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Abstract: With the increasing growth of multimedia data on the Internet, multimodal image aesthetic
assessment has attracted a great deal of attention in the image processing community. However,
traditional multimodal methods often have the following two problems: (1) Existing multimodal
image aesthetic methods are based on the assumption that full modalities are available in all samples,
which is unapplicable in most cases since textual information is more difficult to obtain. (2) They
only fuse multimodal information at a single level and ignore their interaction at different levels. To
address these two challenges, we proposed a novel framework termed Missing-Modility-Multimodal-
Bert networks (MMMB). To achieve the completeness, we first generate the missing textual modality
conditioned on the available visual modality. We then project the image features to the token space of
the text, and use the transformer’s self-attention mechanism to make the two different modalities
information interact at different levels for earlier and more fine-grained fusion, rather than only at
the final layer. A large number of experiments on two large benchmark datasets in the field of image
aesthetic quality evaluation: AVA and Photo.net demonstrate that the proposed model significantly
improves image aesthetic assessment performance under both textual missing modality condition
and full-modality condition.

Keywords: image aesthetic quality assessment; multimodal learning; missing multimodal data;
transformer

MSC: 68T05

1. Introduction

Aesthetics, in the world of photography, refers to the appreciation of beauty in the
form of art. Image aesthetic quality assessment aims to use computers to simulate human
perception of aesthetics and automatically evaluate the aesthetics of images. It has found
great applications in many areas, such as photo ranking [1], image recommendation [2], and
image retrieval and editing [3]. Thus, image aesthetic assessment has attracted increasing
attention in recent years [4–9].

In the early stages, the research of image aesthetics mainly focuses on designing hand-
crafted features according to the photographic rules such as the lightning, color, and global
image layout. Such methods first extract hand-crafted features from images and then learn
a mapping of these features to subjective aesthetic quality [4–6]. Later, with the proposal
and development of convolution neural network [10,11], deep features have been used to
capture the low-level and high-level descriptive aesthetic attributes, which significantly
improves the performance of image aesthetic quality evaluation tasks [7–9]. However, most
of these methods are adapted from classical image classification networks, not specific to
image aesthetic quality assessment tasks and often focus only on image features without
considering other relevant data resources, thus the performance is limited.
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With the popularity of the Internet, the modern digital world we live in is mul-
timodal in nature: images on the web are often accompanied with text. For exam-
ple, on Photo.net (https://www.photo.net/, accessed on 1 May 2022), Dpchallenge
(https://www.dpchallenge.com/, accessed on 1 May 2022) and other image sharing web-
sites, users are allowed to make subjective comments on images. The comments describe
the content of the image and the feelings it brings to people; thus, it is helpful in image
aesthetic assessment tasks. Recently, a mushrooming number of works have been proposed
to exploit the textual features. For example, Zhou et al. [12] utilize multimodal Deep
Boltzmann Machine (DBM) to encode both visual and textual information. Zhang et al. [13]
propose a Multimodal Recurrent Attention Convolutional Neural Network (MRACNN) to
leverage the semantic power of user comments. Although the aforementioned methods
obtain effective results, they often assume the completeness of modality in both training
and test data as illustrated in Figure 1. However, such an assumption may not always
hold in the real world. For example, we may not be able to access textual data since
many voters only give aesthetic scores without textual comments. Thus, an interesting
yet challenging research question then arises: Can we learn a multimodal image aesthetic
quality assessment model from an incomplete dataset while its performance should as
close as possible to the one that learns from a full-modality dataset? In addition, existing
multimodal methods [12,14] often use the concatenation or element-wise summations for
multimodal feature fusion. Since the visual features and the textual features may vary
significantly, traditional multimodal fusion methods may be insufficient, limiting the final
prediction performance.

Figure 1. Motivation of our approach. (a) Train and test with full modality (Zhang et al. [13,14]);
(b) testing with missing modality (Zhou et al. [12]); (c) we study missing textual modality in training,
testing, or both.

In this paper, we systematically study this problem and propose the Missing-Modility-
Multimodal-Bert (MMMB) model. In order to deal with the missing textual modality at any
stage, we reconstruct the missing textual description related to aesthetics according to the
available image information. The generated textual modality along with the visual features
are sent into the token spaces. Then, we make full use of the multi-head self-attention in
the Bert model to fuse the multimodalities information at different levels, rather than only
at the final layer.

The contributions of this paper are as follows:

https://www.photo.net/
https://www.dpchallenge.com/
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• To the best of our knowledge, we are the first work to systematically study the problem
of missing modality data in both train set and test set in the field of multimodal image
aesthetic quality assessment.

• Inspired by self-supervised pretraining of Transformer-style architectures, we use the
multi-head self-attention mechanism to capture the complex associations between the
visual features from images and the textual features from comments at different levels.
The experimental results demonstrate that the proposed multimodal fusion module
significantly outperforms existing multimodal approaches.

• We conducted extensive experiments to prove the superiority of the proposed method
over other latest works on a two benchmark dataset.

The remainder of this paper is organized as follows: Section 2 summarizes the related
work. Section 3 introduces the proposed approach. Section 4 quantitatively analyses the
effectiveness of the proposed method and compares it with state-of-the-art results. Finally,
Section 5 contains a summary and plans for future work.

2. Related Work

In this section, we briefly reviewed the related work on the following two research
topics: (1) image aesthetic assessment and (2) missing modality problem.

