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Abstract: In biomedical studies involving time-to-event data, a subject may experience distinct types
of events. We consider the problem of estimating the transition functions for a semi-competing
risks model under illness-death model framework. We propose to estimate the intensity functions
by maximizing a B-spline based sieve likelihood. The method yields smooth estimates without
parametric assumptions. Our proposed approach facilitates easy computation of the covariance
of the model parameters and yields direct interpretation. Compared with existing approaches,
our proposed method requires neither the subjective specification of the frailty distribution nor
the Markov or semi-Markov assumption which may be unmet in real applications. We establish
the consistency, the convergence rate, and the asymptotic normality of the proposed estimators
under some regularity conditions. We also provide simulation studies to assess the finite-sample
performance of the proposed modeling and estimation strategy. A real data application is further
used to illustrate the proposed methodology.

Keywords: asymptotics; B-spline; illness-death model; Markov model; proportional hazards;
semi-competing risks data

MSC: 46N30; 65C60

1. Introduction

In survival analysis, a subject may experience several distinct types of failures. If
apart from censoring, the follow up period ends upon the occurrence of the first event,
such data are often referred to as competing risks data. This framework consists of sur-
vival data where failure may be due to one of a number of competing causes. In some
application, with additional information, this notion can be extended to accommodate
that of semi-competing risks ([1,2]), where one type of event (terminal event, e.g., death)
may censor the other events (non-terminal event, e.g., relapse of the disease), but not vice
versa. The framework of semi-competing risk data have been previously discussed in [1,3].
Furthermore, competing risks data can also be regarded as a special type of multitask
prediction problem, which simultaneously predicts multiple outcomes from the same set of
predictors. A stacking algorithm borrowing information among multiple prediction tasks
to improve multivariate prediction performance (MTPS) is recently proposed by [4]. The
MTPS is shown to outperform existing multivariate prediction methods.

Recently [5] suggests that semicompeting risks data can also be analyzed using the
conventional illness–death compartment model by a subjective specification of the frailty
distribution and postulating the Markov or semi-Markov assumption for the conditional
transition functions given the covariates and the frailty ([6,7]). However, the subjective
specification of the frailty distribution or the Markov or semi-Markov assumption may
be unmet in some practical applications, leading to inconsistent estimators. In such cases,
alternative (non-Markov) estimators are needed. Furhthemore, their nonparametric maxi-
mum likelihood estimation approach may be computational demanding when the sample
size is large.
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To address the theoretical and numerical challenges in the semiparametric estimation
of semi-competing risks model, we employ the B-spline based sieve maximum likelihood
approach to simultaneously estimate the regression parameters and transition functions.
Covariates are incorporated naturally via proportional hazards assumptions. This approach
facilitates easy calculation of the covariance of the model parameters. The proposed spline
estimation algorithm requires much less computation than the isotonic type algorithm used
in [5] since the size of the step function is much larger than the number of parameters in
our proposed B-spline based approach. Under certain regularity conditions, we are able
to prove that the estimators of regression parameters is root-n consistent, asymptotically
normal and semiparametric efficient.

The rest of the paper is organized as follows. In Section 2, we will introduce our
proposed model and estimating approach. In Section 3, we study the asymptotic properties
of the proposed estimators. In Section 4, we provide simulation results. An application to
colon cancer data is given in Section 5. We then conclude with some discussion in Section 6.
All proofs are relegated to the Appendix A.

2. Methodology
2.1. Model and Likelihood Function

For the ith subject, let Ci, Xi, Ti1, and Ti2 denote the censoring, covariate vector,
non-terminal event time, and terminal event time, respectively. Define Yi2 = Ti2 ∧ Ci,
δi2 = I(Ti2 6 Ci), Yi1 = Ti1 ∧ Yi2, and δi1 = I(Ti1 6 Yi2). We observe (Yi2, δi2, δi1, Xi,
i = 1, . . . , n). The hazard functions are defined as below.

