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Abstract: The method of constructing the generalized dihedral group as a semidirect product of an
abelian group and the group Z2 of integers modulo 2 is extended to the case of gyrogroups. This
leads to the study of a new class of gyrogroups, which includes generalized dihedral groups and
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1. Introduction

It is a recurring theme in mathematics that theoretical results are sometimes motivated
by concrete examples—the more examples are known, the more knowledge on the structure
under consideration is gained. In view of Cayley’s theorem for groups, permutation groups
are prominent examples of this process. Recall that if groups Γ and Π, together with a
homomorphism ϕ from Π to the automorphism group Aut (Γ), are given, then one can
construct a new group, called the (external) semidirect product of Γ and Π with respect to
ϕ, denoted by Γ oϕ Π. The resulting group contains isomorphic copies of the initial groups
Γ and Π, and one of which is a normal subgroup. It turns out that direct products are
simply a special case of this method (by letting ϕ be the trivial homomorphism) and that
many groups arise as semidirect products of smaller groups. In particular, a generalized
dihedral group is obtained as a semidirect product of an abelian group and a cyclic group
of order two. The generalized dihedral group constructed from a cyclic group of order n
with n ≥ 3 is indeed the dihedral group of order 2n.

In this article, we establish that the process of dihedralizing an abelian group can be
extended to the case of a certain gyrocommutative gyrogroup, which is a nonassociative
structure sharing common properties with abelian groups. Historically, the notion of a
gyrogroup originated from the study of the parametrization of the Lorentz transformation
group by Ungar [1]. The formation of a gyrogroup is intensively described in [2] and
references therein. It turns out that gyrogroups may be regarded as a suitable general-
ization of groups, and several classical results continue to hold for gyrogroups, see, for
instance, [3–14]. The main goal of this article is to introduce and to study a new class of
gyrogroups that are constructed from smaller gyrogroups via the notion of semidirect
products, called dihedralized gyrogroups. This results in a new non-gyrocommutative
gyrogroup of order 16, as a concrete example. Then, we study algebraic properties of
dihedralized gyrogroups and explore combinatorial properties of their Cayley graphs. For
the sake of convenience, we summarize a few main results of this article below.

We show that, under a certain condition, a gyrogroup can be decomposed into a
gyrosum of two subgyrogroups, one of which is a normal subgyrogroup.
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Theorem 1 (See Theorem 8 for the proof). Let G be a gyrogroup, let H be a subgyrogroup of G,
and let K be a normal subgyrogroup of G. Then, the following statements are equivalent:

1. G = H ⊕ K and H ∩ K = {e};
2. For each a ∈ G, there is a unique pair (h, k) ∈ H × K such that a = h⊕ k.
3. For each a ∈ G, there is a unique pair (h, k) ∈ H × K such that a = k⊕ h.
4. If ι : H → G is the inclusion map and π : G → G/K is the canonical projection, then π ◦ ι

is a gyrogroup isomorphism from H to G/K.
5. There exists a gyrogroup homomorphism ϕ : G → H with kernel K such that ϕ(h) = h for

all h ∈ H; that is, the following is a split short exact sequence:

{e} −→ K ι−→ G
ϕ−→ H −→ {e}.

Then, we show that, with a gyrocommutative gyrogroup satisfying the skew left loop
property in hand, a new gyrogroup can be constructed.

Theorem 2 (See Theorem 10 for the proof). Suppose that G is a gyrocommutative gyrogroup
and has the skew left loop property. Then, G×Z2 is a gyrogroup under the operation defined by

(a, m)⊕ϕ (b, n) = (a⊕ ϕ(m)(b), m + n)

and in this case the gyroautomorphisms are defined by

gyr [(a, m), (b, n)](c, k) = (gyr [a, ϕ(m)(b)](c), k)

for all a, b, c ∈ G, m, n, k ∈ Z2, where ϕ sends 0 to the identity automorphism of G and sends 1 to
the inversion map of G.

Next, we describe how a Cayley graph of a dihedralized gyrogroup looks compared
to that of the original gyrogroup.

Theorem 3 (See Theorem 12 for the proof). Let G be a finite dihedralizable gyrogroup with a
right generating set S and let S̃ = (S× {0}) ∪ {(e, 1)}. In RCay(Dih(G), S̃), the subgraph C0
induced by G × {0} is isomorphic to RCay(G, S) and the subgraph C1 induced by G × {1} is
isomorphic to RCay(G,	S). Furthermore, C0 and C1 are isomorphic.

Lastly, we give an explicit Hamiltonian path in a specific type of dihedralized gyro-
groups.

Theorem 4 (See Theorem 14 for the proof). Let G be a finite gyrogroup that is an internal semi-
direct product K o H, where K = 〈r〉 ∼= Zn and H = 〈s〉 ∼= Z2. Let S = {r, s}. If gyr [r, g](r) =
r for all g ∈ G, then the walk e[[r]n−1[s][r]n−1] is a Hamiltonian path in RCay(G, S). In addition,
if G is dihedralizable, then the walk

(e, 0)[[(r, 0)]n−1[(s, 0)][(r, 0)]n−1[(0, 1)][(r, 0)]n−1[(s, 0)][(r, 0)]n−1]

is a Hamiltonian path in RCay(Dih(G), S̃), where S̃ = {(r, 0), (s, 0), (e, 1)}.

2. Preliminaries

In this section, we summarize some basic definitions and properties of gyrogroups for
easy reference. See [2,15] for more details. In the case when ⊕ is a binary operation on a
non-empty set G, let Aut (G) be the set of all automorphisms of (G,⊕).

Definition 1. A non-empty set G, together with a binary operation ⊕ on G, is called a gyrogroup
if it satisfies the following axioms:

(G1) There exists an element e ∈ G such that e⊕ a = a for all a ∈ G.
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(G2) For each a ∈ G, there exists an element b ∈ G such that b⊕ a = e.
(G3) For all a, b ∈ G, there is an automorphism gyr [a, b] ∈ Aut (G) such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b](c) (left gyroassociative law)

for all c ∈ G.
(G4) For all a, b ∈ G, gyr [a⊕ b, b] = gyr [a, b]. ( left loop property)

Let G be a gyrogroup. The element e in (G1) is indeed a unique two-sided identity of
G, called the identity element. The element b in (G2) is indeed a unique two-sided inverse of
a in G, denoted by 	a. The automorphism gyr [a, b] in (G3) is called the gyroautomorphism
generated by a and b. The map defined by γ : (a, b) 7→ gyr [a, b] for all a, b ∈ G is referred
to as the gyrator map of G. The cooperation of G, denoted by �, is defined by the equation
a � b = a ⊕ gyr [a,	b](b) for all a, b ∈ G. In addition, define a 	 b = a ⊕ (	b) and
a� b = a� (	b). We say that a gyrogroup is degenerate if its gyroautomorphisms are all
trivial, and in this case G is a group. A nondegenerate gyrogroup is a gyrogroup that is not
degenerate.

Theorem 5 (See [2]). Let G be a gyrogroup. Then, the following properties hold for all a, b, c ∈ G:

1. a⊕ b = a⊕ c implies b = c. (left cancellation law I)
2. 	a⊕ (a⊕ b) = b. (left cancellation law II)
3. (b� a)	 a = b. (right cancellation law I)
4. (b	 a)� a = b. (right cancellation law II)
5. b⊕ a = c⊕ a implies b = c. (right cancellation law III)
6. (a⊕ b)⊕ c = a⊕ (b⊕ gyr [b, a](c)). (right gyroassociative law)

Let G be a gyrogroup. A subset H of G is a subgyrogroup of G, denoted by H ≤ G, if
H forms a gyrogroup under the operation inherited from G and gyr [a, b](H) = H for all
a, b ∈ H. An associative subgyrogroup of G is called a subgroup of G. A subgyrogroup H of
G is called an L-subgyrogroup whenever gyr [a, h](H) = H for all a ∈ G, h ∈ H. If H and K
are subgyrogroups of G, define H ⊕ K = {h⊕ k : h ∈ H, k ∈ K}.

Proposition 1 (The Subgyrogroup Criterion, Proposition 21 of [15]). A non-empty subset H
of a gyrogroup G is a subgyrogroup if and only if a ∈ H implies 	a ∈ H and a, b ∈ H implies
a⊕ b ∈ H.

Let G and H be gyrogroups. A map ϕ from G to H is called a gyrogroup homomorphism
if ϕ(a ⊕ b) = ϕ(a) ⊕ ϕ(b) for all a, b ∈ G. In this case, the kernel of ϕ is defined as
ker ϕ = {a ∈ G : ϕ(a) = e}. A bijective gyrogroup homomorphism is called a gyrogroup
isomorphism. If there is a gyrogroup isomorphism from G to H, we say that G is isomorphic
to H, denoted by G ∼= H. A subgyrogroup N of G is normal, denoted by N E G, if there
exists a gyrogroup homomorphism ϕ from G to a gyrogroup such that N = ker ϕ.

Theorem 6 (The second isomorphism theorem, Theorem 33 of [15]). Let G be a gyrogroup
and let A, B 6 G. If BE G, then A ∩ BE A and (A⊕ B)/B ∼= A/(A ∩ B) as gyrogroups.

Let G and H be gyrogroups. The direct product of G and H, denoted by G × H,
is a gyrogroup with underlying set {(g, h) : g ∈ G, h ∈ H} whose operation is defined
componentwise by

(a, b)⊕ (c, d) = (a⊕ c, b⊕ d) (1)

for all a, c ∈ G, b, d ∈ H (cf. Section 2.1 of [16]).
Recall that a gyrogroup G is gyrocommutative if a⊕ b = gyr [a, b](b⊕ a) for all a, b ∈ G.