2.1. Image Aesthetic Assessment

Unimodal learning. The task of image aesthetic quality assessment begins with only
attention to image information, that is, unimodal learning. How to distinguish between
photos taken by professional photographers and photos taken by ordinary users [15] is
the earliest attempt of researchers in the field of image aesthetic quality assessment. The
traditional method is based on the aesthetic features of artificial design [16,17]. Most of
these handcrafted features are inspired by photography rules, such as clarity, depth of field,
colorfulness, rule of third, etc. Although these methods achieved good performance at that
time, they could not accurately capture complex aesthetic factors and had certain limitations.
With the development of convolutional neural network, some methods based on deep
learning have been proposed, which greatly improves the performance of image aesthetic
assessment. Lu et al. [3] first tried to apply convolutional neural networks to this field
and proposed a double-column deep convolutional neural network architecture to learn
the global and local features of the image, respectively, and finally complete the aesthetic
binary classification task. Kao et al. [18] used a regression model instead of a common
classification model to evaluate image aesthetics. They believe that continuous scores can
better express the aesthetic quality of images. Talebi et al. [19] use Earth Mover’s Distance
(EMD) loss, which is different from the previous loss function, to optimize the network, and
propose a new task to predict the distribution of aesthetic scores. The lack of aspect ratio
information in an image will affect the predicted aesthetic score. Wang et al. [20] proposed
a multi-patch training method that maintains the aspect ratio to predict the aesthetic score
of images. However, most of these methods are often focused only on image features
without considering other relevant data sources and higher-level semantic information,
thus the performance is limited.

Multimodal learning. Multimodal learning uses complementary information from
different modalities to improve the performance of various computer vision tasks [21].
With the release of various excellent models in the field of natural language processing, the
text comment information of images in the field of image aesthetic quality assessment has
also attracted the attention of researchers. In multimodal image aesthetic prediction tasks,
how to effectively fuse the information of each modality is a key point. Zhou et al. [12]
introduced multimodal learning into the field of image aesthetic quality assessment for the
first time. In addition to image information, they also paid attention to higher-level semantic
information. They used DBM to jointly represent image information and text information
for aesthetic assessment, and built the AVA-Comments dataset for researchers to use.
Hii et al. [22] use the MultiGap deep network architecture to extract image features and
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use RNN to extract text features. Finally, the visual and textual features are concatenated
directly to predict the aesthetic distribution of the input image. With the proposal of
attention mechanism, researchers try to apply it to the task of image aesthetic quality
assessment. Instead of focusing on each part of the information as before, they selectively
pay attention to some key areas. Zhang et al. [14] employ a recurrent attention network,
which can eliminate irrelevant information in images and extract visual features only in
important regions. In terms of multimodal fusion, they use MFB to model the correlation
between different multimodal features, which has achieved good performance. In another
work, Zhang et al. [13] used self-attention to encode the interdependence between visual
elements in images when extracting visual features, so as to effectively capture the global
composition of images. Co-attention is used to capture the intrinsic correlation between
two modalities for more effective feature fusion. Miao et al. [23] propose an end-to-end
multi-output deep learning model based on multimodal GCN and co-attention for image
aesthetics and emotion conjoint analysis. Although the aforementioned methods obtain
effective results, they use late fusion manner to fuse multimodal inputs. This late fusion
layer usually needs multimodal data to exist at the same time in the training stage. However,
for multimodal image aesthetic tasks, acquiring enough textual modality data is still very
challenging and expensive.

2.2. Missing Modality Problem

Recently, some methods have been proposed to solve the problem of modality missing
in multimodal learning. Tran et al. [24] used a cascaded residual autoencoder for imputation
of missing modalities. It consists of a set of stacked residual autoencoders, which iteratively
simulate the residual between the current prediction and the original data. Ma et al. [25]
proposed the use of Bayesian meta-learning framework to reconstruct missing modalities
and regularize the reconstructed latent features, effectively dealing with the problem of
missing modalities. Zhang et al. [26] aim to use feature reconstruction to learn a joint
multimodal representation of the latent space that can contain relevant information from
all modalities, for supervised learning of predicting the target. The above methods can
solve the problem of missing modality data to a certain extent, but the training process
is relatively cumbersome. It is not applicable to the large scale datasets used in the field
of image aesthetic quality assessment. In this paper, we adopt a more direct and concise
method, that is, generating the textual description related to aesthetics according to the
available image information when the textual modality is missing.

3. Method

Problem Formulation. In multimodality image aesthetic prediction problems, we
are given a multimodal dataset containing two modalities, i.e., image and text com-
ments. Formally, we let D = {D f , Dm} denote a multimodal image aesthetic dataset.
D f = {x1

i , x2
i , yi} represent the full-modality samples, where x1

i and x2
i represent visual

modality and textual modality of i-th sample respectively, and yi is the corresponding
aesthetic label. Dm = {x1

i , yi} are the modality-incomplete samples. We assume visual
modality is available for all samples, while textual modality is available for only a portion
of the subjects. Our target is to leverage both modality-complete and modality-incomplete
data for model training.

In this paper, we propose a novel multimodal image aesthetic quality assessment
method, i.e., MMMB model. The overview of the approach is shown in Figure 2. For
the full-modality samples, we first use the image encoder to extract the raw features of
the image and then map the extracted visual features to the token space. In the token
spaces, the visual features, connected with the textual embedding features, are sent to
the multimodal encoder, which uses the self-attention mechanism for multi-level and
fine-grained fusion. In the case of missing textual modality, we generated the missing
textual modality conditioned on existing modality images and then form a multimodal



Mathematics 2022, 10, 2312 5 of 19

joint representation. Finally, the feature vectors output by the multimodal encoder are sent
to the aesthetic prediction layer for aesthetic value assessment.
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Figure 2. The framework of the proposed method. For full-modality samples, the processing process
is shown in the green arrow, and for modality-incomplete, the processing process is shown in the red
arrow. The image encoder is used to extract image features, and the missing modality generation
network is used to generate the missing textual aesthetic description when the input is modality-
incomplete. The embedding module generates the input of the multimodal encoder. The multi-layer
self-attention mechanism is used to make the information of two different modalities interact at
different levels for earlier and more fine-grained feature fusion.

