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Abstract: In this paper, the interpolation matrix method (IMM) is proposed to solve the buckling
critical load of axially functionally graded (FG) Timoshenko beams. Based on Timoshenko beam
theory, a set of governing equations coupled by the deflection function and rotation function of the
beam are obtained. Then, the deflection function and rotation function are decoupled and transformed
into an eigenvalue problem of a variable coefficient fourth-order ordinary differential equation with
unknown deflection function. According to the theory of interpolation matrix method, the eigenvalue
problem of the variable coefficient fourth-order ordinary differential equation is transformed into
an eigenvalue problem of a set of linear algebraic equations, and the critical buckling load and
the corresponding deflection function of the axially functionally graded Timoshenko beam can be
calculated by the orthogonal triangular (QR) decomposition method, which is the most effective
and widely used method for finding all eigenvalues of a matrix. The numerical results are in good
agreement with the existing results, which shows the effectiveness and accuracy of the method.

Keywords: variable cross-section beam; buckling critical load; interpolating matrix method;
functionally graded (FG) material

MSC: 37M05; 37N30

1. Introduction

The performance of functionally graded (FG) material varies continuously in a certain
direction in space to meet the needs of a variety of special engineering structures, with the
advantage that there is no significant interface between the two-phase materials, avoiding
the stress concentration that occurs when the material is heated or cooled [1]. Reviewing
the literature on FG materials, it is understood that the literature is mostly dedicated to
the analysis of plates and shells made of FG materials and relatively few research works
have been carried out on FG beams. Moreover, most of the research works on FG beams
are devoted to certain types of FG beams with material properties of varying thicknesses;
very few studies exist on FG beams with material gradation along the beam axis.

In order to simplify the problem, the Euler–Bernoulli beam model is generally used
to discuss the buckling problem of an axially functionally graded beam with a variable
cross-section in engineering study of the buckling critical load of beam structural elements.
Since the theory neglects the effect of rotation and shear deformation of beam section, the
calculated values of critical load are significantly higher than the actual results; therefore,
Euler–Bernoulli beam theory is only applicable to slender beams. Shahba et al. [2] solved
the governing differential equations of the free vibration and buckling of axial functionally
graded variable-section Euler–Bernoulli beams by using two numerical methods: the differ-
ential transformation element method (DTEM) and the lowest-order differential quadrature
element method (DQEL). Based on Euler–Bernoulli theory, Elishakoff et al. [3,4] obtained
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the exact solution of the critical buckling load of non-uniform beams by using an inverse
method and a semi-inverse method, but this method cannot solve the problems under all
boundary conditions. Shahba et al. [5,6] propose a new beam element which uses the shape
function of a homogeneous beam element and the finite element method to analyze the
free vibration and buckling of axially functionally graded tapered Euler–Bernoulli beam.
Timoshenko beam theory considers shear deformation and moment of inertia, so the theory
gives a more accurate model. However, the solution of the buckling of beams based on
Timoshenko beam theory will face difficulties in solving mathematical problems, mainly
because the control equation obtained by Timoshenko beam theory is a variable coefficient
differential equation coupled by deflection and rotation, and it is quite difficult to find the
analytical solution of the critical load of axially functionally graded Timoshenko beams
with variable cross-sections. Therefore, approximate and numerical methods are generally
used to solve the dynamic problem of axial heterogeneous Timoshenko beams. Tong et al.
[7] studied the free vibration of Timoshenko beams by using the stepwise reduction method.
Zhou et al. [8] studied the free vibration of Timoshenko beams by using Rayleigh’s law.
Ozgumus et al. [9] used the differential transformation method to solve the differential
equation of motion with variable coefficients, and analyzed the free vibration of Timo-
shenko beams. Shahba A. et al. [10] used the finite element method to study the effects of
taper ratio, elastic constraints, added mass, and material heterogeneity on the critical buck-
ling load of Timoshenko beams. Rajasekaran [11] combines the dynamic stiffness matrix
method with the differential transformation method to study the critical buckling load of
axially functionally graded Timoshenko beams with variable cross-sections. Yong et al. [12]
introduced the auxiliary function of power series, transformed the characteristic differ-
ential equations of Timoshenko beams coupled with deflection and rotation into a set of
linear algebraic characteristics, and solved the critical buckling load of the beam. Based on
the improved Rayleigh’s law, De et al. [13] used Mathematica software to solve the free
vibration and buckling problems of engineering structural elements. Bazeos et al. [14] used
an approximate algorithm to quickly and effectively calculate the dimensionless buckling
critical load of a tapered pile. Iremonger et al. [15] analyzed the buckling of a tapered pile
and a stepped pile by using the finite difference method and the matrix iteration method.
Rajasekaran et al. [16] studied the free vibration, buckling, and static bending of axially
functionally graded nano-tapered Timoshenko and Bernoulli–Euler beams based on the
nonlocal Timoshenko beam theory. Based on the nonlocal Timoshenko beam theory, Robin-
son et al. [17] studied the buckling critical load of axially functionally graded material
Timoshenko beams with variable cross-sections. Deng et al. [18] established the exact
dynamic stiffness matrix of an axial functionally graded material Timoshenko double-beam
system on Winkler–Pasternak under an axial load, considered the damping effect of a
connecting layer, and obtained the accurate buckling critical load through the Wittrick–
Williams algorithm. Aydogdu [19] studied the free vibration and stability of axially graded
simply supported beams by the semi-inverse method, which can be used to optimize the
frequency and buckling loads of these FG beams. beams with variable cross sections under
different boundary conditions. Yuan et al. [20] studied the free vibration and stability of
Timoshenko and Euler–Bernoulli beams by using the exact dynamic stiffness method. In
this paper, based on the motion control equation of axially functionally graded Timoshenko
beams with variable cross sections derived from reference [10,11], a differential equation of
motion with the transverse displacement ω(x) and the bending rotation θ(x) coupling is
first decoupled into an eigenvalue problem of a set of fourth-order ordinary differential
equations with variable coefficients. Then, based on the theory of the interpolating matrix
method [21,22], the fourth-order ordinary differential equation with a variable coefficient
is transformed into a general linear algebraic equation system with the critical load of the
beam as the eigenvalue. Then, the buckling critical load of an axially FG Timoshenko beam
is obtained by solving this general linear algebraic equation with the QR decomposition
method. Finally, a numerical example is given to verify the feasibility and accuracy of
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the interpolation matrix method proposed in this paper to calculate the critical load of
Timoshenko beams.