Recall also that a gyrogroup G has the automorphic inverse property if	(a⊕ b) = (	a)⊕ (	b)
for all a, b ∈ G. It is clear that a gyrogroup G has the automorphic inverse property if
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and only if the inversion map i, defined by i(a) = 	a, a ∈ G, is an automorphism of G. By
Theorem 3.2 of [2], a gyrogroup G is gyrocommutative if and only if it has the automorphic
inverse property. A gyrogroup G (finite or infinite) is said to be of exponent at most two if
a⊕ a = e for all a ∈ G. It is clear that G is of exponent at most two if and only if a = 	a for
all a ∈ G. An element a in a gyrogroup is of order two if a 6= e and a⊕ a = e.

Let A be a subset of a gyrogroup G. We say that A is symmetric if either A = ∅ or
	a ∈ A for all a ∈ A. The subgyrogroup of G generated by A, denoted by 〈A〉, is defined as
〈A〉 = ⋂{H ≤ G, A ⊆ H}. It is the smallest subgyrogroup of G containing A ordered by
inclusion (cf. Proposition 26 of [15]). A subset S of G is a generating set for G if 〈S〉 = G.
In this case, we say that G is generated by S or S generates G. A non-empty subset S of a
gyrogroup G is called a left generating set for G if for each element g ∈ G, there are elements
s1, s2, . . . , sn ∈ S such that g = sn ⊕ (sn−1 ⊕ (· · · ⊕ (s2 ⊕ s1) · · · )). In this case, we write
(S〉 = G (cf. p. 30 of [5]). It is called a right generating set for G if, for each element g ∈ G,
there are elements s1, s2, . . . , sn ∈ S such that g = ((· · · (s1⊕ s2)⊕ · · · )⊕ sn−1)⊕ sn. In this
case, we write 〈S) = G. By the closure property, any left or right generating set for G is a
generating set for G. We say that G is strongly generated by S if S is a generating set for G
such that gyr [a, b](S) = S for all a, b ∈ G (cf. Definition 18 of [17]).

Proposition 2. Let G and H be gyrogroups and let φ : G → H be a surjective gyrogroup
homomorphism. If S is a (respectively, left, right) generating set for G, then φ(S) is a (respectively,
left, right) generating set for H.

Proof. Suppose that 〈S〉 = G. We show that H = 〈φ(S)〉 =
⋂{K ≤ H, φ(S) ⊆ K}.

Let h ∈ H. Suppose that K ≤ H and φ(S) ⊆ K. Since φ is surjective, h = φ(g) for
some g ∈ G. Since φ is a homomorphism, φ−1(K) ≤ G (cf. Proposition 34 of [15]) and
S ⊆ φ−1(K). Since S generates G, we obtain g ∈ φ−1(K). Hence, h = φ(g) ∈ K. This
proves that H ⊆ ⋂{K ≤ H, φ(S) ⊆ K} and so equality holds. The proof of the remaining
statements is straightforward, using the fact that φ is surjective and preserves the gyrogroup
operations.

Next, let us mention two concrete examples of finite gyrogroups, which will be primary
examples in the sequel.

Example 1. In the gyrogroup G8 = {0, 1, 2, 3, 4, 5, 6, 7} (cf. p. 404 of [15]), the non-trivial
gyroautomorphism of G8 is given in cycle decomposition by

A = (4 6)(5 7). (2)

The gyroaddition and gyration tables for G8 are given in Tables 4 and 5 of [15], respectively.

Example 2. In the gyrogroup G15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} (cf. p. 432 of [15]),
the non-trivial gyroautomorphisms of G15 are given in cycle decomposition by

A = (1 7 5 10 6)(2 3 8 11 14),

B = (1 6 10 5 7)(2 14 11 8 3),

C = (1 10 7 6 5)(2 11 3 14 8),

D = (1 5 6 7 10)(2 8 14 3 11).

(3)

The gyroaddition and gyration tables for G15 are given in Tables 6 and 7 of [15], respectively.

Standard terminology and notation in graph theory used throughout the article are
defined as usual. A directed graph or digraph is an ordered pair ~D = (V,~E), where V is a set
of vertices and ~E ⊆ {(u, v) : u, v ∈ V and u 6= v} is a set of edges. In this article, we will
write u → v instead of (u, v) to emphasize the direction. For simplicity, we use the term
“graph” instead of “digraph” from now on. We will refer to a walk in a graph by specifying
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its vertices as v1 → v2 → · · · → vn, or by specifying its edge labelling as [s1, s2, . . . , sn].
However, in the case of edge labelling, a walk is not unique unless the initial vertex is given.
In this case, we write v1[s1, s2, . . . , sn] to indicate that the initial vertex is v1. We also write
[s1, s2, . . . , sn]i for a walk that repeats edge labelling [s1, s2, . . . , sn] i times.

Definition 2 (Definition 2.8 of [11]). Let G be a gyrogroup and let S be a subset of G not
containing the gyrogroup identity. The (color) right Cayley graph of G with respect to S, denoted by
RCay(G, S), is a digraph whose vertices are the gyrogroup elements, and for any two vertices u and
v, there is an edge u→ v with color s if v = u⊕ s for some s ∈ S.

The left Cayley graphs can be defined in the same way as in Definition 2 by adding s
to the left-hand side instead.

Theorem 7 (Theorem 4.5 of [11]). Let G be a finite gyrogroup and let S be a symmetric subset of
G not containing e such that gyr [a, b](S) = S for all a, b ∈ G. Then, RCay(G, S) is transitive.

3. Construction of Gyrogroups

The method of constructing a group as a semidirect product of two groups is well-
known in the literature. The main goal of this section is to extend this method to the case of
gyrogroups. This leads to a new class of gyrogroups, which includes generalized dihedral
groups and dihedral groups as a special case. As an application of this result, we obtain a
new gyrogroup of order 16, as shown in Example 5. We begin by introducing the notion of
an internal semidirect product for gyrogroups and then formulate the notion of an external
semidirect product for a particular class of gyrogroups.

3.1. Internal and External Semidirect Products

We begin with the following lemma, which indicates the uniqueness of expression of
a gyrosum under a certain condition.

Lemma 1. Let G be a gyrogroup. If H and K are subgyrogroups of G such that gyr [a, b](K) ⊆ K
for all a, b ∈ H and H ∩ K = {e}, then h1 ⊕ k1 = h2 ⊕ k2, where h1, h2 ∈ H, k1, k2 ∈ K, implies
h1 = h2 and k1 = k2.

Proof. Let h1, h2 ∈ H, let k1, k2 ∈ K, and suppose that h1 ⊕ k1 = h2 ⊕ k2. Using left
cancellation law II, we obtain k1 = 	h1 ⊕ (h2 ⊕ k2). By the left gyroassociative law,
k1 = (	h1 ⊕ h2)⊕ gyr [	h1, h2](k2). Set k3 = 	gyr [	h1, h2](k2). By assumption, k3 ∈ K.
Note that k1 = (	h1 ⊕ h2)	 k3. By right cancellation law II, k1 � k3 = 	h1 ⊕ h2. Note that
k1� k3 = k1 ⊕ gyr [k1,	k3](k3) ∈ K and that 	h1 ⊕ h2 ∈ H. Hence, 	h1 ⊕ h2 ∈ H ∩ K and
so 	h1⊕ h2 = e by assumption. By the left cancellation law II, h1 = h2. This in turn implies
k1 = k2 by the left cancellation law I.

We are now in a position to prove the main theorem of this subsection. This enables us
to decompose a gyrogroup into a gyrosum of two subgyrogroups, one of which is a normal
subgyrogroup, under a certain condition.

Theorem 8. Let G be a gyrogroup, let H be a subgyrogroup of G, and let K be a normal sub-
gyrogroup of G. Then, the following statements are equivalent:

1. G = H ⊕ K and H ∩ K = {e};
2. For each a ∈ G, there is a unique pair (h, k) ∈ H × K such that a = h⊕ k.
3. For each a ∈ G, there is a unique pair (h, k) ∈ H × K such that a = k⊕ h.
4. If ι : H → G is the inclusion map and π : G → G/K is the canonical projection, then π ◦ ι

is a gyrogroup isomorphism from H to G/K.
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5. There exists a gyrogroup homomorphism ϕ : G → H with kernel K such that ϕ(h) = h for
all h ∈ H; that is, the following is a split short exact sequence:

{e} −→ K ι−→ G
ϕ−→ H −→ {e}. (4)

Proof. (1)⇒ (2) Let a ∈ G. Since G = H ⊕ K, we obtain a = h⊕ k for some h ∈ H, k ∈ K.
Hence, there is a pair (h, k) ∈ H × K such that a = h⊕ k. Let (h′, k′) ∈ H × K and suppose
that a = h′ ⊕ k′. Then, h⊕ k = h′ ⊕ k′. By Lemma 1, h = h′ and k = k′. This shows that the
pair (h, k) is unique.

(2)⇒ (3) Let a ∈ G. By assumption, a = h⊕ k for some h ∈ H, k ∈ K. Since KE G, we
have h⊕ K = K⊕ h and so h⊕ k = k′ ⊕ h for some k′ ∈ K. Thus, a = k′ ⊕ h. Let h1, h2 ∈ H
and let k1, k2 ∈ K. Suppose that k1 ⊕ h1 = k2 ⊕ h2. Since K ⊕ h1 = h1 ⊕ K, we have
k1 ⊕ h1 = h1 ⊕ k′1. Similarly, k2 ⊕ h2 = h2 ⊕ k′2 for some k′2 ∈ K. Hence, h1 ⊕ k′1 = h2 ⊕ k′2.
By assumption, h1 = h2. Applying right cancellation law I, we obtain k1 = k2. This proves
the uniqueness part.

