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Abstract: The paper considers quantile-wavelet estimation for time-varying coefficients by embed-
ding a wavelet kernel into quantile regression. Our methodology is quite general in the sense that
we do not require the unknown time-varying coefficients to be smooth curves of a common degree
or the errors to be independently distributed. Quantile-wavelet estimation is robust to outliers or
heavy-tailed data. The model is a dynamic time-varying model of nonlinear time series. A strong

Bahadur order O
{(

2m

n

)3/4
(log n)1/2

}
for the estimation is obtained under mild conditions. As

applications, the rate of uniform strong convergence and the asymptotic normality are derived.

Keywords: quantile-wavelet; nonparametric estimation; time-varying coefficient; Bahadur representation;
strong mixing
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1. Introduction

The trending time-varying time series models have gained a lot of attention during the
last three decades because they are increasingly used to observe changes in their dynamic
structure, which have been applied to economics and finance [1,2]. When the time span of
interest covers different economic periods, the parameters of the corresponding statistical
models should be allowed to change with time; see references [3–7], among others. Varying
coefficient models are flexible models for describing the dynamic structure of data, which
have been extensively studied based on mean regression, for example, references [8–12],
among others and the references therein. However, the important features of the joint
distribution of the response and the covariates can not be well captured by mean regression.

In this paper, we consider the time-varying coefficient quantile regression models: the
conditional τth quantile of Yi given XXXi and a prespecified quantile τ,

Qτ(Yi|XXXi) = inf
{

s : FYi |XXXi
(s|XXXi) > τ

}
= XXXT

i βββτ(ti), i = 1, · · · , n, (1)

where ti = i/n, Yi are responses, βββτ(·) = (β1,τ(·), · · · , βp,τ(·))T is a p-dimensional vector of
unspecified functions defined on [0, 1], XXXi = (Xi1, · · · , Xip)

T are p-dimensional explanatory
variables. We can write Equation (1) in the form

Yi = XXXT
i βββτ(ti) + ετ,i, i = 1, · · · , n, (2)

where the errors ετ,i satisfy Qτ(ετ,i|XXXi) = 0 almost surely. Quantile regression has also
been emerged as an essential statistical tool in many scientific fields; see [13]. To simplify
notations, we omit the subscript τ from the function βββτ(·) and ετ,i subsequently.

To estimate the varying coefficients in quantile regression models in Equation (2),
references [7,14,15] used the kernel method, and references [16,17] considered regression
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splines. To our knowledge, wavelet has not been considered in quantile regression with
varying coefficients. Wavelet techniques can detect and represent localized features and
can also create localized features on synthesis while being efficient in terms of computa-
tional speed and storage. It has received much attention from mathematicians, engineers
and statisticians. Wavelet has been introduced for nonparametric regression, for example,
references [18–22], and so on. For wavelet smoothing applied to nonparametric models,
reference [18] is a key reference that introduces wavelet versions of some classical kernel
and orthogonal series estimators and studies their asymptotic properties. Reference [23]
provided asymptotic bias and variance of a wavelet estimator for a regression function
under a stochastic mixing process. Reference [24] considered a wavelet estimator for the
mean regression function with strong mixing errors and investigated their asymptotic
rates of convergence by using the thresholding of the empirical wavelet coefficients. Refer-
ences [25,26] showed Berry–Esseen-type bounds on wavelet estimators for semiparametric
models under dependent errors. For varying coefficient models, references [27,28] provided
wavelet estimation and studied convergence rate and asymptotic normality under i.i.d.
errors, and reference [29] discussed these asymptotics of the wavelet estimators based on
censored dependent data. However, all of the above wavelet estimators are based on mean
regression by the least-squares method.

In the paper, we propose a quantile-wavelet method for time-varying coefficient mod-
els in Equation (2) with an α-mixing errors stochastic process. The proposed methodology
is quite general in the sense that we do not require coefficient βββ(·) to be smooth curves of a
common degree, it does not suffer from the curse of dimensionality, it is robust to outlier or
heavy-tailed data, and it is a dynamic model for nonlinear time series. Bahadur representa-
tion, rate of convergence and asymptotic normality of quantile-wavelet estimators will be
established. Bahadur representation theory seeks to approximate a statistical estimate by a
sum of variables with a higher-order remained. It has been a major statistical theory issue
since Bahadur’s pioneering work on quantiles [30]; see [31], among others. Recently, ref-
erence [32] investigated the Bahadur representation for sample quantiles under ϕ-mixing
sequence; reference [33] gave an M-estimation for time-varying coefficient models with
α-mixing errors and established Bahadur representation in probability. In the paper, we will
establish Bahadur representation with probability 1 (almost surely) for quantile-wavelet
estimates in the models Equations (1) and (2).

Throughout, we assume that {XXXi, εi} is a stationary α-mixing sequence. Recall that a
sequence {ζk, k ≥ 1} is said to be α-mixing (or strong mixing) if the mixing coefficients

α(m) = sup{|P(A ∩ B)− P(A)P(B)| : A ∈ F k
−∞, B ∈ F∞

k+m}

converge to zero as m→ ∞, where F k
l denotes the σ-field generated by {ζi, l ≤ i ≤ k}. We

refer to the monograph of [34,35] for some properties or more mixing conditions.
The rest of this article is organized as follows. In Section 2, we present wavelet kernel

and quantile-wavelet estimation for the model (2). Bahadur representation of quantile-
wavelet estimators and their applications are given in Section 3. Technical proofs are
provided in Section 4. Some simulation studies are conducted in Section 5.

