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Abstract: This paper analyzes the time to event data in the presence of collinearity. To address
collinearity, the ridge regression estimator was applied in multiple and logistic regression as an
alternative to the maximum likelihood estimator (MLE), among others. It has a smaller mean square
error (MSE) and is therefore more precise. This paper generalizes the approach to address collinearity
in the frailty model, which is a random effect model for the time variable. A simulation study is
conducted to evaluate its performance. Furthermore, the proposed method is applied on real life data
taken from the largest sample survey of India, i.e., national family health survey (2005–2006 ) data to
evaluate the association of different determinants on infant mortality in India.
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1. Introduction

In a survival analysis, the frailty model is a popular approach to model time to event
data, which considers both observable and unobservable factors simultaneously [1]. A
large number of studies have demonstrated that the consideration of unobservable variability
improves the fitness of the model [2–5]. In the frailty model there is an assumption on the
explanatory variables that the variable are independent to each other, while various practical
situations do not satisfy this assumption. Several studies of infant survival considered factors
such as place of residence, birth order, breastfeeding, mother education, tetanus toxoid,
antenatal care, iron folic acid tablets, place of delivery, etc. [6–9]. Some of the variables, for
example tetanus toxoid and antenatal care, are correlated to each other in the data set,
which is analyzed in this study. The fact that parameter estimates become unstable when
the explanatory variables are correlated in the case of the frailty model, means that the
collinearity problem has seldom been considered.

To overcome the problem of collinearity ridge estimation is the alternative of the
maximum likelihood estimation. Ridge estimator has smaller MSE than MLE. In the case
of high multicollinearity, there is a considerable reduction in MSE. Ridge regression was
originally proposed by Hoerl and Kennard (1970a,b) [10,11], and later on Schafer et al.
(1984) [12] generalized this approach to logistic regression. A slightly different approach
in the connection of the ridge type estimator is given by Daffy and Santner (1989) [13].
This approach is proposed in a standard linear regression, while Cessie and Houwelingen
(1992) [14] generalized the same approach in logistic regression. However, this method is
not adapted for frailty models.
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This study developed a ridge regression estimator in the parametric frailty model and
evaluated its performance through a simulation study. Further, the proposed approach is
applied to examine the risk of infant mortality in India.

2. Ridge Estimator for Parametric Frailty Model

In this section, the approach of Cessie and Houwelingen (1992) [14] is extended to
the parametric frailty model. The ridge estimator is derived as a restricted maximum
likelihood estimator.

Frailty model is a mixture model in the survival analysis, where the risk of the indi-
vidual death (hazard function) is a function of observable factors and a random effect term
(unobserved frailty) [1,15]. The form of such a model is given as

λ(τi | xi, αi) = αiλ0(τi)exp(β′xi) (1)

where λ(τi | xi, αi) is the hazard of i-th individual at time τi, i = 1, 2, . . . , n with covariate
vector x′i = (xi1, xi2, . . . , xiq) and unobserved frailty variable αi. λ0(τi) is the base line
hazard function and β′ = (β1, β2, . . . , βq) is the vector of regression coefficients. Here, q
represent the number of regressors. It is assumed that the unobserved frailty follow a
gamma distribution and is captured by its variance σ2 [16,17]. This paper also assumes that
the unobserved frailty follows gamma distribution. One assumption is also added on the
response variable that it follows Weibull distribution with one parameter θ. On the basis of
this assumption, λ0(τi) = θτθ−1

i , θ > 0. The likelihood function of the frailty model (1) is
given by,

L(β) = Πn
i=1(αiλ0(τi)eβ′xi )δi e−αiγ0(τi)eβ′xi (2)

Using the assumption of the distribution (i.e., gamma distribution) of frailty, the
random terms are resulted out, making the likelihood function,

L(β) =
n

∏
i=1

(
λ0(τi)eβ′xi

1 + σ2γ0(τi)eβ′xi
)δi (1 + σ2γ0(τi)eβ′xi )−1/σ2

(3)

The log likelihood form of (3) is

l(β) =
n

∑
i=1

[δi[log(λ0(τi)) + β′xi − log(1 + σ2γ0(τi)eβ′xi )]

−(1/σ2)log(1 + σ2γ0(τi)eβ′xi )]

(4)

The maximization of (4) gives the ordinary MLE β̂ for β. Since (4) is non linear in β,
m-th, the approximation is obtained by using the Newton–Raphson method, i.e.,

