
Citation: Nassar, M.; Alotaibi, R.;

Zhang, C. Estimation of Reliability

Indices for Alpha Power Exponential

Distribution Based on Progressively

Censored Competing Risks Data.

Mathematics 2022, 10, 2258. https://

doi.org/10.3390/math10132258

Academic Editor: Yuhlong Lio

Received: 14 May 2022

Accepted: 22 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Estimation of Reliability Indices for Alpha Power Exponential
Distribution Based on Progressively Censored Competing
Risks Data
Mazen Nassar 1,2,* , Refah Alotaibi 3 and Chunfang Zhang 4

1 Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2 Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt
3 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia; rmalotaibi@pnu.edu.sa
4 School of Mathematics and Statistics, Xidian University, Xi’an 710126, China; cfzhang917@xidian.edu.cn
* Correspondence: mezo10011@gmail.com or mmohamad3@kau.edu.sa

Abstract: In reliability analysis and life testing studies, the experimenter is frequently interested in
studying a specific risk factor in the presence of other factors. In this paper, the estimation of the
unknown parameters, reliability and hazard functions of alpha power exponential distribution is
considered based on progressively Type-II censored competing risks data. We assume that the latent
cause of failures has independent alpha power exponential distributions with different scale and
shape parameters. The maximum likelihood method is considered to estimate the model parameters
as well as the reliability and hazard rate functions. The approximate and two parametric bootstrap
confidence intervals of the different estimators are constructed. Moreover, the Bayesian estimation
method of the unknown parameters, reliability and hazard rate functions are obtained based on the
squared error loss function using independent gamma priors. To get the Bayesian estimates as well
as the highest posterior credible intervals, the Markov Chain Monte Carlo procedure is implemented.
A comprehensive simulation experiment is conducted to compare the performance of the proposed
procedures. Finally, a real dataset for the relapse of multiple myeloma with transplant-related
mortality is analyzed.

Keywords: alpha power exponential distribution; progressive Type-II censoring; competing risks;
maximum likelihood; bayesian estimation; loss function

MSC: 62N05; 62N02; 62F10; 62F15; 62F40

1. Introduction

Numerous parametric probability distributions have been proposed in the literature to
generalize the exponential distributions to add more flexibility in investigating real datasets.
One of the most significant probability distributions recently introduced by Mahdavi and
Kundu [1] is the alpha power exponential (APE) distribution. The APE distribution contains
one scale parameter and an extra shape parameter which adds more flexibility to the distri-
bution rather than the traditional exponential (Exp) distribution. Mahdavi and Kundu [1]
declared that the APE distribution has many desirable features and can be considered a
competitive model to some classic models such as Weibull, gamma and exponentiated
exponential distributions. Its hazard rate function (HRF) can be constant, decreasing and
increasing, depending on the shape parameter value. One of the important properties of
the APE distribution is that its cumulative distribution function (CDF) takes an explicit
form. Therefore, it can be derived relatively conveniently for analyzing censored data.
Some studies investigated the statistical inference of the APE distribution by considering
different procedures. Nassar et al. [2] explored the different estimation techniques of the
APE distribution.
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In life testing and reliability investigations, there are numerous situations where
items are lost or eliminated from the experimentation before failure. The researcher may
not guarantee complete information on failure times for all experimental items. Data
collected from such experiments are called censored data. The most familiar censoring
schemes are Type-I and Type-II censoring schemes. These schemes are widely employed
in the literature. Nevertheless, one of the drawbacks of the aforementioned censoring
schemes is that the removal of the tested items is not permitted at any time point other
than the stop point of the test. To overcome this disadvantage, a progressive censoring
scheme is suggested. Recently, the progressive Type-II censoring scheme has acquired
significant awareness in the literature because of its wide-scale applicability. Using the
progressively Type-II censored data, many authors investigated the estimation problems of
some lifetime models. Kundu [3] studied the Bayesian estimation for the parameters of
a Weibull distribution. Pradhan and Kundu [4] considered the inference of the unknown
parameters of the generalized exponential distribution. Ahmed [5] studied the estimation of
the generalized Gompertz distribution. Dey et al. [6] studied the estimation and prediction
of the Marshall–Olkin extended exponential distribution. For an extensive review of
progressively censoring, see Balakrishnan [7] and Balakrishnan and Cramer [8]. Under the
assumption of APE distribution for lifetime observation, Salah [9] studied the estimation of
the APE distribution using progressively Type-II censored data. Salah et al. [10] investigated
the APE distribution using Type-II hybrid censored samples. Alotabi et al. [11] investigated
the maximum likelihood and Bayesian estimates (BEs) of the APE distribution under
progressively Type-II censored data.

On the other hand, the failure of the tested items may be caused by more than one
cause, such as the different incentives for cancer recurrence. In life testing investigations,
an experimenter is usually inquisitive about the examination of distinct risks in the exis-
tence of different risk factors. In the literature, this problem is known as the competing risks
model. In studying the competing risks data, the data consist of the lifetime of the failed
item and an indicator variable indicating the reason for failure. In this study, we utilize
the latent failure times model, as introduced by Cox [12]. Employing the latent failure
times model, it is supposed that the failure times are independent. The investigations on
competing risks models using censored data have been becoming popular. Kundu et al. [13]
considered the competing risks model using Exp distributions based on progressive Type-II
censored samples. Pareek et al. [14] studied the estimation problems of Weibull distribu-
tions using progressive Type-II censored samples. Cramer and Schmiedt [15] considered
the competing risks model using Lomax distributions under progressive Type-II censoring.
Ashour and Nassar [16] investigated the competing risks model using Weibull distributions
based on adaptive Type-I progressive censoring. Ren and Gui [17] studied the competing
risks model from Weibull distributions using adaptive progressive Type-II censoring.

The major focus of this study is to investigate the competing risks model when the
data is progressively Type-II censored with the assumption that the latent failure times are
independent and follow an APE distribution with different scale and shape parameters.
The maximum likelihood as a classical estimation procedure is employed to obtain the
point and interval estimates of the unknown parameters. Moreover, the point and interval
estimates of the reliability function (RF) and HRF are acquired. Two parametric bootstrap
confidence intervals are considered. We consider the Bayesian estimation method to obtain
the point and the highest posterior density (HPD) credible intervals of the unknown
parameters, RF and HRF. To compare the efficiency of the different methods, a simulation
study is performed using different scenarios for the sample size, the effective number of
failures and censoring schemes. We also analyze one real dataset for the relapse of multiple
myeloma, with transplant-related mortality belonging to patients treated at the Clinic for
Stem Cell Transplantation, University Hospital Hamburg-Effendorf, Hamburg, Germany.

The organization of the paper is as follows: The model and the notation used in
this paper are presented in Section 2. The maximum likelihood procedure is considered
in Section 3. Two bootstrap confidence intervals are discussed in Section 4. Bayesian
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estimation is considered in Section 5. In Section 6, we perform a simulation study, and
a simulated dataset is analyzed to acquire and compare the performance of the various
estimates. One real dataset is investigated in Section 7. Section 8 extends the competing
risks model when the causes of failure are unknown. Finally, some conclusions from our
work are presented in Section 9.

2. Model Description and Notation

Without a loss of generality, assume that we have a lifetime experiment with n identical
items and there are only two causes of failure, then Xi = min{X1i, X2i}, i = 1, . . . , n
and Xti, t = 1, 2 refers to the latent failure time of the ith unit under the tth cause of
failure. Further, we assume that (X1i, X2i), i = 1, . . . , n, are n independent and identically
distributed random variables. In this study, it is assumed that X1i and X2i, i = 1, . . . , n,
follow the APE distribution with the following probability density function (PDF)

ft(x) =

{
θt log(αt)

αt−1 e−θtxα1−e−θt x

t , θt, αt > 0, αt 6= 1, x > 0,
θte−θtx, αt = 1.

(1)

and the corresponding CDF is

Ft(x) =

{
α1−e−θt x

t −1
αt−1 , θt, αt > 0, αt 6= 1, x > 0,

1− e−θtx, αt = 1.
(2)

where θt and αt are the scale and shape parameters, respectively. Using (1) and (2), we can
derive the CDF and PDF of Xi, respectively, as follows

F(x) = 1− α1α2

(α1 − 1)(α2 − 1)

(
1− α−e−θ1x

1

)(
1− α−e−θ2x

2

)
, x > 0 (3)

and

f (x) = α1α2
(α1−1)(α2−1)

[
θ1 log(α1)e−θ1xα−e−θ1x

1

(
1− α−e−θ2x

2

)
+ θ2 log(α2)e−θ2xα−e−θ2x

2

(
1− α−e−θ1x

1

)]
.

