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Abstract: The prime objective of the current study is to propose a novel mathematical framework
under the fractional-order derivative, which describes the complex within-host behavior of SARS-CoV-
2 by taking into account the effects of memory and carrier. To do this, we formulate a mathematical
model of SARS-CoV-2 under the Caputo fractional-order derivative. We derived the conditions for
the existence of equilibria of the model and computed the basic reproduction numberR0. We used
mathematical analysis to establish the proposed model’s local and global stability results. Some
numerical resolutions of our theoretical results are presented. The main result of this study is that
as the fractional derivative order increases, the approach of the solution to the equilibrium points
becomes faster. It is also observed that the value ofR0 increases as the value of β and πv increases.

Keywords: SARS-CoV-2; fractional order; local stability; global stability; basic reproduction number
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1. Introduction

In December 2019, coronavirus disease 2019 (COVID-19), which began in Wuhan,
China, was classified as a global pandemic. Since then, it has rapidly spread throughout the
world, becoming the most pressing public health crisis and affecting millions of people [1].
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for this
disease. SARS-CoV-2 is a single-stranded RNA virus with a positive-sense single-stranded
RNA (+ssRNA) genome. SARS-CoV-2 is one of the viruses that belongs to the Coronaviri-
dae family and the Nidovirales order [2]. In addition, SARS-CoV-2 belongs to the Beta
coronavirus family, which includes two additional extremely deadly viruses, SARS-CoV
and MERS-CoV [3]. COVID-19’s infection dynamics are complicated by several factors,
including uncertainty about the source of the infection, a long period of incubation during
which an infected individual may not develop symptoms or be aware of their infection, and
the inefficiency and lack of availability of drugs or vaccines. All of these factors contribute
to the rapid spread of COVID-19, complicating disease control [4].

Mathematical modeling of diseases is a new research area in mathematical biology.
Researchers have used mathematical modeling to observe the dynamics of disease spread
in populations and the within-host dynamics in the body to control and manage disease
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effects [5–8]. Several modeling studies on the spread, transmission, and infection dynamics
of COVID-19 disease have been conducted in various regions. By fitting the data of four
Chinese provinces, Hubei, Guangdong, Zhejiang, and Henan, Liang [3] proposed a mathe-
matical framework to detect the rules of the spread of the following pneumonia illnesses:
COVID-19, SARS, and MERS. According to their result, COVID-19 has a much faster
growth rate than SARS and MERS. Yang and Wang et al. [4] formulated a mathematical
model that incorporates an environmental reservoir along with non-constant transmission
rates to investigate the outbreak of COVID-19 disease in Wuhan, China, and demonstrated
their findings with publicly available data. The authors of [9] investigated a mathematical
model for the COVID-19 outbreak in Wuhan, taking into account some key elements such
as individual behavioral responses, governmental actions, zoonotic transmission, and mass
emigration in a short period. Chen et al. [10] developed a mathematical framework to
simulate SARS-CoV-2 phase-based transmissibility and reported that in Middle Eastern
countries, the transmissibility of SARS-CoV-2 is higher than MERS, whereas it is lower than
MERS in the Republic of Korea.