2. Basic Theory and Method

As shown in Figure 1, it is assumed that the axis of the beam always follows the
center line of the beam, and that the beam length is L. For the vibration problem of axially
functionally graded Timoshenko beams with variable cross sections, the free vibration
equation of a Timoshenko beam under load P by the transverse displacement ω(x) and
the bending rotation θ(x) coupling is obtained through the basic theory of Timoshenko
beams [10,11],

d
dx

[
E(x)I(x)dθ(x)

dx

]
+ κG(x)A(x)

[
dw(x)

dx − θ(x)
]
+ ρ(x)I(x)ω2θ(x) = 0

d
dx

{
κG(x)A(x)

[
dw(x)

dx − θ(x)
]}
− P d2w(x)

dx2 + ρ(x)A(x)ω2w(x) = 0
, (1)

where ρ(x) is the mass density of the axially graded material at any section, G(x) is the
shear elastic modulus of the material, E(x) is the modulus of elasticity of the axially graded
material at any section, A(x) is a cross-sectional area at any section, I(x) is the moment
of inertia at any section, κ is the shear correction factor, P is the axial load, and ω is the
natural frequency. It is well known that the transverse natural frequency vanishes when the
axial compressive load equals the critical load Pcr, that is, when ω is set to zero in stability
analysis. Therefore, the following equation is derived directly from Equation (1) for the
determination of the critical buckling load Pcr,

d
dx

[
E(x)I(x)dθ(x)

dx

]
+ κG(x)A(x)

[
dw(x)

dx − θ(x)
]
= 0

d
dx

{
κG(x)A(x)

[
dw(x)

dx − θ(x)
]}
− Pcr

d2w(x)
dx2 = 0

, (2)

where we suppose the elastic modulus E(x) of the beam, the cross-sectional area A(x), and
the moment of inertia I(x) of the section belong to functions about x, i.e.,

E(x) = E0 f1(x), A(x) = A0 f2(x), I(x) = I0 f3(x), (3)

where E0, A0, and I0 correspond to the elastic modulus, cross-sectional area, and moment
of inertia of the material of an axially FG beam at the left-end boundary x = 0. Since the
critical load of the beam is closely related to the boundary condition of the beam at both
ends, the boundary conditions of the beam are as follows, simply supported at both ends
of beam (S–S),

w(x)|x=0 = 0,
dθ(x)

dx

∣∣∣∣
x=0

= 0, w(x)|x=L = 0,
dθ(x)

dx

∣∣∣∣
x=L

= 0. (4)

Figure 1. Schematic of an axially functionally graded Timoshenko beam with a varying section.