β̂(m) = β̂(m−1) + F(β̂(m−1))−1U(β̂(m−1)) (5)

where U(β̂(m−1)) is the derivative of l(β) in respect to β using β̂(m−1),

U(β̂(m−1)) =
n

∑
i=1

[δixi − {(1 + δiσ
2)γ0(τi)xieβ′(m−1)xi}/{1 + σ2γ0(τi)eβ′(m−1)xi}] (6)

and F(β̂(m−1)) is the negative of the matrix of the second derivative of l(β) in respect to β
using β̂(m−1), represented as

F(β̂(m−1)) = X′VX (7)

where, V is the n x n diagonal matrix, whose (i, i)-th element is vii = τθ
i eβ̂′

(m−1)
xi (1 +

δiσ
2)/(1 + σ2τθ

i eβ̂′
(m−1)

xi ). The estimation in the frailty model is based on the iteration and
continues until the small changes, which are decided as ‖β(m) − β(m−1)‖ ≤ 10−5. The Duffy
and Santner (1989) [13] procedure of the ridge estimation is utilized to reduce the problem
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of collinearity. On the basis of this procedure, the log likelihood function is modified with
the addition of a penalty on β.

lk(β) = l(β)− k‖β‖2 (8)

where lk(β) and l(β) are the restricted and unrestricted log likelihood functions, respec-
tively. Here, ‖β‖ = (∑

q
j=1 β2

j )
1/2 is the norm of the parameter vector β. The maximization

of (8) yields β̂k. The ridge parameter k controls the amount of shrinkage of the norm of β.
When k = 0, the solution will remain the same as the ordinary MLE; however, if k → ∞,
then all β′s→ 0.

Collinearity among the covariates induces the unstable parameter estimates. Shrinking
the β′s towards zero and allowing a little bias will stabilize the system and give estimates
with smaller variance. Therefore, for a good choice of k, the restricted estimate (β̂k) is
expected to be, on average, closer to true value of β than unrestricted MLE. The rule of
selecting k is not fixed but the most common choice is to make a little increment in MSE.
In the case of the logistic and Cox regression model, k is chosen as “1/β̂′ β̂, q/β̂′ β̂ and
(q + 1)/β̂′ β̂” [12,18,19]. These three choices were investigated for parametric frailty model
in our simulation studies.

Such as the unrestricted MLE, β̂k is obtained by the Newton–Raphson method. The
m-th order approximation for β̂k is

β̂k(m) = β̂k(m−1) + Fk(β̂k(m−1))−1Uk(β̂k(m−1)) (9)

where Uk(β̂k(m−1)) is the derivative of the restricted log likelihood function (8) and
Fk(β̂k(m−1)) is the negative of the matrix of the second derivative,

Uk(β̂k(m−1)) = U(β̂k(m−1))− 2kβ̂k(m−1)

Fk(β̂k(m−1)) = F(β̂k(m−1)) + 2kI

where I is a q× q identity matrix. Under certain regularity conditions, β̂ is asymptotically
unbiased, i.e., the E(β̂) = β with th covariance matrix (X′VX)−1 [14,20]. The asymptotic
bias of β̂k becomes

E(β̂k − β) = −2k(X′VX + 2kI)−1β

and the asymptotic variance of β̂k is

(X′VX + 2kI)−1X′VX(X′VX + 2kI)−1

Similarly, asymptotic MSE can be obtained by taking the summation on the asymptotic
variance and square of asymptotic bias.

3. Simulation Study

To evaluate the performance of estimators of β, they are compared in terms of their
MSE. In this paper, the survival function is taken as

S(τi) = exp(−γ0(τi)αieβ′xi )

Then, the cumulative distribution function is

F(τi) = 1− exp(γ0(τi)αieβ′xi )

The cumulative distribution function follows a uniform distribution with a range
between 0 and 1. If M ∼ U(0, 1), then 1−M ∼ U(0, 1). Therefore, the survival function
also follows a uniform distribution with the range [0–1].