2. Quantile-Wavelet Estimation

In the paper, the time-varying coefficient function is retrieved by a wavelet-based
reproducing kernel Hilbert space (RKHS). An RKHS is a Hilbert space in which all the
point evaluations are bounded linear functions. Let f ∈ H be a Hilbert space of functions
on some domain I . For t ∈ I , then there exists an element kt ∈ H, such that

f (t) = 〈kt, f 〉, ∀ f ∈ H,

where 〈·, ·〉 is the inner product inH. Set 〈kt, ks〉 = K(t, s), which is called the reproducing
kernel. Let kt = K(t, ·), and then 〈K(t, ·), K(s, ·)〉 = K(t, s).
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A multiresolution analysis is a sequence of closed subspaces {Vm, m ∈ Z} in L2(R)
such that they lie in a containment hierarchy,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · , (3)

where L2(R) is the collection of square-integrable functions over the real line. The hi-
erarchy Equation (3) is constructed such that (i) V-spaces are self-similar, f (2mx) ∈ Vm iff
f (x) ∈ V0, and (ii) there exists a scaling function φ ∈ V0 whose integer-translate
V0 = { f ∈ L2(R)| f (x) = ∑k∈Z ckφ(x − k)}, and for which the set {φ(· − k), k ∈ Z} is
an orthonormal basis. Wavelet analysis requires a description of two related and suitably
chosen orthonormal basic functions: the scaling function φ and the wavelet ψ. A wavelet
system is generated by dilation and translation of φ and ψ through

φm,k(t) = 2m/2φ(2mt− k), ψm,k(t) = 2m/2ψ(2mt− k), m, k ∈ Z.

Therefore, {φ0k, k ∈ Z} and {φmk, k ∈ Z} are the orthogonal bases of V0 and Vm,
respectively. From Moore-Aronszajn’s theorem [36], it follows that

K(t, s) = ∑
k

φ(t− k)φ(s− k)

is a reproducing kernel of V0. By self-similarity of multiresolution subspaces,

Km(t, s) = 2mK(2mt, 2ms)

is a reproducing kernel of Vm, and then the projection of g on the space Vm is given by

PVm g(t) =
∫

Km(t, s)g(s)ds.

It motivates us to define a quantile-wavelet estimator of βββ(t) by

β̂ββ(t) = argminbbb

n

∑
i=1

ρτ

{
yi −XXXT

i bbb
} ∫

Ai

Km(t, s)ds, (4)

where ρτ(u) = u(τ − I{u < 0}) with u ∈ R called the loss (“check”) function, IB
is the indicator function of any set B, and Ai are intervals that partition [0,1], so that
ti ∈ Ai. One way of defining the intervals Ai = [si−1, si) is by taking s0 = 0, sn = 1,
and si = (ti + ti+1)/2, i = 1, · · · , n− 1.

Note that many other nonparametric methods can be used here, including spline
and Kernel approaches. However, they might not be rich enough to characterize the local
properties of the time-varying coefficient function. In the following section, we will present
the asymptotic properties of the quantile-wavelet estimator Equation (4).

3. Bahadur Representation and Its Applications

Let Hν be the collection of all functions on [0, 1] with order ν > 0 in Sobolev space,
which is a very general space. The degree of smoothness of the true coefficient functions
determines how well the functions can be approximated. Functions belonging to Hν for
1/2 < ν < 3/2 are not continuously differentiable. It is worth stressing that the wavelet
approach allows us to obtain rates under much weaker assumptions than second-order
differentiability. Denote XXX = (XXXT

1 , · · · , XXXT
n ); ‖ · ‖ is the L2 norm, and C is used to denote

positive constants whose values are unimportant and may change from line to line in
the proof.

Our main results will be established under the following assumptions.
(A1.) (i) {εi, XXXi} is a stationary α-mixing sequence with α(i) = O(i−κ0) with κ0 >

9(1+d)δ+6
2(1−d)δ−4 , δ > 2

1−d , where d is defined in (A7)(i); (ii) the noisy errors εi has Qτ(εi|XXXi) = 0
almost surely, and a continuous, positive conditional density fε|XXX in a neighborhood of
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0 given the XXXi, E‖XXX1‖2δ < ∞, and E|ε1 | XXX1|2δ < ∞, a.s.; (iii) ΦΦΦx = E
(
XXX1XXXT

1
)
, ΩΩΩx =

E
(

fε|XXX(0)XXX1XXXT
1

)
are non-singular matrices.

(A2.) β j belongs to Sobolev spaceHν([0, 1]) with order ν > 1/2.
(A3.) β j satisfies the Lipschitz of the order condition of order γ > 0.
(A4.) φ has compact support, is in the Schwarz space with order l > ν, and satisfies

the Lipschitz condition with order l. Furthermore, |φ̂(ξ)− 1| = O(ξ) as ξ → 0, where φ̂ is
the Fourier transform of φ.

(A5.) maxi |ti − ti−1| = O(n−1).
(A6.) We also assume that for some Lipschitz function κ(·),

ρ(n) = max
i

∣∣∣∣si − si−1 −
κ(si)

n

∣∣∣∣ = o(n−1).

(A7.) The tuning parameter m satisfies (i) 2m = O(nd) with 0 < d < 1; (ii) let
v∗ = min(3/2, ν, γ + 1/2)− ε1 and ε1 = 0 for ν 6= 3/2, ε1 > 0 for ν = 3/2. Assume that
n2−2mv∗ → 0.

Remark 1. These conditions are mild. Condition (A1) is the standard requirement for moments
and the mixing coefficient for an α-mixing time series. Conditions (A2)–(A6) are the mild regularity
conditions for wavelet smoothing, which have been adopted by [18]. In condition (A7), m acts as a
tuning parameter, such as the bandwidth does for standard kernel smoothers; (A7) (i) is for Bahadur
representation and rate of convergence, and (A7) (ii) combining with (A7) (i) is for asymptotic
normality of the quantile-wavelet estimator.

Our results are as follows.