λ1(t1) = lim
∆→0

P[T1 ∈ [t1, t1 + ∆)|T1 ≥ t1, T2 ≥ t1]/∆, (1)

λ2(t2) = lim
∆→0

P[T2 ∈ [t2, t2 + ∆)|T1 ≥ t2, T2 ≥ t2]/∆, (2)

λ12(t2|t1) = lim
∆→0

P[T2 ∈ [t2, t2 + ∆)|T1 = t1, T2 ≥ t2]/∆, (3)

where 0 < t1 < t2. In general, λ12(t2|t1) can depend on both t1 and t2 (see Remark 1 for
more detailed discussions). Let Λ1(t) =

∫ t
0 λ1(x)dx and Λ2(s) =

∫ s
0 λ2(x)dx. Specifically,

the probability measure P refers to the joint distribution of (T1, T2, C) in the unconditional
case. In the conditional case, the probability measure P refers to the joint distribution of
(T1, T2, C) given X. For the unconditional case, the likelihood function L(θ) then takes
the form

n

∏
i=1

λ1(Yi1)
δi1 λ2(Yi2)

(1−δi1)δi2 λ12(Yi2|Yi1)
δi1δi2 exp

(
−Λ1(Yi1)−Λ2(Yi1)−

∫ Yi2

Yi1

λ12(s|Yi1)ds)
)

, (4)

where θ = (β1, β2, β3, λ10, λ20, λ30) will be specified as follows.
For the case with q dimension covariates X, the conditional transition rate functions

are defined as follows:
λ1(t1|X = x) = λ10(t1) exp (βT

1 x), (5)

λ2(t2|X = x) = λ20(t2) exp (βT
2 x), (6)

λ12(t2|t1, X = x) = λ12,0(t2|t1) exp (βT
3 x). (7)

Note that both x and X refer to the covariates where X denote the random variable
and x refers to its observed values. The Equations (5)–(7) are the conditional transition
functions of T1 and T2 (given X = x) while the Equations (1)–(3) are the unconditional
transition functions of T1 and T2.

To simplify the notation, denote λ3(t, s) = λ12(s|t), λ30(t, s) = λ12,0(s|t), β = (βT
1 , βT

2 ,
βT

3 )
T , β0 = (βT

10, βT
20, βT

30)
T . Note that in our modeling approach, λ30 depends on two

parameters t and s.
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2.2. Sieve Space Θn for the Parameters (β1, β2, β3, λ10, λ20, λ30)

We propose a sieve space consisting of B-splines for λj0(j = 1, 2, 3) in maximizing (4).
We suppose that Y1 and Y2 have compact supports (say [0, 1]) and that ‖β‖ ≤ M for a known
constant M. Rewrite λ10(t) = exp (g10(t)), λ20(s) = exp (g20(s)), λ30(t, s) = exp (g30(t, s)).
Let ψ = (g1, g2, g3) and ψ0 = (g10, g20, g30). A sieve space consisting of B-splines is defined
for these new parameters as follows: First, we obtain an extended partition with equal
length 1/Kn for the interval [0, 1] :

∆ = {s−m = · · · = s−1 = 0 = s0 < s1 < · · · < sKn = 1 = · · · = sKn+m},

where m (independent of the sample size n) and Kn = O(nν)(0 < ν < 1/2) are two integers
to be chosen later. Note that m and Kn are two parameters often used in B-spline modeling
where m indicates the smoothness of the basis function. Let Nn = Kn + m and {Nm

j (s)}Nn
j=1

be a normalized B-spline basis associated with ∆ (see [8]). Then the sieve space for the
parameters θ = (β, ψ(t, s)) is defined as