M = exp(−γ0(τi)αieβ′xi ) ∼ U(0, 1)
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and
τ = γ0

−1(−log(M)/αieβ′xi )

In this study, it is assumed that the baseline distribution is the Weibull with one
parameter θ = 0.5, then γ0

−1() = t1/θ ,; presently, the failure time is

τ = (−log(M)/αieβ′xi )1/θ (10)

Using the expression (10), failure times are generated and the sample sizes are set as,
50, 200, and 2000. The frailty αi is generated from the gamma distribution with scale and
shape parameters 2 and 0.5, respectively, and M is generated randomly from U(0, 1). This
paper considered two covariates in the model and generated by the normal distribution,
where the mean is taken as zero and the variance is one. The parameters are taken as
0.25 and 0.691. Pair wise correlation is taken in four categories, namely, small (ρ = 0.4),
moderate (ρ = 0.6), high (ρ = 0.8) and very high (ρ = 0.95). It is assumed that the
censoring times have a uniform distribution with a range from 0 to 4.5, which allows for
censoring rates of approximately 39%. A total of 100 data sets were generated under each
model and applied the parametric gamma frailty for each data set. The averaged MSE over
q covariates for both ML and ridge estimators are computed and represented in Table 1.

Table 1. Comparison of MSE between the MLE and ridge estimators in simulation; n = 50.

ρ Method MSE (β) % Reduction of MSE (β)

0.4 MLE 0.0801
Ridge estimator for k = 1/β̂′ β̂ 0.0579 27.72
Ridge estimator for k = q/β̂′ β̂ 0.0444 44.57
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0356 55.56

0.6 MLE 0.1056
Ridge estimator for k = 1/β̂′ β̂ 0.0658 37.69
Ridge estimator for k = q/β̂′ β̂ 0.0465 55.97
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0355 66.38

0.8 MLE 0.1871
Ridge estimator for k = 1/β̂′ β̂ 0.0772 55.74
Ridge estimator for k = q/β̂′ β̂ 0.0457 75.57
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0319 82.95

0.95 MLE 0.6908
Ridge estimator for k = 1/β̂′ β̂ 0.0654 90.55
Ridge estimator for k = q/β̂′ β̂ 0.0304 95.60
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0206 97.02

The findings of Tables 1–3 demonstrate that the ridge estimators have a smaller
MSE than ML. Among the three categories of k, the ridge estimator performed better for
k = (q + 1)/β̂′ β̂. In the case of moderate correlation (ρ = 0.6), if k changes from 1/β̂′ β̂
to (q + 1)/β̂′ β̂ then the percentage reduction will change from 37% to 66%. It is revealed
from the Tables 1–3 that if ρ increases then the percentage reduction in MSE also increases.
Figure 1 shows the graphical representation of MSE with respect to the deferent values of ρ.
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Table 2. Comparison of MSE between the MLE and ridge estimators in simulation; n = 200.

ρ Method MSE (β) % Reduction of MSE (β)

0.4 MLE 0.0197
Ridge estimator for k = 1/β̂′ β̂ 0.0181 8.12
Ridge estimator for k = q/β̂′ β̂ 0.0167 15.23
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0155 21.32

0.6 MLE 0.0259
Ridge estimator for k = 1/β̂′ β̂ 0.0227 12.35
Ridge estimator for k = q/β̂′ β̂ 0.0202 22
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0181 30.11

0.8 MLE 0.0459
Ridge estimator for k = 1/β̂′ β̂ 0.0350 23.74
Ridge estimator for k = q/β̂′ β̂ 0.0279 39.22
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0230 49.89

0.95 MLE 0.1693
Ridge estimator for k = 1/β̂′ β̂ 0.0643 62.02
Ridge estimator for k = q/β̂′ β̂ 0.0350 79.33
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.0227 86.59

Table 3. Comparison of MSE between the MLE and ridge estimators in simulation; n = 2000.

ρ Method MSE (β) % Reduction of MSE (β)

0.4 MLE 0.00196
Ridge estimator for k = 1/β̂′ β̂ 0.00194 1.02
Ridge estimator for k = q/β̂′ β̂ 0.00193 1.5
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.00192 2.04

0.6 MLE 0.00257
Ridge estimator for k = 1/β̂′ β̂ 0.00254 1.16
Ridge estimator for k = q/β̂′ β̂ 0.00251 2.33
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.00247 3.89

0.8 MLE 0.00458
Ridge estimator for k = 1/β̂′ β̂ 0.00444 3.05
Ridge estimator for k = q/β̂′ β̂ 0.00432 5.60
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.00421 8.07

0.95 MLE 0.01687
Ridge estimator for k = 1/β̂′ β̂ 0.01492 1.15
Ridge estimator for k = q/β̂′ β̂ 0.01333 20.98
Ridge estimator for k = (q + 1)/β̂′ β̂ 0.01200 40.58
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Figure 1. Comparison of MLE and ridge estimators of β in simulation study. Here, k1, k2 and k3 are
ridge parameters such that; k1 = 1/β̂′ β̂, k2 = q/β̂′ β̂ and k3 = (q + 1)/β̂′ β̂.