Fractional calculus has recently gained more attention in mathematical modeling
due to it’s salient features: fractional derivatives can capture memory effects due to their
non-local nature and give a more realistic scenario than the integer-order differential model.
In [11], the authors used Lagrange’s interpolation method to analyze a fractal-fractional-
order COVID-19 model and interpret their results numerically for various fractional orders.
The optimal effects of physical distance on SARS-CoV-2 virus transmission were studied
by Bushnaq et al. [12] using a fractional-order mathematical model. The researchers
have considered control inputs such as social distancing and quarantine to minimize the
number of susceptible and infected people while maximizing the number of people who can
recover. Farman et al. [13] investigated a COVID-19 model using the Atangana–Baleanu
fractional derivative and fractal-fractional Atangana–Baleanu with Mittag–Leffler kernel
and derived a comparison analysis of the models with the considered fractional derivatives.
Zhang et al. [14] simulated a new fractional-order mathematical model for the COVID-19
epidemic by employing the adaptive predictor-corrector algorithm and the fourth-order
Runge–Kutta (RK4) method. To measure the spread of COVID-19, a SEIRD model was
proposed by the authors in [15]. They estimated the parameters using both classical and
fractional-order models fitted with data reported by WHO for Italy. It was observed that
the root-mean-square error for the fractional-order model is lower than that of the classical
one, and the fractional model provides a more accurate forecast of the data. In [16], a
fractional-order model has been proposed to explore the effects of isolation, quarantine,
and environmental viral load in the COVID-19 outbreak. Using data from Pakistan as
input, they built a model and simulated the model using the Adams–Moulton scheme.
Ahmad et al. [17] used the fractional-order derivative in Atangana–Baleanu sense to study
a COVID-19 outbreak model for five different classes and fitted the model to data from
Wuhan. A modified Adam–Bashforth method was used to arrive at an approximation
of the numerical solution for this model. Moreover, one can find other works related to
transmission dynamics of COVID-19 (see [18,19]).

A few modeling study works have been performed to understand the within-host
behavior of SARS-CoV-2 dynamics. A mathematical model was proposed to demonstrate
the within-host viral dynamics of SARS-CoV-2 such that the values of the parameters were
estimated from score data of chest radiography, as shown in [20]. They also employed their
mathematical model to analytically indicate the effect of drugs on virus growth and the
immunity effect on patients. A few mathematical models were reviewed in [21] that are
capable of explaining the dynamical behavior of SARS-CoV-2 and estimating the standard
parameters of viral infections. Almocera et al. [22] explored the response of effector T cells
to SARS-CoV-2 and gave a profound insight into how SARS-CoV-2 causes the disease by
analyzing a within-host model. In [23], a comparative analysis of SARS-CoV-2 dynamics
with that of MERS-CoV and SARS-CoV has been performed by investigating a quantitative
model, which suggests that the infection of SARS-CoV-2 can be controlled if a combination
therapy is used that triggers cytotoxicity and blocks de novo infection or virus production
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synergistically. Vaidya et al. [24] characterized the dynamical infection of SARS-CoV-2
within the host in ferrets by investigating a mathematical model fitted with experimental
data. Yin et al. [25] proposed a viral kinetic delay-differential model to assess the effects of
T cells and antibodies on SARS-CoV-2 ineffectiveness in patients with various symptoms.
Afonyushkin et al. [26] investigated the distribution of the SARS-CoV-2 virus in human
tissue and organs using a multi-compartmental model. Recently, Nath et al. [27] discussed
the dynamical behavior of the model that was introduced by Li et al. [20]. This study
aims to modify the model considered by Nath et al. [27] to a fractional-order one for
understanding the complex behavior of SARS-CoV-2 in the host.

The remaining parts of the paper are assembled as follows: A fractional-order model
that describes the dynamics of SARS-CoV-2 has been formulated in Section 2. Section 3 deals
with a few preliminary concepts related to fractional calculus. The model has been analyzed
by presenting the equilibrium points, stability analysis, and global stability analysis in
Sections 4–6. A numerical simulation of the model has been performed in Section 7. Finally,
concluding remarks of the paper have been presented in Section 8.

2. Formulation of COVID-19 Model
2.1. The Original COVID-19 Model

The original model [20,27] consists of three classes that categorize individuals with
respect to the within-host coronavirus disease based on their status, as indicate in Figure 1.
The class Mp(t) represents virus-free pulmonary epithelial cells, the virus-infected pul-
monary cells are represented by the class M∗p(t), and the class v(t) represents the free
virus. In addition, dM, dM∗ , and dv are the death rates of classes Mp(t), M∗p(t), and v(t),
respectively. The transmission rate from virus-free cells to virus-infected cells is denoted by
β. The free virus production rate is πv. In the following model, the constant regeneration
rate of v(t) will be described by the term dM Mp(0).