(4)

Similarly, the RF and HRF of Xi are, respectively, given by

R(x) =
α1α2

(α1 − 1)(α2 − 1)

(
1− α−e−θ1x

1

)(
1− α−e−θ2x

2

)
, x > 0 (5)

and

h(x) =

[
θ1 log(α1)e−θ1xα−e−θ1x

1

1− α−e−θ1x

1

+
θ2 log(α2)e−θ2xα−e−θ2x

2

1− α−e−θ2x

2

]
. (6)

It is noted that when α = 1, the functions in (3)–(6) reduce to the case of the Exp
distribution. Assume m < n is determined before the test. Furthermore, m other integers,
R1, . . . , Rm are also prefixed so that n = m+∑m

i=1 Ri . At the time of the initial failure X1:m:n,
R1 of the surviving items are randomly discarded. Likewise, at the time of the second
failure X2:m:n, R2 of the surviving items are randomly eliminated and so on. Lastly, at the
time of the mth failure Xm:m:n, the remainder of the Rm items are withdrawn. In the presence
of Type-II progressively censored competing risks data, we have the following observation

(X1:m:n, δ1, R1), . . . , (Xm:m:n, δm, Rm),

where Rm = n − m − ∑m−1
i=1 Ri and δi ∈ (1, 2) refer to the cause of failure of the ith
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individual. Let

I(δi = 1) =
{

1, δi = 1
0 otherwise

and I(δi = 2) =
{

1, δi = 2
0 otherwise

then m1 = ∑m
i=1 I(δi = 1) and m2 = ∑m

i=1 I(δi = 2) are the number of failures due to cause
one and cause two, respectively, and m = m1 + m2. Given a progressive censoring scheme
(R1, . . . , Rm), the likelihood function of the observed data (x1:m:n, δ1), . . . , (xm:m:n, δm) takes
the form, see Kundu et al. [13],

L = c
m

∏
i=1

[ f1(xi)F̄2(xi)]
I(δi=1)

[ f2(xi)F̄1(xi)]
I(δi=2)

[F̄1(xi)F̄2(xi)]
Ri , (7)

where F̄t(x) = 1− Ft(x), t = 1, 2, xi = xi:m:n for simplicity of notation and c = n(n−R1− 1)
(n− R1 − R2 − 2) . . . (n−m− R1 − . . .− Rm−1 + 1). Another form of the likelihood func-
tion in (7) can be obtained using the identity ft(x) = ht(x)F̄t(x) as follows

L = c
m

∏
i=1

[h1(xi)]
I(δi=1)[h2(xi)]

I(δi=2)[F̄1(xi)F̄2(xi)]
1+Ri , (8)

where ht(x) = ft(x)/F̄t(x) and F̄t(x) = 1− Ft(x), t = 1, 2.

3. Maximum Likelihood Estimation

In this section, the maximum likelihood method is considered to obtain maximum like-
lihood estimates (MLEs) of the unknown parameters and the reliability indices, including
RF and HRF of the APE distribution under progressively Type-II censored competing risks
data. Furthermore, the associated approximate confidence intervals (ACIs) are obtained
based on the asymptotic normality of the MLEs.

3.1. MLEs

Using the observations as mentioned in the previous section and based on
Equations (1), (2) and (8), the log-likelihood function, ignoring the normalized constant,
can be written as follows

L(v) = ∑2
t=1 mt log(θt log(αt)) + n ∑2

t=1[log(αt)− log(αt − 1)]−∑2
t=1 ∑mt

i=1

[
θtxi + log

(
αe−θt xi

t − 1
)]

+ ∑2
t=1 ∑m

i=1(1 + Ri) log
(

1− α−e−θt xi
t

)
,

(9)

where v = (θ1, θ2, α1, α2)
>. The MLEs of the parameters θt and αt, t = 1, 2 can be obtained

by maximizing the log-likelihood function in (9) with respect to θt and αt, t = 1, 2. An-
other way to acquire these estimates is to find the normal equations by getting the first
partial derivatives of (9) with respect to θt and αt and equating them to zero. The MLEs
denoted by θ̂t and α̂t, t = 1, 2, in this case, are obtained by solving the following normal
equations simultaneously

∂L(v)

∂θt
=

mt

θt
−

mt

∑
i=1

[
xi +

xivi log(αt)

w∗i − 1

]
− log(αt)

m

∑
i=1

(1 + Ri)
xivi

wi − 1
= 0 (10)

and

∂L(v)

∂αt
=

mt

αt log(αt)
− n

αt(αt − 1)
+

1
αt

mt

∑
i=1

vi
w∗i − 1

+
1
αt

m

∑
i=1

(1 + Ri)
vi

wi − 1
= 0, (11)

where wi ≡ w(θt, αt) = αe−θt xi
t , w∗i = w−1

i and vi ≡ v(θt) = e−θtxi , t = 1, 2, i = 1, . . . , m.
Due to the complicated expressions of (10) and (11), the MLEs cannot be computed in
explicit forms. Accordingly, numerical iterative techniques must be performed to calculate
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the wanted estimates. Hence, owing to the invariance property of the MLEs, the MLEs of
RF and HRF can be obtained from (5) and (6), respectively, as follows

R̂(x) =
α̂1α̂2

(α̂1 − 1)(α̂2 − 1)

(
1− α̂−e−θ̂1x

1

)(
1− α̂−e−θ̂2x

2

)
, x > 0 (12)

and

ĥ(x) =

 θ̂1 log(α̂1)e−θ̂1x α̂−e−θ̂1x

1

1− α̂−e−θ̂1x

1

+
θ̂2 log(α̂2)e−θ̂2x α̂−e−θ̂2x

2

1− α̂−e−θ̂2x

2

. (13)

3.2. ACIs

In this subsection, the ACIs of the unknown parameters θt and αt, t = 1, 2, RF and
HRF are constructed using the asymptotic normality of MLEs. Under some regularity con-
ditions, it is known that v̂ = (θ̂1, θ̂2, α̂1, α̂2)

> is approximately normally distributed with
mean v = (θ1, θ2, α1, α2)

> and variance-covariance matrix I(v) ≡ I(θ1, θ2, α1, α2). Practi-
cally, I(v) can be approximated by taking the inverse of the observed Fisher information
matrix, thus

I(v̂) =
(
− ∂2L(v)

∂vi∂vj

)−1

(v=v̂)
, i, j = 1, 2, 3, 4

=


var(θ̂1) 0 cov(θ̂1, α̂1) 0

0 var(θ̂2) 0 cov(θ̂2, α̂2)
cov(α̂1, θ̂1) 0 var(α̂1) 0

0 cov(α̂2, θ̂2) 0 var(α̂2)

,
(14)

where the the second derivatives ∂2L(v)/∂vi∂vj, i, j = 1, 2, 3, 4, are given by

∂2L(v)

∂θ2
t

= −mt

θ2
t
+

mt

∑
i=1

x2
i log(αt)vi

w∗i − 1
+

mt

∑
i=1

x2
i log2(αt)v2

i

wi
(
w∗i − 1

)2 +
m

∑
i=1

(1 + Ri)x2
i log(αt)vi

wi − 1

−
m

∑
i=1

(1 + Ri)x2
i log2(αt)v2

i

w∗i (wi − 1)2 ,

∂2L(v)

∂α2
t

= − 1
α2

t

[
mt[1 + log(αt)]

log2(αt)
+

n(1− 2αt)

(αt − 1)2

]
− 1

α2
t

mt

∑
i=1

vi
w∗i − 1

+
1
α2

t

mt

∑
i=1

v2
i

wi
(
w∗i − 1

)2

− 1
α2

t

m

∑
i=1

(1 + Ri)vi
wi − 1

− 1
α2

t

m

∑
i=1

(1 + Ri)v2
i

w∗i (wi − 1)2 ,

∂2L(v)

∂θt∂αt
= − 1

αt

mt

∑
i=1

xivi
w∗i − 1

[
1 +

vi log(αt)

wi(w∗i − 1)

]
− 1

αt

m

∑
i=1

xivi(1 + Ri)

wi − 1

[
1− vi log(αt)

w∗i (wi − 1)

]
and

∂2L(v)

∂θt∂θ3−t
=

∂2L(v)

∂θt∂α3−t
=

∂2L(v)

∂αt∂θ3−t
=

∂2L(v)

∂αt∂α3−t
= 0, t = 1, 2.

Then, the 100(1− ζ) ACIs of the parameters θt and αt, are as follows[
θ̂t ± zζ/2

√
var(θ̂t)

]
and

[
α̂t ± zζ/2

√
var(α̂t)

]
, t = 1, 2,

where zζ/2 is the upper ζ/2 percentile of the standard normal distribution.
To build the ACIs of RF and HRF, we require their variances to be determined. Here, we

consider using the delta method to approximate the variances of R̂(x) and ĥ(x). For more
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details about the delta method, see Greene [18]. To utilize this method, let Ψ1 and Ψ2 be
two quantities that take the following forms

Ψ1 =

(
∂R(x)

∂θ1
,

∂R(x)
∂θ2

,
∂R(x)

∂α1
,

∂R(x)
∂α2

)
and Ψ2 =

(
∂h(x)

∂θ1
,

∂h(x)
∂θ2

,
∂h(x)
∂α1

,
∂h(x)
∂α2

)
,

where

∂R(x)
∂θt

=
αtα3−t

(αt − 1)(α3−t − 1)
x log(αt)e−θtxα−e−θt x

t

(
α−e−θ3−t x

3−t − 1
)

,

∂R(x)
∂αt

=
α3−t

(
α−e−θ3−t x

3−t − 1
)

(αt − 1)(α3−t − 1)

{(
α−e−θt x

t − 1
)[

1− αt

(αt − 1)

]
− e−θtxα−e−θt x

t

}
,

∂h(x)
∂θt

=
e−θtx log(αt)

αe−θt x
t − 1

(
1− θtx−

θt log(αt)xe−θtx

1− α−e−θt x

t

)
and

∂h(x)
∂αt

=
θte−θtx

αt

(
αe−θt x

t − 1
)[1− e−θtx log(αt)

1− α−e−θt x

t

]
.