4. Real Life Application

The proposed ridge regression estimator for the parametric frailty model is applied to
a data set from the National Family Health Survey IIIrd Phase (NFHS III). The data set has
11,581 infants, out of which 10,448 infants are right censored. The response variable is the
time of survival (in months) from the birth of the infant to the death of the infant. In this
paper, the frailty model included 12 covariates of infant mortality, i.e., place of residence,
breastfeeding, sex of infant, birth order, place of delivery, marital status of parents, tetanus
toxoid (TT), antenatal care (ANC), age of mother, mother education, iron folic acid (IFA)
and family size corresponding to each infant. Out of these covariates, TT and ANC are
moderately correlated to each other and the correlation value is 0.6.

In some situations, the correlation cannot be considered as the standard measure of
collinearity. The condition number is an alternative to measuring the collinearity. This
study followed the Ozkale (2021) [21] approach to measure the condition number. On
the basis of this approach, the condition number is calculated for the matrix [(X∗)

′
(X∗)],

where X∗ = V(1/2)X. The value of the condition number is 36.51, which is greater than 10.
Therefore, collinearity is present in the data set [22,23].

Table 4 shows the distribution of births and deaths with different covariates in India
2005–2006. About 68% deaths occurred, where infants were not provided with breast-
feeding. Approximately 53% infants were delivered at home, and the mothers were not
educated in the same proportion. About 46% of births occurred when the size of the
family was large, i.e., more than six members in the household. A total of 15%, 18% and
32% of mothers had not taken tetanus toxoid, antenatal care and IFA, respectively, during
their pregnancy.
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Table 4. Descriptive statistics of NFHS data.

Variables Birth Death

Number Percentage Number Percentage

Place of residence
Rural 7348 63.4 776 68.49
Urban 4233 36.6 357 31.51
Breastfeeding
No 925 8.0 766 67.61
Yes 10,656 92.0 367 32.39
Sex
Female 5644 48.7 523 46.16
Male 5937 51.3 610 53.84
Birth order
1 3809 32.9 315 27.80
2 3259 28.1 268 23.65
3 1799 15.5 158 13.95
>=4 2714 23.4 392 34.60
Place of delivery
Home 6110 52.8 699 61.69
Govt. hospital 2802 24.2 204 18.01
Prvt. Hospital 2648 22.9 224 19.77
Other 21 0.2 6 0.53
Marital status
Unmarried 11 0.1 1 0.09
0–4 Years 4964 42.9 324 28.60
5–9 Years 3850 33.2 357 31.51
>=10 Years 2756 23.8 451 39.81
ANC
No 2165 18.7 311 27.45
1–2 2687 23.2 303 26.74
>=3 6729 58.1 519 45.81
Age of mother
< 18 Years 739 6.4 76 6.71
18–24 Years 5075 43.8 390 34.42
25–29 Years 3453 29.8 316 27.89
30–34 Years 1537 13.3 206 18.18
>=35 Years 777 6.7 145 12.80
Mother education
No 4512 39 598 52.78
Primary 1687 14.6 196 17.30
Secondary 4436 38.3 309 27.27
Higher 946 8.2 30 2.65
IFA
No 3708 32.0 484 42.72
Yes 7873 68.0 649 57.28
Family size
1–3 1071 9.2 260 22.95
4–6 5214 45.0 514 45.37
>=7 5296 45.7 359 31.69

A frailty model is implemented on the data set and the results related to maximum
likelihood and ridge estimates are summarized in Table 5. A hazard ratio (exp(β̂)) less than
one indicates a decreased death risk, while a greater than unity indicates an increased risk,
and the interpretation of the hazard ratio is either the number of times the risk changes or
the percentage change in the death risk.
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Table 5. Estimation in frailty model.