3.1. Image Encoder

Experiments have proved that the convolutional neural network architecture pre-
trained on ImageNet [10] can be used to extract more effective visual features. In our
method, any type of CNN can be used as a visual feature extractor. We take Resnet50 [27]
as an example in this section. The input image I is first resized to 224× 224 and then fed
into the CNN to extract the deep features. In order to obtain N independent embeddings
consistent with the text information, we replace the original pool layer with an Adaptive-
pool layer. In addition, the output of the feature map is thus a tensor with dimensions
(W, H, D), where W and H represent the spatial resolution, and D is the channel dimension.
The extractor produces N = W ∗ H vectors, which can be represented as follows:

f (I, i) =
{

ri | ri ∈ RD, i = 1, 2, . . . , N
}

(1)

where f (·, i) represents D-dimensional representation corresponding to a part of the image.

3.2. Missing Modality Generation

For the problem of missing modality data, traditional methods often directly discard
the samples with missing modality data or reconstruct a multimodal joint representation of
hidden space to encode multimodal information. However, these methods either lead to
the reduction of sample count and loss of some important information, or need to update
all samples at the same time, which is not applicable on large scale datasets for the image
aesthetic quality assessment task. In this paper, we generate feature representation of
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missing textual modality in the latent space based on the available visual modality. Given
the observed visual modality x1, in order to obtain the reconstruction x2 of the missing
modality, we optimize the following objective for the reconstruction network:

θ∗ = arg max
θ

∑
{x1,x2}

− log p(x2 | x1; θ) (2)

where θ are the parameters of our reconstruction model. However, it is non-trivial
to train a reconstruction network from limited modality complete samples. Inspired
by [28], we use an attention-based approach to generate approximate feature representa-
tions of textual modality using LSTM networks by attention to the salient part of an
image. In order to learn the general aesthetic textual representation and reduce the
complexity of the network, we first pretrained the reconstruction network on the DPC
dataset [29] (DPC-Captions dataset is an image aesthetic caption dataset, which contains
154,384 images and 2,427,483 comments from DPChallenge.com (accessed on 1 May 2022) ).

Specifically, given the observable visual modality, the convolution neural network
is used to extract the visual features x =

{
x1, x2 . . . , xL | xi ∈ RD}. The attention weight

αi, which is used to measure the weight of the image feature at the i-th position when
generating the t-th word, is calculated for each position i:

eti = fatt(xi, ht−1) (3)

αti =
exp(eti)

∑L
k=1 exp(etk)

(4)

where fatt is a multilayer perception, ht−1 is the previous hidden state. We can calculate the
context vector ẑt after obtaining the attention weight:

ẑt = ψ({xi}, {αi}) =
L

∑
i

αtixi (5)

Then, a long short-term memory (LSTM) [30] network is used to produce the missing
textual comments conditioned on a context vector ẑt, the previous hidden state ht−1, and
the previously generated words. Our implementation of LSTM follows the one used in [31]:

it
ft
ot
gt

 =


σ
σ
σ
tanh

TD+m+n,n

 Eyt−1
ht−1
żt

 (6)

ct = ft ◦ ct−1 + it ◦ gt (7)

ht = ot ◦ tanh(ct) (8)

where it, ft, ct, ot, and ht are the input, forget, memory, output, and hidden state of the
LSTM, respectively. E ∈ Rm×k is an embedding matrix, σ represents the sigmoid activation
function, and ◦ represents the element-wise multiplication.

By using a deep output layer [32], we can calculate the probability of each word in the
wordmap as follows:

p
(

yt | x, yt−1
)

∝ exp(Lo(Eyt−1 + Lhht + Lz ẑt)) (9)

where Lo ∈ Rk×m, Lh ∈ Rm×n,Lz ∈ Rm×D and E are learned parameters initialized ran-
domly. Finally, the word with the highest probability is taken as the currently generated
word and used as the input of the next time.

DPChallenge.com


Mathematics 2022, 10, 2312 7 of 19

3.3. Embedding Model

In this section, we will introduce the Embedding Layer, which generates input for the
multimodal encoder.

3.3.1. Segment and Position Embedding

Segment embedding is used to distinguish different modalities. Specifically, we assign
a segment ID to image modality and text modality, respectively. In specific experiments, we
set the segment ID of image modality to 0and the segment ID of text modality to 1. Position
embedding represents each embedding the relative position information in the segment.
Each segment is counted from 0.

3.3.2. Text Embedding

For full-modality samples, we input the text comment rounds in the comment dataset.
However, for the samples with missing textual modality, we input the reconstructed textual
modality data. We adopt the same coding method as Bert [33] to process text input, which
firstly divides text into a word sequence, and then uses the WordPiece [34] method to
tokenize each word. Then, the token embedding is transformed into a 768-dimensional
vector representation. We use t = {t1, t2, . . . , tM} ∈ Rd to represent the input text sequence,
where M represents the number of words, and d represents the embedded 768 dimension.
Similar to the traditional Bert, we add position embedding and segment embedding. The
final text comment can be represented as

{
t̂1, t̂2, . . . t̂M

}
, and the textual representation at

the i-th position is calculated by:

t̂i = LayerNorm(ti + pi + st) (10)

where LayerNorm [35] is a normalized function, pi represents position embedding, and st
represents segment embedding. We set st to 1 in this work.

