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Abstract: In this paper, we develop two fully parametric quantile regression models, based on the power
Johnson SB distribution for modeling unit interval response in different quantiles. In particular, the
conditional distribution is modeled by the power Johnson SB distribution. The maximum likelihood (ML)
estimation method is employed to estimate the model parameters. Simulation studies are conducted to
evaluate the performance of the ML estimators in finite samples. Furthermore, we discuss influence
diagnostic tools and residuals. The effectiveness of our proposals is illustrated with a data set of the
mortality rate of COVID-19 in different countries. The results of our models with this data set show the
potential of using the new methodology. Thus, we conclude that the results are favorable to the use of
proposed quantile regression models for fitting double bounded data.
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1. Introduction

The most commonly employed two-parameter distribution for modeling double
bounded random variables in the unit interval is the beta distribution. In order to accom-
modate explanatory variables in the modeling, Ferrari and Cribari-Neto [1] introduced the
beta regression model based on a parameterization of the beta distribution in terms of the
mean and precision parameters.

Several researchers have focused on the use of the mean reparameterized beta dis-
tribution as an integral of the model, for example, see [2–4]. However, there are many
limitations of the conditional mean models. For example, in an asymmetric distribution,
or in the presence of outliers, point estimates of the population mean are typically pulled
in the direction of one of the distribution tails.

Quantile regression models, introduced by Koenker and Bassett [5], are an approach
for understanding the conditional distribution of a response variable given the values of
some covariates at different quantiles, thus providing users with a more complete picture.
In particular, several authors [6,7] have highlighted the robustness to outliers connected
with quantile regression models. Furthermore, if the conditional dependent variable is
skewed, quantiles may be more appropriate when compared with the mean [8].

Mathematics 2022, 10, 2249. https://doi.org/10.3390/math10132249 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132249
https://doi.org/10.3390/math10132249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8184-7403
https://orcid.org/0000-0002-1182-5193
https://orcid.org/0000-0002-8092-9666
https://orcid.org/0000-0001-7241-3099
https://orcid.org/0000-0001-6643-6972
https://doi.org/10.3390/math10132249
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132249?type=check_update&version=1


Mathematics 2022, 10, 2249 2 of 21

However, parametric quantile regression models for limited range response variables
have not received much attention in the literature. Lemonte and Bazán [9] introduced a new
class of distributions named the generalized Johnson SB with bounded support on the basis
of the symmetric family of distributions. In particular, Lemonte and Bazán [9] provided the
median reparameterization of the Johnson SB distribution [10], which facilitates its use in a
regression setting. Unlike the beta regression, the median in the reparameterized Johnson
SB distribution is related to a linear predictor. Cancho et al. [11] generalized the Johnson
SB model to a general class of distributions. The authors introduced an additional shape
parameter to the Johnson SB distribution and studied a quantile regression model for unit
interval response variables. However, they considered the model only based on the normal
distribution. Other quantile regression models for limited range response variables are
presented in [6,8,12].

In this paper, we formulate two rich classes of parametric quantile regression models for
a bounded response, where the response variable is power Johnson SB distributed [11] using
a new parametrization of this distribution that is indexed by quantile (not only for median
regression) and shape parameters. The estimation and inference for the proposed quantile
regression models can be carried out based on the likelihood paradigm. Furthermore, we
give full diagnostic tools and discuss a type of residual. The main motivations for these new
parametric quantile regression models are fourfold: (i) the Johnson SB and power Johnson SB
regression models are themselves special cases of the proposed quantile models; (ii) the first
proposed model has a parameter which controls the shape and skewness of the distribution;
(iii) the parameter estimation for the second proposed model has a lower computing cost; and
(iv) we considered the model based on several models (logistic, Cauchy, and normal) and
several link functions.

The article is organized as follows. In Section 2, we construct two new quantile
regression models for bounded response variables. Estimation, residuals, and diagnostic
measures are discussed in Section 3. Section 4 discusses some simulation results for the
maximum likelihood (ML) estimation method. The effectiveness of our models is illustrated
in Section 5 using the COVID-19 mortality rate in different countries. Final comments are
presented in Section 6.

2. The Generalized Johnson SB Distribution

Lemonte and Bazán [9] introduced a new class of distributions named the generalized
Johnson SB (“GJS” for short) distribution. The class was defined by the transformation
Y = Q−1((X − γ)/δ) ∈ (0, 1), where γ ∈ R, δ > 0, Q(y) = log(y/(1− y)) is the logit
function (also representing the quantile function for the standard logistic distribution),
and X ∼ S(0, 1; g), i.e., the symmetrical family of distributions with pdf given by g(w),
w ∈ R, where g is a function such that g : R→ [0, ∞). Considering the reparametrization
γ = −δQ(ξ), the cdf of the GJS is given by

F(y; ξ, δ) =
∫ δ[Q(y)−Q(ξ)]

−∞
g(u)du, y, ξ ∈ (0, 1).

As F(ξ; ξ, δ) = 1/2, the parameter ξ represents directly the median of the distribution.
Additionally, the authors interpreted δ as a dispersion parameter. Therefore, a regression
structure on ξ and δ was studied by the authors, providing a rich class of median regression
models with varying dispersion. Cancho et al. [11] considered g(u) = φ(u) (where φ(·)
denotes the pdf of the standard normal model) and the power model transformation [13,14]
to extend this class of models (named PJSB), in which the cdf is given by

F(y; α, γ, δ) = [Φ(γ + δQ(y))]α, y ∈ (0, 1), α, δ > 0, γ ∈ R.
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In addition to the logistic model, the authors also considered Q(y) as the quantile
function for the normal, Cauchy, Gumbel, and reverse Gumbel models. Thus, the pdf of the
PJSB model is

f (y; γ, δ, α) = δα[Φ(γ + δQ(y))]α−1φ(γ + δQ(y))
∣∣∣∣dQ(y)

dy

∣∣∣∣, y ∈ (0, 1).

Defining xq = Φ−1(q1/α), the authors considered the reparametrization

ψ = Q−1
(

x0.5(α)−γ
δ

)
, which represents the median of the PJSB distribution (for any Q(·)

quantile function). As γ = x0.5(α)− δQ(ψ), the pdf of the PJSB can be expressed as

f (y; ψ, δ, α) = δα[Φ(δ[Q(y)−Q(ψ)] + x0.5(α))]
α−1φ(δ[Q(y)−Q(ψ) + x0.5(α)]

∣∣∣∣dQ(y)
dy

∣∣∣∣, y ∈ (0, 1).

The authors proposed a regression model for ψ and δ in this model. However, this
model can be restrictive, because it considers only the normal distribution. For this reason,
we consider the power model transformation of Lehmann [14] and Durrans [13] for the
GJS distribution of Lemonte and Bazán [9], i.e., the power generalized Johnson SB (PGJSB)
distribution, with cdf given by

F(y; ξ, δ, α) =

(∫ δ[Q(y)−Q(ξ)]

−∞
g(u)du

)α

= [G(δ[Q(y)−Q(ξ)])]α = [G(γ + δQ(y))]α, y ∈ (0, 1) (1)

and pdf given by

f (y; γ, δ, α) = δα[G(γ + δQ(y))]α−1g(γ + δQ(y))
∣∣∣∣dQ(y)

dy

∣∣∣∣, y ∈ (0, 1),

where G is the cdf related to g. As will be discussed later, α modifies the shape of the
distribution. Evidently, for G = Φ, we recover the model in [11]. However, we are
interested in modeling a general quantile, say q, not only the median. In this work, we
discuss two ways to model the 100× qth quantile considering the PGJSB model.