(3)⇒ (4) Note that π and ι are gyrogroup homomorphisms. Hence, π ◦ ι is a gyrogroup
homomorphism from H to G/K. Let h1, h2 ∈ H. Suppose that π ◦ ι(h1) = π ◦ ι(h2). Then,
h1 ⊕ K = h2 ⊕ K. Since K E G, we have h1 ⊕ K = K ⊕ h1 and h2 ⊕ K = K ⊕ h2. Thus,
K⊕ h1 = K⊕ h2. Since h1 ∈ K⊕ h1, it follows that e⊕ h1 = h1 = k⊕ h2 for some k ∈ K. By
assumption, h1 = h2. This proves that π ◦ ι is injective. Let X ∈ G/K. Then, X = a⊕ K for
some a ∈ G. By assumption, a = k′ ⊕ h for some k′ ∈ K, h ∈ H. Since K⊕ h = h⊕ K, we
have k′ ⊕ h = h⊕ k for some k ∈ K. It follows that

h⊕ K = (h⊕ K)⊕ (e⊕ K) = (h⊕ K)⊕ (k⊕ K) = (h⊕ k)⊕ K = a⊕ K.

Hence, π ◦ ι(h) = h⊕ K = X. This proves that π ◦ ι is surjective.
(4)⇒ (5) Set φ = π ◦ ι. By assumption, φ is a gyrogroup isomorphism from H to G/K.

Hence, φ−1 exists and is a gyrogroup isomorphism from G/K to H. Define ϕ = φ−1 ◦ π.
Then, ϕ is a gyrogroup homomorphism from G to H. Let k ∈ K. Then, ϕ(k) = φ−1(π(k)) =
φ−1(k ⊕ K) = φ−1(e⊕ K) = e. Hence, k ∈ ker ϕ. This proves K ⊆ ker ϕ. To prove the
reverse inclusion, let k ∈ ker ϕ. Then, φ−1(e⊕ K) = e = ϕ(k) = φ−1(π(k)) = φ−1(k⊕ K).
Since φ−1 is injective, e⊕ K = k⊕ K. Hence, k ∈ K. This proves K = ker ϕ. Let h ∈ H. By
definition, ϕ(h) = φ−1(h⊕ K) = h since φ(h) = π ◦ ι(h) = h⊕ K.

(5)⇒ (1) Let a ∈ G. By left cancellation law II, a = ϕ(a)⊕ (	ϕ(a)⊕ a). By assumption,
ϕ(a) ∈ H and so ϕ(ϕ(a)) = ϕ(a). Since ϕ preserves the gyrogroup operations, ϕ(	ϕ(a)⊕
a) = 	ϕ(ϕ(a))⊕ ϕ(a) = 	ϕ(a)⊕ ϕ(a) = e. This implies 	ϕ(a)⊕ a ∈ ker ϕ = K. This
proves G = H ⊕ K. Clearly, e ∈ H ∩ K. Let x ∈ H ∩ K. Since x ∈ K, we obtain ϕ(x) = e.
Since x ∈ H, we obtain ϕ(x) = x. Hence, x = e. This proves H ∩ K = {e}.

Definition 3. Let G be a gyrogroup, let H be a subgyrogroup of G, and let K be a normal subgy-
rogroup of G. If one of the (equivalent) conditions in Theorem 8 is true, then we say that G splits
over K or that G is the internal semidirect product of K and H, denoted by G = K o H or by
G = H n K.

In the case when the gyrogroup G in Theorem 8 is degenerate (that is, G is a group),
we recover the group-theoretic internal semidirect product. The notation in Definition 3 is
chosen to emphasize that KE K o H. If G is the internal semidirect product of K and H,
then the operation in G can be parametrized by

(h1 ⊕ k1)⊕ (h2 ⊕ k2) = (h1 ⊕ h2)⊕ gyr [h1, h2](	h2 ⊕ (k1 ⊕ gyr [k1, h1](h2 ⊕ k2))) (5)

for all h1, h2 ∈ H, k1, k2 ∈ K. The next proposition gives a sufficient condition for a finite
gyrogroup to be an internal semidirect product of its subgyrogroups.
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Proposition 3. Let G be a finite gyrogroup, let H be a subgyrogroup of G, and let K be a normal
subgyrogroup of G. If H ∩ K = {e} and |G| = |H||K|, then G = K o H.

Proof. In view of Theorem 8, we need only prove that G = H ⊕ K. By the second
isomorphism theorem for gyrogroups, (H ⊕ K)/K ∼= H/(H ∩ K). This implies that
|H ⊕ K|
|K| =

|H|
|H ∩ K| and so |H⊕K| = |H||K| = |G|. Since G is finite, we obtain G = H⊕K,

as required.

As an application of Proposition 3, we obtain the following two examples. This shows
that G8 and G15 can be, in some senses, constructed from cyclic groups.

Example 3. In the gyrogroup G8, let H = {0, 7} and let K = {0, 1, 2, 3}. Then, H and K are
subgyrogroups of G8 such that H ∩ K = {0}. Furthermore, direct computation shows that KE G8.
By Proposition 3, G8 = K o H.

Example 4. In the gyrogroup G15, let H = {0, 1, 2} and let K = {0, 4, 9, 12, 13}. Then, H and
K are subgyrogroups of G15 such that H ∩ K = {0}. Furthermore, direct computation shows that
KE G15. By Proposition 3, G15 = K o H.

Proposition 4. Let G be a gyrogroup. Suppose that G is the internal semidirect product of K and
H, G = K o H, where H ∼= Z2 is generated by s and R is a right (respectively, left) generating set
for K. Then, R ∪ {s} is a right (respectively, left) generating set for G.

Proof. In view of Theorem 8, every element of G can be written as g, g⊕ s, or s for some
g ∈ K. Expressing g in a right-generated manner of elements in R, we conclude that R∪ {s}
is a right generating set for G. The left counterpart can be proven in a similar fashion by
noting that G = H n K.

Following the construction of group-theoretic (external) semidirect products, we
attempt to define an external semidirect product for gyrogroups. Let G be a gyrogroup, let
Γ be a group, and let ϕ : Γ→ Aut (G) be a group homomorphism, where the operation on
Aut (G) is composition of maps denoted by ◦. For (a, g), (b, h) ∈ G× Γ, define ⊕ϕ by

(a, g)⊕ϕ (b, h) = (a⊕ ϕ(g)(b), gh). (6)

In addition, define a map γ by the formula

γ((a, g), (b, h))(c, k) = (c′, k) for all c ∈ G, k ∈ Γ, (7)

where c′ is defined by

c′ = ϕ(gh)−1 ◦ gyr [a, ϕ(g)(b)] ◦ ϕ(gh)(c). (8)

In general, (G× Γ,⊕ϕ) together with γ may not be a gyrogroup. However, whenever
(G× Γ,⊕ϕ) is a gyrogroup with γ as the gyrator map, this gyrogroup will be called the
external semidirect product of G and Γ with respect to ϕ, denoted by G oϕ Γ. It is clear that if
G is degenerate, then Equation (8) reduces to c′ = c and Equation (6) does define the usual
operation on the group-theoretic semidirect product of G and Γ. The following theorem
justifies the use of the term “external semidirect product”.

Theorem 9. Let G be a gyrogroup, let Γ be a group with identity 1Γ, and let ϕ : Γ → Aut (G)
be a group homomorphism. Suppose that (G× Γ,⊕ϕ) is a gyrogroup with γ as the gyrator map,
where ⊕ϕ is defined by Equation (6) and γ is defined by Equations (7) and (8). Then, G oϕ Γ is the
internal semidirect product of Ĝ and Γ̂, where

Ĝ = {(a, 1Γ) : a ∈ G} and Γ̂ = {(e, g) : g ∈ Γ}. (9)
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Proof. Note that (e, 1Γ) must be the identity of G oϕ Γ by the uniqueness of the gyrogroup
identity. Furthermore, the inverse of an element (b, h) in G oϕ Γ must be (ϕ(h−1)(	b), h−1)
by the uniqueness of a gyrogroup inverse. Let g, h ∈ Γ. By definition, (e, g)⊕ϕ (e, h) =

(e, gh) and 	(e, g) = (e, g−1). By the subgyrogroup criterion (see Proposition 1), Γ̂ is a
subgyrogroup of G oϕ Γ. This also implies that (e, g) ⊕ϕ ((e, h) ⊕ϕ (e, k)) = (e, ghk) =

((e, g)⊕ϕ (e, h))⊕ϕ (e, k) for all g, h, k ∈ Γ. Hence, Γ̂ is a subgroup of G oϕ Γ.
Next, we show that Ĝ is a normal subgyrogroup of G oϕ Γ. Define a map π by

π(a, g) = (e, g) for all a ∈ G, g ∈ Γ. Then, π is a gyrogroup homomorphism from G oϕ Γ to
Γ̂. Furthermore, ker π = Ĝ, which implies that ĜEG oϕ Γ. By normality, Ĝ⊕ϕ Γ̂ = Γ̂⊕ϕ Ĝ
since (a, g)⊕ϕ Ĝ = Ĝ⊕ϕ (a, g) for all a ∈ G, g ∈ Γ (cf. Proposition 39 of [15]).

Since (a, g) = (a, 1Γ)⊕ϕ (e, g) for all a ∈ G, g ∈ Γ, we obtain G× Γ = Ĝ⊕ϕ Γ̂. Clearly,
Ĝ ∩ Γ̂ = {(e, 1Γ)}. Applying Theorem 8 with H = Γ̂ and K = Ĝ, we obtain that G oϕ Γ is
the internal semidirect product of Ĝ and Γ̂.