3.3.3. Image Embedding

The N independent image embedding obtained in Section 3.1 corresponds to the
N tokens in the text modality. Firstly, we learn a randomly initialized weight matrix
Wm ∈ R2048×d to project each 2048 dimensional image feature of the N image embeddings
to the same d dimension as the text embedding, as shown in the following:

Ii = Wm f (image, i) (11)

Ii represents the i-th output after the adaptive pooling layer. Then, we represent
the visual features as v = {v1, v2, . . . , vN} ∈ Rd , where N represents N independent
embedding of image features after the last adaptive pooling layer. Similarly, we add position
embedding and segment embedding to get the final visual representation {v̂1, v̂2, . . . , v̂N},
and calculate the visual representation on the i-th position as follows:

v̂i = LayerNorm(vi + pi + sv) (12)

where sv is set to 0.

3.4. Multimodal Encoder

After obtaining the sentence embedding vector and the visual embedding vector, we
add two special tags [CLS] and [SEP] to construct the multimodal input sequence. [CLS] is
used to learn the joint classification features, and [SEP] separates the embedding of different
modality. The final input of the multimodal encoder is expressed as:

MF =
{
[CLS], v̂1, . . . , ˆvN , [SEP], t̂1, t̂2, . . . , t̂M

}
(13)
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We then send the multimodal input MF ∈ Rd×(M+N+2) into the multimodal encoder
based on transformer. The encoder contains a set of Bert layers for automatically modeling
the rich interaction between textual and visual modality information. The architecture of
Bert model is shown in Figure 3, where “Trm” stands for transformer [36], which is the
infrastructure of Bert.

BERT

T1

E1

Trm

T1 T1

Trm

Trm Trm

Trm

Trm

E1 E1

   ...

   ...

   ...

   ...

Add&Norm

Feed 
Forward

Add&Norm

Multi-Head 
self-attention

Input 
Embedding

       Inputs

N×

Positional 
Encoding

Figure 3. Architecture of the Bert model [36].

Firstly, the multimodal input MF through the multi-head self-attention layer pays
attention to the information of different subspace to capture richer feature information. For
the i-th head attention, the input MF ∈ Rd×(M+N+2) uses dot-product attention mechanism
as follows:

Atti(Qi, Ki, Vi) = so f tmax(
QT

i Ki√
d/m

)Vi (14)

where m represents the number of heads, Qi = WQ
i ·MF, Ki = WK

i ·MF, Vi = WV
i ·MF rep-

resent query, key, and value in i-th head attention, respectively. WQ
i ∈ Rd×dQ , WK

i ∈ Rd×dK ,
WV

i ∈ Rd×dV are three randomly initialized weight matrixes. In the BERT-base model, m
is set to 12.

√
d/m aims to turn the attention matrix into a standard normal distribution.

Then, all attention heads are concatenated and multiplied by a weight matrix Wo ∈ Rd×d

to obtain the output of multi-head self-attention, which is as shown as follows:

M(Q, K, V)= concat[ Att1(Q1, K1, V1), . . . , Att m(Qm, Km, Vm)] ·Wo (15)

Finally, residual connection and LayerNorm [35] operation are performed on the
output of multi-head self-attention. The function of the LayerNorm operation aims to
normalize the hidden layers in the neural network into standard normal distribution and
accelerate convergence. Specific operations are as follows:

MFattention = Layernorm (MF + M(Q, K, V)) (16)
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In addition, through the operation of two-layer linear mapping feed forward layer with
Gelu [37] activation function and Equation (16), the output of an encoder in multimodal
encoder is calculated as follows:

MFout = LayerNorm[MF + Gelu(Linear(Linear(MFattention )))] (17)

Then, MFout is used as the input of the next multimodal encoder. The entire multi-
modal encoder stacks 12 of such encoder. Finally, the first token [CLS] of the last hidden
layer is sent to the aesthetic prediction module to evaluate the image aesthetic distribution.

3.5. Aesthetic Prediction

After obtaining the multimodal feature vector through the above operations, we send
it into a fully connected layer to output the aesthetic label distribution of the image. After
that, the normalization operation will be carried out through the softmax layer. Similar
with the work [13,14], this paper uses the Earth Mover’s Distance (EMD) [19] loss function,
which can calculate the minimum distance of the two sequential distributions, to optimize
the network. The EMD loss is defined as follows:

EMD(p, p̂) =

(
1
N

N

∑
k=1

∣∣CDFp(k)− CDFp̂(k)
∣∣r)1/r

(18)

where p represents the real aesthetic score distribution of the image, and p̂ represents
the predicted aesthetic score distribution. CDF(k) represents the cumulative distribution
function. N represents the number of points. Similar to previous work [8,38], we choose
r = 2 for its simplicity in optimization.

4. Experimental Results

In this section, we conduct a series of experiments on two benchmark datasets in the
field of image aesthetics quality assessment to verify the effectiveness of our proposed
method. First, the superiority of our method in multimodal fusion is explained by compar-
ing with existing methods. Secondly, the effectiveness of the proposed method in dealing
with the problem of missing modality data is proved by setting different levels of textual
missing rates.

4.1. Experiment Setting
4.1.1. Dataset

AVA multimodal Dataset. AVA multimodal Dataset contains both images and text.
The images are from the AVA Dataset [39], which is the largest and most widely used dataset
in the field of image aesthetic quality assessment. It contains more than 250,000 photos,
and each photo is scored by 200 users on average. The score is between 1–10. The higher
the score, the higher the aesthetic quality of the image. The distribution of these scores is
taken as the ground truth of our experiment. The text information comes from the AVA
Comment dataset constructed by Zhang et al. [14], which contains users’ comments on
images. In addition, we use the method in [40] to further process the comment dataset
and delete the over-long comments, over-short comments, and empty comments. After
processing, we use 243,279 images for our experiment. The division method of training set
and test set is consistent with [13,14]. In addition, we use 10% of the data in the training
set as the validation set. Finally, the partition for the AVA database are 201,812 images for
training, 22,431 for validation, and 19,036 images for test.