Θn =
{

θn = (β, ψn(s, t)) : ψn(s, t) = (g1n(t), g2n(s), g3n(s, t), ‖β‖ ≤ M,

g1n(t) =
m+Kn

∑
i=1

αi Nm
i (t), g2n(s) =

m+Kn

∑
i=1

ηi Nm
i (s), (8)

g3n(s, t) =
m+Kn

∑
i1,i2=1

γi1,i2 Nm
i1 (s)Nm

i2 (t), max
1≤i≤m+Kn

|αi| ≤ Mn,

max
1≤i≤m+Kn

|ηi| ≤ Mn, max
1≤i1,i2≤m+Kn

|γi1,i2 | ≤ Mn

}
,

where Mn ≤ (2m− 1)/(2m′(2m + 1)) with a constant m′ arbitrarily close to m.
For any θi = (βi, ψi) ∈ Θ (i = 1, 2), we define a distance d(θ1, θ2) = ‖β1 − β2‖ +

‖ψ1 − ψ2‖2.

Remark 1. Here we assume that the transition intensity λ30(·) depends on both t1 and t2. A
semi-Markov process specifies that λ30(t1, t2) = h2(t2 − t1). However, it is important to note that
in either Markov or semi-Markov approaches, λ30 depends on only one parameter, corresponding to
the special cases of our modeling approach where λ30 can flexibly depend on two parameters.

2.3. Maximization

Let Pn, P denote the empirical measure and the true probability measure of
(δ1, δ2, Y1, Y2, X), respectively. We maximize the function

ln(β, ψ) = Pnl(θ; Wi) = Pnl(β, ψ; Wi) = Pn

{
δ1i

[
XT

i β1 + g1(Y1i)
]
+ (1− δ1i)δ2i

[
XT

i β2

+g2(Y2i)
]
+ δ1iδ2i

[
XT

i β3 + g3(Y1i, Y2i)
]
−Λ1(Y1i)−Λ2(Y2i)

−
∫ Y2i

Y1i

exp(g3(Y1i, s))ds
}

(9)

over the sieve space Θn.
For the knot selection, we let m = 3 and use the Bayesian information criterion

BIC(Nn) = ln(β̂, ψ̂) +
log n

n
(
3Nn + 3q

)
to choose Kn which minimizes the criterion function.
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3. Theoretical Properties

In this section, we establish the theoretical properties of our spline-based modeling
strategy under the following regularity conditions.

Assumptions

(A1) Y1 and Y2 have compact supports (say [0, 1]) and X has bounded support in Rq

where q is the dimension of X. Moreover, if there exists a constant c0 and a constant vector
γ̃ such that γ>X = c0 almost surely, then c0 = 0 and γ̃ = 0.
(A2) β0 ∈ B, where B is a compact set of R3q with nonempty interior. λ10 and λ20 ∈ Hr,
and λ30 ∈ Cr.
(A3) Kn = O(nν) where ν satisfies the restrictions 0.25/r < ν < 0.5.
(A4) r ≥ 2 where r is the measure of smoothness of λj in definitions ofHr and Cr.

We first establish the strong consistency for the estimated model parameters.

Theorem 1. Under Assumptions A1–A3, β̂ are strong consistent estimators of the true coefficients
β0, and ‖λ̂1 − λ10‖2−→0, ‖λ̂2 − λ20‖2−→0, ‖λ̂3 − λ30‖2−→0 almost surely.

Next, we obtain the convergence rates for the proposed estimators.

Theorem 2. Under Assumptions A1–A3, it holds that

‖λ̂1 − λ10‖2 + ‖λ̂2 − λ20‖2 + ‖λ̂3 − λ30‖2 = Op(n−rν + n−(1/2−ν)).

This theorem implies that if v = 1/(2 + 2r), ‖λ̂3 − λ30‖2 = Op(n−r/(2r+2)), which is
the optimal convergence rate in the non-parametric regression setting for bivariate function
estimation by [9].

To derive the limiting distribution of the proposed estimators, establish the asymptotic
normality, we calculate the directional derivative of the log-likelihood in the associate
functional spaces as follows.