Mp(t) = dM(Mp(0)−Mp(t))− βMp(t)v(t),
M∗p(t) = βMpv(t)− dM∗M∗p(t),
v(t) = πv M∗p(t)− dvv(t).

(1)

Figure 1. Schematic diagram of the model (1).
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2.2. The Fractional COVID-19 Model

For the model’s modification by the general (Mp, M∗p, v) within-host coronavirus
model (1), we can express the following fractional within-host coronavirus model:

Dα Mp(t) = dM(Mp(0)−Mp(t))− βMp(t)v(t),

Dα M∗p(t) = βMp(t)v(t)− dM∗M∗p(t),

Dαv(t) = πv M∗p(t)− dvv(t),

(2)

with the initial conditions

Mp(0) > 0, M∗p(0) ≥ 0 and v(0) ≥ 0. (3)

Here, Dα is the fractional Caputo derivative with α order as α ∈ (0, 1] that indicates the
memory effects in the proposed Mp M∗pv within-host coronavirus model. We consider that
the functions Mp(t), M∗p(t), v(t) with their Caputo fractional derivative order as α ∈ (0, 1]
are continuous functions. All the parameters in the fractional-order model (2) are within the
interval (0, 1] and the values are taken from [20,27] that were used in analysis of model (1).

3. Preliminaries of Fractional-Order Derivative

This section reviews the fundamental definitions, theorems, concepts, and results that
we will use throughout the remainder of this paper. For more details, we refer the reader
to [28–31].

Definition 1. The fractional-order derivative in Caputo sense for order x > 0 is defined below:

Dx
t f (t) =

1
Γ(n− x)

∫ t

a
(t− ξ)n−x−1 f (n)(ξ)dξ,

where n− 1 < x ≤ n, n ∈ N, f ∈ Cn−1[0, t].

Definition 2. The Atangana–Baleanu Caputo fractional derivative for a given function for order x
is defined below:

Dx
t f (t) =

B(x)
1− x

∫ t

a

d f (ξ)
dξ

Ex[−
x

1− x
(t− ξ)x]dξ,

where B(x) = (1− x) + x
Γ(x) is a normalization function and Eα(.) is the Mittag–Leffler function.

Definition 3. An integral order x under the Atangana–Baleanu fractional derivative is defined by

Ix
t ( f (t)) =

1− x
B(x)

f (t) +
x

B(x)Γ(x)

∫ t

a
f (ξ)(t− ξ)x−1dξ,

and the integral will be zero for a constant function f (t).

Definition 4. The Laplace transform for the Atangana–Baleanu fractional operator of order x is
computed as follows:

LDx f (t)(s) =
B(x)
1− x

SxL f (t)(s)− sx−1 f (a)
sx + x

1−x
, where x ∈ (0, 1].

Definition 5. The function f satisfies the Hölder continuous function if and only if there are
C, v ∈ <+ constants such that || f (x)− f (y)|| ≤ C||x− y||v.

Lemma 1. Let the system be Dθ x(t) = φ(t, x), where φ : [t0, ∞)×Ω → <m, Ω ⊆ <m, t > t0,
and 0 < θ ≤ 1 with x(t0) as the initial condition. Then, for the above system, there exists a unique
solution on [t0, ∞)×Ω if the Lipschitz condition with respect to x holds for φ(t, x).
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Lemma 2. Let a nonlinear fractional-order system be Dθ
t x = φ(x), where x(t0) = x0 and

0 < θ < 1. If a point x∗ satisfies φ(x∗) = 0, then x∗ is called an equilibrium point of the system.
The equilibrium x∗ is said to be locally asymptotically stable if all eigenvalues λi of the Jacobian
matrix J = ∂φ

∂x evaluated at x∗ satisfy the conditions |arg(λi)| > θπ
2 .