1. We note that ψ = Q−1
(

x∗q (α)−γ

δ

)
is the 100× qth quantile for the PGJSB model, where

x∗q (α) = G−1(q1/α). Based on this idea, we also can reparametrize the model defining
γ = x∗q (α)− δQ(ψ). The pdf for this reparametrization is

f (y; ψ, δ, α) = δα[G(δ[Q(y)−Q(ψ)] + x∗q (α))]
α−1g(δ[Q(y)−Q(ψ) + x∗q (α)]

∣∣∣∣dQ(y)
dy

∣∣∣∣, y ∈ (0, 1). (2)

In this work, we will refer to this specific parametrization as RPGJSB1q(ψ, δ, α).
2. Although α is a parameter that needs to be estimated from the sample, we can

consider α(q) = − log(q)/ log(2), q ∈ (0, 1) as fixed. With this definition, the cdf
in (1) evaluated in ξ is given by F(ξ; ξ, δ) = (1/2)α(q) = q. Therefore, fixing α(q) =
− log(q)/ log(2), q ∈ (0, 1), we have that ξ represents the 100× qth quantile of the
distribution; further, as in the work of Lemonte and Bazán [9], δ also can be interpreted
as a dispersion parameter. We will refer to this parametrization as RPGJSB2q(ξ, δ).

In both cases, the RPGJSB1q and RPGJSB2q models can be used to define a rich class
for performing quantile regression for data in the (0, 1) interval (not only for median
regression). The advantage of the RPGJSB1q model is that α, for a fixed quantile ψ, controls
the shape of the distribution (different α’s produce different shapes). However, in this
parametrization the shape of the model also depends on ψ. As we will perform regression
on ψ, this indicates that the shape related to the distribution of the quantile depends on the
covariates. A second problem is the computing cost, because evaluating Equation (2) can
be hard to compute for some combinations of g and Q. On the other hand, the advantage
of RPGJSB2q is its parsimony (because one of the parameters is not estimated) and the
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reduction in the computing costs, because α is considered fixed. However, in the RPGJSB2q
model the shape of the distribution is maintained (because the model belongs to the
location-scale family of distributions) because that shape is “fixed”.

Figure 1 shows the density function for the RPGJSB1q(ψ, δ = 1, α) model with logit
link and G = Φ under different combinations of q, ψ, and α. From Figure 1, note that the
proposed model is very flexible since its density can assume different shapes.
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Figure 1. Pdf for RPGJSB1q(ψ, δ = 1, α) model with logit link and G = Φ. Left panel: q = 0.25,
α = 0.5, and varying ψ; center panel: q = 0.5, α = 0.5, and varying ψ; right panel: q = 0.5, ψ = 0.4,
and varying α.

3. The Inference and Its Associated Diagnostic Analysis

In this section, we discuss some aspects related to the inference, residuals, and diag-
nostic analysis of the RPGJSB1q and RPGJSB2q quantile regression models.

3.1. Inference

Let y1, . . . , yn be an independent random variable such that yi ∼ RPGJSB1q(ψi, δi, α)
or yi ∼ RPGJSB2q(ξi, δi). Suppose the 100× qth quantile ψ for the RPGJSB1q model and
the dispersion parameter δ satisfies the following functional relations

Q(ψi) = η1i = x>i β and log(δi) = η2i = z>i ν (3)

or
Q(ξi) = η1i = x>i β and log(δi) = η2i = z>i ν, (4)

for the RPGJSB2q model, where β = (β1, . . . , βp)>, and ν = (ν1, . . . , νr)> are vectors
of unknown regression coefficients, which are assumed to be functionally independent,
β ∈ Rp and ν ∈ Rr, with p + r < n, η1i and η2i are the linear predictors, and xi =
(xi1, . . . , xip)

> and zi = (zi1, . . . , zir)
> are observations on p and r, known regressors,

for i = 1, . . . , n. Furthermore, we assume that the covariate matrices X = (x1, . . . , xn)>

and Z = (z1, . . . , zn)> have ranks p and r, respectively. The log-likelihood function for the
RPGJSB1q model is given by

`1(θ) = ∑n
i=1

{
log(δi) + log(α) + (α− 1) log

{
G
(

δi[Q(yi)−Q(ψi)] + x∗q (α)
)}

log
{

g
(

δi[Q(yi)−Q(ψi)] + x∗q (α)
)}

+ log
∣∣∣ dQ(yi)

dyi

∣∣∣};
(5)
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whereas that for the RPGJSB2q model is given by

`2(θ) = ∑n
i=1

{
log(δi) + log(α) + (α− 1) log[G(δi[Q(yi)−Q(ξi)])]

log{g(δi[Q(yi)−Q(ξi)])}+ log
∣∣∣ dQ(yi)

dyi

∣∣∣}.
(6)

Note that θ = (β>, ν>, α) and θ = (β>, ν>) are the parameter vectors for the
RPGJSB1q and RPGJSB2q models, respectively. The ML estimator of θ, say θ̂, is obtained by
maximizing Equation (5) or Equation (6), depending on the model considered (RPGJSB1q
or RPGJSB2q). We considered the maximization procedure based on the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method (see details in [15]) initialized with a vector of zeros.
To validate a solution, we examined: (i) Whether convergence was achieved; and (ii)
whether the determinant of the Hessian matrix evaluated at the point estimated was nega-
tive. If the two conditions were not satisfied, we re-ran the procedure based on initialization
with a random vector generated by independent standard normal variables until (i) and
(ii) were satisfied. Under the usual regularity conditions (see Cox and Hinkley [16]) θ is
consistent. Moreover,

ı−1(θ̂)
[
θ̂− θ

] D−→ Np+r
(
0p+r, Ip+r

)
, as n→ +∞,

where ı(θ̂) = −∂2`l(θ)/∂θ∂θ>
∣∣
θ=θ̂

is minus the estimated Hessian matrix for the RPGJSB1q
(l = 1) and RPGJSB2q (l = 2) models, respectively.

3.2. Residuals

In order to assess whether the postulated model was correct, we considered the ran-
domized quantile residuals (RQRs) proposed by Dunn and Smyth [17]. For the RPGJSB1q
model, these residuals are given by

r̂i = Φ−1
(
[G(δ̂i[Q(yi)−Q(ψ̂i)] + x∗q (α̂))]

α̂
)

, i = 1, . . . , n;

whereas for the RPGJSB2q model, the RQRs are given by

r̂i = Φ−1
(
[G(δ̂i[Q(yi)−Q(ξ̂i)])]

α(q)
)

, i = 1, . . . , n.

δ̂i, ξ̂i and ψ̂i, i = 1, . . . , n, corresponding to the expressions in Equations (3) and (4) were
evaluated in β̂ and ν̂, for each model, respectively. If the model was correctly speci-
fied, the distribution of r̂1, . . . , r̂n would be standard normal, which can be validated
by different normality tests, such as Kolmogorov–Smirnov (KS), Shapiro–Wilks (SW),
Anderson–Darling (AD) and the Cramér–Von-Mises (CVM) tests. See [18] for a discussion
of these tests.

3.3. Local Influence

The local influence method suggested by Cook [19] evaluates the simultaneous effect
of observations on the ML estimator without removing it from the data set, based on the
curvature of the plane of the log-likelihood function. Consider `1(θ1; w) and `2(θ2; w) the
log-likelihood functions corresponding to the RPGJSB1q and RPGJSB2q models, respectively,
but now perturbed by w, a vector of perturbations. w belongs to a subset Ω ∈ Rn, and
w0 is a nonperturbed n× 1 vector, such that `l(θ; w0) = `l(θ), for all θ, l = 1, 2. In this
case, the likelihood displacement (LD) is LD(θ) = 2(`l(θ̂)− `l(θ̂w)), where θ̂w denotes the
ML estimate of θ on the perturbed regression models; that is, θ̂w is obtained from `l(θ; w).
Note that `l(θ; w) can be used to assess the influence of the perturbation of the ML estimate.
Cook [19] showed that the normal curvature for θ̂ in direction d, with ||d|| = 1, is expressed
as Cd(θ̂) = 2|d>∇>Σ(θ̂)−1∇d|, where ∇ is a (p + r) × n matrix of perturbations with
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elements∇ji = ∂2`l(θ; w)/∂θj∂wi, evaluated at θ = θ̂ and w = w0, for j = 1, . . . , p + r and
i = 1, . . . , n. A local influence diagnostic is generally based on index plots. For example,
denoting Σ(θ) the observed Fisher information matrix, the index graph of the eigenvector
dmax corresponding to the maximum eigenvalue of B(θ) = −∇>Σ(θ)−1∇, say Cdmax (θ),
evaluated at θ = θ̂, can detect those cases that, under small perturbations, exert a strong
influence on LD(θ). Another important direction of interest is di = ein, which corresponds
to the direction of the case i, where ein is an n × 1 vector of zeros with value equal to
one at the ith position; that is, {ein, 1 ≤ i ≤ n} is the canonical basis of Rn. In this case,
the normal curvature is Ci(θ) = 2|bii|, where bii is the ith diagonal element of B(θ) given
above, for i = 1, . . . , n, evaluated θ = θ̂. If Ci(θ̂) > 2C̄(θ̂), where C̄(θ̂) = ∑n

i=1 Ci(θ̂)/n, it
indicates case i as potentially influential. This procedure is called the total local influence
of the case i and can be carried out for θ, β, or ν, denoted by Ci(θ), Ci(β), and Ci(ν),
respectively. We calculated the matrix ∇ for three different perturbation schemes, namely:
case weighting perturbation, response perturbation, and explanatory variable perturbation.