Photo.net multimodal Dataset. Photo.net multimodal Dataset is based on Photo.net
Dataset, which is proposed by Ritendra Datta [15]. Each image in Photo.net dataset
was rated by at least two members of the community. The scores are between 1.0 and
7.0. The text information comes from the photo.net comment dataset constructed by
Zhang et al. [14]. They capture the user’s comments on the image from the website. We
also use the method in [40] to further process the comment dataset. Finally, the remaining
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15,608 photos after processing are used in our experiment. The training set, validation set,
and test set are 12,486, 1562, and 1560, respectively.

4.1.2. Evaluation Metrics

Existing methods usually formulate image aesthetic prediction task into three kinds:
binary classification task [7,41] (i.e., distinguish images from high-quality to low-quality
photos), regression task [1], and label distribution prediction task [8,14,19,29]. In order
to compare with these methods fairly, we evaluate our proposed method on these three
aesthetic quality tasks. The evaluation metrics corresponding to three tasks are as follows:

Aesthetic quality binary classification task. In image aesthetic quality classification
tasks, we follow the experiment setup as [3]. If the average aesthetic score of the image is
larger than 5, it will be regarded as a high-quality image, and if it is lower than 5, it will be
regarded as a low-quality image. The definition accuracy is as follows:

Accuracy =
TP + TN

P + N
(19)

Aesthetic score regression task. First, we predict the aesthetic score distribution of the
image, and then calculate the mean score of the score distribution via score = ∑N=10

i=1 si× psi

to obtain the aesthetic regression scores for the regression task. The indices used to evaluate
performance of the aesthetic quality regression task are the Spearman’s Rank-ordered
correlation coefficient (SRCC), Pearson linear correlation coefficient (PLCC), the Mean
absolute error (MAE) and the root mean squared error (RMSE). SRCC and PLCC are the
family of nonparametric correlation measures. SRCC operates only on the rank of the
data points, and measures the relative monotonicity between data-points, while PLCC
measures the linear association between the predictions and the subjective scores. Let yi
and si denote the prediction score and subjective score respectively, SRCC and PLCC are
defined as follows:

SRCC =
1− 6 ∑ D2

n(n2 − 1)
(20)

where D = (Yi − Si), Yi and Si are the rank order of yi and si .

PLCC =
∑n

i=1(yi − ȳ)(si − s̄)√
∑n

i=1(yi − ȳ)2
√

∑n
i=1(si − s̄)2

(21)

where ȳ and s̄ represent the mean values of yi and si. RMSE and MAE measure the
error between the real label and the predicted value. A better image aesthetic quality
measurement has lower RMSE and MAE values. As for a perfect match between the
predicted scores and the subjective scores, RMSE = MAE = 0. RMSE and MAE are
defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − si)
2 (22)

MAE =
1
n

n

∑
i=1

(|yi − si|) (23)

Aesthetic score distribution prediction task. Following the work of [13,14], we use the
Earth mover’s distance, which is defined defined in Equation (18) (r is set to 1) to judge the
consistency between the predicted aesthetic distribution and the real aesthetic distribution.

4.1.3. Implementation Details

Our experiment is divided into two stages. In the first stage, we pretrain the missing
modality generation model for missing modality reconstruction. In addition, in the second
stage, we train our multimodal encoder module. We use the pytorch framework to build
our model. Specifically, in the first stage, we pretrained the missing modality reconstruction
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model on the DPC dataset and resize the image as 224× 224. The output feature map is
14× 14× 512 after four pooling layers in VGG16. The learning rate of the image encoder is
set to 0.0001. The dimension of word embedding m and LSTM n are both set to 512. For the
LSTM as the decoder, the learning rate is set to 0.0004. The batch size is set to 32. In order to
control the effect of gradient explosion, grad_clip is set as 5. The length of the vocabulary k
is set to 39,209.

In the second stage, the input image was resized to 224× 224, and Resnet50 was
initialized on the ImageNet dataset as the image encoder. We set the basic learning rate
as 0.0001, lr_patience as 5, and lr_ f actor as 0.1, that is, the learning rate will be reduced
by 0.1 times when the performance has not improved after five epochs. The early stop
strategy was adopted in the validation set. When the accuracy rate did not improve
after 10 epochs, the training process was ended in advance. Due to the large amount
of parameters in the experiment, we use the method of gradient accumulation to set
gradient_accumulation_steps to 24, so that the batchsize can be set to a smaller 8. We use
BertAdam with warmup rate of 0.1. The number of image feature embedding is set to 9.
For the input text information, we specify a maximum length of 512, and fill it with zero if
it is insufficient.