Category MLE Ridge Estimator

exp(β̂) S.E. 1 (β̂) exp(β̂k) S.E. 1 (β̂k)

Place of residence
Urban a - - - -
Rural 1.156 0.104 1.162 0.103
Breastfeeding
No a - - - -
Yes 8.28 × 10−5 * 0.093 8.49 × 10−5 * 0.092
Sex
Male a - - - -
Female 1.044 0.089 1.047 0.089
Birth order
1 1.176 0.176 1.209 0.171
2 1.243 0.150 1.265 0.147
3 1.087 0.154 1.099 0.151
>=4 a - - - -
Place of delivery
Home 1.149 0.134 1.162 0.133
Govt. hospital 0.935 0.145 0.947 0.143
Prvt. Hospital a - - - -
Other 1.350 0.688 1.336 0.614
Marital status
Unmarried 0.507 1.652 0.674 0.985
0–4 Years a - - - -
5–9 Years 1.546 * 0.137 1.568 * 0.134
>=10 Years 1.939 * 0.192 1.988 * 0.187
TT
No 1.246 0.153 1.253 0.151
1 1.077 0.162 1.079 0.160
>=2 a - - - -
ANC
No 0.987 0.161 0.995 0.159
1–2 1.162 0.118 1.169 0.117
>=3 a - - - -
Age of mother
<18 Years 1.459 0.193 1.461 * 0.191
18–24 Years a - - - -
25–29 Years 1.316 * 0.125 1.317 * 0.123
30–34 Years 1.723 * 0.170 1.717 * 0.167
>=35 Years 1.545 * 0.206 1.543 * 0.201
Mother education
No 10.592 * 0.232 9.821 * 0.221
Primary 10.430 * 0.242 9.639 * 0.231
Secondary 7.560 * 0.223 7.036 * 0.213
Higher a - - - -
IFA
No a - - - -
Yes 1.052 0.112 1.063 0.111
Family size
1–3 2.175 * 0.138 2.175 * 0.137
4–6 a - - - -
>=7 0.715 * 0.099 0.720 * 0.098

a Reference category; * statistical significance at 5% level of significance; 1 S.E.: Standard Error.

Some significant results of the ridge regression are given as: Infants who were breast-
feeding have a 99% lower death risk as compared to those who were not breastfeeding.
Old married couples (more than nine years of marriage) have a 1.98 times higher risk of
infant death as compared to newly married couples (0 to 4 years of marriage). If the age
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of the mother is more than 34 years, then the risk of infant death is increased by 1.5 times
as compared to the infant of the reference category (mothers aged 18 to 24 years). The
uneducated mother has a 9.82 times higher risk of infant death as compared to the highly
educated mother. The risk of infant death is twice if the size of family is small (1 to 3 mem-
bers in the household) and this risk is 28% lower for a large family (more than 6 members
in the household) as compared to the reference category (4 to 6 members in the household).
The estimated value of the σ2 is significantly non zero (σ2 = 2.727), which means the
unobserved variables have an impact on the survival times of the infants.

The results related to MSE corresponding to ridge estimators and the MLE are given
in Table 6, which shows that the MSE is the lesser for the ridge estimator as compared to
the MLE, and the benefits are more when the ridge parameter is (q + 1)/β̂′ β̂.

Table 6. Comparison of MSE in NFHS data.

Method MSE (β) Percentage Reduction of MSE (β)

MLE 3.819
Ridge estimator for k = 1/β̂′ β̂ 3.553 6.97
Ridge estimator for k = q/β̂′ β̂ 2.110 44.75
Ridge estimator for k = (q + 1)/β̂′ β̂ 2.048 46.37

5. Discussion and Conclusions

This paper generalized the approach of ridge regression in the frailty model. The
frailty model deals with the time to event data and considered both factors (i.e., measurable
and unmeasurable) simultaneously. Here, the parametric form of the frailty model is
utilized. A simulation study is conducted and explained that the ridge estimator is more
accurate and precise, as compared to MLE. The benefits are higher if the ridge parameter
k is taken as (q + 1)/β̂′ β̂.

The method is then applied to assess the risk of infant death in India. Data are taken
from the third phase of NFHS and revealed that the proposed method produced more
precise estimates as compared to MLE. Ridge estimates demonstrate that breastfeeding and
mothers’ education are highly associated with infant mortality. The findings of this study
demonstrates that maternal education is positively associated with infant mortality, i.e.,
the increment in the level of education reflects the decrement in the infant mortality; these
results are significant. There is a high risk of infant death if the mother’s age is less than
18 years, and the reason for this finding may be considered as the complications of delivery,
premature birth, pregnancy and some other related issues of teenagers. A bigger family
size has a positive impact on infant death.

6. Future Scope

This study utilized the ridge as an alternative of MLE in the presence of collinearity,
while other alternatives such as lasso, elastic net, etc., are also available in the existence of
collinerity. In future, these alternatives can also be applied in the frailty model and can be
compared with the existing one.
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