3.3.1. Perturbation of the Case Weights

In this case, the perturbed log-likelihood function is given by `l(θ; w) = ∑n
i=1 wi`l(θ)

for RPGJSB1q (l = 1) and RPGJSB2q (l = 2), respectively, with 0 ≤ wi ≤ 1, for i = 1, . . . , n,
and w0 = 1> (all-ones vector). Hence, the perturbation matrices for the RPGJSB1q and
RPGJSB2q models are given by

∇̂1 =

(
X>D̂1D̂3
Z>D̂2D̂4

)
and ∇̂2 =

(
X>D̂5D̂7D̂9
Z>D̂6D̂8D̂9

)
,

respectively, with D1 = [aiιij], D2 = [biιij], D3 = [ḋψιij], and D4 = [ḋδιij], where ai =

∂ψi/∂ηi1 and bi = ∂δi/∂ηi2, as defined from (3); ḋψ = ∂`1(ψi, δi)/∂ψi and ḋδ = ∂`1(ψi, δi)/∂δi,
as defined from the RPGJSB1q model, and ιij is the Kronecker delta for i, j = 1, 2, . . . , n.
Similarly, D5 = [ciιij], D6 = [diιij], D7 = [ḋξ ιij], D8 = [ḋδιij], and D9 = [ḋαιij], where ci =

∂ξi/∂ηi1 and di = ∂δi/∂ηi2, as defined from (4); ḋξ = ∂`2(ξi, δi, α)/∂ξi, ḋδ = ∂`2(ξi, δi, α)/∂δi,
and ḋα = ∂`2(ξi, δi, α)/∂α, as defined from the RPGJSB2q model.

3.3.2. Perturbation of the Response

Now, consider a multiplicative perturbation of the ith response by making yi(wi) = yiwisy,
where sy represents a scale factor, and wi ∈ R, for i = 1, . . . , n. Then, under the scheme of
response perturbation, the log-likelihood function is given by `1(θ; w) = ∑n

i=1 `1(ψi, δi, α; w)
for the RPGJSB1q model and `2(θ; w) = ∑n

i=1 `2(ξi, δi; w) for the RPGJSB2q model, where

`1(ψi, δi, α; w) = (α− 1) log(G(τ1i)) + log(αδi) + log(g(τ1i)) + log(|wisyQ̇y(yiwisy)|)
`2(ξi, δi; w) = (α− 1) log(G(τ2i)) + log(αδi) + log(g(τ2i)) + log(|wisyQ̇y(yiwisy)|)

with τ1i = δi(Q(yiwisy)−Q(ψi)) and τ2i = δi(Q(yiwisy)−Q(ξi)) + x∗q (α).
The disturbance matrices of the RPGJSB1q and RPGJSB2q models, here, take the form

∇̂1 =

(
X>D̂1D̂10S
Z>D̂2D̂11S

)
and ∇̂2 =

(
X>D̂5D̂12D̂14S
Z>D̂6D̂13D̂14S

)
where S = [syιij], the ith element of matrices D10 and D11 for model RPGJSB1q and matrices
D12, D13, and D14 for model RPGJSB2q are detailed in Appendix A.1.

3.3.3. Perturbation of the Predictor

Now, consider a multiplicative perturbation of the ith predictor by making xi(wi) =
x>i wi and zi(wi) = z>i wi, for wi ∈ R, i = 1, . . . , n. Then, under the scheme of prediction
perturbation, the log-likelihood function is given by `1(θ; w) = ∑n

i=1 `1(ψ
?
i , δ?i ) for the

RPGJSB1q model and `2(θ; w) = ∑n
i=1 `2(ξ

?
i , δ?i , α) for the RPGJSB2q model, where Q(ψ?

i ) =
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x>i βwi and δ?i = exp{z>i νwi} for the RPGJSB1q model and Q(ξ?i ) = x>i βwi and δ?i =

exp{z>i νwi} for the RPGJSB2q model.
The disturbance matrices of RPGJSB1q and RPGJSB2q models, here, take the form

∇̂1 =

(
X>D̂15
Z>D̂16

)
and ∇̂2 =

(
X>D̂17D̂19
Z>D̂18D̂19

)
where the ith elements of matrices D15 and D16 for RPGJSB1q model and matrices D17, D18,
and D19 for RPGJSB2q model are detailed in Appendix A.2.

4. Simulation Study

In this section, we present a simulation study to assess the performance of the ML
estimators of θ = (β, ν, α)> under different scenarios. All the codes were developed in
R [20] version 4.0.2 and are available upon request. This study was performed based
on the RPGJSB1q model. First, we assumed that G and the link function were correctly
specified. We considered xi = zi, where both matrices included an intercept and a covariate.
The covariates were drawn from the U(−5.478,−2.305) distribution. We considered the
logistic and normal models for G and the logit and loglog link functions. The true values
for the parameters were considered as the estimated parameters for three values for q =
{0.1, 0.5, 0.9}. Table 1 presents the values considered for each combination of link function
and quantile. We also considered three sample sizes: 100, 200, and 500.

Table 1. True parameters used for simulation studies.

Logistic Normal

Link q β0 β1 ν0 ν1 log(α) β0 β1 ν0 ν1 log(α)

logit
0.1 4.9 2.6 2.2 0.4 −0.7 4.4 2.4 1.5 0.3 −1.4
0.5 4.8 2.1 2.2 0.4 −0.7 4.6 2.1 1.5 0.3 −1.4
0.9 4.7 1.8 2.2 0.4 −0.7 4.8 1.9 1.5 0.3 −1.4

loglog
0.1 1.3 0.8 0.8 −0.3 0.1 1.2 0.7 −0.1 −0.3 1.1
0.5 2.1 0.9 1.0 −0.2 0.1 2.0 0.9 0.0 −0.3 1.0
0.9 2.8 1.0 1.1 −0.2 0.1 2.8 1.0 0.1 −0.2 1.0

As mentioned previously, to validate a solution we examined whether convergence
was achieved and whether the determinant of the Hessian matrix was positive. If the two
conditions were not satisfied, we re-ran the procedure initialized with a random vector
generated by independent standard normal variables until both conditions were satisfied.
For each combination of G, link, q, and sample size, we considered 10,000 replicates, and in
each case, the estimation was performed based on the same G and link function. Based
on the 10,000 replicates, we report the bias for each estimator, the standard error of the
estimated parameters (SE1), the mean of the estimated standard errors (SE2), and the 95%
coverage probabilities (CP). Tables 2 and 3 summarize the results. Note that the bias of the
parameters was reduced, and the terms SE1 and SE2 were closer when n was increased,
suggesting that the estimators were asymptotically consistent. Additionally, when the
sample size was increased, the CP were closer to the nominal value used. Finally, Table 4
presents the percentage of times where the algorithm converged when it was initialized
with a vector of zeros. Note that the maximization procedure converged in at least 89.43%
of the samples generated, and this percentage increased with the sample size.
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Table 2. Estimated bias, standard error of the estimated parameters (SE1), the mean of the estimated
standard errors (SE2), and 95% coverage probabilities (CP), when G and the link are correctly specified
(case G is the cdf of the logistic distribution).