Then, the approximate variances of RF and HRF can be obtained as follows

var(R̂) =
[
Ψ1 I(v̂)Ψ>1

]∣∣∣
(v=v̂)

and var(ĥ) =
[
Ψ2 I(v̂)Ψ>2

]∣∣∣
(v=v̂)

, t = 1, 2,

where I(v̂) is given by (14). Then, the 100(1− ζ) ACIs of R(x) and h(x) are, respectively,
as follows [

R̂± zζ/2

√
var(R̂)

]
and

[
ĥ± zζ/2

√
var(ĥ)

]
, t = 1, 2.

4. Bootstrap Confidence Intervals

In this subsection, we consider using two parametric bootstrap confidence intervals.
The primary one is the percentile bootstrap confidence intervals (PBCIs) based on the
concept of Efron [19]. The other one is the studentized bootstrap confidence intervals
(SBCIs) introduced by Hall [20]. To calculate these confidence intervals, we apply the
next algorithms:
(A) PBCIs

(1) From the original data (x1:m:n, δ1), . . . , (xm:m:n, δm) with censoring scheme R1, . . . , Rm
calculate the MLEs of θt and αt, t = 1, 2.

(2) Apply the MLEs received in (1) to create a Type-II progressively censored competing
risks sample.

(3) Use the bootstrap sample from (2) to compute bootstrap estimates, θ̂?t and α̂?t . More-
over, obtain the bootstrap estimates of RF and HRF as R̂? and ĥ?.

(4) Redo steps (2) and (3) B times to get (θ̂?(1)t , . . . , θ̂
?(B)
t ), (α̂?(1)t , . . . , α̂

?(B)
t ), (R̂?(1), . . . , R̂?(B))

and (ĥ?(1), . . . , ĥ?(B)).
(5) Adjust the estimates in (4) in ascending order to get (θ̂?[1]t , . . . , θ̂

?[B]
t ), (α̂?([1]t , . . . , α̂

?[B]
t ),

(R̂?[1], . . . , R̂?[B]) and (ĥ?[1], . . . , ĥ?[B]).
(6) The two-sided 100(1− ζ)% PBCIs of θt, αt, RF and HRF are given, respectively, by[

θ̂
?[Bζ/2]
t , θ̂

?[B(1−ζ/2)]
t

]
,
[
α̂
?[Bζ/2]
t , α̂

?[B(1−ζ/2)]
t

]
, t = 1, 2,[

R̂?[Bζ/2], R̂?[B(1−ζ/2)]
]

and
[

ĥ?[Bζ/2], ĥ?[B(1−ζ/2)]
]
.



Mathematics 2022, 10, 2258 7 of 25

(B) SBCIs

(1–3) Same as in PBCIs.

(4) Compute T?
θ(t) =

θ̂?t −θ̂t√
var(θ̂?t )

, T?
α(t) =

α̂?t−α̂t√
var(α̂?t )

, t = 1, 2, T?
R = R̂?−R̂√

var(R̂?)
and

T?
h = ĥ?−ĥ√

var(ĥ?)
. Here, the variances are obtained based on the bootstrap sample,

where var(θ̂?t ) and var(α̂?t ) are computed from the asymptotic variance–covariance
matrix in (14), and var(R̂?) and var(ĥ?) are obtained by employing the delta method.

(5) Redo step 2-4 B times to compute (T?(1)
θ(t) , . . . , T?(B)

θ(t) ), (T?(1)
α(t) , . . . , T?(B)

α(t) ), (T?(1)
R , . . . , T?(B)

R )

and (T?(1)
h , . . . , T?(B)

h ).

(6) Arrange the quantities in (5) in ascending order to get (T?[1]
θ(t) , . . . , T?[B]

θ(t) ), (T?[1]
α(t) , . . . , T?[B]

α(t) ),

(T?[1]
R , . . . , T?[B]

R ) and (T?[1]
h , . . . , T?[B]

h ).
(7) The two-sided 100(1− ζ) SBCIs are given, respectively, by[

θ̂t + T?[Bζ/2]
θ(t)

√
var(θ̂t), θ̂t + T?[B(1−ζ/2)]

θ(t)

√
var(θ̂t)

]
,[

α̂t + T?[Bζ/2]
α(t)

√
var(α̂t), α̂t + T?[B(1−ζ/2)]

α(t)

√
var(α̂t)

]
, t = 1, 2,[

R̂ + T?[Bζ/2]
R

√
var(R̂), R̂ + T?[B(1−ζ/2)]

R

√
var(R̂)

]
and [

ĥ + T?[Bζ/2]
h

√
var(ĥ), ĥ + T?[B(1−ζ/2)]

h

√
var(ĥ)

]
,

where the variances var(θ̂t), var(α̂t), var(R̂) and var(ĥ) are computed based on the
MLEs obtained from the original sample.

5. Bayesian Estimation

The Bayesian approach appears as an exceptional alternative to the conventional esti-
mation, allowing us to consider the unknown parameter as a random variable and mix the
prior information with the sample data. The difference between the Bayesian approach and
the traditional estimation approaches is that the prior distribution of parameter information
is collected throughout the practical background. If there is no appropriate knowledge, it
can be displaced by a non-information prior distribution. In this section, we study Bayesian
estimation for the unknown parameters, RF and HRF of the APE distribution based on
progressively Type-II censored competing risks data following the assumption that θt and
αt, t = 1, 2, have gamma prior distributions with the resulting forms

p(θt) ∝ θτt−1
t e−κtθt , θt > 0, τt, κt > 0 (15)

and
p(αt) ∝ αεt−1

t e−υtαt , αt > 0, εt, υt > 0, t = 1, 2. (16)

Using (15) and (16), the joint prior distribution takes the form

p(v) ∝ θτ1−1
1 θτ2−1

2 αε1−1
1 αε2−1

2 e−(κ1θ1+κ2θ2+υ1α1+υ2α2). (17)

Based on (9) and (17), the joint posterior distribution is as follows
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g(v|x) = A eL(v)p(v)

= A θτ1+m1−1
1 θτ2+m2−1

2 αε1+n−1
1 αε2+n−1

2
[log(α1)]

m1 [log(α2)]
m2

[(α1−1)(α2−1)]n

× exp
{
−(κ1θ1 + υ1α1)−∑m1

i=1

[
θ1xi + log

(
αe−θ1xi

1 − 1
)]}

∏m
i=1

(
1− α−e−θ1xi

1

)1+Ri

× exp
{
−(κ2θ2 + υ2α2)−∑m2

i=1

[
θ2xi + log

(
αe−θ2xi

2 − 1
)]}

∏m
i=1

(
1− α−e−θ2xi

2

)1+Ri
,

(18)

where L(v) is given by (9) and A is the normalized constant expressed as

A =

(∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
eL(θ1,θ2,α1,α2)p(θ1, θ2, α1, α2)dθ1dθ2dα1dα2

)−1
.

We see that (18) is analytically intractable, and the BE of any parametric function
of (θt, αt) includes a ratio of two integrals. Therefore, to obtain the BEs under any loss
function, say φ(θ1, θ2, α1, α2), some approximation approaches should be applied to solve
the corresponding ratio of integrals, such as the MCMC methods. Here, we employ the
well-known Metropolis–Hastings (MH) algorithm to get the BEs and the associated HPD-
credible intervals. The MH algorithm can be worked to return samples from the posterior
density function (18) and, in turn, to compute the BEs as well as the corresponding HPD-
credible intervals. To generate samples from (18), we need to derive the full conditional
distributions of θt and αt as

g(θt|αt, x) ∝ θτt+mt−1
t exp

{
−κtθt −

mt

∑
i=1

[
θtxi + log

(
αe−θt xi

t − 1
)]} m

∏
i=1

(
1− α−e−θt xi

t

)1+Ri
(19)

and

g(αt|θt, x) ∝ αεt+n−1
t

[log(αt)]mt

(αt − 1)n exp

[
−υtαt −

mt

∑
i=1

log
(

αe−θt xi
t − 1

)] m

∏
i=1

(
1− α−e−θt xi

t

)1+Ri
. (20)

It is observed that the distributions in (19) and (20) cannot be reduced to any familiar
distribution. To solve this challenge, we suggest applying the MH algorithm to generate
random samples from (19) and (20), respectively, using the steps shown as follows

Step 1. Set k = 1 and put (θ(0)t , α
(0)
t ) = (θ̂t, α̂kt), t = 1, 2.

Step 2. Generate θ
(k)
t from (19) using MH steps using normal distribution N[θ(k−1), var(θ̂t)].

Step 3. Generate α
(k)
t from (20) using MH steps using normal distribution N[α(k−1), var(α̂t)].

Step 4. Put k = k + 1.

Step 5. Redo steps 2-4 M times and compute (θ
(1)
t , . . . , θ

(M)
t ) and (α

(1)
t , . . . , α

(M)
t ).

Step 6. Based on the values θ
(k)
t and α

(k)
t , k = 1, . . . , M, the BEs of θt, αt, R(x) and h(x)

under squared error loss function can be obtained as

θ̃t =
∑M

k=Q+1 θ
(k)
t

M−Q
, α̃t =

∑M
k=Q+1 α

(k)
t

M−Q
, R̃ =

∑M
k=Q+1 R(k)

M−Q
, and h̃ =

∑M
k=Q+1 h(k)

M−Q
,

where R(k) and h(k) are obtained from (5) and (6), respectively, and Q is the burn-in
period.