In the next subsection, we give a sufficient condition for (G× Γ,⊕ϕ) to be a gyrogroup
with γ as the gyrator map, where⊕ϕ is defined by Equation (6), γ is defined by Equations (7)
and (8), G is a certain gyrocommutative gyrogroup, and Γ is a cyclic group of order two. This
method allows us to construct a non-gyrocommutative gyrogroup from a gyrocommutative
gyrogroup and an abelian group.

3.2. Dihedralized Gyrogroups

Recall that if A is an abelian group, then the generalized dihedral group associated with
A is the semidirect product of A and the cyclic group Z2 = {0, 1} with respect to the
homomorphism sending 0 to the identity map of A and 1 to the inversion map of A. If A is
chosen to be the group Zn of integers modulo n with n ≥ 3, then A oZ2 is isomorphic to
the dihedral group D2n. If A is chosen to be the additive group Z of integers, then AoZ2 is
isomorphic to the infinite dihedral group D∞. In this section, we extend this method to the
case of gyrocommutative gyrogroups. It turns out that some gyrocommutative gyrogroups
give rise to non-gyrocommutative gyrogroups. We begin with the following definition,
which will be crucial in the sequel.

Definition 4. A gyrogroup G is said to have the skew left loop property if

gyr [a⊕ b,	b] = gyr [a, b] (10)

for all a, b ∈ G.

From now on, Identity (10) is referred to as the skew left loop property. It is clear
that every group has the skew left loop property. Direct computation shows that the
gyrogroup G8 has the skew left loop property. Moreover, the gyrogroup G15 is finite and
gyrocommutative but does not have the skew left loop property since gyr [1⊕ 3,	3] =
gyr [4, 7] = B, whereas gyr [1, 3] = A. Next, we exhibit a class of gyrocommutative
gyrogroups having the skew left loop property.

Proposition 5. Every gyrogroup of exponent at most two is gyrocommutative and has the skew
left loop property.

Proof. Suppose that G is a gyrogroup of exponent at most two. As noted earlier, 	x = x
for all x ∈ G. Let a, b ∈ G. Note that 	(a⊕ b) = a⊕ b = (	a)⊕ (	b), which shows that G
has the automorphic inverse property. We also obtain that gyr [a⊕ b,	b] = gyr [a⊕ b, b] =
gyr [a, b], where the latter equality follows by the left loop property.

For instance, the gyrogroup in Example 3.2 of [5] is of exponent at most two, and so
it is gyrocommutative and has the skew left loop property. From now on, let Z2 = {0, 1}
be the group of integers modulo 2, which is a cyclic group of order two. Furthermore,



Mathematics 2022, 10, 2276 9 of 21

G× Z2 is recognized as the set-theoretic cartesian product of G and Z2 unless otherwise
stated. The next lemma shows that the group Z2 acts on any gyrocommutative gyrogroup
by inverting elements.

Lemma 2. Let G be a gyrocommutative gyrogroup. Define a map ϕ on Z2 by

ϕ(0) = IG and ϕ(1) = i, (11)

where IG is the identity map of G and i is the inversion map of G. Then, the following properties hold:

1. ϕ is a group homomorphism from Z2 to Aut (G).
2. ϕ(m) ◦ gyr [a, b] = gyr [a, b] ◦ ϕ(m) for all m ∈ Z2, a, b ∈ G.

Proof. Since G is gyrocommutative, the inversion map i is an automorphism of G. Hence,
ϕ sends Z2 to Aut (G). It is not difficult to see that ϕ preserves the group operations, which
yields Part 1. It is clear that IG ◦ gyr [a, b] = gyr [a, b] ◦ IG. Since gyr [a, b] preserves the
gyrogroup operations, we obtain

i ◦ gyr [a, b](c) = 	gyr [a, b](c) = gyr [a, b](	c) = gyr [a, b] ◦ i(c)

for all c ∈ G. This shows that i ◦ gyr [a, b] = gyr [a, b] ◦ i, which proves Part 2.

We are now in a position to prove the main theorem of this subsection, which shows
that any gyrocommutative gyrogroup having the skew left loop property can be enlarged
to a new gyrogroup.

Theorem 10. Suppose that G is a gyrocommutative gyrogroup and has the skew left loop property.
Then, G×Z2 is a gyrogroup under the operation defined by

(a, m)⊕ϕ (b, n) = (a⊕ ϕ(m)(b), m + n) (12)

and in this case the gyroautomorphisms are defined by

gyr [(a, m), (b, n)](c, k) = (gyr [a, ϕ(m)(b)](c), k) (13)

for all a, b, c ∈ G, m, n, k ∈ Z2. Here, ϕ is defined by Equation (11).

Proof. By Part 1 of Lemma 2, ϕ is a group homomorphism from Z2 to Aut (G). Since
ϕ(0) = IG, it follows that (e, 0) acts as a left identity of (G×Z2,⊕ϕ). Let (a, m) ∈ G×Z2.
Since ϕ(−m) ∈ Aut (G), it follows that (ϕ(−m)(	a),−m) acts as a left inverse of (a, m) in
G×Z2 with respect to (e, 0). Thus, (G×Z2,⊕ϕ) satisfies (G1) and (G2) of Definition 1.

Let a, b, c ∈ G and let m, n, k ∈ Z2. Define γ((a, m), (b, n))(c, k) = (c′, k), where
c′ is defined by c′ = ϕ(m + n)−1 ◦ gyr [a, ϕ(m)(b)] ◦ ϕ(m + n)(c). By Lemma 2, γ is
given by γ((a, m), (b, n))(c, k) = (gyr [a, ϕ(m)(b)](c), k). It is not difficult to check that
γ((a, m), (b, n)) is an automorphism of (G×Z2,⊕ϕ) satisfying (a, m)⊕ϕ ((b, n)⊕ϕ (c, k)) =
((a, m)⊕ϕ (b, n))⊕ϕ γ((a, m), (b, n))(c, k), which shows that (G×Z2,⊕ϕ) satisfies (G3) of
Definition 1. To complete the proof, we calculate Table 1:

Table 1. Gyration forms in the proof of Theorem 10.

(m, n)(m, n)(m, n) gyr [a⊕ ϕ(m)(b), ϕ(m + n)(b)]gyr [a⊕ ϕ(m)(b), ϕ(m + n)(b)]gyr [a⊕ ϕ(m)(b), ϕ(m + n)(b)] gyr [a, ϕ(m)(b)]gyr [a, ϕ(m)(b)]gyr [a, ϕ(m)(b)]

(0, 0) gyr [a⊕ b, b] gyr [a, b]
(0, 1) gyr [a⊕ b,	b] gyr [a, b]
(1, 0) gyr [a	 b,	b] gyr [a,	b]
(1, 1) gyr [a	 b, b] gyr [a,	b]



Mathematics 2022, 10, 2276 10 of 21

Since G has the left loop property as well as the skew left loop property, it follows that
(G×Z2,⊕ϕ) satisfies (G4) of Definition 1.

By Theorem 10, if G is a gyrocommutative gyrogroup and has the skew left loop
property, then the external semidirect product of G and Z2 with respect to ϕ defined by
Equation (11) exists, which will be denoted by G oZ2 for simplicity. By definition, the
operation on G oZ2, written by ⊕o, is given by

(a, 0)⊕o (b, 0) = (a⊕ b, 0),

(a, 0)⊕o (b, 1) = (a⊕ b, 1),

(a, 1)⊕o (b, 0) = (a	 b, 1),

(a, 1)⊕o (b, 1) = (a	 b, 0)

(14)

for all a, b ∈ G. Furthermore, 	(a, 0) = (	a, 0) and 	(a, 1) = (a, 1) for all a ∈ G. The
gyroautomorphisms of G oZ2 are given by

gyr [(a, 0), (b, 0)](c, k) = (gyr [a, b](c), k),

gyr [(a, 0), (b, 1)](c, k) = (gyr [a, b](c), k),

gyr [(a, 1), (b, 0)](c, k) = (gyr [a,	b](c), k),

gyr [(a, 1), (b, 1)](c, k) = (gyr [a,	b](c), k)

(15)

for all a, b, c ∈ G, k ∈ Z2.
Henceforth, if G is a gyrocommutative gyrogroup having the skew left loop property,

then the gyrogroup GoZ2 is called the dihedralized gyrogroup associated with G and denoted
by Dih(G) for simplicity. In fact, in the case when G is an arbitrary abelian group, Dih(G)
is the familiar generalized dihedral group. In the case when G is Zn with n ≥ 3, Dih(G)
is the usual dihedral group of order 2n. This justifies the use of the term “dihedralized
gyrogroup”. By Theorem 9, Dih(G) is indeed the internal semidirect product of Ĝ and Ẑ2.
Clearly, Ĝ and G are isomorphic as gyrogroups, and Ẑ2 and Z2 are isomorphic as groups.

As suggested by the proof of Theorem 10, if G is a gyrocommutative gyrogroup, then
the left loop property holds in (G×Z2,⊕ϕ) if and only if G has the skew left loop property.
Therefore, we introduce the following definition.

Definition 5. A gyrogroup G is dihedralizable if it is gyrocommutative and has the skew left
loop property.

In the next theorem, we give a necessary and sufficient condition for a dihedralized
gyrogroup to be gyrocommutative.

Theorem 11. Suppose that G is a dihedralizable gyrogroup. Then, the following statements
are equivalent:

1. Dih(G) is gyrocommutative.
2. G is of exponent at most two.
3. Dih(G) and G×Z2 are identical, where G×Z2 is the direct product of G and Z2.

Proof. Suppose that Dih(G) is gyrocommutative. Let b ∈ G. By assumption,

(	b, 1) = (e, 1)⊕o (b, 0) = gyr [(e, 1), (b, 0)]((b, 0)⊕ (e, 1)) = (b, 1).