Lemma 3. Let Dθ
t x = φ(t, x) be a system with x(t0) = x0, 0 < θ < 1, such that φ(t, x) is

a continuous function in x and locally Lipschitz in x. Thus, ∀t > 0, ∃x(t) ∈ Ω such that
v ∈ C0,v with θ < v < 0 be a locally Hölder continuous function such that

Dθ
t v ≤ f (t, (v(t)), v(0) ≤ x(0)⇒ v(t) ≤ x(t) ∀t ∈ [0, T).

Lemma 4 ([32,33]). Suppose that Ω is a bounded closed set. Every solution of Dθ
t x(t) = f (x)

starts from a point in Ω and remains in Ω for all time. If ∃ φ(x) : Ω→ R with continuous first
partial derivatives satisfies the following condition,

Dθ
t (φ)|Dθ

t x(t)= f (x) ≤ 0.

If E = {x, Dθ
t (φ)|Dθ

t x(t)= f (x) = 0} and M is the largest invariant set of E, then every solution
x(t) originating in Ω tends to M as t→ ∞. Specifically, when M = {0}, then x → 0, as t→ ∞.

4. Analysis of the Model

The evaluation of the equilibrium of the model (2) is done by finding all the possible
roots of the model (2) when all fractional derivatives in the model (2) are equal to zero:

Dα Mp(t) = Dα M∗p(t) = Dαv(t) = 0→ Mp, M∗p, v ≡ constants, (4)

which gives

0 = dM(Mp(0)−Mp)− βMpv,

0 = βMpv− dM∗M∗p, (5)

0 = πv M∗p − dvv.

The uninfected equilibrium (UIE) of the model (2) can be computed by solving the
system (5) and given by the form e1 = (Mp(0), 0, 0).

Furthermore, the model (2) can be written as

dX
dt

= F (x)− ϕ(t), (6)

where

X(t) =

 M∗p
Mp(t)
v(t)

,F (x) =

βMpv
0
0

, (7)

ϕ(t) =

 dM∗M∗p
−dM(Mp(0)−Mp) + βMpv

−πv M∗p + dvv

, (8)

and then we have

F =

[
∂Fi
∂xj

(x0)

]
=

0 0 βMp(0)
0 0 0
0 0 0

, (9)
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V =

[
∂ϕi
∂xj

(x0)

]

=


dM∗p 0 0

0
dM(πv βMp(0)−dM∗p dv)

dM∗p dv
+ dM

dM∗p dv

πv

−πv 0 dv

, (10)

FV−1 =


βMp(0)πv

dM∗ dv
0 βMp(0)

dv

0 0 0
0 0 0

, (11)

where the matrix (11) is called the next-generation matrix for the model andR0 =
βMp(0)πv

dM∗ dv
.

Lemma 5. There exists a unique virus-infected equilibrium point (VIE) of model (2) e2 =
(Mp, M∗p, v) if and only ifR0 > 1.

Proof. A virus-infected equilibrium of the model (2) is exists, if the following equations
are satisfying:

dM(Mp(0)−Mp)− βMpv = 0,

βMpv− dM∗M∗p = 0, (12)

πv M∗p − dvv = 0.

It is straightforward to calculate that there exists a unique solution to (12) that satisfies

Mp =
dM∗dv

πvβ
= Mp(0)

1
R0

,

M∗p =
dvv
πv

=
dvdM
βπv

(R0 − 1), (13)

v =
dM
β

(R0 − 1).

Obviously, Mp > 0, where dM∗ dv
πv β > 0 ∀t, but M∗p > 0 and v > 0 are hold if and only if

R0 > 1. Hence, the virus-infected equilibrium point of the model (2) can be computed as
e2 = (Mp(0) 1

R0
, dvdM

βπv
(R0 − 1), dM

β (R0 − 1)) and it exists if and only ifR0 > 1.

5. Local Stability

Herein, the local stability analysis will be discussed near all equilibrium points of
model (2) through the following theorems.