Step 7. Follow the approach considered by Chen and Shao [21] to compute the HPD-
credible intervals of θt, αt, R(x) and h(x) as follows:

• Arrange the MCMC samples of θt, αt, R(x) and h(x) after the burn-in period
to get
(θ

[Q+1]
t , . . . , θ

[M]
t ), (α[Q+1]

t , . . . , α
[M]
t ), (R[Q+1], . . . , R[M]) and (h[Q+1], . . . , h[M]).
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• The two-sided 100(1− ζ) HPD-credible intervals of θt, αt, R(x) and h(x), say µ,
can be obtained in this case as follows[

µ[k? ], µ[k?+(1−ζ)(M−Q)]
]
,

where k? = Q + 1, Q + 2, . . . , M is selected so that

µ[k?+(1−ζ)(M−Q)] − µ[k? ] = min
16j6ζ(M−Q)

(
µ[j+(1−ζ)(M−Q)] − µ[j]

)
.

6. Numerical Analysis

In this section, a simulation study is conducted to compare the performance of the
different point and intervals estimates. Further, a simulated dataset is investigated for
illustration purposes.

6.1. Simulation Study

For illustration, we conduct a simulation study of a competing risks model with
specified competing risk distribution under the progressive censoring to numerically
estimate the model parameters. The competing risks data are simulated using the cause-
specific hazard driven approach by Beyersmann [22] when (α1, θ1, α2, θ2) are assumed to
be (1.5, 2.0, 2.0, 3.0). To compare the performance of parameter estimates, we choose the
bias, mean square error (MSE) for point estimates, the interval length (IL) and coverage
probability (CP) for interval estimates. We generated N = 500 competing risks datasets
under progressive censoring. For each simulated dataset, we determine B = 500 bootstrap
samples and M = 3000 samples, and the first 25% portion of MCMC samples as burn-in
times within the Gibbs–MH algorithm. Denote n as the number of identical items.

For the l-th simulated dataset for l = {1, 2, . . . , N}, the maximum likelihood estimates of
the parameters can be obtained by solving the likelihood equations in Equations (10) and (11),
and the Bayes estimates of parameters can be calculated using the steps of the MH algorithm
in Section 5. We then get the estimates of reliability characteristics R(t) and h(t) given t
and the interval estimates based on the parameter estimates. For simplicity, we denote
the estimate of a parameter or a reliability characteristic as β. The point estimate and
interval estimate of β using the l-th simulated dataset are given as β̂l and (β̂lower

l , β̂
upper
l ),

respectively. The indicator function is defined as

Il =

{
1, if β̂lower

l ≤ β ≤ β̂
upper
l ,

0, otherwise.

Thus, the performance measures are of the following forms:

Estimate =
∑N

l=1 β̂l

N
, Bias =

∑N
l=1(β̂l − β)

N
, MSE =

∑N
l=1(β̂l − β)2

N

IL =
∑N

l=1(β̂
upper
l − β̂lower

l )

N
, CP =

∑N
l=1 Il

N
.

We choose n = {50, 100, 200}, p = 8% surviving items discarded under the progressive
censoring scheme and three specific schemes as follow:

Scheme 1: R1 = r, R2 = R3 = . . . = Rm = 0.

Scheme 2: R1 = r/2, R2 = R3 = . . . = Rm−1 = 0, Rm = r/2.

Scheme 3: Ri1 = Ri2 = . . . = Rir = 1, and the others Ri = 0 for i = {1, 2, . . . , m}/
{i1, i2, . . . , ir}.

In the schemes above, m = n × (1 − p), r = n × p and i1, i2, . . . , ir are randomly
selected from the set {1, 2, . . . , m}.
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Under the assumptions of bivariate competing failure causes (X1, X2) and APE distri-
bution, the procedures to generate the competing risks data (x1, δ1), (x2, δ2), . . . , (xm, δm))
under the progressive censoring scheme (R1, R2, . . . , Rm) are given as follows:

1. Generate the uniform progressive censoring data (u1, . . . , um) by specified scheme
(R1, . . . , Rm) using the sampling algorithm in Balakrishnan and Sandhu [23].

2. Compute the roots xi of the equations F(xi) = ui, i = 1, 2, . . . , m where F(xi) is the
survival function of the competing risks random variable X = min(X1, X2) given in
Equation (3).

3. Simulate binomial samples δi with probability h1(xi)
h1(xi)+h2(xi)

on failure cause 1, and prob-

ability h2(xi)
h1(xi)+h2(xi)

on failure cause 2.

In Bayesian inference, independent gamma priors are often chosen for the model pa-
rameter. To determine the hyper-parameters of Gamma prior distribution, for simplicity we
assume the scale parameters are equal to 1, and the MLEs (α̂1, θ̂1, α̂2, θ̂2) are the expectations
of prior distributions. Therefore, the priors are given as

p(αt) ∝ αα̂t−1
t e−αt , αt > 0,

p(θt) ∝ θ θ̂t−1
t e−θt , θt > 0, t = 1, 2.

(21)

Under the setting above, we obtain the MLEs and BEs of unknown parameters for
n = (50, 100, 200) and the three schemes in Tables 1–3, and the ACIs, PBCI and SBCIs and
the HPD-credible intervals of unknown parameters are given in Tables 4–6.

Table 1. Point estimates of (αt, θt), t = 1, 2 under Scheme 1.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

50

α1 2.2008 0.7008 0.9388 1.5001 0.0001 0.0082
θ1 2.3030 0.3030 0.3428 1.9820 −0.0180 0.0382
α2 3.1164 1.1164 2.0590 2.0008 0.0008 0.0111
θ2 3.4548 0.4548 0.5391 2.9694 −0.0306 0.0576

100

α1 2.1824 0.6824 0.7295 1.4999 −0.0001 0.0092
θ1 2.2645 0.2645 0.1902 1.9799 −0.0201 0.0364
α2 3.0110 1.0110 1.4645 1.9856 −0.0144 0.0152
θ2 3.4089 0.4089 0.3506 2.9957 −0.0043 0.0545

200

α1 2.1255 0.6255 0.5700 1.4960 −0.0040 0.0114
θ1 2.2883 0.2883 0.1523 1.9847 −0.0153 0.0252
α2 2.9488 0.9488 1.1027 1.9952 −0.0048 0.0196
θ2 3.4240 0.4240 0.2710 2.9739 −0.0261 0.0367

Table 2. Point estimates of (αt, θt), t = 1, 2 under Scheme 2.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

50

α1 2.2990 0.7990 1.0707 1.5319 0.0319 0.0082
θ1 2.0085 0.0085 0.2097 1.8981 −0.1019 0.0444
α2 3.2216 1.2216 2.3895 2.0460 0.0460 0.0133
θ2 2.9947 −0.0053 0.2300 2.8616 −0.1384 0.0760

100

α1 2.2799 0.7799 0.8965 1.5539 0.0539 0.0111
θ1 2.0255 0.0255 0.1140 1.8886 −0.1114 0.0417
α2 3.2979 1.2979 2.0914 2.0780 0.0780 0.0198
θ2 3.0767 0.0767 0.1260 2.8501 −0.1499 0.0642

200

α1 2.3165 0.8165 0.8929 1.5912 0.0912 0.0178
θ1 2.0031 0.0031 0.0590 1.8556 −0.1444 0.0407
α2 3.2708 1.2708 1.8308 2.1292 0.1292 0.0324
θ2 3.0272 0.0272 0.0620 2.8056 −0.1944 0.0725
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Table 3. Point estimates of (αt, θt), t = 1, 2 under Scheme 3.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

50

α1 2.0884 0.5884 0.7528 1.5326 0.0326 0.0093
θ1 1.8887 −0.1113 0.2044 1.7975 −0.2025 0.0782
α2 2.8145 0.8145 1.4133 2.0354 0.0354 0.0118
θ2 2.8981 −0.1019 0.2638 2.7273 −0.2727 0.1287

100

α1 1.8670 0.3670 0.3684 1.5735 0.0735 0.0158
θ1 1.8120 −0.1880 0.1259 1.7485 −0.2515 0.0921
α2 2.5574 0.5574 0.7110 2.0776 0.0776 0.0225
θ2 2.7544 −0.2456 0.1819 2.6310 −0.3690 0.1882

200

α1 1.7279 0.2279 0.2028 1.5939 0.0939 0.0242
θ1 1.7697 −0.2303 0.1020 1.6998 −0.3002 0.1145
α2 2.3291 0.3291 0.2841 2.1053 0.1053 0.0337
θ2 2.6819 −0.3181 0.1695 2.5685 −0.4315 0.2250

Table 4. Interval estimates of (αt, θt), t = 1, 2 under Scheme 1.

n Parameter
ACI PBCI SBCI HPD

IL CP IL CP IL CP IL CP

50

α1 9.7556 1.0000 1.4924 1.0000 1.5879 0.9540 1.3628 1.0000
θ1 4.6868 1.0000 1.7521 0.9240 1.8926 0.8660 1.2085 0.9980
α2 10.2280 1.0000 2.1764 1.0000 2.3790 0.9460 1.5658 1.0000
θ2 4.4634 1.0000 2.1155 0.9080 2.2250 0.8760 1.4432 0.9980

100

α1 7.0482 1.0000 1.1913 1.0000 1.3116 0.9420 1.3390 1.0000
θ1 3.3404 1.0000 1.2760 0.9480 1.3459 0.9140 1.0412 0.9940
α2 7.7217 1.0000 1.6173 1.0000 1.8307 0.9660 1.5234 1.0000
θ2 3.0677 0.9980 1.5204 0.9340 1.5862 0.9100 1.2444 0.9920