Hence, 	b = b, which shows that G is of exponent at most two. This proves the implication
(1)⇒ (2). Suppose that G is of exponent at most two. By assumption, 	b = b for all b ∈ G.
It follows by Equation (14) that the operations on Dih(G) and G×Z2 are identical. Hence,
the implication (2)⇒ (1) is obtained by Proposition 5.
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Suppose that a ⊕ a = e for all a ∈ G. Hence, 	a = a for all a ∈ G. This implies
ϕ(m)(a) = a for all m ∈ Z2, a ∈ G. Thus, if (a, m), (b, n) ∈ Dih(G), then

(a, m)⊕o (b, n) = (a⊕ ϕ(m)(b), m + n) = (a⊕ b, m + n) = (a, m)⊕ (b, n).

Hence, the operations on Dih(G) and G × Z2 are identical. This proves the implication
(2) ⇒ (3). Suppose that Dih(G) = G × Z2 and let b ∈ G. Note that (e, 1) ⊕o (b, 0) =
(e	 b, 1) = (	b, 1) in Dih(G) and that (e, 1)⊕ (b, 0) = (b, 1) in G × Z2. By assumption,
	b = b, which implies that b⊕ b = e. This proves the implication (3)⇒ (2).

The remainder of this section is devoted to the study of algebraic properties of di-
hedralizable gyrogroups and their dihedralized gyrogroups. These properties will prove
useful in studying the Cayley graphs of dihedralized gyrogroups in the next section.

Proposition 6. Any subgyrogroup of a dihedralizable gyrogroup is dihedralizable.

Proof. This follows from the fact that if H is a subgyrogroup of a gyrogroup G, then the
operation on H is the restriction of the operation on G to H and the gyroautomorphism
generated by a and b in H is the restriction of the gyroautomorphism of G generated by a
and b to H.

According to Proposition 6, if G is a dihedralizable gyrogroup and H is a subgyrogroup
of G, then H is dihedralizable and Dih(H) exists. In fact, we have the following proposition.

Proposition 7. Let G be a dihedralizable gyrogroup. If H is a subgyrogroup of G, then Dih(H)
and H × {0} are subgyrogroups of Dih(G).

Proof. The proposition follows by Equation (14) and the subgyrogroup criterion.

Corollary 1. Let G be a dihedralizable gyrogroup. Then, Dih(G) contains an isomorphic copy
of the dihedral group D2n for all n ∈ {|a| : a ∈ G, |a| < ∞} with n ≥ 3. If G has an element of
infinite order, then Dih(G) contains an isomorphic copy of the infinite dihedral group D∞.

Proof. Let a ∈ G. In the case when 3 ≤ n = |a| < ∞, we know that 〈a〉 is a subgyrogroup
of G that forms a cyclic group of order n (cf. Corollaries 9 and 11 of [15]). Hence, Dih(〈a〉)
is a subgyrogroup of Dih(G) and is isomorphic to D2n. In the case when |a| = ∞, we know
that 〈a〉 is an infinite cyclic group. Hence, Dih(〈a〉) is isomorphic to D∞.

Proposition 8. Let G be a dihedralizable gyrogroup. If H is an L-subgyrogroup of G, then Dih(H)
and H × {0} are L-subgyrogroups of Dih(G).

Proof. Suppose that H is an L-subgyrogroup of G. By Proposition 7, Dih(H) and H × {0}
are subgyrogroups of Dih(G). Let a ∈ G and let h ∈ H. From Equation (15), together with
the fact that gyr [a, h](H) = H and gyr [a,	h](H) = H, we obtain

gyr [(a, m), (h, n)](Dih(H)) = Dih(H) and gyr [(a, m), (h, 0)](H × {0}) = H × {0}.

This shows that Dih(H) and H × {0} are L-subgyrogroups of Dih(G).

A partial converse of Proposition 7 holds, in the following sense.

Proposition 9. Let G be a dihedralizable gyrogroup. If D is a subgyrogroup of Dih(G), then either
D = H × {0} for some subgyrogroup H of G or there are an element b in G and a subgyrogroup K
of G such that {(b, 1)} ⊆ D ⊆ Dih(K).
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Proof. Suppose that D is a subgyrogroup of Dih(G). Define

H0(D) = {a ∈ G : (a, 0) ∈ D} and H1(D) = {a ∈ G : (a, 1) ∈ D}.

Note that D = (H0(D) × {0}) ∪ (H1(D) × {1}). First, we prove that H0(D) is always
a subgyrogroup of G. Since (e, 0) ∈ D, we obtain e ∈ H0(D). Let a, b ∈ H0(D). Then,
(a, 0), (b, 0) ∈ D. Hence, (	a, 0) = 	(a, 0) ∈ D, and so (a⊕ b, 0) = (a, 0)⊕o (b, 0) ∈ D.
This implies 	a ∈ H0(D) and a⊕ b ∈ H0(D). Note that either H1(D) = ∅ or H1(D) 6= ∅.
In the former case, we let H = H0(D) so that D = H × {0}. In the latter case, we
pick b ∈ H1(D). Hence, (b, 1) ∈ D. Let K be the subgyrogroup of G generated by
H0(D) ∪ H1(D). We show that D ⊆ K×Z2. Let (a, m) ∈ D. If m = 0, then a ∈ H0(D) ⊆ K
and so (a, m) ∈ K × Z2. If m = 1, then a ∈ H1(D) ⊆ K and so (a, m) ∈ K × Z2. This
completes the proof.

Proposition 10. Let G be a dihedralizable gyrogroup and suppose that H is a subgyrogroup of G.
If H × {0} is an L-subgyrogroup of Dih(G), then H is an L-subgyrogroup of G.

Proof. Let a ∈ G and let h ∈ H. By assumption, gyr [(a, 0), (h, 0)]((b, 0)) = (gyr [a, h](b), 0)
belongs to H × {0} for all b ∈ H. This implies that gyr [a, h](H) = H.

Propositions 7–10, together with Corollary 1, clarify some aspects of subgyrogroup
lattices of dihedralized gyrogroups. For instance, any subgyrogroup of Dih(G) must be
H × {0} or a subgyrogroup of Dih(H), where H is a subgyrogroup of G. The next lemma
allows us to count the number of elements of order two in a dihedralized gyrogroup.

Lemma 3. Let G be a dihedralizable gyrogroup.

1. Every element of the form (a, 1) in Dih(G) is of order two.
2. Any non-identity element of the form (a, 0) in Dih(G) is of order two if and only if a is of

order two in G.

Proof. For each element (a, 1) ∈ Dih(G), we obtain (a, 1)⊕o (a, 1) = (a	 a, 0) = (e, 0),
where as (a, 1) 6= (e, 0). This proves Part 1. Part 2 follows from the fact that (e, 0) =
(a, 0)⊕o (a, 0) = (a⊕ a, 0) if and only if a⊕ a = e.

From Lemma 3, we obtain the number of elements of order two in Dih(G) as follows.

Proposition 11. Let G be a dihedralizable gyrogroup. The number of elements of order two in
Dih(G) is |G|+ |G2| − 1, where G2 = {a ∈ G : a⊕ a = e}.

Proof. Part 1 of Lemma 3 gives |G| involutions, and Part 2 of Lemma 3 gives |G2| − 1
involutions. The involutions from the two parts are distinct and are all of the involutions in
Dih(G), which completes the proof.

Next, we show that a (respectively, strong, left, right, symmetric) generating set for
a dihedralizable gyrogroup gives rise to a (respectively, strong, left, right, symmetric)
generating set for the corresponding dihedralized gyrogroup.

Proposition 12. Let G be a dihedralizable gyrogroup with a generating set S. Then, (S× {0}) ∪
{(e, 1)} is a generating set for Dih(G).

Proof. Define T = (S× {0}) ∪ {(e, 1)}. We claim that Dih(G) =
⋂{D ≤ Dih(G), T ⊆ D}.

Note that by Proposition 2, S× {0} is a generating set of Ĝ = {(a, 0) : a ∈ G} since G and
Ĝ are isomorphic via the isomorphism a 7→ (a, 0). Let a ∈ G and let m ∈ Z2. Suppose that
D ≤ Dih(G) and T ⊆ D. First, we show that (a, 0) ∈ D. Set H0(D) = {a ∈ G : (a, 0) ∈ D}.
As in the proof of Proposition 9, H0(D) ≤ G. By Proposition 7, H0(D)× {0} ≤ Dih(G)
and so H0(D) × {0} ≤ Ĝ. Since T ⊆ D, we obtain S × {0} ⊆ H0(D) × {0}. Hence,
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(a, 0) ∈ H0(D)× {0}. This implies a ∈ H0(D), which, in turn, implies (a, 0) ∈ D. This,
in particular, shows that Ĝ ⊆ D. In the case when m = 0, we obtain (a, m) = (a, 0) ∈ D.
In the case when m = 1, we obtain (a, m) = (a, 1) = (a, 0)⊕o (e, 1) ∈ D since both (a, 0)
and (e, 1) belong to D. This shows that Dih(G) ⊆ ⋂{D ≤ Dih(G), T ⊆ D} and so equality
holds.

Proposition 13. If a dihedralizable gyrogroup G is strongly generated by S, then Dih(G) is
strongly generated by (S× {0}) ∪ {(e, 1)}.

Proof. Suppose that S generates G and that gyr [a, b](S) = S for all a, b ∈ G. By Proposi-
tion 12, (S× {0}) ∪ {(e, 1)} generates Dih(G). In view of Equation (15),

gyr [(a, m), (b, n)]((S× {0}) ∪ {(e, 1)}) = (S× {0}) ∪ {(e, 1)}

for all a, b ∈ G, m, n ∈ Z2, which completes the proof.

Proposition 14. Let G be a dihedralizable gyrogroup. If S is a left (respectively, right) generating
set of G, then (S× {0}) ∪ {(e, 1)} is a left (respectively, right) generating set of Dih(G).