Theorem 1. Suppose that g : Ω ⊂ <3
+ → <3

+ is a differentiable function and e1 ∈ Ω; then,
uninfected equilibrium point e1 is locally asymptotically stable if the following condition holds:

πvβMp(0) < dM∗dv. (14)

Otherwise, it becomes unstable.

Proof. The Jacobian matrix at uninfected equilibrium point e1 can be written as
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J(e1) =

 −dM 0 −βMp(0)
0 −dM∗ βMp(0)
0 πv −dv

. (15)

Clearly, the characteristic equation of the above matrix J(e1) is

(−dM − λ)(λ2 + Tλ + D) = 0, (16)

and here,
T(trace) = dM∗ + dv > 0,

D(determent) = dM∗dv − πvβMp(0).

Now, if the condition (14) is satisfied, we find that the uninfected equilibrium point e1
is locally asymptotically stable.

Theorem 2. The virus-infected equilibrium point e2, is locally asymptotically stable whenever

πvβM̄p ≤ dvdM∗ . (17)

Proof. The Jacobian matrix at the virus-infected equilibrium point e2 can be written as

J(e2) =

 −(dM + βv̄) 0 −βM̄p
βv̄ −dM∗ βM̄p
0 πv −dv

. (18)

The characteristic equation of the above matrix J(e2) is

λ3 + A1λ2 + A2λ + A3 = 0, (19)

where

A1 = dM + βv̄ + dM∗ + dv,

A2 = (dM + βv̄)(dv + dM∗) + dM∗dv − πvβM̄p,

A3 = (dM + βv̄)(dvdM∗ − πvβM̄p) + πvβ2v̄M̄p,

A1 A2 − A3 = dM∗(dM + βv̄)[dM + βv̄ + dM∗ ]
+dv(dM + βv̄)(dM + βv̄ + dv)
+πvβ2v̄M̄p − (dv + dM∗)×

(πvβM̄p − dvdM∗)
−2(dM + βv̄)(πvβM̄p − 2dvdM∗).

Thus, under both conditionsR0 > 1 and (17), we have Ai, which are positive, where
i = 1, 2, 3 and A1 A2 − A3 > 0, and hence, according to the Routh–Hurwitz criterion, the
virus-infected equilibrium point e2 is locally asymptotically stable.

6. Global Stability

Herein, the global stability of the system (2) will be discussed through the following
theorems.

Theorem 3. The uninfected equilibrium point e1 is globally asymptotically stable on the domain if
and only ifR0 < 1.

Proof. By assuming the change X (t) = Mp(t)−Mp(0), the model (2) is equivalent to the
following model:
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DαX (t) = −dMX (t)− βX (t)v(t)− βMp(0)v(t),
Dα M∗p(t) = βX (t)v(t) + βMp(0)v(t)− dM∗M∗p(t),
Dαv(t) = πv M∗p(t)− dvv(t).

(20)

Hence, it clear to investigate that
−dMX (t)− βX (t)v(t)− βMp(0)v ≤ −dMX (t)− βMp(0)v(t),
βX (t)v(t) + βMp(0)v(t)− dM∗M∗p(t) ≤ βMp(0)v(t)− dM∗M∗p(t),
πv M∗p(t)− dvv(t) ≤ −dvv(t).

(21)

From (21), the solutions of the model (20) satisfy the following differential inequality:
DαX (t) ≤ −dMX (t)− βMp(0)v(t),
Dα M∗p(t) ≤ βMp(0)v(t)− dM∗M∗p(t),
Dαv(t) ≤ −dvv(t).

(22)

By assuming that (x(t), e∗p(t), ν(t)) is a solution of the following linear fractional model,
Dαx(t) = −dMx(t)− βMp(0)ν(t),
Dαe∗p(t) = βMp(0)v(t)− dM∗M∗p(t),
Dαν(t) = −dvν(t).