Theorem 1. (Bahadur representation) Support that (A1)–(A5) and (A7) (i) hold, then

β̂ββ(t)− βββ(t) = ΩΩΩ−1
x ZZZn(t) + Rn(m; γ, ν), a.s.

with

ZZZn(t) =
n

∑
i=1

ϕτ

(
εi +XXXT

i [βββ(ti)− βββ(t)]
)

XXXi

∫
Ai

Km(t, s)ds

and

Rn(m; γ, ν) = O

{(
2m

n

)3/4
(log n)1/2

}
.

Remark 2. Theorem 1 presents the strong Bahadur representation of a quantile-wavelet estimator

for a time-varying coefficient model. Here, Rn(m; γ, ν) = O
{(

2m

n

)3/4
(log n)1/2

}
, a.s., which is

comparable with the Bahadur order O
{(

log log n
nh

)3/4
}

, a.s., of [37], where the bandwidth h→ 0.

Reference [37] is based on kernel local polynomial M-estimation , and requires that the function
βββ has the second-order differentiability. However, we do not need the strong, smooth conditions.
The function βββ is not differentiable when βββ ∈ Hν, 1/2 < ν < 3/2.

The Bahadur representation of the quantile-wavelet estimator of Theorem 1 can be
applied to obtain the following two results.

Corollary 1. (Rate of uniform strong convergence) Assume that (A1)–(A5) and (A7) (i) hold, then

sup
t∈[0,1]

∥∥∥β̂ββ(t)− βββ(t)
∥∥∥ =

{√
2m log n

n
+ n−γ + ηm

}
, a.s..
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Remark 3. Corollary 1 provides the rate of uniform strong convergence of quantile-wavelet estima-
tor β̂ββ for model Equation (2). We consider the rate in the case of 1/2 < ν < 3/2, under which ηm
is a lower rate of convergence than one of ν ≥ 3/2. If we take 2m = O(nγ) with 1/3 ≤ γ < 1,
then supt∈[0,1]

∥∥∥β̂ββ(t)− βββ(t)
∥∥∥ = O

(
n−(1−γ)/2(log n)1/2

)
, a.s.. If we further take γ = 1/3, then

one obtains
sup

t∈[0,1]
|β̂ββ(t)− βββ(t)| = O

(
n−1/3 log n

)
, a.s.,

which is comparable with the optimal convergence rate of the nonparametric estimation in nonpara-
metric models. The result is better than the ones of [27,28] based on the local linear estimator for
the varying-coefficient model. In addition, we also do not require the unknown coefficient βββ to be
smooth curves of a common degree.

Corollary 2. (Asymptotic normality) Support that (A1)–(A7) holds, then

√
n2−m(β̂ββ

d
(t)− βββ(t)) D−→ N

(
0, τ(1− τ)κ(t)ω2

0ΩΩΩ−1
x ΨΨΨxΩΩΩ−1

x

)
,

where β̂ββ
d
(t) = β̂ββ(t(m)) with t(m) = b2mtc/2m and ω2

0 =
∫
R E2

0(0, u)du = ∑k∈Z φ2(k).

Remark 4. To obtain an asymptotic expansion of the variance and an asymptotic normality, we need
to consider an approximation to β̂ββ(t) based on its values at dyadic points of order m, as reference [18]

has done. The β̂ββ
d
(t) is the piecewise-constant approximation of β̂ββ(t) at resolution 2−m, which can

avoid the instability of the variance of β̂ββ(t). From the proof of Corollary 2, it can see that the main
term of the variance of β̂ββ(t) is τ(1− τ)κ(t)ω2(tm)2mn−1ΩΩΩ−1

x ΨΨΨxΩΩΩ−1
x with tm = 2mt− [2mt] and

ω2(tm) =
∫ 1

0 E2
0(tm, s)ds. When the dyadic t and m sufficiently large, tm = 0, the variance of β̂ββ(t)

is asymptotically stable. See [18] for the details.

4. Lemmas and Proofs

Lemma 1 ([18,38]). Suppose that (A4) holds. We have
(i) K0(t, s) ≤ ck/(1 + |t− s|)k and Kk(t, s) ≤ 2kck/(1 + 2k|t− s|)k, where k is a positive

integer and ck is a constant depending on k only.
(ii) sup0≤t,s≤1 |Km(t, s)| = O(2m).

(iii) sup0≤t≤1
∫ 1

0 |Km(t, s)|ds ≤ c, where c is a positive constant.

(iv)
∫ 1

0 Km(t, s)ds→ 1 uniformly in t ∈ [0, 1], as m→ ∞.

Lemma 2 ([18]). Suppose that (A4)–(A5) hold and h(·) satisfies (A2)–(A3). Then

sup
0≤t≤1

∣∣∣∣∣h(t)− n

∑
i=1

h(ti)
∫

Ai

Km(t, s)ds

∣∣∣∣∣ = O(n−γ) + O(ηm),

where

ηm =


(1/2m)ν−1/2 i f 1/2 < ν < 3/2,√

m/2m i f ν = 3/2,
1/2m i f ν > 3/2.

Lemma 3 ([39]). Let {λn(θ), θ ∈ Θ} be a sequence of random convex functions defined on a
convex, open subset Θ of Rd. Suppose λ(·) is a real-valued function on Θ for which λn(θ)→ λ(θ)
with probability 1, for each fixed θ in Θ. Then for each compact subset K of Θ, with probability 1,

sup
θ∈K
|λn(θ)− λ(θ)| → 0.
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Lemma 4. Let {(Xi, ei), 1 ≤ i ≤ n} be a stationary sequence satisfying the mixing condition
α(`) = O(`−κ0) for some κ0 > 9(1+d)δ+6

2(1−d)δ−4 , δ > 2
1−d ; and 2m = O(nd) with 0 < d < 1. Further,

assume that E{|e1X1|δ} < ∞. If Conditions (A4) and (A5) hold. Then

sup
s∈[0,1]

∣∣∣∣∣ n

∑
i=1
{eiXi − E(eiXi)}

∫
Ai

Km(t, s)ds

∣∣∣∣∣ = O

(√
2m log n

n

)
, a.s..