Proof. Suppose that S is a left generating set for G. Let (a, m) ∈ G× Z2. By assumption,
a = sn ⊕ (sn−1 ⊕ (· · · ⊕ (s2 ⊕ s1) · · · )) for some s1, s2, . . . , sn ∈ S. Moreover, 	a = tk ⊕
(tk−1 ⊕ (· · · ⊕ (t2 ⊕ t1) · · · )) for some t1, t2, . . . , tk ∈ S. In the case when m = 0, we obtain
from Equation (14) that

(a, m) = (a, 0)

= (sn ⊕ (sn−1 ⊕ (· · · ⊕ (s2 ⊕ s1) · · · )), 0)

= (sn, 0)⊕o ((sn−1, 0)⊕o (· · · ⊕o ((s2, 0)⊕o (s1, 0)) · · · )).

In the case when m = 1, we obtain that

(a, m) = (a, 1)

= (e, 1)⊕o (	a, 0)

= (e, 1)⊕o ((tk, 0)⊕o ((tk−1, 0)⊕o (· · · ⊕o ((t2, 0)⊕o (t1, 0)) · · · ))).

This shows that (S× {0}) ∪ {(e, 1)} is a left generating set of Dih(G). Using the fact
that (b, 1) = (b, 0)⊕o (e, 1) for all b ∈ G, one can prove in a similar fashion that if S is a
right generating set for G, then (S× {0})∪ {(e, 1)} is a right generating set for Dih(G).

Proposition 15. Let G be a dihedralizable gyrogroup and let S ⊆ G. If S is symmetric, then
(S× {0}) ∪ {(e, 1)} is symmetric.

Proof. This is because 	(s, 0) = (	s, 0) for all s ∈ S and 	(e, 1) = (e, 1).

We complete this section by recording a new non-gyrocommutative gyrogroup of
order 16, constructed by Theorem 10.

Example 5. By inspection, G8 is dihedralizable. Its dihedralized gyrogroup, Dih(G8), is a gyro-
group of order 16 whose gyroaddition and gyration tables are given in Table 2 and Table 3, respec-
tively. The non-trivial gyroautomorphism Ã of Dih(G8) is given in cycle decomposition by

Ã = ((4, 0) (6, 0))((5, 0) (7, 0))((4, 1) (6, 1))((5, 1) (7, 1)). (16)

In view of Propositions 7–10, together with Corollary 1, we draw the subgyrogroup lattice of the
gyrogroup Dih(G8), as shown in Figure 1.
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Table 2. The gyroaddition table of the gyrogroup Dih(G8).

⊕o⊕o⊕o (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)

(0,0) (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
(1,0) (1,0) (3,0) (0,0) (2,0) (7,0) (4,0) (5,0) (6,0) (1,1) (3,1) (0,1) (2,1) (7,1) (4,1) (5,1) (6,1)
(2,0) (2,0) (0,0) (3,0) (1,0) (5,0) (6,0) (7,0) (4,0) (2,1) (0,1) (3,1) (1,1) (5,1) (6,1) (7,1) (4,1)
(3,0) (3,0) (2,0) (1,0) (0,0) (6,0) (7,0) (4,0) (5,0) (3,1) (2,1) (1,1) (0,1) (6,1) (7,1) (4,1) (5,1)
(4,0) (4,0) (5,0) (7,0) (6,0) (3,0) (2,0) (0,0) (1,0) (4,1) (5,1) (7,1) (6,1) (3,1) (2,1) (0,1) (1,1)
(5,0) (5,0) (6,0) (4,0) (7,0) (2,0) (0,0) (1,0) (3,0) (5,1) (6,1) (4,1) (7,1) (2,1) (0,1) (1,1) (3,1)
(6,0) (6,0) (7,0) (5,0) (4,0) (0,0) (1,0) (3,0) (2,0) (6,1) (7,1) (5,1) (4,1) (0,1) (1,1) (3,1) (2,1)
(7,0) (7,0) (4,0) (6,0) (5,0) (1,0) (3,0) (2,0) (0,0) (7,1) (4,1) (6,1) (5,1) (1,1) (3,1) (2,1) (0,1)
(0,1) (0,1) (2,1) (1,1) (3,1) (6,1) (5,1) (4,1) (7,1) (0,0) (2,0) (1,0) (3,0) (6,0) (5,0) (4,0) (7,0)
(1,1) (1,1) (0,1) (3,1) (2,1) (5,1) (4,1) (7,1) (6,1) (1,0) (0,0) (3,0) (2,0) (5,0) (4,0) (7,0) (6,0)
(2,1) (2,1) (3,1) (0,1) (1,1) (7,1) (6,1) (5,1) (4,1) (2,0) (3,0) (0,0) (1,0) (7,0) (6,0) (5,0) (4,0)
(3,1) (3,1) (1,1) (2,1) (0,1) (4,1) (7,1) (6,1) (5,1) (3,0) (1,0) (2,0) (0,0) (4,0) (7,0) (6,0) (5,0)
(4,1) (4,1) (7,1) (5,1) (6,1) (0,1) (2,1) (3,1) (1,1) (4,0) (7,0) (5,0) (6,0) (0,0) (2,0) (3,0) (1,0)
(5,1) (5,1) (4,1) (6,1) (7,1) (1,1) (0,1) (2,1) (3,1) (5,0) (4,0) (6,0) (7,0) (1,0) (0,0) (2,0) (3,0)
(6,1) (6,1) (5,1) (7,1) (4,1) (3,1) (1,1) (0,1) (2,1) (6,0) (5,0) (7,0) (4,0) (3,0) (1,0) (0,0) (2,0)
(7,1) (7,1) (6,1) (4,1) (5,1) (2,1) (3,1) (1,1) (0,1) (7,0) (6,0) (4,0) (5,0) (2,0) (3,0) (1,0) (0,0)
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Table 3. The gyration table of the gyrogroup Dih(G8). Here, I is the identity automorphism of Dih(G8) and Ã is given by Equation (16).

gyr (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)

(0,0) I I I I I I I I I I I I I I I I
(1,0) I I I I Ã Ã Ã Ã I I I I Ã Ã Ã Ã
(2,0) I I I I Ã Ã Ã Ã I I I I Ã Ã Ã Ã
(3,0) I I I I I I I I I I I I I I I I
(4,0) I Ã Ã I I Ã I Ã I Ã Ã I I Ã I Ã
(5,0) I Ã Ã I Ã I Ã I I Ã Ã I Ã I Ã I
(6,0) I Ã Ã I I Ã I Ã I Ã Ã I I Ã I Ã
(7,0) I Ã Ã I Ã I Ã I I Ã Ã I Ã I Ã I
(0,1) I I I I I I I I I I I I I I I I
(1,1) I I I I Ã Ã Ã Ã I I I I Ã Ã Ã Ã
(2,1) I I I I Ã Ã Ã Ã I I I I Ã Ã Ã Ã
(3,1) I I I I I I I I I I I I I I I I
(4,1) I Ã Ã I I Ã I Ã I Ã Ã I I Ã I Ã
(5,1) I Ã Ã I Ã I Ã I I Ã Ã I Ã I Ã I
(6,1) I Ã Ã I I Ã I Ã I Ã Ã I I Ã I Ã
(7,1) I Ã Ã I Ã I Ã I I Ã Ã I Ã I Ã I
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<(0, 0)>

<(7, 0)><(5, 0)><(3, 0)>

<(3, 0), (5, 0)><(4, 0)><(1,0)>

<(1,0), (4,0)>

<(0, 1)>

<(7, 0), (0, 1)><(5, 0), (0, 1)><(3, 0), (0, 1)>

<(5, 0), (7, 0), (0, 1)><(4,0), (0,1)><(1,0), (0,1)>

Dih(G8)

<(3, 1)><(5, 1)> <(7, 1)>

<(3, 0), (1, 1)>

<(1, 1)> <(2, 1)>

<(3, 0), (4, 1)>

<(4, 1)> <(6, 1)>

<(5, 0), (3, 1)> <(3, 0), (5, 1)><(7, 0), (5, 1)>

Figure 1. The subgyrogroup lattice of the gyrogroup Dih(G8).

Since G8 is not of exponent at most two (for example, 1⊕ 1 6= 0 in G8), it follows by
Theorem 11 that Dih(G8) is not gyrocommutative. This indicates that our construction
is not the same as the construction of Mahdavi et al. in [18]. This is because, when the
initial gyrogroup in their construction is gyrocommutative, the resulting gyrogroup is
also gyrocommutative (see Corollary 2.3 of [18]). Moreover, our construction is not the
same as the construction presented in [19] since the so-called dihedral gyrogroup G(n) has
the property that all proper subgyrogroups of G(n) are either cyclic or dihedral groups,
whereas Dih(G) contains a proper non-degenerate subgyrogroup whenever G is a non-
degenerate dihedralizable gyrogroup. Finally, Dih(G8) is not isomorphic to the gyrogroup
K16 exhibited in p. 41 of [20], since their right nuclei are not isomorphic (see Section 3
of [16]).

4. Cayley Graphs of Dihedralized Gyrogroups

In this section, we inspect the right Cayley graphs of dihedralized gyrogroups and
point out some differences between them and those of generalized dihedral groups. Let A
be an abelian group (written multiplicatively) with a generating set S, let Dih(A) be the
generalized dihedral group afforded by A, and let S̃ = (S× {0}) ∪ {(e, 1)}. Then, the right
Cayley graph RCay(Dih(G), S̃) is a graph composed of two main induced subgraphs, one
consisting of the vertices of the form (g, 0) and the other consisting of the vertices of the
form (g, 1). We denote the former by C0 and the latter by C1. Both C0 and C1 have the
same underlying undirected graphs, isomorphic to RCay(G, S). While C0 preserves the
edge direction of RCay(G, S), C1 reverses the edge direction. In this Cayley graph, the two
induced subgraphs are connected to one another by every pair (g, 0) and (g, 1) (every pair
(g, 0) and (g−1, 1) for the left Cayley graph) via the bi-directional edge (e, 1). This scenario
is true regardless of whether we consider the left or right Cayley graphs. However, it is not
necessarily true in the case of gyrogroups, as we will see in Example 7.

