, g2 < r1 and consequently g1 + g2 6 r1 by
quadruple conditions. Next, we will increase the number of green classes. Without loss of
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generality, we will recolor all vertices in a red class into green and obtain a new coloring c′

with Condition (1). Then,

M(H, c) =
(

nkr + r1

r + 1

)
+

(
nkb + b2

r + 1

)
+

(
nkg + g1 + g2

r + 1

)
−
(

r1

r + 1

)
−
(

b2

r + 1

)
−
(

g1

r + 1

)
−
(

g2

r + 1

)
− (k− 2)

(
n

r + 1

)
and

M(H, c′) =
(

n(kr − 1) + r1

r + 1

)
+

(
nkb + b2

r + 1

)
+

(
n(kg + 1) + g1 + g2

r + 1

)
−
(

r1

r + 1

)
−
(

b2

r + 1

)
−
(

g1

r + 1

)
−
(

g2

r + 1

)
− (k− 2)

(
n

r + 1

)
.

Then,

M(H, c′)−M(H, c) =
[(

n(kr − 1) + r1

r + 1

)
+

(
n(kg + 1) + g1 + g2

r + 1

)]
−
[(

nkr + r1

r + 1

)
+

(
nkg + g1 + g2

r + 1

)]
.

We will show that M(H, c′)−M(H, c) < 0 by Proposition 1. We have [n(kr − 1) + r1] +[
n(kg + 1) + g1 + g2

]
= [nkr + r1] +

[
nkg + g1 + g2

]
. Since g1 + g2 6 r1, then nkg + g1 +

g2 6 nkg + r1 = n(kr − 1) + r1 < nkr + r1 and nkg + g1 + g2 < n(kg + 1) + g1 + g2 6
n(kg + 1) + r1 = nkr + r1. Since nkg + g1 + g2 > r + 1, we have that M(H, c′) −
M(H, c) < 0.

Finally, we will consider a coloring with condition (1) or (2). By symmetry, assume
that c is a coloring with kr + 1 = kb = kg. We will recolor a green vertex in the first class of
c into red. Then,

41M(H, c) =
[(

nkr + r1

r

)
−
(

nkg + g1 + g2 − 1
r

)]
+

[(
g1 − 1

r

)
−
(

r1

r

)]
.

We have nkr + r1 = n(kg − 1) + r1 < nkg < nkg + g1 + g2 − 1 and g1 − 1 < g1 +
g2 6 r1. Since nkg + g1 + g2 − 1 > r, we have that 41M(H, c) < 0. This is true for any
arbitrary value of r1 > 0. Hence, we will recolor a green vertex into red until the first class
is a red class, which is a coloring in the form F2, and obtain fewer monochromatic edges.
Consequently, we can conclude that c has more monochromatic edges than a coloring in
the form F2.

Case 1.2: The coloring c is in the form F5.
In this case, our aim is to show that all colorings in the form F5 have more monochro-

matic edges than some coloring in the form F2. We have that all classes of c are monochro-
matic with kr, kb and kg red, blue and green classes, respectively. We can show that the
coloring where kr, kb and kg are as equal as possible has a smaller number of monochro-
matic edges similarly as in Case 1.1. Since k ≡ 1 (mod 3), colorings where kr, kb and kg are
as equal as possible must have one of these conditions:

1. kr − 1 = kb = kg;
2. kr = kb − 1 = kg;
3. kr = kb = kg − 1.

By symmetry, suppose that c is a coloring such that kr − 1 = kb = kg. We will show
that if a red vertex in a red class, say the first class, is recolored into green, the number of



Mathematics 2022, 10, 2353 26 of 29

monochromatic edges will decrease. The new coloring is not in the form F5 but in the form
F2 instead. Then,

41M(H, c) =
[(

nkg

r

)
+

(
n− 1

r

)]
−
[(

nkr − 1
r

)
+

(
0
r

)]
.

we will show that41M(H, c) < 0 by Proposition 1. We have nkg + (n− 1) = n(kg + 1) −
1 = (nkr − 1) + 0 and 0 < n − 1 < nkg < nkr − 1. Since nkr − 1 > r, we have that
41M(H, c) < 0. Consequently, we can conclude that c has more monochromatic edges
than a coloring in the form F2.