n = 100 n = 200 n = 500

G Link q Parameter Bias SE1 SE2 CP Bias SE1 SE2 CP Bias SE1 SE2 CP

logistic

logit

0.1 β0 −0.034 0.753 0.728 0.938 −0.017 0.538 0.529 0.946 −0.007 0.345 0.339 0.946
β1 −0.015 0.238 0.229 0.934 −0.007 0.166 0.163 0.942 −0.003 0.104 0.102 0.947
ν0 0.041 0.381 0.367 0.935 0.020 0.269 0.263 0.942 0.009 0.171 0.170 0.947
ν1 −0.001 0.088 0.085 0.939 0.000 0.061 0.060 0.946 0.000 0.039 0.038 0.946

log(α) −0.004 0.355 0.331 0.947 −0.002 0.232 0.224 0.946 −0.002 0.140 0.138 0.948

0.5 β0 −0.017 0.485 0.472 0.941 0.001 0.322 0.319 0.946 −0.003 0.204 0.205 0.950
β1 −0.005 0.146 0.142 0.939 0.000 0.096 0.095 0.946 −0.001 0.061 0.061 0.949
ν0 0.046 0.452 0.443 0.946 0.027 0.296 0.294 0.948 0.007 0.183 0.182 0.949
ν1 0.002 0.107 0.106 0.946 0.002 0.068 0.068 0.949 0.000 0.042 0.042 0.951

log(α) 0.004 0.352 0.331 0.952 −0.001 0.231 0.224 0.948 0.000 0.142 0.139 0.947

0.9 β0 −0.001 0.620 0.591 0.930 −0.002 0.369 0.363 0.942 0.002 0.237 0.236 0.950
β1 0.004 0.177 0.169 0.932 0.002 0.112 0.111 0.943 0.001 0.072 0.072 0.948
ν0 0.060 0.461 0.443 0.943 0.024 0.289 0.283 0.943 0.007 0.184 0.182 0.946
ν1 0.006 0.103 0.100 0.938 0.002 0.066 0.065 0.946 0.000 0.043 0.043 0.945

log(α) 0.010 0.362 0.334 0.946 0.003 0.234 0.224 0.949 0.002 0.140 0.139 0.949

loglog

0.1 β0 0.008 0.175 0.168 0.931 0.002 0.116 0.113 0.938 0.000 0.071 0.071 0.949
β1 0.001 0.039 0.037 0.935 0.000 0.026 0.025 0.937 0.000 0.016 0.016 0.948
ν0 0.020 0.413 0.398 0.944 0.005 0.280 0.275 0.946 −0.001 0.165 0.167 0.950
ν1 0.000 0.096 0.092 0.939 −0.002 0.067 0.065 0.942 −0.001 0.039 0.039 0.949

log(α) 0.153 1.175 2.515 0.964 0.035 0.349 0.324 0.961 0.014 0.178 0.174 0.956

0.5 β0 −0.002 0.130 0.128 0.944 −0.003 0.090 0.090 0.951 0.001 0.061 0.061 0.946
β1 0.000 0.031 0.030 0.945 −0.001 0.021 0.021 0.949 0.000 0.014 0.014 0.947
ν0 0.007 0.386 0.376 0.944 0.003 0.264 0.261 0.947 0.006 0.175 0.175 0.950
ν1 −0.003 0.093 0.091 0.945 −0.002 0.063 0.062 0.949 0.000 0.041 0.041 0.950

log(α) 0.143 1.070 2.042 0.965 0.041 0.306 0.290 0.962 0.012 0.177 0.174 0.951

0.9 β0 −0.005 0.178 0.175 0.939 −0.004 0.141 0.139 0.942 −0.002 0.082 0.082 0.947
β1 −0.001 0.042 0.041 0.940 −0.001 0.033 0.032 0.943 0.000 0.019 0.019 0.947
ν0 0.012 0.387 0.374 0.940 0.010 0.296 0.288 0.944 0.004 0.174 0.173 0.949
ν1 −0.002 0.094 0.091 0.940 0.000 0.071 0.069 0.944 0.000 0.041 0.041 0.949

log(α) 0.133 0.968 1.596 0.965 0.042 0.311 0.290 0.961 0.014 0.177 0.174 0.952

Table 3. Estimated bias, standard error of the estimated parameters (SE1), the mean of the estimated
standard errors (SE2), and 95% coverage probabilities (CP), when G and the link are correctly specified
(case G is the cdf of the normal distribution).

n = 100 n = 200 n = 500

G Link q Parameter Bias SE1 SE2 CP Bias SE1 SE2 CP Bias SE1 SE2 CP

normal logit

0.1 β0 −0.004 0.725 0.711 0.939 0.000 0.470 0.473 0.952 −0.002 0.289 0.291 0.951
β1 −0.005 0.202 0.198 0.939 −0.002 0.133 0.134 0.951 −0.002 0.081 0.082 0.949
ν0 0.912 2.171 0.730 0.847 0.243 1.024 0.450 0.946 0.045 0.270 0.248 0.954
ν1 0.000 0.083 0.079 0.932 0.001 0.055 0.054 0.945 0.000 0.032 0.032 0.951

log(α) −1.763 4.569 1.650 0.867 −0.462 2.167 1.019 0.960 −0.082 0.612 0.565 0.956

0.5 β0 −0.006 0.464 0.452 0.942 −0.005 0.330 0.324 0.945 0.002 0.196 0.194 0.946
β1 −0.004 0.135 0.131 0.940 −0.002 0.094 0.092 0.941 0.000 0.056 0.056 0.946
ν0 0.944 2.251 0.703 0.841 0.215 0.966 0.450 0.949 0.040 0.281 0.250 0.952
ν1 0.002 0.082 0.079 0.939 0.001 0.056 0.055 0.947 0.000 0.034 0.033 0.950

log(α) −1.806 4.729 1.597 0.862 −0.398 2.046 1.012 0.961 −0.071 0.625 0.564 0.954

0.9 β0 −0.028 0.595 0.550 0.910 −0.001 0.393 0.375 0.934 −0.004 0.244 0.242 0.947
β1 −0.002 0.165 0.153 0.912 0.003 0.111 0.106 0.933 0.000 0.069 0.069 0.949
ν0 0.923 2.248 0.712 0.852 0.235 1.009 0.450 0.947 0.047 0.279 0.253 0.949
ν1 0.006 0.088 0.084 0.937 0.001 0.057 0.055 0.941 0.001 0.035 0.035 0.949

log(α) −1.733 4.706 1.576 0.871 −0.434 2.133 1.008 0.961 −0.083 0.614 0.563 0.956
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Table 3. Cont.

n = 100 n = 200 n = 500

G Link q Parameter Bias SE1 SE2 CP Bias SE1 SE2 CP Bias SE1 SE2 CP

loglog

0.1 β0 0.005 0.156 0.152 0.935 0.005 0.115 0.114 0.942 0.001 0.070 0.069 0.946
β1 0.000 0.035 0.034 0.936 0.001 0.026 0.026 0.945 0.000 0.016 0.015 0.946
ν0 0.085 0.834 0.530 0.963 0.024 0.371 0.351 0.951 0.006 0.209 0.209 0.952
ν1 −0.004 0.077 0.076 0.942 −0.001 0.059 0.058 0.946 −0.001 0.035 0.035 0.951

log(α) 1.090 23.978 3.284 0.965 0.103 1.677 1.200 0.958 0.027 0.661 0.658 0.961

0.5 β0 0.002 0.116 0.114 0.942 0.000 0.084 0.083 0.946 0.000 0.054 0.053 0.948
β1 0.000 0.026 0.025 0.942 0.000 0.019 0.019 0.947 0.000 0.012 0.012 0.947
ν0 0.123 0.990 0.539 0.954 0.017 0.379 0.348 0.955 0.009 0.212 0.212 0.952
ν1 −0.004 0.082 0.079 0.939 −0.002 0.059 0.059 0.946 −0.001 0.036 0.036 0.950

log(α) 0.612 16.917 3.114 0.964 0.091 1.453 1.150 0.963 0.017 0.654 0.645 0.957

0.9 β0 −0.016 0.224 0.219 0.935 −0.007 0.169 0.167 0.939 −0.004 0.095 0.095 0.943
β1 −0.002 0.051 0.050 0.937 −0.001 0.040 0.039 0.940 −0.001 0.022 0.022 0.946
ν0 0.125 0.934 0.538 0.958 0.029 0.386 0.357 0.951 0.008 0.208 0.207 0.951
ν1 0.000 0.083 0.080 0.940 0.000 0.061 0.060 0.948 0.000 0.035 0.034 0.952

log(α) 0.428 12.877 2.696 0.964 0.088 1.443 1.192 0.957 0.034 0.657 0.647 0.961

Table 4. Percentage of time where the maximization algorithm converges with theinitial value as the
vector zero.

q = 0.1 q = 0.5 q = 0.9

G Link 100 200 500 100 200 500 100 200 500

logistic logit 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
loglog 99.71 100.00 100.00 99.83 100.00 100.00 99.85 100.00 100.00

normal logit 90.77 98.40 100.00 89.43 98.65 99.99 90.38 98.59 99.99
loglog 99.43 99.99 100.00 99.01 99.98 100.00 99.05 99.98 100.00

5. Data Analysis

In this section, we apply the model to a real data set related to the mortality rate
of COVID-19 in different countries to illustrate the performance of the RPGJSB1q and
RPGJSB2q proposed regression models.