Clamped at both ends of beam (C–C),

w(x)|x=0 = 0, θ(x)|x=0 = 0, w(x)|x=L = 0, θ(x)|x=L = 0. (5)
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One end of the beam is clamped and the other end is free (C–F),

w(x)|x=0 = 0, θ(x)|x=0 = 0,
dθ(x)

dx

∣∣∣∣
x=L

= 0,
{

d
dx

[
E(x)I(x)

dθ(x)
dx

]
+ P

dw(x)
dx

}∣∣∣∣
x=L

= 0. (6)

One end of the beam is clamped and the other end is simply supported (C–S),

w(x)|x=0 = 0, θ(x)|x=0 = 0, w(x)|x=L = 0,
dθ(x)

dx

∣∣∣∣
x=L

= 0. (7)

One end of the beam is clamped and the other end slip support (C–G),

w(x)|x=0 = 0, θ(x)|x=0 = 0, θ(x)|x−L = 0,
{

d
dx

[
E(x)I(x)

dθ(x)
dx

]
+ P

dw(x)
dx

}∣∣∣∣
x=L

= 0. (8)

Substitute the second equation of Equation (2) into the first equation of Equation (2);
then, 

d2

dx2

[
E(x)I(x)dθ(x)

dx

]
+ Pcr

d2w(x)
dx2 = 0

d
dx

{
κG(x)A(x)

[
dw
dx − θ(x)

]}
− Pcr

d2w(x)
dx2 = 0

, (9)

in which we can obtain, via the second equation of Equation (9), the following:

θ(x) =
[

1− Pcr

κG(x)A(x)

]
dw(x)

dx
, (10)

Substitute Equation (10) into the first equation of Equation (9); then,

d2

dx2

{
E(x)I(x)

d
dx

[(
1− Pcr

κG(x)A(x)

)
dw(x)

dx

]}
+ Pcr

d2w(x)
dx2 = 0. (11)

Thus, the calculation of the critical load Pcr of an axially FG Timoshenko beam with
variable cross section is transformed into the eigenvalue problem of Equation (11) with
variable coefficient under the boundary conditions in Equations (4)–(8). The interpolating
matrix method (IMM) is used for the solution [21,22]. In order to facilitate the needs
of programming, we introduce the dimensionless coordinate ξ = x/L(0 ≤ ξ ≤ 1), the
dimensionless critical load λ = (PcrL2)/(E0 I0), and the cross-section dimensionless turning
radius r0 = I0/(A0L2); s0 = 2r0(1 + ν)/κ, here ν, is Poisson’s ratio. Then, we can obtain,
from Equation (11),

d4w
dξ4 +

2( f1 f3)
′

f1 f3

d3w
dξ3 +

( f1 f3)
′′

f1 f3

d2w
dξ2 − λ

s0

f1 f2

d4w
dξ4 − λ

[
2s0( f1 f3)

′

f1 f2

1
f1 f3

+ 3s0

(
1

f1 f2

)′]d3w
dξ3−

λ

[
s0( f1 f3)

′′

f1 f2

1
f1 f3

+ 4s0
( f1 f3)

′

f1 f3

(
1

f1 f2

)′
+ 3s0

(
1

f1 f2

)′′
− 1

f1 f3

]
d2w
dξ2− (12)

[
s0
( f1 f3)

′′

f1 f3

(
1

f1 f2

)′
+ 2s0

( f1 f3)
′

f1 f3

(
1

f1 f2

)′′
+ s0

(
1

f1 f2

)′′′]dw
dξ

= 0.

For the purpose of conciseness, f1 f3 = f1(ξ) f3(ξ), f1 f2 = f1(ξ) f2(ξ); d(· · · )/dξ =
(· · · )′, d2(· · · )/dξ2 = (· · · )′′, d3(· · · )/dξ3 = (· · · )′′′. At the same time, for the convenience
of description, let

g3(ξ) =
2( f1 f3)

′

f1 f3
, g2(ξ) =

( f1 f3)
′′

f1 f3
, q4(ξ) =

s0

f1 f2
, q3(ξ) =

2s0( f1 f3)
′

f1 f2

1
f1 f3

+ 3s0

(
1

f1 f2

)′
q2(ξ) =

s0( f1 f3)
′′

f1 f2

1
f1 f3

+ 4s0
( f1 f3)

′

f1 f3

(
1

f1 f2

)′
+ 3s0

(
1

f1 f2

)′′
− 1

f1 f3
(13)
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q1(ξ) = s0
( f1 f3)

′′

f1 f3

(
1

f1 f2

)′
+ 2s0

( f1 f3)
′

f1 f3

(
1

f1 f2

)′′
+ s0

(
1

f1 f2

)′′
.

Substituting Equation (13) into Equation (12), we can obtain

d4w
dξ4 + g3(ξ)

d3w
dξ3 + g2(ξ)

d2w
dξ2 − λq4(ξ)

d4w
dξ4−

λq3(ξ)
d3w
dξ3 − λq2(ξ)

d2w
dξ2 − λq1(ξ)

dw
dξ

= 0.
(14)