Remark 5. In Lemma 4, we assume that {Xi, 1 ≤ i ≤ n} is a sequence of a 1-dimensional random
variable. In fact, XXXi ∈ Rp for the fixed p, we also have the same result as Lemma 4.

Proof. The theorem is similar to Lemma A.4 in [29] but has some differences. We sup-
pose E(eiXi) = 0. If E(eiXi) 6= 0, the method of the proof is the same. Let Qm(t) =

∑n
i=1 eiXi

∫
Ai

Km(t, s)ds. Partition the interval [0, 1] into N = b(n23m)1/2c subintervals Ij of
equal length. Let tj be the centers of Ij. Notice that

|Qm(t)−Qm(t′)| ≤ C22m|t− t′| 1
n

n

∑
i=1
|eiXi| ≤ C22m|t− t′|E|eX|, a.s.. (5)

One obtains

sup
t∈[0,1]

|Qm(t)| ≤ max1≤j≤N supt∈Ij
|Qm(t)−Qm(tj)|+ max1≤j≤N |Qm(tj)|

≤ max1≤j≤N |Qm(tj)|+ C
√

2m/n. (6)

Let QB
m(s) = ∑n

i=1 eiXi I(|eiXi| ≤ Bn)
∫

Ai
Km(t, s)ds, and take Bn = nδ−1+ε for some

ε > 0. Note that ∑i P(|eiXi| > Bi) < ∑i B−δ
i E|e1X1|δ < ∞. By the Borel–Cantelli lemma,

|eiXi| ≤ Bi, a.s., for sufficiently large i. Hence,

|eiXi| ≤ Bn, a.s., f or all i ≤ n, (7)

for all sufficiently large n. In addition,

sup
t∈[0,1]

|E[Qm(t)−QB
m(t)]| = sup

t∈[0,1]

∣∣∣∣∣ n

∑
i=1

E(eiXi)I[|eiXi| > Bn]
∫

Ai

Km(t, s)ds

∣∣∣∣∣
≤ CB1−δ

n E|e1X1|δ ≤ CB1−δ
n . (8)

From Equations (7) and (8), we respectively have

sup
t∈[0,1]

|Qm(t)−QB
m(t)− E[Qm(t)−QB

m(t)]| = O(B1−δ
n ) = o(n−1/2), a.s. (9)

Further, we have

sup
t∈[0,1]

|Qm(t)| ≤ max
1≤j≤N

|QB
m(tj)− E(QB

m(tj))|+ C
√

2m/n. (10)

Let X̃i = n
(

eiXi I(|eiXi| ≤ Bn)
∫

Ai
−E[eiXi I(|eiXi| ≤ Bn)

∫
Ai

Km(t, s)ds]
)

. Note that

|X̃i| ≤ C2mBn. By Theorem 2.18 (ii) in Fan and Yao (2003) [35], take hn = (M2m log n/n)1/2,
for any η > 0 and sufficiently large M, for each q = [1, n/2], we have

∑∞
n=1 P

(
max1≤j≤N

∣∣QB
m(tj)− E(QB

m(tj))
∣∣ > ηhn

)
≤ C ∑∞

n=1 N
(

exp
(
− h2

nq
v2(q)

)
+
(

1 + 2mBn
hn

)1/2
qα(k)

)
,



Mathematics 2022, 10, 2321 7 of 15

where k = [n/(2q)], v2(q) = 2σ2(q)/k2 + C2mBnhn,

σ2(q) = max
0≤j≤2q−1

Var
{

X̃jk+1 + · · ·+ X̃(j+1)k+1

}
.

Taking k = (Bnhn)−1, we obtain σ2(q) = O(2mk). Assume 2m = O(nd), 0 < d < 1.
We have

∞

∑
n=1

P
(

max
1≤j≤N

∣∣∣QB
m(tj)− E(QB

m(tj))
∣∣∣ > ηhn

)
≤ C

∞

∑
n=1

N
(

exp
(
−Cnh2

n
2m

)
+ C
√

2mnBκ0+1.5
n hκ0+0.5

n

)

= C

(
∞

∑
n=1

n−CM+2

)
+ C

(
∞

∑
n=1

n
5
4+(δ−1+ε)(κ0+1.5)− κ0

2 (2m)
(9+2κ0)

4 (log n)
κ0+0.5

2

)

≤ C

(
∞

∑
n=1

n−CM+2

)
+ C

(
∞

∑
n=1

n
5
4+δ−1(κ0+1.5)− κ0

2 (2m)
(9+2κ0)

4 n2ε(κ0+1.5)

)

≤ C

(
∞

∑
n=1

n−CM+2

)
+ C

(
∞

∑
n=1

n( 1
δ−

1
2+

d
2 )κ0+

5
4+

9d
4 + 3δ

2 n2ε(κ0+1.5)

)
< ∞,

since we have ( 1
δ −

1
2 + d

2 )κ0 +
5
4 + 9d

4 + 3δ
2 + ε(κ0 + 1.5) < −1 when κ0 > 9(1+d)δ+6

2(1−d)δ−4 and ε

are small enough with δ > 2/(1− d). By the Borel–Cantelli Lemma and Equation (10), we
prove Lemma 4.

Lemma 5. Under conditions in Theorem 1, we have

sup
t∈[0,1]

∥∥∥∥∥ n

∑
i=1
{ϕτ(ε

∗
i )− ϕτ(εi)}XXXi

∫
Ai

Km(t, s)ds

∥∥∥∥∥ = O

(
n−γ + ηm +

√
2m log n

n

)
, a.s.,

where ε∗i = εi +XXXT
i [βββ(ti)− βββ(t)].