Denote V as the linear span of Θ0 − θ0, where θ0 denote the true value of θ = (β, ψ)
and Θ0 denote the true parameter space. Let l(θ; W) be the log-likelihood for a sample of
size one and δn = n−rν + n−(1/2−ν). For any θ ∈ {θ ∈ Θ0 : ‖θ − θ0‖ = O(δn)}, define the
first order directional derivative of l(θ; W) at the direction v ∈ V as

l̇(θ; W) =
dl(θ + sv; W)

ds

∣∣∣
s=0

,

and the second order directional derivative as

l̈(θ; W) =
d2l(θ + sv + s̃ṽ; W)

ds̃ds

∣∣∣
s=0

∣∣∣
s̃=0

=
dl̇(θ + s̃ṽ; W)

ds̃

∣∣∣
s̃=0

.

Define the Fisher inner product on the space V as

< v, ṽ >= P
{

l̇(θ; W)[v]l̇(θ; W)[ṽ]
}

and the Fisher norm for v ∈ V as ‖v‖1/2 =< v, v > . Let V̄ be the closed linear span of V
under the Fisher norm. Then (V̄, ‖ · ‖) is a Hilbert space.

Define the smooth functional of θ as

γ(θ) = b′β +
∫ 1

0
φ1(t)λ1(t)dt +

∫ 1

0
φ2(s)λ2(s)ds +

∫ 1

0

∫ 1

0
φ3(t, s)λ3(t, s)dtds,

where b is any vector of 3q dimension with ‖b‖ ≤ 1, φi ∈ Hr[0, 1], i = 1, 2 λ3 ∈ Cr[0, 1]2.
For any v ∈ V, we denote
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γ̇(θ0)[v] =
dγ(θ0 + sv)

ds

∣∣∣
s=0

whenever the right hand-side limit is well defined and assume:
(A5) for any v ∈ V̄, γ(θ0 + sv) is continuously differentiable in s ∈ [0, 1] near s = 0, and

‖γ̇(θ0)‖ = sup
v∈V̄:‖v‖>0

|γ̇(θ0)[v]|
‖v‖ < ∞.

Note that γ(θ)− γ(θ0) = γ̇(θ0)[θ − θ0]. Under Assumption A5, by the Riesz repre-
sentation theorem, there exists v∗ ∈ V̄ such that γ̇(θ0)[v] =< v∗, v > for all v ∈ V̄ and
‖v∗‖2 = ‖γ̇(θ0)‖.

Theorem 3. Suppose suppose r > 2 and assumptions A1–A3, A5 hold, then n1/2(γ(θ̂) −
γ(θ))→ N(0, ‖γ̇(θ0)‖2) in distribution and and γ(θ̂) is semiparametrically efficient.

Remark 2. Inference about β̂. Theorem 3 offers ease of inference procedure, especially for the
regression parameter β. Set φj(·) = 0(j = 1, 2, 3), then Theorem 3 yields that n1/2b′(β̂− β0)→
N(0, b′Σββb), and thus

n1/2(β̂− β0)→ N(0, Σββ),

by Gramer-Wold device, one can establish semiparametricefficiency of β̂. where Σββ can be consis-
tently estimated using the inverse of the Hessian matrix.

Remark 3. Inference about λj(·)(j = 1, 2, 3). For λj(·)(j = 1, 2), let b = 0 and φk(k 6= j) = 0,
then Theorem 3 yields that

n1/2
∫ 1

0
φj(w)(λ̂j(w)− λj0(w))dw→ N(0, σ2

λj
),

where σ2
λj
(j = 1, 2) can be consistently estimated by using the delta method or some resampling

methods. Similarly inference can be done for λ3(t, s): Let b = 0, φ1(·) = 0, φ2(·) = 0, then
Theorem 3 yields that

n1/2
∫ 1

0

∫ 1

0
φj(t, s)(λ̂3(t, s)− λ30(t, s))dtds→ N(0, σ2

λ3
),

where σ2
λ3

can be consistently estimated by using the delta method or some resampling methods. The
above results can be used to check the linear (quadratic) effect of tj(j = 1, 2), or to check whether
λ3(t1, t2) is an additive form of t1 and t2.