To determine the buckling critical load λ of an axially FG Timoshenko beam as de-
scribed above, the interpolating matrix method (IMM) is used to solve Equation (14). The in-
terval ξ ∈ [0, 1] is ivided into n segments, node ξi is distributed as ξ0, ξ1, ξ2, . . . , ξ(n− 1), ξn,
there in ξ0 = 0, ξn = 1, the distance between adjacent nodes is ∆L = ξ(i + 1)− ξi = 1/n,
and the derivative value of transverse displacement ω(ξ) in the ordinary differential equa-
tions in Equation (8) is expressed by the function value on the interval division points using
the difference method. Then, one makes the following integral,

w′′′
(
ξ j
)
− w′′′(ξ0) =

∫ ξ j

ξ0

w(4)(ξ)dξ (j = 0, 1, 2, · · · , n). (15)

The fourth-order derivative function ω(4)(ξ) in the above equation is approximated
by the interpolation function, as is shown below:

w(4)(ξ) =
n

∑
i=1

w(4)(ξi)Li(ξ), (16)

where Li(ξ) are Lagrange interpolation basis functions, and ω(4)(ξi) is the approximate
solution of ω(4)(ξ) at ξi; then, inserting Equation (16) into Equation (15), we can obtain the
approximate expression as follows:

w′′′
(
ξ j
)
− w′′′(ξ0) =

n

∑
i=0

w(4)(ξi)Dji, (i = 0, 1, 2, · · · , n; j = 0, 1, 2, · · · , n), (17)

where Dji =
∫ ξ j

ξ0
Li(ξ)dξ, (i = 0, 1, 2, · · · , n; j = 0, 1, 2, · · · , n) introduce the symbols of

vectors τ and σ and matrix D; then,

τ = {0, 0, · · · , 0}T, σ = {1, 1, · · · , 1}T,

D =
[
Dji
]
(n+1)×(n+1) (i = 0, 1, 2, · · · , n; j = 0, 1, 2, · · · , n),

where the matrix D is called the integral matrix, which only depends on the basis functions
Li(ξ). Equation (17) is written in vector form as follows:

w′′′ = τw(ξ0) + τw′(ξ0) + τw′′(ξ0) + σw′′′(ξ0) + Dw(4)

= [τ, τ, τ, σ, D](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

= [H∗3 , H3](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

(18)

H∗3 = [τ, τ, τ, σ](n+1)×4, H3 = [D](n+1)×(n+1),

in which,

w∗ = {w(ξ0), w′(ξ0), w′′(ξ0), w′′′(ξ0)}T, w′′′ = {w′′′(ξ0), w′′′(ξ1), w′′′(ξ2), · · · , w′′′(ξn)}T

w(4) =
{

w(4)(ξ0), w(4)(ξ1), w(4)(ξ2), · · · , w(4)(ξn)
}T

.
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The low-order derivative function is sequentially replaced by a high-order derivative
function, and it can be obtained by stepwise recursion; then, we can obtain:

w′′ = τw(ξ0) + τw′(ξ0) + σw′′(ξ0) + Dσw′′′(ξ0) + D2w(4)

=
[
τ, τ, σ, Dσ, D2]

(n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

= [H∗2 , H2](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

, (19)

and,
H∗2 = [τ, τ, σ, Dσ](n+1)×4, H2 =

[
D2]

(n+1)×(n+1),

w′′ =
{

w′′(ξ0), w′′(ξ1), w′′(ξ2), · · · , w′′(ξn)
}T,

w′ = τw(ξ0) + σw′(ξ0) + Dσw′′(ξ0) + D2σw′′′(ξ0) + D3w(4) (20)

=
[
τ, σ, Dσ, D2σ, D3

]
(n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

= [H∗1 , H1](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

,

and,
H∗1 =

[
τ, σ, Dσ, D2σ

]
(n+1)×4, H1 =

[
D3]

(n+1)×(n+1),

w′ =
{

w′(ξ0), w′(ξ1), w′(ξ2), · · · , w′(ξn)
}7

w = σw(ξ0) + Dσw′(ξ0) + D2σw′′(ξ0) + D3σw′′′(ξ0) + D4w(4) (21)

=
[
σ, Dσ, D2σ, D3σ, D4

]
(n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

= [H∗0 , H0](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

,

where H∗0 =
[
σ, Dσ, D2σ, D3σ

]
(n+1)×4, H0 =

[
D4
]
(n+1)×(n+1)

,

w = {w(ξ0), w(ξ1), w(ξ2), · · · , w(ξn)}T.
The fourth derivative function ω4(ξ) can be written directly into vector form as

w(4) = τw(ξ0) + τw′(ξ0) + τw′′(ξ0) + τw′′′(ξ0) + Iw(4)

= [τ, τ, τ, τ, I](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

(22)

= [H∗4 , H4](n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

,

where H∗4 = [τ, τ, τ, τ](n+1)×4, H4 = [I](n+1)×(n+1). The variable coefficient of the set of
differential equations in Equation (14) can be written in diagonal matrix form as