5.1. COVID-19 Data Set

The COVID-19 pandemic has had an unprecedented effect throughout the world. Specif-
ically, it has yielded high mortality rates since its emergence in December 2019, generating
social, economic, cultural, and political imbalances. Early studies have shown that statistical
analysis can be applied to COVID-19 problems to build predictive models that can assess risk
factors and mortality rates [21–23]. Furthermore, the overall mortality rate has been about 5%,
while the statistics have shown a rate of around 20% for elderly patients [24]. We considered
the following information for countries with at least 1000 reported cases of COVID-19 and at
least 100 deaths attributed to the disease, totaling 137 countries as of 25 May 2021.

• mort: mortality rate (reported deaths/reported cases since the pandemic started).
Mean = 0.020, Median = 0.018, standard deviation = 0.013, minimum = 0.003, and
maximum = 0.092.

• surface: area of the country (in km2).
• population: official estimated population of the country.
• cont: continent to which the country belongs (categorized as 1: Africa, Asia, or

Oceania; 2: the Americas; 3: Europe; with 69, 29, and 39 countries, respectively. This
categorization was based on our previous analysis).

The information was taken from the World Health Organization [25]. It is of interest to
model the mortality rate in terms of the surface and the continent of each country (previous
analyses suggest that the population was not significant for modeling the mortality rate).
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Figure 2 shows the plots for Q(mort) for different link functions versus the log(surface)
and log(population) separated by cont.
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Figure 2. Descriptive plots for Q(mort) versus log(surface) and versus log(population) for different
link functions: logit, probit, loglog, and cloglog and separated by continent: Africa, Asia, or Oceania
(black), the Americas (red), and Europe (green).

5.1.1. Estimation

In view of the above, we modeled the mortality rate usingmorti ∼ RPGJSB1q(ψi, δi, α), with

Q(ψi) = β0 + β1× log(populationi) + β2× log(surfacei) + β3× Americai + β4× Europei

and

log(δi) = ν0 + ν1 × Americai + ν2 × Europei

or, alternatively, morti ∼ RPGJSB2q(ξi, δi), where Q(ξi) = β0 + β1 × log(populationi) +
β2 × log(surfacei) + β3 × Americai + β4 × Europei and δi was modeled in the same way.
In Tables A1 and A2 in Appendix B.1, we present the AIC and BIC for q ranging in the
set {0.05, 0.10, . . . , 0.90, 0.95} and the RPGJSB1q and RPGJSB2q models. Note that the
RPGJSB2q provides a lower AIC than the RPGJSB1q for all the considered q. Below, we
focus on the RPGJSB2q model, specifically, where G is the cdf of the normal model and
the loglog link (which provide the lowest AIC for greater values of q). Tables 5 and A3 in
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Appendix B.2 present the estimated parameters for this model for five selected quantiles.
We also present the KS, SW, AD, and CVM tests to check the normality of the RQRs.
Note that the coefficients related to the log(surface) and America were significant for
modeling the quantile (with a nominal level of 5%) for all the considered q. This can be
explained because countries with larger areas may have greater difficulties in providing
medical coverage to their inhabitants compared to countries with smaller areas, and some
countries in the Americas have been hit hard by the pandemic. The coefficients related to
log(population) and Europe were significant for lower quantiles and not significant for
higher quantiles.

Figure 3 presents the point estimation and the 90%, 95%, and 99% confidence in-
tervals (CIs) for the parameters in terms of quantile q. From Figure 3, the intercept for
the quantile increased as q increased, whereas the coefficients related to the quantile of
America and Europe decreased when q was increased. Furthermore, the coefficients re-
lated to the quantile for log(population) and log(surface) and the coefficients related
to the scale of America and Europe remained similar for all q. Figure 4 presents the esti-
mated 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles for the mortality rate for different values of
log(surface).
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Figure 3. Point estimation and 90%, 95%, and 99% confidence intervals for parameters estimated in
the RPGJSB2q model for different quantiles (loglog link and G the cdf of the normal model).
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Table 5. The estimated parameters and standard errors (s.e.) for different quantiles in the
RPGJSB2q=0.5 model of the COVID-19 data set with G the cdf of the normal model and loglog
link. The p-values for the traditional normality test for the RQRs are also presented.

p-Values for Quantile Residuals

q Parameter Estimated s.e. z-Value p-Value KS SW AD CVM

0.5

β0 −1.8396 0.1136 −16.19 <0.0001

0.626 0.249 0.133 0.094
β1 0.0140 0.0105 1.34 0.0899
β2 0.0159 0.0079 2.01 0.0223
β3 0.1032 0.0308 3.35 0.0004
β4 0.0575 0.0272 2.12 0.0171

ν0 1.9051 0.0862 22.11 <0.0001
ν1 0.1268 0.1587 0.80 0.2121
ν2 0.2028 0.1445 1.40 0.0802
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Figure 4. The estimated 100× qth quantile in the RPGJSB2q model for log(population) = 16 (around
9 million people) varying the log(surface) for countries in Africa, Asia, or Oceania (left panel), the
Americas (center panel), and Europe (right panel) considering the cloglog link and G the cdf from
the logistic model.

5.1.2. Local Influence Analysis

We performed a local influence analysis for the selected model under the three pertur-
bation schemes discussed in Section 3.3. Figure 5 shows the analysis for the RPGJSB2 model
with q = 0.5 using the loglog link and G the cdf of the normal model in the COVID-19 data
set. In Figures A1–A4 in Appendix B.3, the same analysis for the other selected quantiles
is presented. Note that, considering all the cases, the observation 100 appears in at least
one case, namely Mexico (the Americas). Mexico reported the highest mortality rate (9.2%,
with 221,647 accumulated deaths and 2,396,604 accumulated cases, respectively). Evidently
there is a problem in managing the pandemic situation in this country as compared to the
rest of the world. Table 6 presents the relative change for the parameters (RC), for their
estimated standard errors (RCSE) and the respective p-values, for the estimation without
Mexico. We highlight that the significance of the parameters related to the quantile was
maintained for all the cases (except β1(q)), suggesting that the inferences drawn from the
model are robust to estimate the different quantiles in this problem.
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Figure 5. The index plots of Ci for β̂ (upper) and ν̂ (lower) under the weight perturbation (left),
response perturbation (center), and covariate perturbation (right) schemes for the RPGJSB2q=0.5

model (cloglog link and G the cdf from the logistic model) of the COVID-19 data set.