Example 6. Consider the group G = 〈a, b : a4 = b2 = e, ab = ba〉, isomorphic to Z4 ×Z2. The
right Cayley graph RCay(Dih(G), {(a, 0), (b, 0), (e, 1)}) is depicted in Figure 2, illustrating the
discussion above. The subgraph C0 induced by the vertices of the form (g, 0) is the left cube and the
subgraph C1 induced by the vertices of the form (g, 1) is the right cube.
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𝑒, 0 𝑒, 1𝑎, 0 𝑎, 1

𝑎2, 0 𝑎2, 1𝑎3, 0 𝑎3, 1

𝑏, 0 𝑏, 1𝑎𝑏, 0 𝑎𝑏, 1

𝑎3𝑏, 0 𝑎3𝑏, 1𝑎2𝑏, 0 𝑎2𝑏, 1

𝑎, 0

𝑏, 0

𝑒, 1

Figure 2. The right Cayley graph RCay(Dih(G), S̃), where G is the group with presentation 〈a, b :
a4 = b2 = e, ab = ba〉 and S̃ = {(a, 0), (b, 0), (e, 1)}.

Next, we describe some combinatorial properties of RCay(Dih(G), S̃), where G is a
finite dihedralizable gyrogroup, S is a right generating set for G, and S̃ = (S × {0}) ∪
{(e, 1)}. As in the discussion at the beginning of this section, let C0 and C1 be the subgraphs
of RCay(Dih(G), S̃) induced by G×{0} and G×{1}, respectively. By definition, the edges
in C1 (and also C0) must be generated by elements of the form (s, 0) with s ∈ S.

Proposition 16. Let G be a finite dihedralizable gyrogroup with a right generating set S and let
S̃ = (S× {0}) ∪ {(e, 1)}. Then, RCay(Dih(G), S̃) is connected.

Proof. This proposition follows as a consequence of Proposition 14.

Theorem 12. Let G be a finite dihedralizable gyrogroup with a right generating set S and let S̃ =
(S× {0})∪ {(e, 1)}. In RCay(Dih(G), S̃), the subgraph C0 induced by G× {0} is isomorphic to
RCay(G, S) and the subgraph C1 induced by G×{1} is isomorphic to RCay(G,	S). Furthermore,
C0 and C1 are isomorphic.

Proof. The subgraphs C0 and C1 are isomorphic to RCay(G, S) and RCay(G,	S) via the
maps g 7→ (g, 0) and g 7→ (g, 1), g ∈ G, respectively. To see that C0 and C1 are isomorphic,
we use the bijective map L(0,1) : G × {0} → G × {1} defined by L(0,1)((a, 0)) = (	a, 1),
a ∈ G. Suppose that there is an edge (a, 0)→ (b, 0) in C0. Hence, b = a⊕ s for some s ∈ S.
Then, (	a, 1)⊕o (s, 0) = (	a	 s, 1) = (	(a⊕ s), 1) = (	b, 1) by its gyrocommutativity,
which means that there is an edge (	a, 1) → (	b, 1) in C1. Similarly, we obtain that an
edge (	a, 1)→ (	b, 1) exists in C1 implies an edge (a, 0)→ (b, 0) exists in C0. Thus, L(0,1)
defines a graph isomorphism.

Theorem 13. Let G be a finite dihedralizable gyrogroup, let S be a right generating set of G, and
let S̃ = (S× {0}) ∪ {(e, 1)}. Suppose that there is an edge (a, 0)→ (b, 0) in RCay(Dih(G), S̃);
that is, (b, 0) = (a, 0)⊕ (s, 0) for some s ∈ S. Then,

1. there is an edge (a, 1)→ (b, 1) if and only if 	s ∈ S, and
2. there is an edge (b, 1)→ (a, 1) if and only if gyr [b, s](s) ∈ S.

Proof. Suppose that there is an edge (a, 1)→ (b, 1). Then, there exists an element (s′, 0) ∈ S̃
such that (b, 1) = (a, 1) ⊕o (s′, 0) = (a 	 s′, 1). Hence, b = a 	 s′. By assumption,
b = a ⊕ s. Applying the left cancellation law I to a 	 s′ = a ⊕ s, we obtain s = 	s′,
which implies 	s = s′ ∈ S. Conversely, suppose that 	s ∈ S. Then, (	s, 0) ∈ S̃, and so
(a, 1)⊕o (	s, 0) = (a⊕ s, 1) = (b, 1), which shows that there is an edge (a, 1) → (b, 1).
This proves Part 1.

Suppose that there is an edge (b, 1) → (a, 1). Then, there is an element s′ ∈ S such
that (a, 1) = (b, 1)⊕o (s′, 0) = (b	 s′, 1). Hence, a = b	 s′. By assumption, b = a⊕ s and
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by the right cancellation law II, b� s = a. Recall that b� s = b⊕ gyr [b, s](	s). Applying
the left cancellation law I and then using the fact that any gyroautomorphism preserves
inverses, we conclude that gyr [b, s](s) = s′ ∈ S. Conversely, suppose that gyr [b, s](s) ∈ S.
Then, (b, 1)⊕o (gyr [b, s](s), 0) = (b	 gyr [b, s](s), 1) = (b� s, 1) = (a, 1), which implies
that there is an edge (b, 1)→ (a, 1). This proves Part 2.

Next, we give a sufficient condition to specify a Hamiltonian path in the right Cayley
graph of a certain gyrogroup, which can be decomposed as an internal semidirect product
of some cyclic groups.

Theorem 14. Let G be a finite gyrogroup that is an internal semidirect product K o H, where
K = 〈r〉 ∼= Zn and H = 〈s〉 ∼= Z2. Let S = {r, s}. If gyr [r, g](r) = r for all g ∈ G, then the walk
e[[r]n−1[s][r]n−1] is a Hamiltonian path in RCay(G, S). In addition, if G is dihedralizable, then
the walk (e, 0)[[(r, 0)]n−1[(s, 0)][(r, 0)]n−1[(0, 1)][(r, 0)]n−1[(s, 0)][(r, 0)]n−1] is a Hamiltonian
path in RCay(Dih(G), S̃), where S̃ = {(r, 0), (s, 0), (e, 1)}.

Proof. Note that G and Dih(G) are right generated by S and S̃, respectively, by Propo-
sitions 4 and 14. We will show that each walk is a path and exhaust the vertices in the
respective Cayley graphs. First, consider RCay(G, S) and the walk e[[r]n−1[s][r]n−1]. Start-
ing with e and ending with (n − 1)r, the subwalk e[rn−1] is clearly a path and consists
of all elements in K. It is left to show that the rest of the walk consists of all elements
in K ⊕ s. The vertices in the rest of the walk are (n − 1)r ⊕ s, ((n − 1)r ⊕ s) ⊕ r1,. . . ,
(· · · (((n − 1)r ⊕ s) ⊕ r1) · · · ) ⊕ rn−1, where ri = r for all i. Any of these vertices is
not in K. Otherwise, we would have (· · · (((n − 1)r ⊕ s)⊕ r1) · · · )⊕ rk = mr for some
k ∈ {0, 1, . . . , n− 1} and some m ∈ Z, leading to s = m′r ∈ K for some m′ ∈ Z after perform-
ing appropriate right and left cancellation laws, which is a contradiction. The assumption
that gyr [r, g](r) = r for all g ∈ G, together with the right gyroassociative law, allows us
to move parentheses so that an element of the form (· · · ((x⊕ s)⊕ r1)⊕ · · · )⊕ rk can be
written as (x⊕ s)⊕ kr, where ri = r for all i. Given two non-negative integers i and j, where
0 ≤ i < j ≤ n− 1, the two vertices (x⊕ s)⊕ (r1 ⊕ · · · ⊕ ri) and (x⊕ s)⊕ (r1 ⊕ · · · ⊕ rj) are
not the same, since otherwise we would have (j− i)r = e, contrary to the order of r. We
conclude that the second half of the walk exhausts all vertices in K⊕ s. Hence, the result
follows.

The proof for RCay(Dih(G), S̃) follows by a similar reasoning. Consider the walk
(e, 0)[[(r, 0)]n−1[(s, 0)][(r, 0)]n−1[(0, 1)][(r, 0)]n−1[(s, 0)][(r, 0)]n−1]. As in the first part, the
subwalk (e, 0)[[(r, 0)]n−1[(s, 0)][(r, 0)]n−1] visits all vertices in G× {0} and ends with the
vertex (((n− 1)r⊕ s)⊕ (n− 1)r, 0). From this vertex, following the edge label (0, 1), we
visit the vertex (((n − 1)r ⊕ s) ⊕ (n − 1)r, 1). Then, following the edge label (r, 0) and
noting that gyr [(r, 0), (g, m)]((r, 0)) = (gyr [r, g](r), 0) = (r, 0), we reach the vertex

((((n− 1)r⊕ s)⊕ (n− 1)r)	 r, 1) = (((n− 1)r⊕ s)⊕ (n− 2)r, 1).