G3 = diag(g3(ξ0), g3(ξ1), · · · , g3(ξn)), G2 = diag(g2(ξ0), g2(ξ1), · · · , g2(ξn))
Q4 = diag(q4(ξ0), q4(ξ1), · · · , q4(ξn)), Q3 = diag(q3(ξ0), q3(ξ1), · · · , q3(ξn)),
Q2 = diag(q2(ξ0), q2(ξ1), · · · , q2(ξn)), Q1 = diag(q1(ξ0), q1(ξ1), · · · , q1(ξn))

(23)

Substitute Equations (18)–(23) into Equation (14); then, the variable coefficient ordinary
differential equation can be written in matrix form as:[

A B
]
(n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

− λ
[

C D
]
(n+1)×(n+5)

(
w∗

w(4)

)
(n+5)×1

= 0, (24)

where A = H∗4 + G3H∗3 + G2H∗2 , B = H4 + G3H3 + G2H2, C = H∗4 + Q3H∗3 + Q2H∗2 +
Q1H∗1 , D = H4 + Q3H3 + Q2H2 + Q1H1.
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Without loss of generality, Equation (10) is substituted into Equation (5) with the case
of a beam clamped at both ends (C–C) as an example in discussion; then, we can obtain{

w(ξ) = 0
w′(ξ)− λe(ξ)w′(ξ) = 0

(ξ = 0, ξ = 1), (25)

where e(ξ) = s0/( f1 f2), and diagonal matrix E = diag(e(ξ0), e(ξ1), · · · , e(ξn)). Then,
Equation (25), for the boundary condition, can be expressed by vector as:

[H∗0 , H0]Il

(
W∗

W (4)

)
= 0,

[H∗1 , H1]Il

(
W∗

W (4)

)
− λ[EH∗1 , EH1]Il

(
W∗

W (4)

)
= 0,

(26)

where Il is 0 and n, [H∗0 , H0]Il
, [H∗1 , H1]Il

, and [EH∗1 , EH1]Il
are, respectively, elements of

the Ith
l row of the corresponding matrix. Equations (24) and (26) are combined into a matrix

form as follows,  (H∗0)Il
(H0)Il

(H∗1)Il
(H1)Il

A B


(n+5)×(n+5)

(
w∗

w(4)

)
(n+5)×1

− λ

 0 0
(EH∗1)Il

(EH1)Il
C D


(n+5)×(n+5)

(
w∗

w(4)

)
(n+5)×1

=

 0
0
0

. (27)

The above equation is an eigenvalue problem of a set of linear algebraic equations

with unknown vector
(

w∗ T, w(4)T
)T

. Using the QR decomposition method to solve the

equation, multiple eigenvalues and the corresponding eigenvector
(

w∗ T, w(4)T
)T

can be
obtained simultaneously.

3. Analysis and Discussion of Numerical Examples

Through the analysis and comparison of numerical examples, this paper discusses
the feasibility and convergence rate of the numerical method to calculate the buckling
critical load of a Timoshenko tapered beam with axial functional gradient, and discusses
the influence of cross-section taper and material gradient on the buckling critical load
under different boundary conditions. In order to analyze the buckling critical load of a
Timoshenko tapered beam with an axial functional gradient, we compared our results with
the calculation results in the existing literature to verify the effectiveness and accuracy of
the interpolation matrix method in this paper. Here, suppose the beam length is L. The
beam material is composed of aluminum and zirconia with respective elastic moduli of
Ea = 70 GPa and Ez = 200 GPa. Suppose Poisson’s ratio of a functionally graded material
is ν = 0.3, the shear coefficient is κ = 5/6, and the dimensionless turning radius of the
cross-section is r0 = 0.01.

3.1. The Material Properties of Timoshenko Beam Follow the Power Law Functions

Cross-sectional area A(x) and moment of inertia of the beam I(x) are,

CaseA : A(x) = A0

(
1− cx

L

)
; I(x) = I0

(
1− cx

L

)3
(x ∈ [0, L]). (28)

CaseB : A(x) = A0

(
1− cx

L

)2
; I(x) = I0

(
1− cx

L

)4
(x ∈ [0, L]). (29)
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The physical properties E(x) of the beam material vary with the coordinates:

E(x) = Ez + (Ea − Ez)
( x

L

)m
, (30)

where c is the taper coefficient of the section, 0 ≤ c ≤ 1, x is the coordinate of the
starting point in the direction of the axis from the left end of the beam, and m is the
non-uniformity parameter, which affects the material properties. When c = 0, m 6= 0, the
axially functionally graded tapered beam is degraded to an axially functionally graded
beam with a uniform cross section; when c 6= 0, m = 0, the axially functionally graded
tapered beam is degraded into a tapered beam of homogeneous material; and when c = 0,
m = 0, the axially functionally graded tapered beam is degraded into a uniform section
beam of homogeneous material.