Table 6. The relative changes (in %) in the ML estimates (RC) and their corresponding standard errors
(RCSE) for the indicated parameter and respective p-values for the COVID-19 data set, when observation
100 is dropped.

q

Parameter 0.10 0.25 0.50 0.75 0.90

RC 239.95 243.30 253.85 267.69 279.66
RCSE β0(q) 18.10 18.71 19.62 20.63 21.45

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 298.10 295.33 296.05 292.45 276.05
RCSE β1(q) 224.15 228.55 233.01 233.17 223.76

p-value 0.1751 0.1879 0.1979 0.2067 0.2151

RC 313.98 310.46 305.38 300.83 300.56
RCSE β2(q) 161.89 158.80 155.11 150.94 147.41

p-value 0.0508 0.0491 0.0479 0.0469 0.046

RC 398.39 402.09 431.38 472.57 475.72
RCSE β3(q) 104.18 103.37 108.53 113.21 109.20

p-value 0.0002 0.0001 0.0001 0.0001 0.0002

RC 406.56 446.90 569.98 895.37 2014.00
RCSE β4(q) 139.08 150.33 184.91 270.23 566.60

p-value 0.0041 0.0037 0.0039 0.0044 0.0054

RC 96.05 92.62 90.77 89.93 89.73
RCSE ν0(q) 0.02 0.01 0.06 0.13 0.21

p-value 0.4717 0.1467 0.0439 0.0120 0.0029

RC 112.14 113.02 116.81 138.60 224.79
RCSE ν1(q) 0.41 0.90 1.91 3.98 8.62

p-value 0.1048 0.0950 0.0879 0.0820 0.0767

RC 15.21 11.87 6.52 0.32 4.46
RCSE ν2(q) 0.18 0.17 0.92 2.27 4.21

p-value 0.1493 0.1440 0.1399 0.1362 0.1329
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6. Conclusions

In this paper, we proposed two classes of parametric quantile regression models for
studying the association between a bounded response and covariates by inferring the
conditional quantile of the response. The proposed quantile regression model was based on
power Johnson SB distribution [11] using a new parameterization of this distribution that
was indexed by quantile, dispersion, and shape parameters (RPGJSB1q(ψ, δ, α)) or quantile
and dispersion parameters (RPGJSB2q(ψ, δ)). The first proposed quantile model had an
extra-parameter α > 0 associated with the “tailedness”; the second proposed quantile
model had lower computing costs. The ML inference was implemented to estimate the
model parameters, which were satisfactory considering the simulation studies, where
parameters were recovered for different sample sizes. Furthermore, we developed model
diagnostic tools for each proposed quantile regression model.

There are several extensions of the new models not considered in this work that can be
addressed in future research; in particular, an extension of the methods developed in this
paper would be to consider in Equation (2) a much more general family of distributions;
that is, to consider models for zero-inflated and one-inflated data set. Directions related to
random effects in the model also can be addressed in future works.
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Appendix A. Details of Local Influence

In these Appendices, we provide details of the matrices involved in the local influence
for the RPGJSB1q and RPGJSB2q models. Furthermore, we present more results of the
COVID-19 mortality rate discussed in Section 5.

In Appendix A, we present details of the matrices related to the different perturbation
schemes discussed in Section 3.3.

Appendix A.1. Perturbation of the Response

The ith element of matrices D10 and D11 for model RPGJSB1q are given by

d̈ψ,w = δ2
i yiQ̇ψi (ψi)Q̇wi (0)

(
(α− 1)[Ġψ(τ(δ, ψ)1i)

2 − G(τ(δ, ψ)1i)G̈ψ,wi (τ(δ, ψ)1i)]

G(τ(δ, ψ)1i)2 +
ġψ(τ(δ, ψ)1i)

2

g(τ(δ, ψ)1i)2

−
g̈ψ,wi (τ(δ, ψ)1i)

g(τ(δ, ψ)1i)

)

d̈δ,w = yiQ̇δi (0)

(
ġδi (τ(δ, ψ)1i)

g(τ(δ, ψ)1i)
−

τ(δ, ψ)1i ġδi (τ(δ, ψ)1i)
2

g(τ(δ, ψ)1i)2 +
(α− 1)Ġδi (τ(δ, ψ)1i)

G(τ(δ, ψ)1i)

−
(α− 1)τ(δ, ψ)1iĠδi (τ(δ, ψ)1i)

2

G(τ(δ, ψ)1i)2 +
τ(δ, ψ)1i g̈δi ,wi (τ(δ, ψ)1i)

g(τ(δ, ψ)1i)
+

(α− 1)τ(δ, ψ)1iG̈δi ,wi (τ(δ, ψ)1i)

G(τ(δ, ψ)1i)

)
,

respectively, with τ(δ, ψ)1i = δi(Q(0) − Q(ψi)). On the other hand, the ith element of
matrices D12, D13, and D14 for model RPGJSB2q are given by

d̈ξ,w = δ2
i yiQ̇ξi (ψi)Q̇wi (0)

(
(α− 1)[Ġξ(τ(ξ, δ, α)2i)

2 − G(τ(ξ, δ, α)2i)G̈ξ,wi (τ(ξ, δ, α)2i)]

G(τ(ξ, δ, α)2i)2 +
ġξ(τ(ξ, δ, α)2i)

2

g(τ(ξ, δ, α)2i)2

−
g̈ξ,wi (τ(ξ, δ, α)2i)

g(τ(ξ, δ, α)2i)

)

d̈δ,w = yiQ̇δi (0)

(
ġδi (τ(ξ, δ, α)2i)

g(τ(ξ, δ, α)2i)
−

τ(ξ, δ)2i ġδi (τ(ξ, δ, α)2i)
2

g(τ(ξ, δ, α)2i)2 +
(α− 1)Ġδi (τ(ξ, δ, α)2i)

G(τ(ξ, δ, α)2i)

−
(α− 1)τ(ξ, δ)2iĠδi (τ(ξ, δ, α)2i)

2

G(τ(ξ, δ, α)2i)2 +
τ(ξ, δ)2i g̈δi ,wi (τ(ξ, δ, α)2i)

g(τ(ξ, δ, α)2i)
+

(α− 1)τ(ξ, δ)2iG̈δi ,wi (τ(ξ, δ, α)2i)

G(τ(ξ, δ, α)2i)

)

d̈α,w = δiyiQ̇α(0)

(
(1− α)Ġα(τ(ξ, δ, α)2i)

2 ẋα

G(τ(ξ, δ, α)2i)2 +
ẋα[g(τ(ξ, δ, α)2i)− ġα(τ(ξ, δ, α)2i)

2 + g̈α,wi (τ(ξ, δ, α)2i)]

g(τ(ξ, δ, α)2i)2

+
Ġα(τ(ξ, δ, α)2i) + (α− 1)ẋαG̈α,wi (τ(ξ, δ, α)2i)

G(τ(ξ, δ, α)2i)

)
,

respectively, with τ(ξ, δ, α)2i = δi(Q(0)−Q(ξi)) + x∗q (α), τ(ξ, δ)2i = δi(Q(0)−Q(ξi)), and
ẋα = ∂x∗q (α)/∂α.

Appendix A.2. Perturbation of the Predictor

The ith element of matrices D15 and D16 for model RPGJSB1q are given by

d̈β,w =

(
(1− α)Ġβi (Q(yi))

G(Q(yi))
−

ġβi (Q(yi))

g(Q(yi))

)

d̈ν,w =

(
1 +

Q(yi)ġνi (Q(yi))

g(Q(yi))
+

(α− 1)Q(yi)Ġνi (Q(yi))

G(Q(yi))

)
,
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respectively. Similarly, the ith element of matrices D17, D18, and D19 for model RPGJSB2q
are given by

d̈β,w =

(
(1− α)Ġβi (Q(yi) + x∗q (α))

G(Q(yi) + x∗q (α))
−

ġβi (Q(yi) + x∗q (α))
g(Q(yi) + x∗q (α))

)

d̈ν,w =

(
1 +

Q(yi)ġνi (Q(yi) + x∗q (α))
g(Q(yi) + x∗q (α))

+
(α− 1)Q(yi)Ġνi (Q(yi) + x∗q (α))

G(Q(yi) + x∗q (α))

)

d̈α,w = (Q(yi)νizij − βixij)

(
(α− 1)Ġα(Q(yi) + x∗q (α))2 ẋa

G(Q(yi) + x∗q (α))2 +
Ġα(Q(yi) + x∗q (α)) + (α− 1)ẋaG̈α,wi (Q(yi) + x∗q (α))

G(Q(yi) + x∗q (α))

)

+
ẋa[g(Q(yi) + x∗q (α))g̈α,wi (Q(yi) + x∗q (α))− ġα(Q(yi) + x∗q (α))2]

g(Q(yi) + x∗q (α))2 ,

respectively.

Appendix B. COVID-19 Data Set

In Appendix B, we present additional information for the COVID-19 data set analyzed
by the RPGJSB1q and RPGJSB2q regression models.