Case 1.3: The coloring c is in the form F2.
In this case, our aim is to show that all colorings in the form F2 have more monochro-

matic edges than some coloring in the form F1. We have that c has a class that is polychro-
matic. Without loss of generality, say the first class contains red and blue vertices while
the rest classes are monochromatic. Note that the number of vertices of each color and the
number of monochromatic classes of each color are shown in Tables 14 and 15.

Table 14. The number of vertices of each color for the first class.

Polychromatic
Classes

Number of Red
Vertices

Number of Blue
Vertices

Number of Green
Vertices

1 r1 6= 0 b1 6= 0 0

Table 15. The number of monochromatic classes of each color.

Number of Red Classes Number of Blue Classes Number of Green Classes

kr kb kg

We can show that the coloring where kr, kb and kg are as equal as possible has a smaller
number of monochromatic edges, similarly to Case 1.1. Hence, we will focus on a coloring
where kr, kb and kg are as equal as possible. Since (k− 1) ≡ 0 (mod 3), colorings where kr,
kb and kg are as equal as possible must have kr = kb = kg.

Suppose that c is coloring such that kr = kb = kg. By symmetry, suppose that r1 > 1.
We will show that if a red vertex in the first class is recolored into green, the number of
monochromatic edges will decrease. The new coloring is not in the form F2 but in the form
F1 instead. Then,

41M(H, c) =
[(

nkg

r

)
−
(

0
r

)]
−
[(

nkr + r1 − 1
r

)
−
(

r1 − 1
r

)]
=

[(
nkg

r

)
+

(
r1 − 1

r

)]
−
[(

nkr + r1 − 1
r

)
+

(
0
r

)]
.

We will show that 41M(H, c) < 0 by Proposition 1. We have nkg + (r1 − 1) =
(nkr + r1 − 1) + 0 and 0 < r1 − 1 < nkg < nkr + r1 − 1. Since nkr + r1 − 1 > r, we have
that41M(H, c) < 0. Consequently, we can conclude that c has more monochromatic edges
than coloring in the form F1.

Case 1.4: The coloring c is in the form F1.
In this case, our aim is to show that coloring in the form F1 such that the numbers

of red, blue and green vertices are as equal as possible has the minimum number of
monochromatic edges. We have that c has a class that is polychromatic. Without loss of
generality, say the first class contains red, blue and green vertices, while the rest classes
are monochromatic. Note that the number of vertices of each color and the number of
monochromatic classes of each color are shown in Tables 16 and 17.
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Table 16. The number of vertices of each color for the first class.

Polychromatic
Classes

Number of Red
Vertices

Number of Blue
Vertices

Number of Green
Vertices

1 r1 6= 0 b1 6= 0 g1 6= 0

Table 17. The number of monochromatic classes of each color.

Number of Red Classes Number of Blue Classes Number of Green Classes

kr kb kg

We can show that the coloring where kr, kb and kg are as equal as possible has a smaller
number of monochromatic edges, as in Case 1.1. Since (k − 1) ≡ 0 (mod 3), colorings
where kr, kb and kg are as equal as possible must have kr = kb = kg.

Suppose that c is a coloring such that kr = kb = kg. We will show that if we recolor
the vertices in such a way that r1, b1 and g1 are as equal as possible, then the number of
monochromatic edges will decrease. Without loss of generality, assume that r1 − g1 > 2.
We will show that if a red vertex in the first class is recolored into green, the number of
monochromatic edges will decrease. Then,

41M(H, c) =
[(

nkg + g1

r

)
−
(

g1

r

)]
−
[(

nkr + r1 − 1
r

)
−
(

r1 − 1
r

)]
=

[(
nkg + g1

r

)
+

(
r1 − 1

r

)]
−
[(

nkr + r1 − 1
r

)
+

(
g1

r

)]
.

We will show that41M(H, c) < 0 by Proposition 1. We have (nkg + g1) + (r1 − 1) =
(nkr + r1 − 1) + g1 and g1 < r1 − 1 < nkg + g1 < nkr + r1 − 1. Since nkr + r1 − 1 > r, we
have that41M(H, c) < 0. Consequently, we can conclude that c is not a minimum coloring.