200

α1 5.2778 1.0000 1.0148 1.0000 1.1615 0.9640 1.3042 1.0000
θ1 2.3285 1.0000 0.9584 0.9320 1.0032 0.9260 0.8838 0.9900
α2 6.1778 1.0000 1.2492 1.0000 1.3832 0.9680 1.4861 1.0000
θ2 2.1783 0.9940 1.1260 0.9380 1.1600 0.9260 1.0307 0.9920

Table 5. Interval estimates of (αt, θt), t = 1, 2 under Scheme 2.

n Parameter
ACI PBCI SBCI HPD

IL CP IL CP IL CP IL CP

50

α1 12.8080 1.0000 7.6623 1.0000 5.1672 0.9880 1.3814 1.0000
θ1 4.7067 1.0000 0.9526 1.0000 1.5020 0.9980 1.1629 0.9980
α2 11.0431 1.0000 9.0435 1.0000 6.0705 0.9880 1.5822 1.0000
θ2 4.1499 1.0000 1.1633 1.0000 1.8517 0.9980 1.3922 0.9880

100

α1 8.0342 1.0000 4.3686 1.0000 3.4588 1.0000 1.3710 1.0000
θ1 3.3382 1.0000 0.8280 1.0000 1.1314 1.0000 0.9975 0.9820
α2 8.6272 1.0000 5.1059 1.0000 4.1223 0.9920 1.5563 1.0000
θ2 2.8882 1.0000 0.9407 1.0000 1.1044 0.9980 1.1856 0.9860

200

α1 6.1535 1.0000 3.9199 1.0000 3.6637 1.0000 1.3583 1.0000
θ1 2.3102 1.0000 0.7508 1.0000 1.0114 1.0000 0.8308 0.9620
α2 6.9898 1.0000 4.5146 1.0000 4.4621 1.0000 1.5312 1.0000
θ2 2.0230 1.0000 0.7947 1.0000 0.9698 1.0000 0.9701 0.9260
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Table 6. Interval estimates of (αt, θt), t = 1, 2 under Scheme 3.

n Parameter
ACI PBCI SBCI HPD

IL CP IL CP IL CP IL CP

50

α1 9.8140 1.0000 8.1916 1.0000 5.3750 0.9920 1.3791 1.0000
θ1 4.1220 1.0000 0.9589 1.0000 2.0626 0.9480 1.1085 0.9480
α2 9.5198 1.0000 9.3754 1.0000 7.2460 0.9960 1.5735 1.0000
θ2 4.0537 1.0000 1.2505 1.0000 3.1918 0.9280 1.3282 0.9520

100

α1 6.0852 1.0000 1.7548 1.0000 1.9489 0.9960 1.5827 1.0000
θ1 2.8252 1.0000 1.1748 1.0000 1.2765 0.9900 1.0509 0.9600
α2 6.7858 0.9980 2.1559 1.0000 2.3152 0.9760 1.7786 1.0000
θ2 2.7632 0.9980 1.3793 1.0000 1.4341 0.9500 1.2295 0.9080

200

α1 4.3455 1.0000 1.4327 1.0000 1.6447 0.9940 1.4417 1.0000
θ1 1.9226 1.0000 0.8850 1.0000 0.9465 0.9700 0.8323 0.8580
α2 5.0429 1.0000 1.6726 1.0000 1.9462 0.9860 1.5820 1.0000
θ2 1.9413 0.9840 1.0390 0.8700 1.0741 0.6280 0.9677 0.7680

From Tables 1–3, we see that

1. The MSEs of MLEs and BEs decrease with the increasing samples n under the
three schemes. However, the MSEs of shape parameters are larger than scale pa-
rameters for the maximum likelihood method and the Bayes method, and the scale
parameters have smaller MSEs and absolute Bias using the Bayes method than the
maximum likelihood method. Under Scheme 1, the MSEs of MLEs are smaller than
BEs. This indicates that the progressive censoring schemes have a small influence on
the performance of point estimates.

2. The biases of scale parameters θ1 and θ2 are negative except for the MLEs for n = 200
under Scheme 2. For Bayes estimation, the scale parameters are underestimated in
all cases. The shape parameters α1 and α2 are overestimated using the maximum
likelihood method and Bayes method. This shows that the parameter role, i.e., shape
and scale parameters in the competing risks model considering the APE distribution,
has an impact on the estimation.

From Tables 4–6, we observe that

1. The ILs of ACIs, PBCIs, SBCIs and HPD-credible intervals decrease when n increases
under all schemes. This implies that the progressive censoring schemes have little
influence on the performance of ILs.

2. The coverage probabilities of the mentioned confidence intervals show that the shape
parameters are covered in the confidence intervals under all the schemes and specified
sample sizes. This does not hold for coverage probabilities of the scale parameters.
However, the CPs of HPD-credible intervals for scale parameters are close to the
nominal probability when n is increasing under Schemes 1 and 2.

3. In terms of ILs, SBCIs and HPD-credible intervals are better than ACIs and PBCIs.
For the coverage probabilities, bootstrap methods perform better than the other two
interval estimation methods.

We also present the point estimates (MLEs and BEs) and interval estimates (ACIs,
PBCIs, SBCIs and HPD-credible intervals) of R(x) and h(x) at given point x under the
three schemes. Here, we choose x = {0.3, 0.5, 0.8} to show the performance of estimation
for reliability characteristics. The MLEs and BEs of R(x) and h(x) are given in Table 7 for
Scheme 1, Table 8 for Scheme 2 and Table 9 for Scheme 3. The interval estimates of R(x) and
h(x) are given in Table 10 for Scheme 1, Table 11 for Scheme 2 and Table 12 for Scheme 3.

We see from Tables 7–12 that

1. The MSEs of MLEs of R(x) and h(x) at x = {0.3, 0.5, 0.8} decrease with the increasing
samples n under the three schemes. However, the MSEs of BEs have small changes
with increasing n when RF and HRF are estimated.
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2. R(x) is underestimated using maximum likelihood and Bayes methods, and h(x)
is overestimated under the specified schemes. This indicates that the progressive
censoring schemes have little influence on the performance of MLES.

3. In Tables 10–12, the ILs of ACIs, PBCIs, SBCIs and HPD-credible interval estimates
for R(x) and h(x) decrease when n increases under all schemes. Further, R(x) and
h(x) are always covered in ACIs, but they have the largest interval lengths. The pro-
gressive schemes have little influence on ACIs, but they have an influence on the
other intervals.

4. In terms of ILs and CPs, PBCIs and HPD-credible intervals are better than ACIs and
SBCIs for all the schemes.

We also note that, from the coverage probabilities of interval estimation of parameters
and reliability characteristics, it can be found that the coverage probabilities are 1 in most
cases for ACIs and PBCIs, which are conducted based on the maximum likelihood method.
Compared with SBCIs and HPD-credible intervals in terms of the occurrance of coverage
probabilities equal to 1, this indicates that SBCIs and HPD-credible intervals perform better
than ACIs and PBCIs. In our simulation study, the interval estimates (R̂lower(t), R̂upper(t))
of R(t) obtained using the estimation procedures in Sections 3–5 lie in the range (0, 1). It is
noted that the asymptotic confidence interval of R(t) may be outside of (0, 1). In this case,
transformation on R(t) could be applied to avoid the occurrence of exceeding the range
(0, 1). On the other hand, though the simulated results for the interval estimates of R(t)
and h(t) are the subsets of the domains of reliability characteristics, the transformation
approach could also be suggested to improve the performance of interval estimation.

To summarize, based on the MSEs, ILs and CPs of parameter estimates, the perfor-
mance is relatively good and stable when n = 100 for Scheme 1.

Table 7. Point estimates of R(x) and h(x) at x = {0.3, 0.5, 0.8} under Scheme 1.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

50

R (0.3) 0.2904 0.0036 0.0034 0.2972 −0.0032 0.0008
R (0.5) 0.1116 0.0076 0.0015 0.1238 −0.0047 0.0004
R (0.8) 0.0246 0.0041 0.0002 0.0320 −0.0033 0.0001
h (0.3) 4.7508 −0.3680 0.7303 4.3728 0.0100 0.1080
h (0.5) 5.1834 −0.5549 0.9477 4.6027 0.0258 0.1115
h (0.8) 5.5063 −0.6804 1.1040 4.7861 0.0398 0.1099

100

R (0.3) 0.2943 −0.0003 0.0019 0.2944 −0.0004 0.0007
R (0.5) 0.1130 0.0061 0.0009 0.1214 −0.0022 0.0004
R (0.8) 0.0245 0.0042 0.0001 0.0308 −0.0020 0.0001
h (0.3) 4.6619 −0.2791 0.3908 4.3977 −0.0149 0.1080
h (0.5) 5.0928 −0.4642 0.5610 4.6291 −0.0005 0.1115
h (0.8) 5.4186 −0.5927 0.7022 4.8129 0.0130 0.1097

200

R (0.3) 0.2888 0.0052 0.0009 0.2952 −0.0012 0.0005
R (0.5) 0.1087 0.0104 0.0005 0.1213 −0.0022 0.0002
R (0.8) 0.0227 0.0061 0.0001 0.0304 −0.0016 0.0000
h (0.3) 4.7072 −0.3244 0.2615 4.3760 0.0068 0.0638
h (0.5) 5.1386 −0.5101 0.4339 4.6094 0.0192 0.0663
h (0.8) 5.4640 −0.6381 0.5856 4.7954 0.0305 0.0661