When the non-uniformity parameter m = 2 and the taper coefficient c take different
values, the interpolating matrix method (IMM) is adopted. The calculated values of the
buckling critical load of a Timoshenko beam under different boundary conditions are
listed in Tables 1–6, together with the results in the existing literature. It can be seen from
Tables 1–6 that the number of discrete elements in the beam length interval is n = 20, 40, and
80, respectively; the more the number of discrete elements, the more accurate the calculated
value is. When the number of discrete elements in the beam length interval is n = 80, the
calculated value in this paper has at least four significant figures—the same as that of the
finite element method in reference [10,11], and at least six significant figures—the same
as that in reference [12], which shows the effectiveness and accuracy of the interpolating
matrix method (IMM) in calculating the critical load of axially functionally graded material
Timoshenko beams with variable cross-sections. It can also be seen from the calculation
results in Tables 1–6 that the section taper coefficient c of a Timoshenko beam has an obvious
influence on the critical load. With the increase of the taper coefficient c, the critical load of
the Timoshenko beam gradually decreases. At the same time, under the same conditions,
the buckling critical load of the Timoshenko beam increases with the increase of the beam
boundary restraint.

Table 1. Dimensionless critical load of a C–F axially FG Timoshenko beam with different taper
coefficient (m = 2).

c

Case A (C–F)

Present Results
Ref. [10] Ref. [12]

n = 20 n = 40 n = 80

0 1.97682853 1.98124647 1.98128344 / 1.98125153
0.1 1.78221745 1.78494087 1.7849677 1.7853 /
0.2 1.58564101 1.58700795 1.58703043 1.5875 1.58702178
0.3 1.38698256 1.3873168 1.38734138 1.3879 /
0.4 1.18613115 1.18575555 1.18579084 1.1866 1.18579942
0.5 0.98300999 0.98227783 0.98233872 0.9833 /
0.6 0.77765251 0.77701428 0.7771343 0.7784 0.77715974
0.7 0.57045822 0.57054892 0.57082098 0.5724 /
0.8 0.3634789 0.36466297 0.36537445 0.3676 0.36551965
0.9 0.17196057 0.16518576 0.16672081 0.1701 /
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Table 2. Dimensionless critical load of an S–S axially FG Timoshenko beam with different taper
coefficient (m = 2).

c

Case A (S–S)

Present Results
Ref. [10] Ref. [12]

n = 20 n = 40 n = 80

0 5.52369236 5.53521263 5.53673925 / 5.53690758
0.1 4.75176858 4.75835074 4.75920502 4.7632 /
0.2 4.01065022 4.01334494 4.0136948 4.0176 4.0137327
0.3 3.30576663 3.30541808 3.30539786 3.3093 /
0.4 2.64304743 2.64024965 2.63995827 2.6439 2.63993061
0.5 2.02909263 2.02410386 2.02359961 2.0276 /
0.6 1.47153474 1.46405324 1.46333671 1.4674 1.46327668
0.7 0.98000877 0.96841926 0.96737172 0.9716 /
0.8 0.57040499 0.54785313 0.54595004 0.5502 0.54598134
0.9 0.23416728 0.22031933 0.21385141 0.218 /

Table 3. Dimensionless critical load of a C–C axially FG Timoshenko beam with different taper
coefficient (m = 2).

c

Case A (C–C)

Present Results
Ref. [10]

n = 20 n = 40 n = 80

0 10.7403226 10.9998008 11.2179494 /
0.1 9.91733561 9.9256133 10.0961544 10.1595
0.2 8.7809981 8.78937555 8.93435946 8.9368
0.3 7.57297622 7.63141002 7.85256442 7.6882
0.4 6.21185431 6.35036423 6.73076955 6.4226
0.5 5.11381033 5.11022041 5.13855486 5.1594
0.6 3.88181254 3.90906771 3.85497231 3.9224
0.7 2.70707606 2.71883741 2.66742518 2.7387
0.8 1.63902121 1.63207159 1.58390926 1.6442
0.9 0.681192 0.68833936 0.65119236 0.6954

Table 4. Dimensionless critical load of a C–F axially FG Timoshenko beam with different taper
coefficient (m = 2).

c

Case B (C–F)

Present Results
Ref. [10] Ref. [11] Ref. [12]

n = 20 n = 40 n = 80

0 1.97682853 1.98124647 1.98128344 / 1.98125153 1.9813
0.1 1.70810124 1.71097406 1.71100359 1.7114 / /
0.2 1.44338384 1.44491691 1.44494205 1.4455 1.44493204 1.4449
0.3 1.18444317 1.18482267 1.18484704 1.1856 / /
0.4 0.93392667 0.93332558 0.93335452 0.9344 0.93336494 0.9334
0.5 0.69586757 0.69444135 0.69448387 0.6958 / /
0.6 0.47646892 0.47428183 0.47435118 0.4759 0.47439082 0.4745
0.7 0.28525131 0.28190708 0.28200428 0.2838 / /
0.8 0.13720864 0.1298526 0.12984725 0.1317 0.1302002 0.1301
0.9 0.03270473 0.03357341 0.03231129 0.034 / /
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Table 5. Dimensionless critical load of an S–S axially FG Timoshenko beam with different taper
coefficient (m = 2).