Appendix B.1. AIC and BIC Criteria

Table A1. AIC and BIC criteria for the RPGJSB1q model of the COVID-19 data set considering 3
options for G (normal, logistic, and Cauchy) and the 4 discussed link functions.

Normal Logistic Cauchy

Criteria q Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

0.05 −871.9 −871.7 −871.5 −871.9 −871.4 −871.3 −871.3 −871.3 −840.3 −841.5 −842.4 −840.1
0.10 −871.8 −871.6 −871.5 −871.8 −871.2 −871.2 −871.2 −871.2 −839.9 −841.0 −842.0 −839.7
0.15 −871.7 −871.6 −871.5 −871.8 −871.2 −871.2 −871.1 −871.2 −839.7 −840.8 −841.8 −839.5
0.20 −871.7 −871.6 −871.4 −871.7 −871.1 −871.1 −871.1 −871.1 −839.6 −840.7 −841.6 −839.4
0.25 −871.6 −871.5 −871.4 −871.7 −871.1 −871.1 −871.1 −871.1 −839.5 −840.6 −841.6 −839.3
0.30 −871.6 −871.5 −871.4 −871.6 −871.1 −871.1 −871.1 −871.0 −839.4 −840.6 −841.5 −839.2
0.35 −871.5 −871.5 −871.4 −871.6 −871.0 −871.0 −871.0 −871.0 −839.4 −840.5 −841.5 −839.2
0.40 −871.5 −871.5 −871.4 −871.6 −871.0 −871.0 −871.0 −871.0 −839.4 −840.5 −841.4 −839.1
0.45 −871.5 −871.4 −871.3 −871.5 −871.0 −871.0 −871.0 −870.9 −839.3 −840.5 −841.4 −839.1

AIC 0.50 −871.5 −871.4 −871.3 −871.5 −870.9 −871.0 −871.0 −870.9 −839.3 −840.4 −841.4 −839.1
0.55 −871.4 −871.4 −871.3 −871.5 −870.9 −870.9 −870.9 −870.9 −839.3 −840.4 −841.4 −839.1
0.60 −871.4 −871.4 −871.3 −871.5 −870.9 −870.9 −870.9 −870.9 −839.3 −840.4 −841.3 −839.0
0.65 −871.4 −871.4 −871.3 −871.4 −870.9 −870.9 −870.9 −870.8 −839.2 −840.4 −841.3 −839.0
0.70 −871.3 −871.3 −871.3 −871.4 −870.8 −870.9 −870.9 −870.8 −839.2 −840.3 −841.3 −839.0
0.75 −871.3 −871.3 −871.2 −871.4 −870.8 −870.8 −870.9 −870.8 −839.2 −840.3 −841.2 −838.9
0.80 −871.3 −871.3 −871.2 −871.3 −870.8 −870.8 −870.8 −870.8 −839.1 −840.2 −841.2 −838.9
0.85 −871.2 −871.3 −871.2 −871.3 −870.7 −870.8 −870.8 −870.7 −839.1 −840.2 −841.1 −838.8
0.90 −871.2 −871.2 −871.2 −871.3 −870.7 −870.7 −870.7 −870.7 −839.0 −840.1 −841.1 −838.8
0.95 −871.2 −871.2 −871.1 −871.2 −870.6 −870.7 −870.7 −870.6 −839.9 −840.6 −840.9 −839.7

0.05 −839.7 −839.6 −839.4 −839.8 −839.2 −839.2 −839.1 −839.2 −808.2 −809.4 −810.3 −808.0
0.10 −839.7 −839.5 −839.4 −839.7 −839.1 −839.1 −839.1 −839.1 −807.8 −808.9 −809.8 −807.6
0.15 −839.6 −839.5 −839.3 −839.7 −839.1 −839.0 −839.0 −839.0 −807.6 −808.7 −809.6 −807.4
0.20 −839.5 −839.4 −839.3 −839.6 −839.0 −839.0 −839.0 −839.0 −807.5 −808.6 −809.5 −807.2
0.25 −839.5 −839.4 −839.3 −839.6 −839.0 −839.0 −839.0 −838.9 −807.4 −808.5 −809.5 −807.2
0.30 −839.5 −839.4 −839.3 −839.5 −838.9 −838.9 −838.9 −838.9 −807.3 −808.5 −809.4 −807.1
0.35 −839.4 −839.4 −839.3 −839.5 −838.9 −838.9 −838.9 −838.9 −807.3 −808.4 −809.4 −807.1
0.40 −839.4 −839.3 −839.2 −839.5 −838.9 −838.9 −838.9 −838.9 −807.2 −808.4 −809.3 −807.0
0.45 −839.4 −839.3 −839.2 −839.4 −838.8 −838.9 −838.9 −838.8 −807.2 −808.4 −809.3 −807.0

BIC 0.50 −839.3 −839.3 −839.2 −839.4 −838.8 −838.8 −838.8 −838.8 −807.2 −808.3 −809.3 −807.0
0.55 −839.3 −839.3 −839.2 −839.4 −838.8 −838.8 −838.8 −838.8 −807.2 −808.3 −809.2 −806.9
0.60 −839.3 −839.3 −839.2 −839.3 −838.8 −838.8 −838.8 −838.7 −807.1 −808.3 −809.2 −806.9
0.65 −839.3 −839.2 −839.2 −839.3 −838.7 −838.8 −838.8 −838.7 −807.1 −808.2 −809.2 −806.9
0.70 −839.2 −839.2 −839.1 −839.3 −838.7 −838.7 −838.8 −838.7 −807.1 −808.2 −809.2 −806.8
0.75 −839.2 −839.2 −839.1 −839.2 −838.7 −838.7 −838.7 −838.7 −807.0 −808.2 −809.1 −806.8
0.80 −839.2 −839.2 −839.1 −839.2 −838.7 −838.7 −838.7 −838.6 −807.0 −808.1 −809.1 −806.8
0.85 −839.1 −839.1 −839.1 −839.2 −838.6 −838.6 −838.7 −838.6 −806.9 −808.1 −809.0 −806.7
0.90 −839.1 −839.1 −839.0 −839.1 −838.6 −838.6 −838.6 −838.6 −806.9 −808.0 −808.9 −806.7
0.95 −839.0 −839.1 −839.0 −839.1 −838.5 −838.5 −838.6 −838.5 −807.7 −808.5 −808.8 −807.5
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Table A2. AIC and BIC criteria for the RPGJSB2q model of the COVID-19 data set considering
3 options for G (normal, logistic, and Cauchy) and the 4 discussed link functions.

Normal Logistic Cauchy

Criteria q Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

0.05 −869.0 −872.3 −873.4 −868.7 −857.4 −863.8 −867.6 −856.9 −758.5 −770.5 −779.3 −757.6
0.10 −869.8 −872.7 −873.5 −869.6 −860.0 −865.7 −869.1 −859.6 −779.2 −789.0 −796.4 −778.4
0.15 −870.4 −872.9 −873.5 −870.1 −862.1 −867.2 −870.1 −861.7 −795.1 −803.3 −809.4 −794.5
0.20 −870.8 −873.1 −873.4 −870.6 −864.0 −868.5 −871.0 −863.6 −808.5 −815.2 −820.1 −808.0
0.25 −871.2 −873.2 −873.4 −871.0 −865.7 −869.7 −871.8 −865.3 −819.6 −825.0 −828.9 −819.1
0.30 −871.6 −873.3 −873.3 −871.4 −867.2 −870.7 −872.3 −866.9 −828.4 −832.6 −835.7 −828.0
0.35 −871.9 −873.4 −873.1 −871.7 −868.7 −871.6 −872.8 −868.4 −835.0 −838.1 −840.4 −834.6
0.40 −872.2 −873.4 −873.0 −872.0 −870.0 −872.3 −873.0 −869.8 −839.3 −841.4 −843.0 −839.0
0.45 −872.4 −873.4 −872.8 −872.3 −871.2 −872.7 −872.9 −871.0 −841.2 −842.5 −843.3 −841.0