Table 8. Point estimates of R(x) and h(x) at x = {0.3, 0.5, 0.8} under Scheme 2.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

50

R (0.3) 0.3530 −0.0590 0.0069 0.3153 −0.0213 0.0012
R (0.5) 0.1570 −0.0379 0.0034 0.1366 −0.0175 0.0007
R (0.8) 0.0431 −0.0144 0.0006 0.0374 −0.0086 0.0001
h (0.3) 3.9850 0.3978 0.5850 4.1638 0.2190 0.1396
h (0.5) 4.3785 0.2500 0.5579 4.3932 0.2354 0.1504
h (0.8) 4.7010 0.1249 0.5425 4.5809 0.2450 0.1535
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Table 8. Cont.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

100

R (0.3) 0.3472 −0.0533 0.0044 0.3187 −0.0248 0.0013
R (0.5) 0.1499 −0.0308 0.0018 0.1384 −0.0192 0.0007
R (0.8) 0.0385 −0.0098 0.0003 0.0377 −0.0090 0.0001
h (0.3) 4.0420 0.3408 0.3066 4.1238 0.2590 0.1526
h (0.5) 4.4585 0.1700 0.2493 4.3601 0.2684 0.1608
h (0.8) 4.7973 0.0286 0.2352 4.5544 0.2715 0.1611

200

R (0.3) 0.3541 −0.0601 0.0044 0.3281 −0.0341 0.0016
R (0.5) 0.1545 −0.0353 0.0017 0.1444 −0.0253 0.0009
R (0.8) 0.0400 −0.0113 0.0002 0.0399 −0.0111 0.0002
h (0.3) 3.9582 0.4247 0.2768 4.0205 0.3623 0.1867
h (0.5) 4.3737 0.2548 0.1797 4.2635 0.3650 0.1931
h (0.8) 4.7167 0.1092 0.1375 4.4658 0.3601 0.1904

Table 9. Point estimates of R(x) and h(x) at x = {0.3, 0.5, 0.8} under Scheme 3.

n Parameter
MLE BE

Estimate Bias MSE Estimate Bias MSE

50

R (0.3) 0.3541 −0.0602 0.0068 0.3349 −0.0409 0.0026
R (0.5) 0.1609 −0.0417 0.0037 0.1520 −0.0328 0.0016
R (0.8) 0.0462 −0.0175 0.0008 0.0447 −0.0159 0.0004
h (0.3) 3.8998 0.4830 0.6112 3.9405 0.4423 0.3071
h (0.5) 4.2347 0.3939 0.5972 4.1569 0.4716 0.3398
h (0.8) 4.5128 0.3131 0.5790 4.3392 0.4867 0.3542

100

R (0.3) 0.3593 −0.0654 0.0058 0.3502 −0.0563 0.0039
R (0.5) 0.1658 −0.0466 0.0031 0.1632 −0.0440 0.0024
R (0.8) 0.0485 −0.0197 0.0006 0.0496 −0.0208 0.0006
h (0.3) 3.7698 0.6131 0.5349 3.7744 0.6084 0.4508
h (0.5) 4.0625 0.5660 0.5084 3.9925 0.6361 0.4934
h (0.8) 4.3124 0.5136 0.4768 4.1804 0.6455 0.5091

200

R (0.3) 0.3584 −0.0645 0.0050 0.3624 −0.0684 0.0053
R (0.5) 0.1664 −0.0473 0.0028 0.1723 −0.0532 0.0033
R (0.8) 0.0493 −0.0206 0.0006 0.0537 −0.0250 0.0007
h (0.3) 3.7308 0.6521 0.5164 3.6492 0.7337 0.6075
h (0.5) 3.9916 0.6369 0.5153 3.8678 0.7608 0.6584
h (0.8) 4.2170 0.6089 0.4976 4.0593 0.7666 0.6738

Table 10. Interval estimates of R(x) and h(x) at x = {0.3, 0.5, 0.8} under Scheme 1.

n Parameter
ACI PBCI SBCI HPD

IL CP IL CP IL CP IL CP

50

R (0.3) 0.6295 1.0000 0.2194 0.9300 0.2452 0.9180 0.1711 0.9960
R (0.5) 0.3211 0.9920 0.1509 0.9220 0.1704 0.8980 0.1133 0.9960
R (0.8) 0.0948 0.9560 0.0646 0.9160 0.0558 0.8500 0.0440 0.9980
h (0.3) 15.1937 1.0000 2.6979 0.9100 9.9158 0.8540 2.0098 0.9980
h (0.5) 16.3907 1.0000 2.7699 0.9100 9.6123 0.8720 2.0910 0.9980
h (0.8) 16.2365 1.0000 2.7892 0.9100 9.0189 0.8760 2.1337 1.0000

100

R (0.3) 0.4684 1.0000 0.1573 0.9500 0.1666 0.9300 0.1217 0.9780
R (0.5) 0.2581 1.0000 0.1082 0.9440 0.1222 0.9100 0.0848 0.9760
R (0.8) 0.0727 0.9720 0.0446 0.9420 0.0459 0.8760 0.0352 0.9800
h (0.3) 10.2479 1.0000 1.9063 0.9340 7.6873 0.9120 1.4799 0.9800
h (0.5) 11.2567 1.0000 1.9784 0.9340 7.4875 0.9200 1.5603 0.9800
h (0.8) 11.0322 1.0000 2.0159 0.9360 7.1573 0.9380 1.6174 0.9840

200

R (0.3) 0.3240 1.0000 0.1117 0.9300 0.1154 0.9260 0.0947 0.9680
R (0.5) 0.1946 0.9980 0.0769 0.9260 0.0829 0.9180 0.0661 0.9640
R (0.8) 0.0538 0.9660 0.0312 0.9340 0.0349 0.8980 0.0274 0.9660
h (0.3) 7.6700 1.0000 1.3565 0.9340 3.0475 0.9200 1.1517 0.9640
h (0.5) 8.4498 1.0000 1.4246 0.9340 2.9934 0.9340 1.2441 0.9740
h (0.8) 8.1572 1.0000 1.4711 0.9340 2.8896 0.9400 1.3213 0.9820
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Table 11. Interval estimates of R(x) and h(x) at x = {0.3, 0.5, 0.8} under Scheme 2.

n Parameter
ACI PBCI SBCI HPD

IL CP IL CP IL CP IL CP

50

R (0.3) 0.7687 1.0000 0.2385 1.0000 0.3091 0.9960 0.1736 1.0000
R (0.5) 0.4635 1.0000 0.1521 1.0000 0.2446 0.9700 0.1201 1.0000
R (0.8) 0.1715 0.9980 0.0555 1.0000 0.0683 0.9980 0.0496 1.0000
h (0.3) 12.3926 1.0000 1.9553 1.0000 5.5064 0.7920 1.9201 0.9980
h (0.5) 13.7575 1.0000 1.7022 1.0000 6.7450 0.9480 2.0079 0.9980
h (0.8) 13.9777 1.0000 1.6027 1.0000 9.6289 0.9960 2.0561 1.0000

100

R (0.3) 0.5354 1.0000 0.1686 1.0000 0.1831 0.9980 0.1430 0.9940
R (0.5) 0.3392 1.0000 0.1033 1.0000 0.1352 0.9680 0.1008 0.9940
R (0.8) 0.1135 1.0000 0.0363 1.0000 0.0396 0.9940 0.0423 0.9960
h (0.3) 8.6210 1.0000 1.4166 1.0000 4.6827 0.8640 1.5567 0.9840
h (0.5) 9.7277 1.0000 1.2680 1.0000 5.8272 0.9840 1.6519 0.9900
h (0.8) 9.7485 1.0000 1.2530 1.0000 8.7395 1.0000 1.7175 0.9940

200

R (0.3) 0.3750 1.0000 0.1239 0.6580 0.1353 0.8360 0.1130 0.9660
R (0.5) 0.2638 1.0000 0.0803 0.7580 0.0942 0.8740 0.0821 0.9640
R (0.8) 0.0932 1.0000 0.0305 0.9440 0.0356 0.9920 0.0357 0.9640
h (0.3) 6.0311 1.0000 1.0045 0.5260 2.4496 0.5080 1.1778 0.9040
h (0.5) 6.8928 1.0000 0.9962 0.9980 2.6756 0.9460 1.2850 0.9360
h (0.8) 6.8438 1.0000 1.0756 1.0000 3.6085 1.0000 1.3718 0.9580

Table 12. Interval estimates of R(x) and h(x) at x = {0.3, 0.5, 0.8} under Scheme 3.

n Parameter
ACI PBCI SBCI HPD

IL CP IL CP IL CP IL CP

50

R (0.3) 0.7253 1.0000 0.2582 1.0000 0.4573 0.9400 0.1524 0.8800
R (0.5) 0.4396 1.0000 0.1831 0.9980 0.2902 0.9460 0.1171 0.8580
R (0.8) 0.1674 1.0000 0.0785 1.0000 0.1077 0.9500 0.0561 0.8600
h (0.3) 15.0507 1.0000 2.0378 0.9880 8.5405 0.5760 1.6314 0.8580
h (0.5) 16.2536 1.0000 1.8913 1.0000 7.9381 0.7700 1.7047 0.8660
h (0.8) 16.4884 1.0000 1.8356 1.0000 9.0854 0.9400 1.7509 0.8700