c

Case B (S–S)

Present Results
Ref. [10] Ref. [11] Ref. [12]

n = 20 n = 40 n = 80

0 5.52369236 5.53521263 5.53673925 / 5.53690758 5.5372
0.1 4.43970389 4.44783825 4.4488942 4.4532 / /
0.2 3.463776 3.46847598 3.46907652 3.4735 3.46914181 3.4698
0.3 2.60449385 2.60579041 2.60596614 2.6104 / /
0.4 1.86812507 1.86605804 1.86584546 1.8702 1.86582549 1.8664
0.5 1.25852472 1.25301045 1.25243817 1.2567 / /
0.6 0.77714287 0.76766262 0.76672891 0.7707 0.76667415 0.7671
0.7 0.42369293 0.40807804 0.40670129 0.4102 / /
0.8 0.16904052 0.16723933 0.16687264 0.1697 0.16735141 0.167
0.9 0.04427412 0.03819555 0.03737525 0.039 / /

Table 6. Dimensionless critical load of a C–C axially FG Timoshenko beam with different taper
coefficient (m = 2).

c

Case B (C–C)

Present Results
Ref. [10] Ref. [11]

n = 20 n = 40 n = 80

0 10.7403224 10.9998112 11.2179494 / 11.3147
0.1 8.92975536 8.93709874 9.08653895 9.2468 /
0.2 7.04754418 7.05363242 7.17948754 7.3377 7.2973
0.3 5.38376661 5.38900131 5.496795 5.6402 /
0.4 3.94250032 3.94696542 4.03846169 4.159 4.1313
0.5 2.72411224 2.7278098 2.80448734 2.8976 /
0.6 1.72915469 1.73206627 1.79487168 1.859 1.8451
0.7 0.95864755 0.96074877 1.00961552 1.0466 /
0.8 0.41390434 0.41519902 0.44871792 0.465 0.4589
0.9 0.0955748 0.09611233 0.11217955 0.1187 /

3.2. Calculation of Critical Load of Homogeneous Timoshenko Beam with Uniform Section

In Equation (30), when the material non-uniformity parameter m and the section taper
coefficient c are zero, that is, m = 0 and c = 0, the axial FG variable section beam degen-
erates into a uniform section Timoshenko beam. As mentioned earlier, when the number
of discrete elements in the beam length interval is n = 20, 40, and 80, respectively, the
numerical and analytical solutions of the buckling critical load obtained by the interpolating
matrix method (IMM) are shown in Table 7. As can be seen from Table 7, the more discrete
elements in the beam length interval is used, the more accurate the calculation results
will be. When the interval division point n = 80, under different boundary conditions,
the numerical value of this method and the analytical solution of the Timoshenko beam’s
critical load have more than seven significant digits, which again shows the feasibility and
accuracy of the interpolating matrix method in solving the Timoshenko beam critical load.
It is also found in Table 7 that the buckling critical load calculated based on Euler–Bernoulli
beam theory is significantly higher than that calculated based on Timoshenko beam theory,
especially under the strongly constrained boundary conditions C–S and C–C. As we all
know, compared with Timoshenko beam theory, Euler–Bernoulli beam theory ignores the
effects of shear deformation and moment of inertia. Therefore, Timoshenko beam theory
provides a more practical model for studying the buckling critical load of beams.
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Table 7. Dimensionless critical load of a uniform Timoshenko beam with different boundary
conditions.

Boundary
Conditions

Present Results Exact Results

n = 20 n = 40 n = 80 Timoshenko Beam Euler-Bernoulli Beam

C–F 2.29103267 2.291031 2.29103087 2.29103087 2.4674011
S–S 7.54604159 7.54596916 7.54596376 7.54596339 9.8696044
C–G 7.54604159 7.54596916 7.54596376 7.54596339 9.8696044
C–S 12.387778 12.3873579 12.3873267 12.3873245 20.1907286
C–C 17.6913596 17.6897569 17.6896382 17.6896297 39.4784176

3.3. The Material Properties of Timoshenko Beams Follow the Exponential Functions

In order to further verify the feasibility and calculation accuracy of this method,
considering that the cross-sectional area of the beam is A(x) = A0 and the moment of
inertia is I(x) = I0, the elastic modulus of the material is axially inhomogeneous, that is,
the elastic modulus E(x) is distributed in an exponential function along the axis,

E(x) = E0e
2mx

L (31)

where E0, A0, and I0, respectively, correspond to the elastic modulus, cross-sectional area,
and cross-sectional moment of inertia of the material at the left-end boundary x = 0
of the functionally graded Timoshenko beam, and m is the material non-homogeneity
parameter of the functionally graded material. When m = 0, the functionally graded
Timoshenko beam of exponential function type degenerates into a uniform cross-section
beam of homogeneous material. When the number of discrete elements in the beam
length interval is taken as n = 80, the calculated value of the critical buckling load of the
Timoshenko beam obtained by the interpolating matrix method (IMM) and the calculation
results in reference [12] are listed in Table 8. The calculated values of this method in Table 8
are completely consistent with those in reference [12], which proves the calculation accuracy
of the interpolating matrix method again.