Proof. Let ei = I
[
εi ≤ −XXXT

i (βββ(ti)− βββ(t))
]
− I[εi ≤ 0]. By Lemmas 2 and 4, we have

sup
t∈[0,1]

∥∥∥∥∥ n

∑
i=1
{ϕτ(ε

∗
i )− ϕτ(εi)}XXXi

∫
Ai

Km(t, s)ds

∥∥∥∥∥ = sup
t∈[0,1]

∥∥∥∥∥ n

∑
i=1

eiXXXi

∫
Ai

Km(t, s)ds

∥∥∥∥∥
≤ sup

t∈[0,1]

∥∥∥∥∥ n

∑
i=1

E(eiXXXi)
∫

Ai

Km(t, s)ds

∥∥∥∥∥+ sup
t∈[0,1]

∥∥∥∥∥ n

∑
i=1

[eiXXXi − E(eiXXXi)]
∫

Ai

Km(t, s)ds

∥∥∥∥∥
≤ sup

t∈[0,1]

∥∥∥∥∥ n

∑
i=1

E
[{

Fε|XXX(−XXXT
i [βββ(ti)− βββ(t)])− Fε|XXX(0)

}
XXXi)
] ∫

Ai

Km(t, s)ds

∥∥∥∥∥+ O

(√
2m log n

n

)
(11)

= sup
t∈[0,1]

∥∥∥∥∥ n

∑
i=1

E
{

fε|XXX(0)XXXiXXXT
i [βββ(ti)− βββ(t)]

} ∫
Ai

Km(t, s)ds

∥∥∥∥∥+ O

(√
2m log n

n

)

= sup
t∈[0,1]

∥∥∥∥∥ΩΩΩx

{
βββ(t)−

n

∑
i=1

βββ(ti)
∫

Ai

Km(t, s)ds

}∥∥∥∥∥+ O

(√
2m log n

n

)

= O

(
n−γ + ηm +

√
2m log n

n

)
, a.s..

This completes the proof of Lemma 5.
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Lemma 6. Under conditions in Theorem 1, for fixed θθθ, we have

sup
t∈[0,1]

∥∥∥∥E(Rn(θθθ, t))− 1
2

θθθTΩΩΩxθθθ

∥∥∥∥ = O

(√
2m log n

n

)
(12)

and

sup
t∈[0,1]

‖Rn(θθθ, t)− E(Rn(θθθ, t))‖ = O

(√
2m log n

n

)
, a.s., (13)

where Rn(θθθ, t) is defined by (18) in the proof of Theorem 1.

Proof. For Equation (12), by Condition (A1) (iii) and Lemma 4, one obtains

E(Rn(θθθ, t)|XXX)

= n2−m
n

∑
i=1

∫ vi

0
Fε|XXX(s−XXXT

i [βββ(ti)− βββ(t)])− Fε|XXX(−XXXT
i [βββ(ti)− βββ(t)])ds

∫
Ai

Km(t, s)ds

= n2−m
n

∑
i=1

∫ vi

0
fε|XXX(0)sds

∫
Ai

Km(t, s)ds(1 + o(1)) (14)

= n2−m 1
2

θθθT

{
2m

n

n

∑
i=1

fε|XXX(0)XXXiXXXT
i

∫
Ai

Km(t, s)ds

}
θθθ(1 + o(1))

=
1
2

θθθTΩΩΩxθθθ + o(‖θθθ‖2) + O

(√
2m log n

n

)
, a.s..

Note that E(Rn(θθθ, t)) = E[E(Rn(θθθ, t)|XXX)]. Thus, Equation (12) holds.
Now, let us prove Equation (13). Notice that, for any k > 0,

|I(ε∗i ≤ s)− I(ε∗i ≤ 0)|k = I(d1 ≤ εi ≤ d2), (15)

where d1 = min(c1, s + c1), and d2 = max(c1, s + c1) with c1 = −XXXT
i [βββ(ti) − βββ(t)]. Let

ṽi = n2−m ∫ vi
0 {I(ε∗i ≤ s)− I(ε∗i ≤ 0)}ds. To prove Equation (13), we only need to show

that E
(
|ṽi|δ|

)
< ∞ by the proof of Lemma 4. By Equation (15) and Jensen’s inequality,

one obtains

E
(
|ṽi|δ

)
= E

{
E
(
|ṽi|δ|XXX

)}
≤ E

{([
n2−m

∫ vi

0
E|I(ε∗i ≤ s)− I(ε∗i ≤ 0)|ds

]δ

|XXX
)}

= E

{([
n2−m

∫ vi

0
|Fε|XXX(d2)− Fε|XXX(d1)|ds

]δ

|XXX
)}

= E

{([
n2−m

∫ vi

0
fε|XXX(0)sds

]δ

|XXX
)}

(1 + o(1))

= E
(

XXXT
1 θθθ
)2δ

(1 + o(1)) < ∞.

By Lemma 4, we obtain Equation (13).
In the sequence, we will give the proofs of the main results.

Proof of Theorem 1. Recall that β̂ββn(t) = b̂bb and b̂bb minimize

n

∑
i=1

ρτ

{
yi −XXXT

i bbb
} ∫

Ai

Km(t, s)ds.
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Let θ̂θθ =
√

n2−m(b̂bb− βββ(t)) and ε∗i = εi +XXXT
i [βββ(ti)− βββ(t)]. The behavior of θ̂θθ follows from

consideration of the objective function

Gn(θθθ; t) = n2−m
n

∑
i=1

{
ρτ(ε

∗
i −
√

2m/nXXXT
i θθθ)− ρτ(ε

∗
i )
} ∫

Ai

Km(t, s)ds.