4. Simulation Study

We conducted simulations to investigate finite sample performance of the proposed
estimator. In the simulation, we let

λ10(t1) =
1

1 + 2t1
,

λ20(t2) =
1

1 + 2t2
,

λ30(t2|t1) =
2

1 + t1 + t2
.

By calculation, it is clear that the stipulated transition functions do not follow the
transition functions from the models involving the frailty distribution and Markov or semi-
Markov modells ([1,5]). It is therefore of interest to examine whether the proposed spline-
based estimation procedure still yields reliable and accurate estimates for this scenario
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which cannot be tackled by existing approaches. We report results with one covariate, X,
having a uniform. distribution between 0 and 0.5. We consider β j = 1,−1, 0.5, j = 1, 2, 3,
and n = 200 and 400. The censoring time was simulated from from a uniform distribution
on (0, τ) with τ = 50. We compute the spline based semiparametric maximum likelihood
estimate using the cubic B-spline and estimate the standard error of the estimated regression
parameter using the inverse of the Hessian matrix. For the B-spline, the number of knots
Kn or equivalently Nn = (Kn + m) is chosen using BIC defined in Section 2.3. Tables 1–3
presents the estimation bias (BIAS), standard deviations (STD), the mean of the estimated
standard error of the estimated regression parameter(ESE) and the coverage proportion of
the 95 percent confidence intervals (CP) based on 500 replicates.

Table 1. Simulation results for (β10, β20, β20) = (1, 1, 1).

BIAS STD ESE CP

n = 200 β1 = 1 0.021 0.233 0.219 0.953
β2 = 1 −0.016 0.230 0.263 0.954
β3 = 1 0.026 0.281 0.219 0.986

n = 400 β1 = 1 0.017 0.166 0.159 0.963
β2 = 1 −0.013 0.167 0.164 0.960
β3 = 1 0.018 0.122 0.141 0.965

Table 2. Simulation results for (β10, β20, β20) = (−1,−1,−1).

BIAS STD ESE CP

n = 200 β1 = −1 −0.015 0.244 0.225 0.956
β2 = −1 0.019 0.232 0.239 0.962
β3 = −1 −0.014 0.269 0.284 0.961

n = 400 β1 = −1 −0.013 0.144 0.165 0.961
β2 = −1 0.014 0.158 0.164 0.945
β3 = −1 −0.013 0.197 0.185 0.980

Table 3. Simulation results for (β10, β20, β20) = (0.5, 0.5, 0.5).

BIAS STD ESE CP

n = 200 β1 = 0.5 0.017 0.230 0.205 0.966
β2 = 0.5 −0.013 0.221 0.219 0.965
β3 = 0.5 0.016 0.182 0.218 0.945

n = 400 β1 = 0.5 0.008 0.172 0.155 0.941
β2 = 0.5 −0.011 0.132 0.152 0.954
β3 = 0.5 0.012 0.125 0.157 0.938

From Tables 1–3, we can see (a) the proposed estimates have very small biases; (b) stan-
dard deviations of the estimates shrink at approximately the

√
n rate; (c) the estimated

standard deviations are very close to those of the original estimates; the 95 percent confi-
dence intervals provide adequate coverage probabilities. It can be seen that the proposed
modeling strategy and estimation procedure can yield reliable and accurate estimates and
exhibit direct and good interpretation in practice.

5. A Real Data Example

As our proposed B-spline based modeling strategy does not involve the subjective
specification of the frailty distribution and do not require the Markov or semi-Markov
assumption which may be unmet in real applications, it is hence more flexible than existing
approaches in practice. To illustrate this point, we now apply the illness-death model
presented in Section 2 to the colon cancer data. It is of interest to examine whether the
time spent in state 1 (past) is related to the transition function from state 2 into state 3.
For answering this question, we consider a working model λ3(t, s) = exp(ξt)λ(s). It
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translates to test H0 : ξ = 0. This can be done using the usual likelihood ratio statistic. The
results obtained for the colon cancer study show that the effect of time spent in state 1
is significant (p-value < 0.05). This allows us to conclude that the Markov assumption
may be unsatisfactory for the colon cancer data set. This further demonstrate the stringent
assumptions required by existing approaches may be unmet in practice which calls for the
need of our proposed methodology.