(23)

such that the initial condition is given by (x(0), e∗p(0), ν(0)). Thus, the eigenvalues of the
system (23) can be evaluated as∣∣∣∣∣∣

−dM − λ 0 −βMp(0)
0 −dM∗ − λ βMp(0)
0 0 −dv − λ

∣∣∣∣∣∣ = (−dM − λ)(−dM∗ − λ)(−dv − λ) = 0.

Clearly, λi < 0, where i = 1, 2, 3. Thus, |arg(λi)| = π, i = 1, 2, 3. From Lemma 2, we
find that lim

t→∞
x(t) = 0, lim

t→∞
e(t) = 0 and lim

t→∞
ν(t) = 0. Furthermore, by using Lemma 3, we

find that

(X (t), M∗p(t), v(t)) < (x(t), e(t), ν(t))⇒ lim
t→∞

(X (t), M∗p(t), v(t)) = (0, 0, 0),

and followed by this, we obtain

(Mp(t), M∗p(t), v(t))→ e1.

Thus, the uninfected equilibrium point e1 is globally asymptotically stable on
the domain.

Lemma 6. Assume that there is a continuous and differentiable function x(t) ∈ <+ such that
∀ t ≥ t0 and 0 < α < 1; we have

Dα
t [(x(t)− a ln x(t)] ≤ (1− a

x(t)
)Dα

t x(t), a ∈ <+.

Theorem 4. The virus-infected equilibrium point e2 of the model (2) is globally stable on the
domain if and only ifR0 > 1.

Proof. Let U : Ω ⊂ <3
+ → <+; the Lyapunov function is given by

U(Mp, M∗p, v) = (Mp − M̄p ln Mp) + (M∗p − M̄∗p ln M∗p) + (v− v̄ ln v).
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From Lemma 6, we have

Dα
t U(Mp, M∗p, v) ≤

Mp − M̄p

Mp
Dα

t Mp(t) +
M∗p − M̄∗p

M∗p
Dα

t M∗p(t) +
v− v̄

v
Dα

t v(t)

=
Mp − M̄p

Mp
(dM(Mp(0)−Mp)− βMpv) +

M∗p − M̄∗p
M∗p

(βMpv− dM∗M∗p)

+
v− v̄

v
(πv M∗p − dvv).

From the equations at e2, we have

−dM = βv̄−
dM Mp(0)

M̄p
,

−dM∗ = −
βM̄pv̄

M̄∗p
,

−dv = −
πv M̄∗p

v̄
.

Hence,

Dα
t U(Mp, M∗p, v) ≤ −dM MP(0)

Mp M̄p
(MP − M̄p)

2

− (
(πM∗p + βM̄pv)v̄

v
+

(πM∗p + βM̄pv̄)vM̄∗p
M∗pv̄

+
βM̄p(Mpv̄ + vM̄∗p)

M̄∗p
)

+ π(Mp + M̄∗p) + 2β(Mpv + M̄pv̄) (24)

< 0.

The inequality (24) is satisfied if and only if

− dM MP(0)
Mp M̄p

(MP − M̄p)
2

− (
(πM∗p + βM̄pv)v̄

v
+

(πM∗p + βM̄pv̄)vM̄∗p
M∗pv̄

+
βM̄p(Mpv̄ + vM̄∗p)

M̄∗p
)

> π(Mp + M̄∗p) + 2β(Mpv + M̄pv̄).

By using Lemma 4, we can deduce that the virus-infected equilibrium point e2 is the largest
invariant set containing all bounded solutions in Ω. Thus, the proof is completed.