AIC 0.50 −872.6 −873.4 −872.5 −872.5 −872.1 −872.9 −872.6 −872.0 −840.6 −841.0 −841.1 −840.4
0.55 −872.9 −873.3 −872.2 −872.8 −872.7 −872.8 −871.8 −872.7 −837.1 −836.6 −836.0 −837.0
0.60 −873.0 −873.2 −871.8 −873.0 −872.9 −872.0 −870.4 −872.9 −830.1 −828.7 −827.5 −830.1
0.65 −873.2 −873.0 −871.3 −873.2 −872.4 −870.5 −868.1 −872.4 −818.9 −816.7 −814.8 −818.9
0.70 −873.3 −872.7 −870.8 −873.3 −870.8 −867.9 −864.6 −871.0 −802.3 −799.2 −796.6 −802.4
0.75 −873.3 −872.3 −870.0 −873.4 −867.7 −863.5 −859.3 −868.0 −778.5 −774.5 −771.2 −778.6
0.80 −873.2 −871.7 −868.9 −873.3 −862.2 −856.5 −851.1 −862.6 −744.2 −739.3 −735.4 −744.3
0.85 −873.0 −870.8 −867.5 −873.1 −852.8 −845.3 −838.5 −853.3 −693.1 −687.5 −682.9 −693.4
0.90 −872.3 −869.3 −865.2 −872.5 −836.9 −827.1 −818.5 −837.6 −611.5 −605.2 −600.1 −611.8
0.95 −870.7 −866.3 −861.1 −871.1 −810.5 −797.4 −786.0 −811.6 −453.7 −446.8 −431.4 −454.1

0.05 −839.8 −843.1 −844.2 −839.5 −828.2 −834.6 −838.4 −827.7 −729.3 −741.3 −750.1 −728.4
0.10 −840.6 −843.5 −844.3 −840.4 −830.8 −836.5 −839.9 −830.4 −750.0 −759.8 −767.2 −749.2
0.15 −841.2 −843.7 −844.3 −840.9 −832.9 −838.0 −840.9 −832.5 −765.9 −774.1 −780.2 −765.3
0.20 −841.6 −843.9 −844.2 −841.4 −834.8 −839.3 −841.8 −834.4 −779.3 −786.0 −790.9 −778.8
0.25 −842.0 −844.0 −844.2 −841.8 −836.5 −840.5 −842.6 −836.1 −790.4 −795.8 −799.7 −789.9
0.30 −842.4 −844.1 −844.1 −842.2 −838.0 −841.5 −843.1 −837.7 −799.2 −803.4 −806.5 −798.8
0.35 −842.7 −844.2 −843.9 −842.5 −839.5 −842.4 −843.6 −839.2 −805.8 −808.9 −811.2 −805.4
0.40 −843.0 −844.2 −843.8 −842.8 −840.8 −843.1 −843.8 −840.6 −810.1 −812.2 −813.8 −809.8
0.45 −843.2 −844.2 −843.6 −843.1 −842.0 −843.5 −843.7 −841.8 −812.0 −813.3 −814.1 −811.8

BIC 0.50 −843.4 −844.2 −843.3 −843.3 −842.9 −843.7 −843.4 −842.8 −811.4 −811.8 −811.9 −811.2
0.55 −843.7 −844.1 −843.0 −843.6 −843.5 −843.6 −842.6 −843.5 −807.9 −807.4 −806.8 −807.8
0.60 −843.8 −844.0 −842.6 −843.8 −843.7 −842.8 −841.2 −843.7 −800.9 −799.5 −798.3 −800.9
0.65 −844.0 −843.8 −842.1 −844.0 −843.2 −841.3 −838.9 −843.2 −789.7 −787.5 −785.6 −789.7
0.70 −844.1 −843.5 −841.6 −844.1 −841.6 −838.7 −835.4 −841.8 −773.1 −770.0 −767.4 −773.2
0.75 −844.1 −843.1 −840.8 −844.2 −838.5 −834.3 −830.1 −838.8 −749.3 −745.3 −742.0 −749.4
0.80 −844.0 −842.5 −839.7 −844.1 −833.0 −827.3 −821.9 −833.4 −715.0 −710.1 −706.2 −715.1
0.85 −843.8 −841.6 −838.3 −843.9 −823.6 −816.1 −809.3 −824.1 −663.9 −658.3 −653.7 −664.2
0.90 −843.1 −840.1 −836.0 −843.3 −807.7 −797.9 −789.3 −808.4 −582.3 −576.0 −570.9 −582.6
0.95 −841.5 −837.1 −831.9 −841.9 −781.3 −768.2 −756.8 −782.4 −424.5 −417.6 −402.2 −424.9

Appendix B.2. Estimated Parameters

Table A3. The estimated parameters for different quantiles in the RPGJSB2q model of the COVID-19
data set, with the normal distribution for G and the loglog link. Furthermore, we present the p-values
for the traditional normality test for the randomized quantile residuals.

p-Values for Quantile Residuals

q Parameter Estimated s.e. t-Value p-Value KS SW AD CVM

0.1

β0 −2.0810 0.1154 −18.03 <0.0001

0.441 0.260 0.128 0.099
β1 0.0150 0.0102 1.46 0.0716
β2 0.0153 0.0077 1.99 0.0234
β3 0.1310 0.0423 3.10 0.0010
β4 0.0967 0.0371 2.61 0.0045

ν0 1.5341 0.0881 17.41 <0.0001
ν1 0.1210 0.1608 0.75 0.2259
ν2 0.1801 0.1474 1.22 0.1110

0.25

β0 −1.9443 0.1140 −17.06 <0.0001

0.573 0.324 0.164 0.119
β1 0.0144 0.0103 1.40 0.0814
β2 0.0156 0.0078 2.01 0.0223
β3 0.1158 0.0331 3.50 0.0002
β4 0.0756 0.0290 2.61 0.0046

ν0 1.7178 0.0873 19.69 <0.0001
ν1 0.1263 0.1600 0.79 0.2149
ν2 0.1914 0.1462 1.31 0.0953



Mathematics 2022, 10, 2249 18 of 21

Table A3. Cont.

p-Values for Quantile Residuals

q Parameter Estimated s.e. t-Value p-Value KS SW AD CVM

0.75

β0 −1.7334 0.1144 −15.16 <0.0001

0.396 0.070 0.048 0.035
β1 0.0139 0.0108 1.29 0.0989
β2 0.0161 0.0082 1.97 0.0244
β3 0.0909 0.0330 2.76 0.0029
β4 0.0364 0.0289 1.26 0.1041

ν0 2.1731 0.0843 25.78 <0.0001
ν1 0.1174 0.1564 0.75 0.2264
ν2 0.2170 0.1412 1.54 0.0622

0.9

β0 -1.6473 0.1163 −14.16 <0.0001

0.169 0.005 0.006 0.005
β1 0.0142 0.0113 1.26 0.1044
β2 0.0161 0.0086 1.87 0.0304
β3 0.0860 0.0367 2.34 0.0096
β4 0.0162 0.0311 0.52 0.3018

ν0 2.5206 0.0818 30.81 <0.0001
ν1 0.0877 0.1534 0.57 0.2837
ν2 0.2296 0.1363 1.68 0.0460

Appendix B.3. Additional Information for Local Influence
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Figure A1. The index plots of Ci for β̂ (upper) and ν̂ (lower) under the weight perturbation (left),
response perturbation (center), and covariate perturbation (right) schemes for the RPGJSB2q model
with q = 0.1 (link loglog and G the cdf from the normal model) of the COVID-19 data set.
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Figure A2. The index plots of Ci for β̂ (upper) and ν̂ (lower) under the weight perturbation (left),
response perturbation (center), and covariate perturbation (right) schemes for the RPGJSB2q model
with q = 0.25 (link loglog and G the cdf from the normal model) of the COVID-19 data set.
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Figure A3. The index plots of Ci for β̂ (upper) and ν̂ (lower) under the weight perturbation (left),
response perturbation (center), and covariate perturbation (right) schemes for the RPGJSB2q model
with q = 0.75 (link loglog and G the cdf from the normal model) of the COVID-19 data set.
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Figure A4. The index plots of Ci for β̂ (upper) and ν̂ (lower) under the weight perturbation (left),
response perturbation (center), and covariate perturbation (right) schemes for the RPGJSB2q model
with q = 0.9 (link loglog and G the cdf from the normal model) of the COVID-19 data set.
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