For illustrative purposes, we only consider one covariates: Lev+5-FU treatment. Our
interest centers on understanding the effect of Lev+5-FU treatment and nonparametricall
modelling transition functions in different states. Table 4 reports the estimates of the
regression coefficients along with standard errors and p-values. From Figures 1 and 2,
we can see our proposed model and estimation procedure yield the estimated transition
functions with direct and good interpretation. It stipulates quantitatively how the hazard
functions of the time to terminal event and the time to non-terminal event evolves over
time and shed lights on the disease progression and death risks for colon cancer patients
with and without relapse of the cancer. We plot the estimated the transition functions in
Figure 2.

Furthermore, to illustrate the computational advantage of our proposed approach, for
the real data application, the existing frailty-model approach will require the number of
parameters (3 + 413 + 1 = 417). However, our proposed B-spline approach only require
(m + Kn) ∗ 3 + 3 = (4 + 8) ∗ 3 + 3 = 39 parameters. Hence, the computational cost is
substantially reduced while our approach is more flexible than existing approaches because
it does not require the subjective specification of the frailty distribution and the Markov or
semi-Markov assumption.

Table 4. Estimated regression coefficients and their standard errors for the colon data.

Transition Parameters Estimate Standard Error p-Value

12 β1 −0.513 0.119 1.6 × 10−5

13 β1 −0.028 0.379 0.469
23 β1 0.738 0.130 7.0 × 10−9

λ3(t, s)

Figure 1. Compartment model for semicompeting risks data.
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Figure 2. Estimated transition functions for the colon cancer data.

6. Concluding Remarks

In this paper, we proposed an spline-based sieve semiparametric maximum likeli-
hood method for semi-competing risks data. This method reduces the dimensionality of
the estimation problem using the splines and therefore releases the numerical burden of
the computation. This approach allow essily infer for both regression parameters and
transition functions. It should be a straightforward task to apply the method presented
here to allow for non-linear relationships between continuous predictors and survival in
the multi-state framework ([6,10] and others). Simulations showed that the new estimator
may behave very good. For illustration purposes we used a real dataset from a clinical trail
for colon cancer. Competing risks data can also be regarded as a special type of multitask
prediction problem. In such a field, the most state-of-the-art method is MTPS [4], which
currently does not support predicting survival outcomes. Following their approaches,
it would be worthwhile studying the stacked algorithm for prediction with multivariate
survival outcomes including competing risks and semi-competing risks data.

Author Contributions: Conceptualization, J.X.; methodology, X.H. and J.X.; software, X.H.; formal
analysis, X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
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Appendix A. Proofs of Theorem 1, Theorem 2, and Theorem 3

This section contains the proofs for Theorems 1–3. Some empirical process theorems
developed in [11] will be repeatedly used. Throughout the following proofs, we denote
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P f =
∫

f (x)dP(x) and Pn f = n−1 ∑n
i=1 f (Xi), the empirical process indexed by function

f (X).

Appendix A.1. Proof of Theorem 1

By applying the inequality (31) in [12] (p. 31), we have

sup
θ∈Θn

∣∣Pnl(θ; W)− Pl(θ; W)
∣∣→ 0, a.s. (A1)

Let

ζ1n = sup
θ∈Θn

|Pnl(θ; W)− Pl(θ; W)|, (A2)

ζ2n = Pnl(θ0; W)− Pl(θ0; W). (A3)

Denote Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn}.

inf
Kε

Pl(θ; W) = inf
Kε

{
Pl(θ; W)− Pnl(θ; W) + Pnl(θ; W)

}
≤ ζ1n + inf

Kε

Pnl(θ; W). (A4)

If θ̂n ∈ Kε, we have

inf
Kε

Pnl(θ; W) = Pnl(θ̂; W)

≤ Pnl(θ0; W) = Pnl(θ0; W)− Pl(θ0; W) + Pl(θ0; W)

= ζ2n + Pl(θ0; W). (A5)

By condition A3, we obtain that infKε Pl(θ; W)− Pl(θ0; W) = δε > 0. It completes the
proof.