4.2. Ablation Studies
4.2.1. Effectiveness of Multimodal Features

In order to evaluate the effectiveness of multimodal features in the field of image
aesthetic quality assessment, we compare the mutlimodal methods with single modality
methods. The single modality methods include single column networks “Resnet50” and
“VGG16” based on only image features, and also include single column networks “Bert” and
“Text-CNN” based on only text features. The multimodal methods include double column
networks “Resnet50+Bert” and “VGG16+Text-CNN” based on multimodal fusion features.
The experimental results are shown in Table 1. We can find that: (1) the results obtained
by using only text features are better than those obtained by using only image features.
Specifically, the classification accuracy is improved by about 3% on average, and the
improvement on SRCC is more significant, reaching 18.51% (BERT vs. VGG16). This may
be because intuitive textual comments can better reflect people’s aesthetic feelings about an
image. (2) The use of multimodal features significantly improves the performance of each
evaluation metrics. Specifically, the classification accuracy and SRCC were improved by
6.02% (“VGG16+Text-CNN” vs. “VGG16”) and 16.77% (“Resnet50 + Bert” vs. “Resnet50”),
respectively, compared with using only visual features, and 2.14% (“Resnet50 + Bert” vs.
“Bert”) and 4.4% (“VGG16 + Text-CNN” vs. “Text-CNN”), respectively, compared with
using only text features. This shows the effectiveness of textual features and image features
are complementary in the field of aesthetic assessment.

Table 1. Ablation study on the effect of multimodal features.

Model Accuracy
(%)↑

SRCC
(Mean)↑

PLCC
(Mean)↑ MAE↓ RMSE↓ EMD↓

Resnet50 79.25 0.6669 0.6736 0.4400 0.5639 0.048

VGG16 77.56 0.6267 0.6345 0.4659 0.5909 0.051

Bert 81.18 0.8118 0.8327 0.3328 0.4211 0.042

Text-CNN 81.85 0.7786 0.7851 0.3895 0.4887 0.046

Resnet50+Bert 83.32 0.8346 0.8495 0.3138 0.3984 0.039

VGG16+Text-
CNN 83.58 0.8226 0.8365 0.3355 0.4032 0.038
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4.2.2. Effectiveness of Missing Modality Reconstruction with Different Ratios

In order to evaluate the effectiveness of missing modality reconstruction, we designed
a set of experiments. The missing modality in experiments randomly occurs in both
training and testing phases. It is more general since we cannot be sure at which stage the
textual modality missing occurs. The experimental results are shown in Table 2. In Table 2,
“empty” indicates that the textual modality of the samples is missing. We only input the
available visual modality information for training and testing. “Reconstruct” is used to
represent that we reconstruct the missing textual modality according to the available visual
modality information. Finally, the reconstructed textual modality is combined with the
available visual modality for training and testing. From the table, we can observe that
the performance is improved to varying degrees under different textual modality missing
rate after missing modality reconstruction. For example, with the 20% missing rate, the
classification accuracy of improves from 82.58% to 83.15%, the SRCC improves from 0.8050
to 0.8204, and the PLCC improves from 0.8186 to 0.8398. The experimental results show
that the superior performance of the missing modality reconstruction model is essential to
deal with the missing modality problem.

We also performed some qualitative analysis to visually see the effectiveness of the
generated text modality. Some examples are shown in Figure 4. We use some full-modality
samples of the AVA dataset for testing, and compare the actual text representation with the
generated text. From the figure, we can easily find that our model can reconstruct most
key words.

Table 2. Ablation study on the effect of textual modality reconstruction.

Missing_Rate Text_State Accuracy
(%)↑

SRCC
(Mean)↑

PLCC
(Mean)↑ MAE↓ RMSE↓ EMD↓

10% empty 83.44 0.8327 0.8449 0.3149 0.4078 0.036
reconstruct 83.73 0.8498 0.8628 0.3014 0.3818 0.036

20% empty 82.58 0.8050 0.8186 0.3341 0.4343 0.038
reconstruct 83.15 0.8204 0.8398 0.3243 0.4232 0.037

30%
empty 81.91 0.7798 0.7941 0.3532 0.4621 0.043

reconstruct 82.38 0.7998 0.8121 0.3342 0.4342 0.039

Figure 4. Some examples of AVA datasets. “groundtruth” represents the tag value, “binary classi-
fication” represents the result of binary classification, “regression score” represents the regression
score of the image (keep one decimal place), “comment” represents the real comment, “generate”
represents the text comment generated by the missing modality generation network.
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4.2.3. The Effectiveness of Multimodal Encoder Based on Transformer

We compare the performance of transformer-based multimodal encoder with other
multimodal fusion methods, i.e., feature concatenation and MFB. These two methods are
often used in existing multimodal image aesthetic prediction task. In order to make a fair
comparison, the experimental settings on these two baseline methods are consistent with
the experimental settings of the method proposed in this paper.

Feature concatenation. We use Resnet50 to remove the last two layers to extract
image features, and use Bert to extract text features. Finally, the multimodal features are
concatenated and sent into a fully connected layer to predict the aesthetic distribution. In
the specific experiment, we set the length of the image feature vector to 2048 and the length
of the text feature vector to 768. The multimodal feature vector with the length of 2816 is
sent to the full connected layer with the output dimension of 10, and a softmax activation
function is added to predict the aesthetic distribution.

MFB. Multimodal Factorized Bilinear pooling (MFB) can encode the complex in-
teractions between features and thus was frequently used in existing multimodal fusion
methods [14,42]. In order to make a fair comparison, we also use ResNet50 to extract
visual features and use Bert to extract textual features. Then, these two features are sent
into MFB for further processing. In the specific experiment, we wrap the 2048-dimensional
image feature vector input to 768 dimensions through a fully connected layer. Then, the
768 dimension textual feature and image features are sent into the MFB for fusion.

The experimental results are shown in Table 3. We can clearly observe that our method
is superior to the other two multimodal fusion methods in all evaluation metrics. It proves
that the transformer-based multimodal encoder can effectively fuse multimodal features,
thereby improving the performance of the image aesthetics quality assessment task.

Table 3. Ablation study on the effect of the Multimodal encoder based on transformer.