To sum up, we have proven that all colorings in the forms F2, F3 and F5 have strictly
more monochromatic edges than some coloring in the form F1. Moreover, a coloring in
the form F1 where the numbers of red, blue and green vertices in the first class are not as
equal as possible has strictly more monochromatic edges than the coloring c∗ where the
numbers of red, blue and green classes are as equal as possible and the number of red, blue
and green vertices in the first class are as equal as possible. Hence, this is the minimum
coloring, and it is unique up to a permutation of colors and classes.

6. Concluding Remarks

In this paper, we considered 2-colorings of balanced complete k-partite r-uniform
hypergraphs and determined which one has the minimum number of monochromatic
edges. The proof may give a clue for further generalization to an unbalanced hypergraph
with arbitrary sizes of classes. We observed that the minimum coloring can only be in
certain forms, which are called canonical forms of the colorings. We studied the canonical
forms of 2-colorings of unbalanced complete tripartite 3-uniform hypergraphs. Finally, we
continued to determine the extermal 3-coloring of balanced complete k-partite r-uniform
hypergraphs when k ≡ 0, 1 mod 3.

In Theorem 2, we determined the minimum coloring for unbalanced 3-uniform hyper-
graphs. In the proof, almost all comparisons have been completed without expanding the
binomial coefficient terms, and they also hold if we try to generalize the proof to r-uniform
hypergraphs with arbitrary r 6 n1. However, in the case when the largest class is smaller
than the sum of two smaller classes and the number of red vertices is greater than the
largest class, it cannot be completed without expanding those binomial coefficient terms
where, in this case, we expand with r + 1 = 3 as the lower index. Hence, the proof works
only for 3-uniform hypergraphs. We believe that the minimum coloring for r-uniform
hypergraphs with arbitrary r 6 n1 differs from those in Theorem 2.



Mathematics 2022, 10, 2353 28 of 29

Another generalized case is unbalanced complete hypergraphs with several vertex
classes (k > 3). The problem seems to be much more complicated because Theorem 2
demonstrates that the extremal coloring varies depending on the relationship among the
sizes of the vertex classes.

Problem 2. What is the minimum 2-coloring of an unbalanced complete k-partite r-uniform
hypergraph?

We have determined the extermal 3-coloring of balanced complete k-partite r-uniform
hypergraphs only for k ≡ 0, 1 mod 3.

Problem 3. What is the minimum 3-coloring of a balanced complete k-partite r-uniform hypergraph
where k ≡ 2 mod 3?

For k ≡ 2 mod 3, if we apply the same ideas as in the proof of Theorem 3, we
can conclude that the minimum coloring is in the form F3 instead of F1. However, the
comparisons between colorings in the form F3 are rather challenging, and we believe that
they require some further comparison tools. One might expect the minimum coloring to
have approximately V(H)

3 vertices in each color as in Theorem 3. However, this is not the
case, for example, when the number of vertices in each class is much greater than k.

For m > 3, we have only studied some trivial cases for m-colorings of the hypergraphs
in Section 2.6.

Problem 4. What is the minimum m-coloring of a balanced complete k-partite r-uniform hypergraph?

This is a generalization of the hypergraphs in Problem 3, which is extremely complex
as we believe that the minimum coloring varies depending on the relationship between
the number of colors and the number of classes. However, the proof of Theorem 3 might
be useful to determine the minimum m-coloring of balanced complete k-partite r-uniform
hypergraphs with k ≡ 1 mod m, and we speculate that it would be in the form similar to
the coloring in the form F1.

Finally, there is another natural definition of k-partite hypergraphs where each edge is
an r-subset containing vertices from different classes.

Problem 5. With the above definition of k-partite hypergraphs, what is the minimum coloring of a
balanced complete k-partite r-uniform hypergraph?

To sum up, we have studied the coloring of several types of complete multipartite
hypergraphs from the simple ones to the generalized complex cases. This problem arose
from the idea to match triples of students according to their genders and classes. The
results are the minimum colorings of balanced complete k-partite r-uniform hypergraphs,
unbalanced complete tripartite 3-uniform hypergraphs and balanced complete k-partite (for
k ≡ 0, 1 mod 3) r-uniform hypergraphs. In this paper, we constructed several propositions
about the properties of binomial coefficients and used them as the main tools to prove each
theorem. However, some theorems required further lemmas and pattern categorization
(canonical forms) to be proven, and some also led to more generalized interesting problems.
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