Table 8. The variations of dimensionless critical load for a Timoshenko beam with the gradient
parameter m (n = 80).

Boundary
Conditions Method m = −2 m = −1 m = 0 m = 1 m = 2

C–F IMM 0.3028305 1.01636759 2.29108383 3.91690099 5.74929022
Ref. [12] 0.30351153 1.01660886 2.29103087 3.92696136 5.73471602

S–S IMM 0.46258906 2.24552621 7.54596336 16.592328 25.2566123
Ref. [12] 0.46200328 2.24552686 7.54596339 16.592324 25.2260037

C–S IMM 0.55387824 3.33013763 12.3873244 27.3496347 30.73874
Ref. [12] 0.55254827 3.3301372 12.3873245 27.348973 #

C–C IMM 0.5870397 4.33766929 17.6896296 32.0512817 32.0512817
Ref. [12] # 4.30589402 17.6896297 31.8299586 #

# indicates that the value obtained by the IMM is different from that in ref. [12].

The material non-homogeneity parameter m of the beam provides special charac-
teristics for the beam; hence, it is very important to understand the effects of material
non-homogeneity on the critical load λ of axially FG beams. According to the calculation
results in Table 8, under different boundary conditions, the buckling critical load of the
axially FG Timoshenko beam increases with the increase of the material non-homogeneity
parameter m of the beam material, the main reason being that the buckling critical load
λ is only dependent on the stiffness of the beam; the greater the stiffness of the beam
material, the greater the buckling critical load of the beam. As known from Equation (31),
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the stiffness of the beam increases with the increase of the m value from −2 to 2; therefore,
the critical load of the beam increases with the increase of the m value.

In this paper, the critical buckling load of the axially FG Timoshenko beam can be cal-
culated by the interpolating matrix method, and the corresponding transverse displacement
ω(ξ) can be solved at the same time. Figure 2 is the distribution curves of the transverse
displacement ω(ξ) corresponding to the different material non-uniformity parameters m
of the axially FG Timoshenko beam under different boundary conditions. It is found that
the influence of material heterogeneity parameters m on the transverse displacement ω(ξ)
of the axially FG Timoshenko beam cannot be ignored.

(a) Clamped–clamped

(b) Clamped–free
Figure 2. Cont.
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(c) Clamped–simply supported

(d) Simply supported–simply supported

Figure 2. The buckling mode shape of axially functionally graded material Timoshenko beam.

4. Conclusions

Based on Timoshenko beam theory, the calculation of the buckling critical load of
an axially functionally graded material Timoshenko beam with variable cross-section
is transformed into a set of eigenvalue problems of fourth-order ordinary differential
equations with variable coefficients. Then, using the interpolating matrix method (IMM)
theory, and through a series of careful mathematical derivations, the eigenvalue problem of
fourth-order ordinary differential equations is transformed into a set of eigenvalue problems
of linear algebraic equations. Finally, the critical buckling load and its corresponding
deflection function of an axially functionally graded material Timoshenko beam with
variable cross-section are obtained by the QR decomposition method. The conclusions of
this paper are as follows: (1) The complexity of the buckling critical load problem of an
axially functionally graded Timoshenko beam with variable cross section is mainly due
to the fact that differential equation of motion is a set of variable coefficient differential
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equations which are coupled by deflection and rotation. Analytical solutions can only
be obtained under special cases due to difficulties in the mathematical solution. The
calculated results of the proposed method are in good agreement with those of the existing
references, which shows that the interpolating matrix method (IMM) has high accuracy.
Moreover, the interpolating matrix method has small computation requirements and strong
adaptability; (2) In this paper, the effects of the beam cross-section taper coefficient, material
heterogeneity, and boundary constraints on the buckling critical load of axially functionally
graded Timoshenko beams are studied. The results show that the buckling critical load
decreases with the increase of the cross-section taper coefficient c, increases with the increase
of the material non-uniformity parameter m, and increases with the enhancement of the
boundary condition constraints; (3) The material gradient function and geometric profile of
the beam section can only be confined to a specific form in order to obtain the analytical
solution of the buckling critical load of axially functionally graded Timoshenko beams with
variable cross sections, while the proposed method does not need any restriction on their
specific form. Therefore, the interpolating matrix method proposed in this paper has certain
engineering application value in the study of engineering structure vibration and stability.
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