The function Gn(θθθ; t) is obviously convex and is minimized at θ̂θθ. It is sufficient to
show that Gn(θθθ; t) converges to its expectation since it follows from Lemma 3 that the
convergence is also uniform on any compact set K of θθθ. Using the identity of [40],

ρτ(u− v)− ρτ(u) = −vϕτ(u) +
∫ v

0
{I(u ≤ s)− I(u ≤ 0)ds},

where ϕτ(u) = τ − I{u < 0}; we may write

Gn(θθθ; t) = θθθTWWWn(t) + E(Rn(θθθ, t)) + (Rn(θθθ, t)− E[Rn(θθθ, t)]), (16)

where

WWWn(t) = −
√

n/2m
n

∑
i=1

ϕτ(ε
∗
i )XXXi

∫
Ai

Km(t, s)ds, (17)

Rn(θθθ, t) = n2−m
n

∑
i=1

∫ vi

0
{I(ε∗i ≤ s)− I(ε∗i ≤ 0)}ds

∫
Ai

Km(t, s)ds, (18)

with vi =
√

2m/nXXXT
i θθθ.

To obtain strong Bahadur representation of the quantile-wavelet estimator, we first
need to show the uniform approximation of Gn(θθθ; t) on t ∈ [0, 1] with probability 1 for the
fixed θθθ by the three terms in Equation (16). By Lemma 6, we have

Gn(θθθ; t) = θθθTWWWn(t) +
1
2

θθθTΩΩΩxθθθ + O

(√
2m log n

n

)
a.s. (19)

uniformly on t ∈ [0, 1]. Let a2
n =

√
2m

n log n. We have

sup
t∈[0,1]

a−2
n

∣∣∣∣Gn(θθθ; t)− θθθTWWWn(t)−
1
2

θθθTΩΩΩxθθθ

∣∣∣∣ = O

(
1√

log n

)
= o(1), a.s.. (20)

Second, the strong Bahadur representation requires the existence of one compact
subset K with probability measure 1 that will suffice for all θθθ. We prove it by applying a
stronger convexity lemma (See Lemma 3) than one of [41]. However, the arguments to
prove it are essentially the same as in [41].

Let θ̄θθ = −ΩΩΩ−1
x WWWn(t). It is easy to see that WWWn(t) has a bounded second moment and

hence is stochastically bounded. Since the convex function λn(θθθ) = Gn(θθθ; t)− θθθTWWWn(t)
converges with probability 1 to the convex function λ(θθθ) = 1

2θθθTΩΩΩxθθθ, it follows from the
convexity Lemma 3 that for any compact subset K ⊂ Rp,

sup
θθθ∈K

a−2
n

∣∣∣∣Gn(θθθ; t)− θθθTWWWn(t)−
1
2

θθθTΩΩΩxθθθ

∣∣∣∣ = o(1), a.s.

The argument will be complete if we can show for each ε > 0 that, with probability 1,

‖θ̂θθ − θ̄θθ‖ < anε.
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Because θ̄θθ is almost surely converged by Lemmas 4 and 5, it is bounded with probability
1. The compact subset K can be chosen to contain B(n), a closed ball with center θ̄θθ and
radius anε, thereby implying that

∆n ≡ sup
θθθ∈B(n)

a2
n

∣∣∣∣Gn(θθθ; t)− θθθTWWWn(t)−
1
2

θθθTΩΩΩxθθθ

∣∣∣∣ = o(1), a.s. (21)

Now, we consider the behavior of Gn(θθθ; t) outside K. For any θθθ = θ̄θθ + an$υυυ, with $ > ε
and υυυ a unit vector. Define θθθ∗ as the boundary point of Bn that lies on the line segment
form θ̄θθ to θθθ, that is, θθθ∗ = θ̄θθ + anευυυ. Convexity of Gn(θθθ; t) and the definition of ∆n imply

ε

$
Gn(θθθ; t) +

(
1− ε

$

)
Gn(θ̄θθ; t) ≥ Gn(θθθ

∗; t)

= −(θθθ∗)TΩΩΩxθ̄θθ +
1
2
(θθθ∗)TΩΩΩxθθθ∗ − a2

n∆n

=
1
2

a2
nυυυTΩxυυυε2 − 1

2
θ̄θθ

TΩΩΩxθ̄θθ − a2
n∆n

≥ Gn(θ̄θθ; t) + a2
n

{
1
2

υυυTΩxυυυε2 − 2∆n

}
.

The last expression does not depend on θθθ. It follows that

inf
‖θθθ−θ̄θθ‖>anε

Gn(θθθ; t) ≥ Gn(θ̄θθ, t) + a2
n

$

ε
[
1
2

υυυTΩxυυυε2 − 2∆n].

As Ωx is positively defined, then according to (21), with probability 1, 2∆n < 1
2υυυTΩxυυυε2

for enough n. This implies that for any ε > 0 and for large enough n, the minimum of
Gn(θθθ; t) must be achieved with B(n), i.e., ‖θ̂θθ − θ̄θθ‖ < anε, that is,

√
n2−m(β̂ββ(t)− βββ(t)) = −ΩΩΩ−1

x WWWn(t) + O(an), a.s..

One obtains

Rn(m; γ, ν) = O

{(
2m

n

)3/4
(log n)1/2

}
.

We complete the proof of Theorem 1.

Proof of Corollary 1. From Theorem 1, and Lemmas 4 and 5, it is easy to obtain the result
of Corollary 1.

Proof of Corollary 2. From Theorem 1 and Lemma 5, we only verify the asymptotic nor-
mality of

UUUn(t) =
√

n/2m
n

∑
i=1

ϕτ(εi)XXXi

∫
Ai

Km(t, s)ds.

First, we compute its variance-covariance matrix. Let VVVi =
√

n/2mϕτ(εi)XXXi
∫

Ai
Km(t, s)ds.