100

R (0.3) 0.5170 1.0000 0.1596 0.9880 0.1641 0.9980 0.1488 0.9240
R (0.5) 0.3550 1.0000 0.1254 0.9920 0.1349 1.0000 0.1130 0.9220
R (0.8) 0.1329 1.0000 0.0608 0.9960 0.0658 1.0000 0.0529 0.9320
h (0.3) 11.1842 1.0000 1.5971 0.9160 3.0044 0.6920 1.4537 0.8160
h (0.5) 12.0948 1.0000 1.7303 0.9740 3.1644 0.8580 1.5438 0.8260
h (0.8) 12.3465 1.0000 1.8382 0.9920 3.5004 0.9560 1.6139 0.8560

200

R (0.3) 0.3618 1.0000 0.1158 0.6740 0.1242 0.8180 0.1215 0.6860
R (0.5) 0.2668 1.0000 0.0913 0.7160 0.1078 0.9300 0.0962 0.6980
R (0.8) 0.1093 1.0000 0.0448 0.7560 0.0554 0.9720 0.0469 0.7360
h (0.3) 10.5825 1.0000 1.1902 0.6320 2.0651 0.6460 1.5501 0.8400
h (0.5) 11.3103 1.0000 1.3214 0.7780 2.0850 0.7640 1.7166 0.8840
h (0.8) 11.5046 1.0000 1.4394 0.9220 2.0677 0.8700 1.8304 0.8980

6.2. Numerical Example

In the simulation study, we discuss the performance of the competing risks model
parameter estimates comparing the maximum likelihood method, bootstrap method and
Bayes method considering the APE distribution with (α1, θ1, α2, θ2) = (1.5, 2.0, 2.0, 3.0).
The numerical results above show the performance of parameter estimates is affected by
the schemes. For an illustration of the reliability estimates, here we choose the setting of
n = 100 and Scheme 1 because the parameter estimates perform well under this setting,
as mentioned above. The generated dataset of competing risks data under progressive
censoring of Scheme 1 is presented in Table 13.

For the dataset in Table 13, 92 observations with 8 units censored in Scheme 3 are listed
where 29 samples are from competing risk X1, and the other 63 samples are from competing
risk X2. The parameter estimates are given in Table 14. In this table, ACI-IL indicates the
ILs of interval estimates for ACIs. This is similar to PBCI-IL, SBCI-IL and HPD-IL-credible
intervals. From the numerical estimates, HPD-credible intervals and PBCIs have smaller
ILs than ACIs and SBCIs. Figure 1 shows the log-likelihood functions of (α1, θ1, α2, θ2),
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which reveals that the MLEs exist and are unique. Moreover, to show the convergence of
MCMC iterations, the trace plots are presented in Figure 2.

Table 13. Simulated competing risks dataset.

Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri)

1 (0.0034,2,8) 17 (0.0593,2,0) 33 (0.1227,2,0) 49 (0.2212,2,0) 65 (0.3066,2,0) 81 (0.495,2,0)
2 (0.0097,2,0) 18 (0.0602,2,0) 34 (0.1264,1,0) 50 (0.2238,2,0) 66 (0.3262,2,0) 82 (0.5079,2,0)
3 (0.0105,1,0) 19 (0.0649,1,0) 35 (0.1351,1,0) 51 (0.2246,1,0) 67 (0.3403,2,0) 83 (0.5168,1,0)
4 (0.0141,2,0) 20 (0.0651,2,0) 36 (0.1373,1,0) 52 (0.2249,2,0) 68 (0.3463,2,0) 84 (0.5746,2,0)
5 (0.019,2,0) 21 (0.0668,1,0) 37 (0.1409,1,0) 53 (0.2372,1,0) 69 (0.3594,2,0) 85 (0.6539,2,0)
6 (0.0226,2,0) 22 (0.0707,2,0) 38 (0.1539,1,0) 54 (0.2378,1,0) 70 (0.3667,2,0) 86 (0.6551,2,0)
7 (0.0261,1,0) 23 (0.072,1,0) 39 (0.1599,2,0) 55 (0.2378,2,0) 71 (0.3687,1,0) 87 (0.7682,2,0)
8 (0.0275,1,0) 24 (0.0901,2,0) 40 (0.16,2,0) 56 (0.2418,1,0) 72 (0.3699,2,0) 88 (0.7683,1,0)
9 (0.0278,2,0) 25 (0.0927,2,0) 41 (0.1626,2,0) 57 (0.2506,1,0) 73 (0.3701,2,0) 89 (0.7725,1,0)

10 (0.031,2,0) 26 (0.0935,1,0) 42 (0.1707,2,0) 58 (0.2631,2,0) 74 (0.3713,1,0) 90 (0.7959,2,0)
11 (0.0327,2,0) 27 (0.0936,1,0) 43 (0.1709,2,0) 59 (0.2696,1,0) 75 (0.401,2,0) 91 (1.1449,2,0)
12 (0.0351,2,0) 28 (0.1038,2,0) 44 (0.1815,1,0) 60 (0.2736,2,0) 76 (0.4034,2,0) 92 (1.1716,2,0)
13 (0.0354,1,0) 29 (0.1066,1,0) 45 (0.1971,2,0) 61 (0.2962,2,0) 77 (0.4313,2,0)
14 (0.0374,1,0) 30 (0.1083,2,0) 46 (0.2029,2,0) 62 (0.2963,2,0) 78 (0.4343,2,0)
15 (0.0494,1,0) 31 (0.1191,2,0) 47 (0.2051,1,0) 63 (0.2991,2,0) 79 (0.4488,1,0)
16 (0.0554,2,0) 32 (0.1216,2,0) 48 (0.2133,2,0) 64 (0.3018,2,0) 80 (0.4894,1,0)

Table 14. Parameter estimates for the competing risks dataset.

Estimate Method α1 θ1 α2 θ2

Point MLE 2.8694 2.4158 2.9509 3.6347
BE 1.7035 1.6144 2.1310 3.1349

Interval

ACI-IL 9.6804 3.8258 6.9790 2.8800
PBCI-IL 1.9411 1.4615 2.7206 1.5318
SBCI-IL 3.2717 1.6997 2.3947 1.5352
HPD-IL 1.6879 0.9725 1.8569 1.3334
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Figure 1. The log-likelihood functions of (α1, θ1, α2, θ2) for the simulated dataset.

Further, using the MLEs, bootstrap samples and MCMC, we can compute the estimates
of the reliability and hazard rate given a specified argument x in Equations (5) and (6).
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For the continuous argument x, we present the curves of the MLEs and BEs in Figure 3,
and ranges of ACIs using the delta method, bootstrap confidence intervals (PBCIs and
SBCIs) and HPD-credible intervals in Figures 4 and 5.
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Figure 2. Trace plots of distribution parameters (α1, θ1, α2, θ2).
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Figure 3. (a) Point estimates of R(x) (left) and (b) h(x) (right) for the simulated dataset.
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Figure 4. Interval estimates of RF R(x) where the true values of R(x) are marked in red.

We see from Figure 3a that the estimates of R(x) are close to the true values of RF. This
implies that the maximum likelihood and Bayes methods are effective and applicable to
evaluate RF in the competing risks model with a progressive censoring scheme when the
lifetime distribution of the individual is the APE distribution. We also see that BE is higher
than the true values but MLE is lower than the true values. In Figure 3b, the MLE numerical
errors between the estimated HRF and the true HRF are higher than the estimated RF when
x is increasing. The BEs are lower than the true values, and a crossing point occurs between
the BEs and the true values. We also find that the errors become larger when x is increasing,
and, meanwhile, the MLEs perform better than BEs.

For the interval estimation of R(x) in Figure 4, we find that PBCI, SBCI and HPD-
credible intervals perform better than ACI, where ACI has a larger IL. The subtle differences
among the PBCI, SBCI and HPD-credible intervals are that the lower limits of PBCI and
SBCI and the upper limits of the HPD-credible intervals are closer to the true values.
The interval estimates are asymmetric for the Bayes and bootstrap methods. As shown
in Figure 5, we see that ACI has the largest errors in hazard rate estimates among the
four interval estimate methods, while PBCI has the smallest error. That is, the Bayes and
bootstrap methods are better than ACI in terms of the ILs. When x is increasing, the Bayes
method has closer lower limits than bootstrap estimates.

In this numerical example, we focus on the comparison of estimates for RF and
HRF. We suggest percentile bootstrap and Bayes methods for interval estimation of R(x)
and h(x). Considering the sampling complexity and time-consuming features of MCMC,
the maximum likelihood method is a good choice for point estimation.
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Figure 5. Interval estimates of HRF h(x) where the true values of h(x) are marked in red.

7. Real Data Analysis

We analyze a real competing risks dataset under the progressive censoring to illustrate
the feasibility of parameter estimation under the underlying APE distribution. The dataset
consists of 19 instances of relapse of multiple myeloma and 10 instances of transplant-
related mortality as a competing risk from 35 patients treated at the Clinic for Stem Cell
Transplantation, University Hospital Hamburg-Effendorf, Hamburg, Germany. The details
of patients receiving transplants from donors with type AA haplotypes and type AB or
BB are given in Donoghoe and Gebski [24], where a proportional subdistribution hazards
model was applied to fit this data and to determine the improvement in time to relapse if
donors were with group B killer immunoglobulin-like receptor haplotypes. Here, we focus
on the statistical inference using the competing risks model for this data. The times with
the pattern of events and censoring are given as (xi, δi, Ri) for i = 1, 2, . . . , 35 in Table 15,
where δi = 1 indicates the time to relapse; δi = 2 indicates the transplant-related mortality;
δi = 0 indicates the censoring time together with the removal Ri = 1.