Thus, the subwalk (e, 0)[[(r, 0)]n−1[(s, 0)][(r, 0)]n−1[(0, 1)][(r, 0)]n−1] ends with the
vertex ((n− 1)r⊕ s, 1) and exhausts all vertices in G× {0} and (K⊕ s)× {1}. Following
the edge label (s, 0), we visit the vertex (((n− 1)r⊕ s)⊕ s, 1), which must be a vertex in
K×{1}. Otherwise, we would have ((n− 1)r⊕ s)⊕ s = mr⊕ s for some m ∈ Z, leading to
s = m′r ∈ K for some m′ ∈ Z. Since we are visiting a vertex in K× {1} and K = 〈r〉 ∼= Zn,
following the subwalk [[(r, 0)]n−1] is equivalent to adding to the first coordinate of the
vertices by 	r. Hence, we visit all the vertices in K× {1}.

The following example shows that combinatorial properties of Cayley graphs of
gyrogroups depend heavily on their gyrations and illustrates what we have discussed
so far.
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Example 7. In this example, we exhibit two right Cayley graphs of Dih(G8), where G8 is given in
Example 1, and make some observations on them:

C1 = RCay(Dih(G8), S̃1), where S1 = {1, 7},
C2 = RCay(Dih(G8), S̃2), where S2 = {4, 7}.

Note that 〈1〉 = {0, 1, 2, 3} ∼= Z4, 〈4〉 = {0, 3, 4, 6} ∼= Z4, and 〈7〉 = {0, 7} ∼= Z2. The
corresponding graphical representations are depicted in Figure 3 and Figure 4, respectively. The
following are some observations we make for these Cayley graphs.

1. Since 〈1〉 and 〈4〉 are isomorphic to Z4, we obtain from Corollary 1 that Dih(〈1〉) and
Dih(〈4〉) are indeed the dihedral group D8 and subgyrogroups of Dih(G8). Their Cayley
graphs are the cubic subgraphs of C1 and C2 induced by 〈1〉 and 〈4〉, respectively. Each is the
cubic subgraph formed by two small squares in the corresponding Cayley graphs.

2. Observe that, in each Cayley graph, the subgraphs C0 and C1 are isomorphic as stated in
Theorem 12.

3. Since gyr [a, b](1) = 1 for all a, b ∈ G8, we obtain from Theorem 13 that whenever we see
an edge (a, 0)→ (b, 0) with color (1, 0), we will see an edge (b, 1)→ (a, 1) with the same
color (see the figure of C1). This is not true for the edge label (4, 0) since 4 is not fixed by some
gyroautomorphisms (see the figure of C2 and compare with C1).

4. Since 7 is its own inverse in G8, we obtain from Theorem 13 that whenever we see an edge
(a, 0)→ (b, 0) with color (7, 0), we will see an edge (a, 1)→ (b, 1) with the same color (see
the figures of C1 and C2).

5. In Example 3, Dih(G8) = 〈1〉o 〈7〉 and 1 is fixed by all of gyroautomorphisms of G8. By
Theorem 14, the walk

(0, 0)[[(1, 0)]3[(7, 0)][(1, 0)]3[(0, 1)][(1, 0)]3[(7, 0)][(1, 0)]3]

is a Hamiltonian path in C1. In contrast, the walk

(0, 0)[[(4, 0)]3[(7, 0)][(4, 0)]3[(0, 1)][(4, 0)]3[(7, 0)][(4, 0)]3]

is not even a path in C2. This is because 4 does not satisfy the gyration condition of Theorem 14,
although Dih(G8) = 〈1〉o 〈4〉.

0,0 1,0

3,02,0

7,0 6,0

4,0 5,0

0,1 1,1

3,12,1

7,1 6,1

4,1 5,1

1, 0

7, 0

0, 1

Figure 3. The right Cayley graph C1 = RCay(Dih(G8), S̃1), where S1 = {1, 7}, in Example 7.
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0,0 4,0

3,06,0

7,0 1,0

2,0 5,0

0,1 4,1

3,16,1

7,1 1,1

2,1 5,1

4, 0

7, 0

0, 1

Figure 4. The right Cayley graph C2 = RCay(Dih(G8), S̃2), where S2 = {4, 7}, in Example 7.

Proposition 17. Suppose that G is a finite dihedralizable gyrogroup and let S be a symmetric
subset of G not containing e such that gyr [a, b](S) = S for all a, b ∈ G. Then, RCay(Dih(G), S̃)
is transitive, where S̃ = (S× {0}) ∪ {(e, 1)}.

Proof. By Proposition 15, S̃ is symmetric. As in the proof of Proposition 13, gyr [a, b](S̃) = S̃
for all a, b ∈ G. Hence, RCay(Dih(G), S̃) is transitive by Theorem 7.

Author Contributions: Conceptualization, R.M. and T.S.; methodology, R.M. and T.S.; validation,
R.M. and T.S.; investigation, R.M. and T.S.; writing–original draft preparation, R.M. and T.S.; writing–
review and editing, R.M. and T.S.; visualization, R.M. and T.S.; supervision, T.S.; project administra-
tion, R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Research Group in Mathematics and Applied Mathematics,
Chiang Mai University under Grant No. R000029618.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated
or analyzed during the current study.

Acknowledgments: We would like to thank Jaturon Wattanapan for his collaboration during the
preparation of the manuscript. The useful comments from the reviewers are highly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ungar, A.A. Thomas rotation and parametrization of the Lorentz transformation group. Found. Phys. Lett. 1988, 1, 57–89.

[CrossRef]
2. Ungar, A.A. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity; World Scientific: Hackensack, NJ, USA,

2008.
3. Abe, T.; Watanabe, K. Finitely generated gyrovector subspaces and orthogonal gyrodecomposition in the Möbius gyrovector

space. J. Math. Anal. Appl. 2017, 449, 77–90. [CrossRef]
4. Atiponrat, W. Topological gyrogroups: Generalization of topological groups. Topol. Appl. 2017, 224, 73–82. [CrossRef]
5. Bussaban, L.; Kaewkhao, A.; Suantai, S. Cayley graphs of gyrogroups. Quasigroups Relat. Syst. 2019, 27, 25–32.
6. Ferreira, M. Harmonic Analysis on the Möbius Gyrogroup. J. Fourier Anal. Appl. 2015, 21, 281–317. [CrossRef]
7. Jin, Y.Y.; Xie, L.H. On paratopological gyrogroups. Topol. Appl. 2022, 308, 107994. [CrossRef]
8. Kim, S. Ordered Gyrovector Spaces. Symmetry 2020, 12, 1041. [CrossRef]
9. Kim, S.; Lawson, J. Unit balls, Lorentz boosts, and hyperbolic geometry. Results Math. 2013, 63, 1225–1242. [CrossRef]
10. Maungchang, R.; Detphumi, C.; Khachorncharoenkul, P.; Suksumran, T. Hamiltonian cycles in Cayley graphs of gyrogroups.

Mathematics 2022, 10, 1251. [CrossRef]
11. Maungchang, R.; Khachorncharoenkul, P.; Prathom, K.; Suksumran, T. On transitivity and connectedness of Cayley graphs of

gyrogroups. Heliyon 2021, 7, e07049. [CrossRef] [PubMed]
12. Ungar, A.A. Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction; World Scientific: Hackensack,

NJ, USA, 2010.

http://doi.org/10.1007/BF00661317
http://dx.doi.org/10.1016/j.jmaa.2016.11.039
http://dx.doi.org/10.1016/j.topol.2017.04.004
http://dx.doi.org/10.1007/s00041-014-9370-1
http://dx.doi.org/10.1016/j.topol.2021.107994
http://dx.doi.org/10.3390/sym12061041
http://dx.doi.org/10.1007/s00025-012-0265-7
http://dx.doi.org/10.3390/math10081251
http://dx.doi.org/10.1016/j.heliyon.2021.e07049
http://www.ncbi.nlm.nih.gov/pubmed/34036204


Mathematics 2022, 10, 2276 21 of 21

13. Watanabe, K. Cauchy–Bunyakovsky–Schwarz type inequalities related to Möbius operations. J. Inequal. Appl. 2019, 2019, 989–996.
[CrossRef]

14. Xie, L.H. Fuzzy gyronorms on gyrogroups. Fuzzy Sets Syst. 2022. in press. [CrossRef]
15. Suksumran, T. The algebra of gyrogroups: Cayley’s theorem, Lagrange’s theorem, and isomorphism theorems. In Essays in

Mathematics and Its Applications; Rassias, T.M., Pardalos, P.M., Eds.; Springer: Cham, Switzerlands, 2016; pp. 369–437.
16. Suksumran, T. Special subgroups of gyrogroups: Commutators, nuclei and radical. Math. Interdiscip. Res. 2016, 1, 53–68.
17. Wattanapan, J.; Atiponrat, W.; Suksumran, T. Extension of the Švarc-Milnor lemma to gyrogroups. Rev. Real Acad. Cienc. Exactas

Fis. Nat. Ser. Mat. 2021, 115, 122. [CrossRef]
18. Mahdavi, S.; Ashrafi, A.R.; Salahshour, M.A. Construction of new gyrogroups and the structure of their subgyrogroups. Algebr.

Struct. Their Appl. 2021, 8, 17–30.
19. Mahdavi, S.; Ashrafi, A.R.; Salahshour, M.A.; Ungar, A.A. Construction of 2-gyrogroups in which every proper subgyrogroup is

either a cyclic or a dihedral group. Symmetry 2021, 13, 316. [CrossRef]
20. Ungar, A.A. Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces;

Fundamental Theories of Physics; Springer: Dordrecht, The Netherlands, 2002.

http://dx.doi.org/10.1186/s13660-019-2132-5
http://dx.doi.org/10.1016/j.fss.2022.03.011
http://dx.doi.org/10.1007/s13398-021-01062-y
http://dx.doi.org/10.3390/sym13020316

	Introduction
	Preliminaries
	Construction of Gyrogroups
	Internal and External Semidirect Products
	Dihedralized Gyrogroups

	Cayley Graphs of Dihedralized Gyrogroups
	References