We know E(VVVi) = 0. Let S1 = {(j, i) : 1 ≤ j− i ≤ dn; 1 ≤ i < j ≤ n} and S2 = {(j, i) : 1 ≤
i < j ≤ n} − S1 with dn → ∞ specified later. We have

Var(UUUn(t)) = Var

{
n

∑
i=1

VVVi

}
≤

n

∑
i=1

E(VVViVVVT
i ) + 2 ∑

1≤i<j≤n
Cov(VVVi,VVV j)

=
n

∑
i=1

E(VVViVVVT
i ) + 2 ∑

S1

Cov(VVVi,VVV j) + 2 ∑
S2

Cov(VVVi,VVV j) (22)

= I1 + I2 + I3.
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For I1, by Theorem 3.3 and Lemma 6.1 in [18], one obtains

I1 =
n

∑
i=1

E(E(VVViVVVT
i |XXXi)) = n2−mτ(1− τ)E(XXX1XXXT

1 )
n

∑
i=1

(∫
Ai

Km(t, s)ds
)2

= τ(1− τ)E(XXX1XXXT
1 )

{
n2−m

n

∑
i=1

(∫
Ai

Km(t, s)ds
)2
− 2−m

∫ 1

0
E2

m(t, s)κ(s)ds

}
(23)

+τ(1− τ)E(XXX1XXXT
1 )2
−m

∫ 1

0
E2

m(t, s)κ(s)ds

= τ(1− τ)κ(t)E(XXX1XXXT
1 )
∫ 1

0
E2

0(0, s)ds + O(nρ(n) + 2m/n).

For I2, since n2−m → ∞, take dn → ∞ such that dn/(n2−m) → 0. Let (I2)k,l be the
(k, l)th component of I2. By Lemma 1, we have

|(I2)k,l | ≤ 2 ∑
S1

{
E|VikVjl |+ E|Vik|E|Vjl |

}
≤ Cn2−m ∑

S1

{
E|XikXjl |

∣∣∣∣∣
∫

Ai

Km(t, s)ds
∫

Aj

Km(t, s)ds

∣∣∣∣∣+ E2‖X1‖
∣∣∣∣∫Ai

Km(t, s)ds
∣∣∣∣2
}

(24)

= n2−mO
(
(2m/n)2dn

)
= O

(
2m

n
dn

)
= o(1).

For I3, let (I3)k,l be the (k, l)th component of I3. Noting that κ0 > (2 + δ)/δ, by Propo-
sition 2.5 (i) in [35], we have

|(I3)k,l‖ ≤ C

∥∥∥∥∥∑S2

[
E|Vik|2+δ

]2/(2+δ)
αδ/(2+δ)(j− i)

∥∥∥∥∥
≤ Cn2−m

(
2m

n

)2{
E|Xik|2+δ

}2/(2+δ) ∞

∑
j=dn

αδ/(2+δ)(j) (25)

≤ O
(

2m

n
d−κ0δ/(2+δ)+1

n

)
= O

{(
2m

n
dn

)
d−κ0δ/(2+δ)

n

}
= o(1).

From Equations (22)–(25), we obtain

Var(UUUn(t)) = τ(1− τ)κ(t)E(XXX1XXXT
1 )
∫ 1

0
E2

0(0, s)ds + o(1). (26)

Similar to the proof of Theorem 2 in [42], by using the small-block and large-block
technique and the Cramér–Wold device, one can show that

ZZZn(t)→ N
(

0, τ(1− τ)κ(t)ω2
0ΨΨΨx

)
. (27)

This, in conjunction with Theorem 1 and the Slutsky Theorem, proves Corollary 2.

5. Simulation Study

To explore the numerical performances of quantile wavelet estimation, we compare our
estimator with a local linear kernel [43] and Spline [44] by quantile regression. We call them
QR-Wavelet, QR-Local-linear and QR-Spline methods, respectively. In the simulation study,
our goal is to show that the QR-wavelet is robust to heavy-tailed data and more adaptive to
a nonsmooth nonparametric function than local linear and spline methodologies. The data
are of the form:

Yi = Xiβ(i/n) + ετ,i, i = 1, · · · , n,
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where Xi are random design points generated from the normal distribution N(2, 0.12)
independently, and ετ,i = εi − F−1(τ) with F being the distribution function of εi. Here,
F−1(τ) is subtracted from εi to make the τth quantile ετ,i zero for identifiability.

We set n = 200, 300 and 500; τ = 0.10, 0.25, 0.50, 0.75 and 0.90; εi comes from the
normal distribution N(0, σ2) with σ = 0.1 and the t distribution with d degrees of freedom
(denoted as t(d)) with d = 5, respectively. We consider two special curves of β(t) for
t ∈ [0, 1] as follows:

Case 1. Pwpn (piecewise polynomial function): β(t) = [4t2(3− 4t)]1[0,0.5](t)+ [ 4
3 t(4t2−

10t + 7)− 1.5]1(0.5,0.75](t) + [ 16
3 t(t− 1)2]1(0.75,1](t). The function is generally smooth except

for a jump at t = 0.5.
Case 2. Blocks: β(t) = 0.6

9.2{4ssgn(t − 0.1) − 5ssgn(t − 0.13) + 3ssgn(t − 0.15) −
4ssgn(t− 0.23)+ 5ssgn(t− 0.25)− 4.2ssgn(t− 0.4)+ 2.1ssgn(t− 0.44)+ 4.3ssgn(t− 0.65)−
3.1ssgn(t − 0.76) + 2.1ssgn(t − 0.78) − 4.2ssgn(t − 0.81)} + 0.2, where ssgn(t) = [1 +
sgn(t)]/2 with sgn(t) = 1(0,∞)(t) − 1(−∞,0)(t). It is a step function with many jumps.
Many jumps bring difficulties for the local linear and spline smoothing methods.