Table 15. Real dataset.

Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri) Id (xi , δi , Ri)

1 (14.82,2,0) 7 (41.17,1,0) 13 (9.33,1,0) 19 (12.35,1,0) 25 (1.97,2,0) 31 (6.7,2,0)
2 (3.91,2,0) 8 (15.74,1,0) 14 (56.57,0,1) 20 (5.03,1,0) 26 (9.92,1,0) 32 (28.29,1,0)
3 (3.45,1,0) 9 (22.31,1,0) 15 (6.21,2,0) 21 (41.17,1,0) 27 (3.81,1,0) 33 (4.14,1,0)
4 (89.89,0,1) 10 (80.46,1,0) 16 (14.72,1,0) 22 (0.26,2,0) 28 (23.79,0,1) 34 (1.94,2,0)
5 (45.96,1,0) 11 (4.57,1,0) 17 (53.55,0,1) 23 (46.55,0,1) 29 (1.81,2,0) 35 (10.68,1,0)
6 (0.66,2,0) 12 (17.31,1,0) 18 (44.02,0,1) 24 (3.58,1,0) 30 (3.55,2,0)

The APE distribution discussed in this paper is a generalization of an Exp distribu-
tion. Thus we consider Exp and APE distributions for each event in the model selection.
The models are listed with the same Exp and APE distributions and the hybrid Exp and
APE distributions. For simplicity, they are written as (Exp, Exp), (Exp, APE), (APE, Exp)
and (APE, APE), respectively. The Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) are used to select the parametric model. The AICs and BICs
for the four models are presented in Table 16, and the selected model (APE, APE) for this
dataset is in bold.
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Table 16. AICs and BICs for model selection.

Model (Exp, Exp) (Exp, APE) (APE, Exp) (APE, APE)

AIC 320.4981 319.5292 319.5879 318.6538
BIC 322.0535 321.0845 321.1432 320.4981

Using the parameter estimation methods mentioned before and the selected model
(APE, APE), the parameter estimates of the APE distribution based on the competing risks
model are shown in Table 17. Figure 6 displays the log-likelihood functions of (α1, θ1, α2, θ2),
which indicates that the MLEs exist and are unique. Similarly, with the numerical example,
we present the estimates of RF and HRF in Figure 7. We see that the reliability estimate
using the Bayes method is lower than the maximum likelihood method. This implies that
the hazard rate estimation using the maximum likelihood method is higher than Bayes,
which is in line with Figure 7.

Table 17. Parameter estimates for the real dataset.

Estimate Method α1 θ1 α2 θ2

Point MLE 0.1677 0.0074 0.2107 0.0041
BE 0.1147 0.0059 0.1312 0.0032

Interval

ACI-IL 0.9583 0.0186 0.9898 0.0086
PBCI-IL 4.4155 0.0171 5.2786 0.0112
SBCI-IL 0.5029 0.0179 0.4966 0.0072
HPD-IL 0.5040 0.0121 0.4202 0.0058
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Figure 6. The log-likelihood functions of (α1, θ1, α2, θ2) for the real dataset.
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The interval estimates of R(x) are shown in Figure 8 for ACI, PBCI, SBCI and HPD-
credible intervals. We observe that the lower limit of SBCI is closer to 0 when x is increasing,
and SBCI has the largest IL among the interval estimates. The ACI, PBCI and HPD-credible
intervals have a good performance for this real dataset. For the interval estimates of h(x)
in Figure 9, we see that ACI and SBCI have larger Ils than HPD-credible interval and PBCI.
This also indicates the estimate errors. The upper limits for HPD-credible interval and PBCI
are lower than ACI and SBCI when x is small.
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Figure 7. Point estimates of R(x) (left) and h(x) (right) for the real dataset.
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Figure 8. Interval estimates of RF R(x) for the real dataset.

In the end, we note that the trace plots of (α1, θ1, α2, θ2) for this real dataset are omitted
here, but the convergence of MCMC samples is checked. The convergence of MCMC sam-
ples is monitored with the Gelman–Rubin diagnosis [25], which can be conducted with the
R package coda [26]. It is to be mentioned here that the simulated and real datasets and all
codes used for simulation and real data analysis are available as Supplementary materials.



Mathematics 2022, 10, 2258 22 of 25

0 25 50 75 100 0 25 50 75 100

0

5

10

15

20

x

h(
x) ACI

SBCI

0 25 50 75 100 0 25 50 75 100
0.01

0.02

0.03

0.04

x

h(
x) HPD

PBCI

Figure 9. Interval estimates of HRF h(x) for the real dataset.

8. Competing Risks with Unknown Cause of Failure

In all techniques discussed in this paper, we consider that the cause of failure for
all items is known. In practice, the cause of failure for some items may be unknown or
uncertain. For example, the cause of disease for some patients may be hard to decide.
An investigation employing just the failures with known causes may direct to significant
bias; for more detail, see Lu and Liang [27]. In this section, we consider the competing risks
model with an unknown cause of failure when the data are progressively Type-II censored
from the APE distribution as an extension of the model discussed in this paper. Suppose
that we have only two causes of failure and

I(δi = 1) =
{

1, δi = 1
0 otherwise

,

I(δi = 2) =
{

1, δi = 2
0 otherwise

and I(δi = ∗) =
{

1, δi = ∗
0 otherwise

,

where m1 = ∑m
i=1 I(δi = 1), m2 = ∑m

i=1 I(δi = 2) are the number of failures due to cause
one and cause two, respectively, and m3 = ∑m

i=1 I(δi = ∗) is the number of failures having
failure times but related causes of failure are unidentified. In this case, the likelihood
function of the observed data can be expressed as follows

L = c
m
∏
i=1

[ f1(xi)F̄2(xi)]
I(δi=1)

[ f2(xi)F̄1(xi)]
I(δi=2)

[ f1(xi)F̄2(xi) + f2(xi)F̄1(xi)]
I(δi=∗)

× [F̄1(xi)F̄2(xi)]
Ri .

(22)

where m = m1 + m2 + m3. Using the relation ht(x) = ft(x)F̄t(x), t = 1, 2, the likelihood
function in (22) can be written as

L = c
m

∏
i=1

[h1(xi)]
I(δi=1)[h2(xi)]

I(δi=2) [h1(xi) + h2(xi)]
I(δi=∗)[F̄1(xi)F̄2(xi)]

1+Ri , (23)
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From (1), (2) and (23), we can write the log-likelihood function, ignoring the normal-
ized constant, as follows

L∗(v) = L(v) +
m3

∑
i=1

log(Di), (24)

where L(v) is given by (9), v = (θ1, θ2, α1, α2)
> and

Di ≡ D(v) =

[
θ1 log(α1)e−θ1xi

αe−θ1xi
1 − 1

+
θ2 log(α2)e−θ2xi

αe−θ2xi
2 − 1

]
. (25)

By maximizing (24) with respect to θt and αt, t = 1, 2, one can get the MLEs of θt and
αt. Alternatively, the MLEs can be obtained by solving the following normal equations

∂L∗(v)

∂θt
=

∂L(v)

∂θt
+

m3

∑
i=1

D∗i
Di

= 0 (26)

and
∂L∗(v)

∂αt
=

∂L(v)

∂αt
+

m3

∑
i=1

D?
i

Di
= 0, (27)

where ∂L(v)/∂θt and ∂L(v)/∂αt are given by (10) and (11), respectively, and

D∗i =
e−θtxi log(αt)

αe−θt xi
t − 1

(
1− θtxi −

θt log(αt)xie−θtxi

1− α−e−θt xi
t

)

and

D?
i =

θte−θtxi

αt

(
αe−θt xi

t − 1
)[1− e−θtxi log(αt)

1− α−e−θt xi
t

]
, t = 1, 2.

Upon the MLEs of θt and αt, t = 1, 2 obtained, one can simply compute the MLEs
of RF and HRF using the invariance property. Further, the Bayesian estimation can be
simply applied using the same approach discussed before, which requires the use of the
MH algorithm.

9. Conclusions

This paper considers the competing risks model under the progressive Type-II censor-
ing scheme when the lifetimes under the various causes have independent alpha power
exponential distributions. The maximum likelihood and Bayes methods are used for the
estimation of distribution parameters and reliability characteristics, and the bootstrap
method is also applied to obtain the interval estimates. We discuss the performance of
model parameter estimates in the simulation study considering three chosen schemes,
and a numerical example and a real data analysis are shown for further illustration of
the estimates of reliability and hazard rate functions. We conclude that the bootstrap and
Bayes methods perform better than the maximum likelihood method for interval estimates,
and the progressive censoring schemes have an impact on the estimation. In future work,
we propose to consider the alpha power exponential distribution using different censoring
schemes as adaptive Type-II progressively censors in the presence of a competing risks
model. Another future work is to investigate the same procedures considered in this paper
based on dependent competing risks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10132258/s1. The simulated and real datasets saved in the
excel documents, and the source codes for numerical analysis in R are uploaded.
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