7. Numerical Simulation

In this section, to confirm the theoretical results obtained in the previous sections, we
provide a numerical simulation for the solution of the model (2) under the fractional-order
effect. In Figure 2, we show the results obtained as α changes between {1, 0.9, 0.4, 0.3}.
The initial conditions Mp(0) = 22.41, M∗p(0) = 2.59, v(0) = 0.061. The parameters
dM = 0.3, β = 0.001, dM∗ = 0.11, πv = 0.24, dv = 0.26. This implies that R0 = 0.84 < 1
and the solution of model (2) converge to uninfected equilibrium point e1. Meanwhile,
in Figure 3, if the transmission rate (β) increases from (0.001 to 0.01) with the same α values,
we obtain the uninfected equilibrium point, which becomes unstable, and the solution of
model (2) converges to the virus-infected equilibrium point e2 andR0 = 8.4 > 1.
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Figure 2. Numerical solution of the model (2) under different α values.
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Figure 3. Numerical solution of the model (2) under different α values.

In Figure 4, we use the same initial condition and data but fix α = 0.9 with different
values of β. We find that the number of virus-free cells decreases and all numbers of virus-
infected cells and virus-free cells increases, while the solution of the model (2) approaches
e2, which means that the e1 becomes unstable.
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Figure 4. Numerical solution of the model (2) when fixing α = 0.9 and with different β values.

In Figure 5, we use the same initial condition and data but fix α = 0.4 with different
values of πv. We find that the number of virus-free cells decreases and all numbers of
the virus-infected cells and virus-free cells increases, while the solution of the model (2)
approaches e2, which means that the e1 becomes unstable.
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Figure 5. Numerical solution of the model (2) when fixing α = 0.4 and with different πv values.

8. Conclusions

Epidemiological models play a basic role in constructing strategies for understand-
ing, preventing, and controlling infectious diseases through vaccination, social distancing
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between individuals, quarantine, and wearing masks. This paper presents an epidemiolog-
ical model of within-host SARS-CoV-2 transmission dynamics under the fractional-order
derivative effect. Firstly, the existence, non-negativity, and bounds of the solution of the
model are discussed. It is obtained that the model has two equilibrium points, namely the
non-infected point and the virus-infected point. The explicit expression for the effective
reproduction numberR0, which gives the actual number of infections to infectious cells at
any time, is found. The dynamical behavior of the system concerningR0 is investigated. It
is observed that the non-infected equilibrium is globally stable ifR0 < 1. The system per-
sistence near the virus-infected equilibrium whenR0 < 1 is discussed. From the obtained
numerical simulation results, it is observed that as the fractional order derivative increases,
the approach of the solution to the equilibrium points becomes faster. This paper uses the
Caputo fractional-order derivative operator to form a fractional-order mathematical model
of the spread of within-host SARS-CoV-2. The transmission rate effect on the dynamical
behavior with a fixed value of the fractional order is studied. It is obtained that the system
solution approaches the virus-infected equilibrium point. Hence, the value ofR0 increases
as β increases (see Figure 6). The effect of increasing the virus production rate on the
dynamical behavior is studied, in addition, by using different values for the fixed value
of the fractional order. It is observed that the value of R0 increases as πv increases (see
Figure 7).

0 0.005 0.01 0.015 0.02 0.025 0.03

β

0

1

2

3

4

5

6

R
0

Figure 6. The positive relationship between R0 and β.



Mathematics 2022, 10, 2344 13 of 15

0 0.5 1 1.5 2 2.5 3 3.5 4

π
v

0

0.5

1

1.5

2

2.5

3

3.5

R
0

Figure 7. The positive relationship between R0 and πv.

It will be interesting to consider the impact of the vaccine with and without time
delay for further work. Vaccination is one of the most effective methods of mitigation and
elimination during epidemics, as evidenced in such epidemics as hepatitis, poliomyelitis,
and, most recently, COVID-19. Moreover, the model can be further extended to an optimal
one by choosing control parameters with which the disease can be controlled. In this regard,
the authors would like to suggest a few works [34–36] that are related to optimal control
concepts. Moreover, in the present study, we only discussed the local and global stability of
the considered model. While analysis of a fractional-order system, the Ulam-Hyers stability
(which guarantees a close exact solution to the system) is also an essential topic [37–39],
and it will be considered in our future work.
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