Appendix A.2. Proof of Theorem 2

Noticing

EP‖n1/2(Pn − P)‖Fη
≤ CJη(ε,Fη , ‖ · ‖2)

{
1 +

Jη(ε,Fη , ‖ · ‖2)

η2n1/2

}
, (A6)

where Jη(ε,Fη , ‖ · ‖2) =
∫ η

0 {1 + log N[](ε,Fη , ‖ · ‖2)}1/2dε ≤ CN1/2η. The right-hand side
of (A6) yields φn(η) = C(N1/2η + N/n1/2). It is easy to see that φn(η)/η decreasing in
η, and r2

nφn(1/rn) = rnN1/2 + r2
nN/n1/2 < 2n1/2, where rn = N−1/2n1/2 = n−ν+1/2,

0 < ν < 1/2. Hence n−ν+1/2d(θ̂, θn0) = OP(1) by Theorem 3.2.5 of [11]. This, together with
d(θn0, θ0) = Op(n−rν) (see Theorem 12.7 in [8], yields that d(θ̂, θ0) = Op(n−(1/2−ν) + n−rν).
This completes the proofs.

Appendix A.3. Proof of Theorem 3

Let εn be any positive sequence satisfying εn = o(n−1/2). For any v∗ ∈ Θ0, by [8],
Theorem 12.7, there exists Πnv∗ ∈ Θn such that ‖Πnv∗ − v∗‖ = o(1) and δn‖Πnv∗ − v∗‖ =
o(n−1/2). Also define r[θ− θ0; W] = l(θ; W)− l(θ0; W)− l̇(θ; W)[θ− θ0]. Then by definition
of θ̂, we have

By (A1) and Chebyshev inequality, independent and identical distribution data, and
‖Πnv∗ − v∗‖ = o(1), we have I1 = op(n−1/2).
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For I2, we have

I2 = (Pn − P)
{

l(θ̂; W)− l(θ̂ ± εnΠnv∗; W)± εn l̇(θ0; W)[Πnv∗]
}

= ∓εn(Pn − P)
{

l̇(θ̃; W)− l̇(θ0; W)[Πnv∗]
}

,

where θ̃ lies between θ̂ and θ̂ ± εnΠnv∗. It follows that {l̇(θ; W)[Πnv∗] : ‖θ − θ0‖ = O(δn)}
is Donsker class. Therefore, by Theorem 2.11.23 of [11], we have I2 = εn × op(n−1/2).

It follows that δn‖Πnv∗ − v∗‖ = o(n−1/2), and ‖Πnv∗‖2 → ‖v∗‖2. Combing the above
facts, together with Pl̇(θ0; W[v∗]) = 0, we can establish that

0 ≤ Pn{l(θ̂; W)− l(θ̂ ± εnΠnv∗; W)} = ∓εnPn l̇(θ0; W)[v∗]± εn < θ̂ − θ0, v∗ > +εn ×
op(n−1/2) = ∓εn(Pn − P){l̇(θ0; W)[v∗]} ± εn < θ̂ − θ0, v∗ > +εn × op(n−1/2).

Therefore, we obtain
√

n < θ̂ − θ0, v∗ >=
√

n(Pn − P){l̇(θ0; W)[v∗]} + op(1) →
N(0, ‖v∗‖2), where the asymptotic normality is guaranteed by Central limits Theorem
and the the asymptotic variance being equal to ‖v∗‖2 = ‖l̇(θ0; W)‖2. This, together with
A5 imply n1/2(γ(θ̂)− γ(θ0)) = n1/2 < θ̂ − θ0, v∗ > +op(1)→ N(0, ‖v∗‖2) in distribution.
The semiparametric efficiency can be established by applying the result of [13].
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