Model Accuracy
(%)↑

SRCC
(Mean)↑

PLCC
(Mean)↑ MAE↓ RMSE↓ EMD↓

Feature
concatena-

tion
83.32 0.8346 0.8495 0.3138 0.3984 0.036

MFB 83.64 0.8340 0.8450 0.3129 0.4044 0.036

Ours 84.05 0.8511 0.8656 0.2963 0.3788 0.034

We also found that the proposed multimodal fusion module has the advantages in
dealing with different ratios of modality missing. The results on AVA dataset are shown
in Table 4. We set three different modality missing rate, which are 10%, 20%, and 30%,
respectively. As can be seen, our approach outperforms all baselines among all different
ratios of textual modality missing, which showcases the efficiency of our method in the
missing textual modality problem. More specifically, under different textual modality
missing rates, our method is higher than concatbert and MFB by about 1.5% in accuracy,
higher than concatbert and MFB by about 5% in SRCC and PLCC evaluation metric, and
lower than concatbert and MFB by about 3% in MAE and RMSE evaluation metric.
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Table 4. Comparison to different multimodal fusion methods under three textual missing modality
ratios (10%, 20%, and 30%) on the AVA dataset.

Missing_Rate Method Accuracy
(%)↑

SRCC
(Mean)↑

PLCC
(Mean)↑ MAE↓ RMSE↓ EMD↓

10%

Feature con-
catenation 82.47 0.8089 0.8251 0.3314 0.4278 0.037

MFB 82.49 0.8159 0.8262 0.3303 0.4290 0.036
ours 83.73 0.8498 0.8628 0.3014 0.3818 0.034

20%

Feature con-
catenation 81.52 0.7909 0.7979 0.3507 0.4554 0.038

MFB 82.09 0.7767 0.7978 0.3478 0.4588 0.038
ours 83.15 0.8204 0.8398 0.3243 0.4232 0.037

30%

Feature con-
catenation 80.43 0.7802 0.7859 0.3689 0.4728 0.047

MFB 80.98 0.7594 0.7759 0.3682 0.4769 0.045
ours 82.38 0.7998 0.8121 0.3342 0.4342 0.039

4.2.4. Extension to Different Image Encoder

Our proposed model does not depend on a specific image encoder, it can accept any
dense sequence as input. In order to compare the impact of different image encoders
on the performance of the proposed model, we choose Resnet50 [27], VGG16 [43], and
Densenet161 [44]—these three representative convolutional neural networks are our image
encoder. Resnet50 [27] introduces residual connections, improves the flow of information,
and solves the problem of vanishing gradient and degradation caused by too deep a
network. VGG16 [43] has a relatively simple structure. Densenet161 [44] has a narrower
network structure and fewer parameters, which can enhance the transmission of features.
The three networks are pretrained on the ImageNet dataset, and then fine-tuned on the AVA
dataset. The experimental results are shown in Table 5. We can find that the performance
of the proposed model on the three CNN is similar, but the effect is better than that of
the baseline.

Table 5. Performance of different image encoder architecture.

Model Accuracy (%)↑ SRCC (Mean)↑ PLCC (Mean)↑ MAE↓ RMSE↓ EMD↓
Resnet50 79.25 0.6669 0.6736 0.4400 0.5639 0.048

VGG16 77.56 0.6267 0.6345 0.4659 0.5909 0.051

Densenet 78.94 0.6466 0.6481 0.4550 0.5814 0.049

ours(Resnet50) 84.05 0.8511 0.8656 0.2963 0.3788 0.034

ours(VGG16) 83.87 0.8528 0.8677 0.2904 0.3752 0.034

ours(Densenet161) 84.32 0.8528 0.8683 0.2928 0.3759 0.033

4.2.5. Effects of the Various Image/Text Embedding Lengths

The length of image embeddings and text embeddings are important factors affecting
the image aesthetic quality prediction task. Therefore, we compared the performance of
our proposed model under different lengths of image embeddings and text embeddings.
The experimental results are shown in Table 6, from which we can clearly see that the per-
formance was best performed when image embedding length is 2048, and text embedding
length is 768. Thus, we set the length of image embedding as 2048 and the length of text
embedding as 768.
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Table 6. Performance comparison with various image/text embedding lengths.

Image
Embedding

Length

Text
Embedding

Length

Accuracy
(%)↑

SRCC
(Mean)↑

PLCC
(Mean)↑ MAE↓ RMSE↓ EMD↓

1024 512 83.81 0.8512 0.8533 0.3013 0.3900 0.035

1024 768 83.78 0.8499 0.8507 0.3011 0.3894 0.036

2048 512 83.91 0.8505 0.8599 0.2986 0.3812 0.035

2048 768 84.05 0.8511 0.8656 0.2963 0.3788 0.034

4.3. Comparison to State-of-the-Art Methods on the AVA Dataset

We compared the proposed model with other related work in the field of image
aesthetics quality evaluation, and we chose the following nine typical methods. Among
them, the first six methods all use a single image modality for training. While the rest
methods, such as Joint DBM [12], MultiGap [22], and SAGAN [38] are multimodal methods.
However, none of them consider the missing modality problem.

RAPID [3]: RAPID [3] is the first work that tried to apply convolutional neural
networks to this field. It consists of a double-column deep convolutional neural network to
learn the global and local features of the image respectively. In this work, image aesthetic
was formulated as a binary classification task. Thus, we only need the accuracy metric to
evaluate the performance.

MTCNN [41]: It is an end-to-end multi-task deep learning framework that adds
semantic information to perform a binary image aesthetic classification task.

Full model [45]: In [45], Xu et al. proposed a context-aware attention-based image aes-
thetic score prediction method. The context-aware attention module is in two dimensions:
hierarchical and spatial. The hierarchical context aims to encode the multi-level aesthetic
details while the spatial context encodes the long-range perception of images.