Pwpn and Blocks are shown in Figures 1 and 2, respectively. In the study, we use
the Haar wavelet, which is the simplest of the wavelets. For a given sample size, take
2m = 0.6n2/3 in the QR-wavelet, h is chosen by “leave-one-out" cross-validation procedures
and use the Gaussian kernel K(t) = exp(−t2/2)/

√
2π in the QR-local-linear. In the QR-

splines, we use three degrees of the piecewise polynomial (cubic splines) and the knots
b0.5n1/2 log nc. The performances of the estimators are evaluated via the mean square error
(MSE) based on the 200 repetitions, which is defined by

MSE =
1
M

M

∑
k=1

(β̂τ(tk)− β(tk))
2,

where {tk, k = 1, · · · , M} is a sequence of regular grid points. These results of MSE for
β̂τ(·) are listed in Table 1 for Case I (Pwpn) and Table 2 for Case II (Blocks). The actual
functions and their estimated curves for the two cases are depicted in Figures 1 and 2 when
n = 300, and τ = 0.25, 0.5 and 0.75, respectively.

Figure 1. The true time-varying coefficient function Papw, and their QR-wavelet, QR-local-linear and
QR-splines estimates when n = 300, and τ = 0.25, 0.50 and 0.75 for the errors N(0, 1) and t(5).
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Table 1. MSEs of wavelet, local linear and spline smoothing in Case I: Pwpn.

QR-Wavelet QR-Local-Linear QR-Splines

n τ N(0, 0.12) t(5) N(0, 0.12) t(5) N(0, 0.12) t(5)

200 0.10 0.00073 0.02273 0.00644 0.00479 0.01032 0.00824
0.25 0.00065 0.00125 0.00383 0.00299 0.00859 0.00584
0.50 0.00062 0.00085 0.00213 0.00293 0.00530 0.00529
0.75 0.00065 0.00104 0.00293 0.00262 0.00860 0.00532
0.90 0.00074 0.02208 0.00474 0.00345 0.01011 0.00660

300 0.10 0.00042 0.00966 0.00605 0.00287 0.01049 0.00557
0.25 0.00040 0.00157 0.00355 0.00271 0.00868 0.00539
0.50 0.00037 0.00055 0.00197 0.00250 0.00529 0.00524
0.75 0.00039 0.00141 0.00279 0.00244 0.00867 0.00534
0.90 0.00041 0.01121 0.00455 0.00254 0.01017 0.00561

500 0.10 0.00011 0.00319 0.00516 0.00262 0.00514 0.00319
0.25 0.00010 0.00041 0.00311 0.00227 0.00358 0.00309
0.50 0.00010 0.00026 0.00176 0.00213 0.00303 0.00300
0.75 0.00010 0.00045 0.00255 0.00221 0.00354 0.00306
0.90 0.00011 0.00354 0.00411 0.00252 0.00532 0.00339

Table 2. MSEs of wavelet, local linear and spline smoothing in Case II: Blocks.

QR-Wavelet QR-Local-Linear QR-Splines

n τ N(0, 0.12) t(5) N(0, 0.12) t(5) N(0, 0.12) t(5)

200 0.10 0.00573 0.01904 0.01114 0.00714 0.01730 0.00897
0.25 0.00503 0.00368 0.00661 0.00593 0.00921 0.00778
0.50 0.00378 0.00347 0.00599 0.00587 0.00803 0.00765
0.75 0.00418 0.00384 0.00721 0.00613 0.00894 0.00773
0.90 0.00574 0.02662 0.00865 0.00822 0.01150 0.01086

300 0.10 0.00624 0.01358 0.01059 0.00622 0.01751 0.00777
0.25 0.00611 0.00553 0.00647 0.00556 0.00925 0.00764
0.50 0.00484 0.00448 0.00584 0.00567 0.00800 0.00761
0.75 0.00674 0.00557 0.00704 0.00570 0.00897 0.00775
0.90 0.00682 0.01421 0.00852 0.00592 0.01139 0.00794

500 0.10 0.00562 0.00426 0.00958 0.00562 0.01541 0.00694
0.25 0.00385 0.00368 0.00634 0.00528 0.00751 0.00671
0.50 0.00310 0.00285 0.00557 0.00528 0.00706 0.00669
0.75 0.00357 0.00325 0.00679 0.00550 0.00757 0.00681
0.90 0.00408 0.00481 0.00813 0.00545 0.01000 0.00684

From Tables 1 and 2, we can make the following observations: (i) The MSEs of
each time-varying coefficient β(·) obtained by wavelet, local linear and spline techniques
decrease with increasing the sample size n. The accuracy of QR-wavelet is obviously higher
than that of QR-local linear and QR-splines. (ii) All QR methods work well when the
random error comes from the t distribution with five freedoms; that is, QR is robust to
heavy-tailed data. Based on MSE only, for Pwpn that is generally smooth except for a
jump, all three methods perform almost equally well, but for Blocks with many jumps, the
QR-wavelet performs better than QR-local linear and QR-splines. (iii) All three methods
perform well for different quantile levels, especially for high and low quantile levels
(τ = 0.9 (high), τ = 0.1 (low)). We also conducted some experiments based on the above
setting by using least square estimation, and found that their estimators lead to systematic
bias, especially at high and low quantile levels. However, QR-wavelet generally performs
better than QR-local linear and QR-splines at these extreme quantile levels when there is a
large sample size (e.g., n = 500) and multiple jump points (e.g., Blocks). From Figures 1
and 2, the estimators based on QR-local-linear and QR-splines are not better than those of
QR-wavelet. For example, in Pwpn, QR-local linear and QR-splines cannot characterize
the shape of the function in the interval (0.4, 0.6); in Blocks, they cannot find their jumping
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points, while QR-wavelet detects these jumping points and represents the localized features
of Pwpn and Blocks as a whole. Compared with the local linear and spline methods, the
wavelet technique has great advantages in characterizing the local features of underlying
curves. Therefore, the QR-wavelet overwhelmingly outperforms the QR-local-linear and
QR-splines for the discontinuous/irregular functional coefficients in our time-varying
coefficient models.

Figure 2. The true time-varying coefficient function Blocks and their QR-wavelet, QR-local-linear
and QR-splines estimates when n = 300, and τ = 0.25, 0.50 and 0.75 for the errors N(0, 1) and t(5).
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