NIMA [19]: In [19], an aesthetic distribution prediction task is proposed, which can
better reflect human subjective performance of images. In addition, EMD loss function is
introduced into this field and greatly improved the performance.

ARDP [46]: An object-level attention based prediction framework of aesthetic grade
distribution is proposed. The framework dynamically learns the features extracted from
the object level region defined by the general object detector.

GPF-CNN [8]: The proposed architecture can extract fine detail features and adaptive
fuse global and local features according to the input feature map.

Joint DBM [12]: For the first time, it considered to use both image information and
text information to improve the performance of the image aesthetic quality assessment.
Firstly, different modality features are extracted with different network architectures, and
then multimodal joint representation is learned by DBM.

MultiGap [22]: It uses inception to extract image features and RNN to extract text
features. Finally, the two features are directly concatenated to complete the task of aesthetic
binary classification.

SAGAN [38]: SAGAN [38] makes full use of the intrinsic relationship between
aesthetic attributes and aesthetics through the process of semi-supervised attribute learning
and adversarial training.

The experimental results are shown in Table 7. It can be found that the proposed
model is superior to other methods on all three tasks of image aesthetic quality assessment.
Compared with the earlier unimodal methods, the performance of the proposed model
is 10.12% and 5.86% higher accuracy than RAPID [3] and MTCNN [41], respectively. For
Full model [45], NIMA [19], ARDP [46], and GPF-CNN [8], which use EMD loss to predict
the aesthetic score distributions of the image, our method is higher than them in various
evaluation metrics. This demonstrates the superiority of the proposed method. The recently
proposed method SAGAN exploits high-level attributes to improve the aesthetic prediction
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performance, and thus outperforms NIMA [19], ARDP [46], and GPF-CNN [8], achieving
83.72% in the aesthetic classification task. However, our model achieves the strongest
results at an accuracy rate of 84.32%. Joint DBM [12] and MultiGap [22] are closely related
to our method since they both use the textual and visual information to predict aesthetics.
MultiGap outperforms a multimodal DBM model, achieving 82.27% accuracy. In contrast,
our method achieves 84.32% in classification accuracy and 0.8528 in SRCC. Even the text
modality missing rate is 20%, and the accuracy of our method is still higher than these two
models, which further show the superiority of our method.

Table 7. Comparison with state-of-the-art methods on the AVA dataset.

Method Accuracy
(%)↑

SRCC
(Mean)↑

PLCC
(Mean)↑ MAE↓ RMSE↓ EMD↓

RAPID 74.2 - - - - -

MTCNN 78.46 - - - - -

Full Model 80.9 0.7240 0.7250 - - 0.052

NIMA 80.6 0.592 0.610 - - 0.052

ARDP 81.67 0.7510 0.7530 - - 0.052

GPF-CNN 80.70 0.6762 0.6868 0.4144 0.5347 0.046

Joint DBM 78.88 - - - - -

MultiGap 82.27 - - - - -

SAGAN 83.72 0.774 0.788 - - 0.052

ours 84.32 0.8528 0.8683 0.2928 0.3759 0.033

ours (10%) 83.73 0.8498 0.8628 0.3014 0.3818 0.034

ours (20%) 83.15 0.8204 0.8398 0.3243 0.4232 0.037

ours (30%) 82.38 0.7998 0.8121 0.3342 0.4342 0.039

4.4. Comparison to State-of-the-Art Methods on the Photo.Net Dataset

We also compare our proposed method with several existing models on the Photo.net
dataset. The experimental results are shown in Table 8. GLST_SVM and FV_SIFT_SVM [47]
use handcrafted features to predict the image aesthetics. MTCNN [41] and GPF-CNN [8]
are single-mode methods which rely on visual information to make aesthetic decisions.
MRACNN [14] is closely related to our method, which both use the textual and visual
information to jointly predict the image aesthetic distribution. From the table, we can see
that our proposed model keeps the best and achieves 79.18% for aesthetic classification
accuracy and 0.6553 on the SRCC metric.

Table 8. Comparison with state-of-the-art methods on the Photo.net Dataset.

Method Accuracy (%)↑ SRCC (Mean)↑ PLCC (Mean)↑ MAE↓ RMSE↓ EMD↓
GIST_SVM 59.90 - - - - -

FV_SIFT_SVM 60.8 - - - - -

MTCNN 65.2 - - - - -

GPF-CNN 75.6 0.5217 0.5464 0.4242 0.5211 0.070

MRACNN 78.91 0.5709 0.5902 0.3636 0.4589 0.0622

ours 79.18 0.6553 0.6670 0.3263 0.4181 0.054

ours (10%) 78.59 0.6469 0.6626 0.3348 0.4267 0.058

ours (20%) 76.81 0.6142 0.6350 0.3414 0.4309 0.064

ours (30%) 75.93 0.5688 0.5909 0.3576 0.4556 0.069
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5. Conclusions

In this paper, we propose a novel multimodal image aesthetic quality assessment
method, which not only solves the problem of missing textual modality, but also breaks
through the limitation of feature fusion only at a single level in the previous methods.
This method combines the most advanced methods in the field of computer vision and
natural language processing. The pretrained missing modality reconstruction model
reconstructs the missing textual modality according to the available visual modality, thereby
forming a new multimodal representation. The proposed multimodal encoder can make
multimodal information interact at different levels for more effective and fine-grained
fusion. Experimental results on AVA and Photo.net datasets show that our method not only
improves the performance in full-modality conditions, but also can effectively solve the
problem of missing textual modality. In the future, we will explore more effective solutions
for severely missing modality problems.
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