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Abstract: Thread algebra is a domain-specific process algebra which may be used for semantic work
on sequential systems, including systems based on deterministically scheduled multi-threading.
Thread algebra is used in this capacity with the forecasting phenomenon for programs and machines
as a domain of interest. Several new informal notions are proposed: prospecting services, foresight
patterns for systems, and lookahead conditions as a mechanism for the specification of services. Some
new prospecting services are proposed which facilitate the realisation of certain foresight patterns.
Several negative results about the non-realisability of certain foresight patterns are provided.
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1. Introduction

Thread algebra [1] is a domain-specific process algebra, which is tailor made for pro-
viding semantics for imperative programs in the form of instruction sequences written
in the notation of the program algebra PGA of [2]. For introductions to program algebra,
instruction sequences and thread algebra we refer to [3], and for more comprehensive infor-
mation, to [4]. For more information on thread algebra we mention [5,6]. A comprehensive
example of the use of notations from process algebra and thread algebra can be found in [7].
Below, the phrase “instruction sequence” will refer to an instruction sequence in one of the
notations provided by program algebra, and thread will refer to an element of the domain
of a thread algebra.

Thread algebra offers constants S (stop) for a properly terminating thread and D

(deadlock/divergence) for an improperly terminating thread. With threads P and Q also
R ≡ PE f.mD Q is a thread. A non-terminating (run of a) thread performs an infinite
number of subsequent method calls. Non-termination differs from divergence in that diver-
gence may involve an infinite number of subsequent internal steps, while non-termination
involves an infinity of externally visible steps, viz. the subsequent method calls.

The idea is that f.m constitutes a method call, where a component accessible under the
name (focus) f is asked to process a method call m. Processing a method will change the
state of the component which performs that task, and moreover, it will produce a result in
the form of a Boolean value. If true is returned, the thread R proceeds as P and if false
is returned, the thread proceeds as Q. Components able to process method calls are called
services. A focus f and a service H made accessible under focus f are combined as a service
in focus f.H. A thread and a service in focus can cooperate in different ways: use (denoted
P/f.H), apply (denoted P • f.H), and reply (denoted P!f.H). In the case of use, the service is
used for computing a thread; in the case of apply, the thread transforms the service which
will contain inputs before a run of the thread is started and outputs upon termination of
the run said thread; and in case of reply, a mere Boolean value is computed. Use and apply
represent extremes of the different way a sequential process may deal with data: data may
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support the computation of a more complicated process, and the sequential process is used
for computing a function which is applied to the data. Below, we will only consider the
case of use.

A representation of thread algebra terms of the process algebra ACP (as defined in [8])
is given in [4,9]. The idea is that a thread P is represented by a process \(P) and a service H

is represented by a process \(H). \ is the thread/service to process projection, which may be
alternatively be denoted by ts2p. In particular, using ACP notation for actions for sending
and reading along a port, and communication thereof (as used in [10] and later):

\(PE f.mD Q) = sf(m) · (rf(true) · \(P) + rf(false) · \(Q))

P • f.H is represented by a parallel composition \(P • f.H) = ∂RS(\(P)||\(f.H)) of a
representation \(P) of P and a representation \(f.H) of f.H. Here ∂RS is the encapsulation
operator which guarantees that corresponding send and receive actions, together collected
in the set RS, will synchronize. A state of a service H(s) then takes the following form:

\(H(s)) = ∑
m∈J

(r(m) · s(θ(m, s)) · \(H(η(m, s,θ(m, s))))

Here θ(m, s) is a Boolean condition which determines the reply value of the service on
the call of method m: if θ(m, s) = true, then the reply value is true and if θ(m, s) = false,
then the reply value is false. The function η determines the state of the service after a
reply has been returned. The follow-up state depends on the original state s, the method
involved and the reply value θ(m, s) that has been returned.

For an ordinary service H, θ(−,−) the so-called reply condition, and η(−,−,−), the
so-called effect function, are functions. In the case of an infinite state space, it is plausible
that both functions are computable. Throughout the paper, we will assume that η is a
function, while θ may depend on other attributes of a system in which the service operates.
If θ(−,−) is a function, i.e., it depends on m and s only, the service is called ordinary.

The following equivalent form is more suggestive about the fact that for each method
call, the corresponding reply conditions must be evaluated just once. Here, xCφBy

is the “if φ then x else y” function with the condition written as the argument in the
middle. When located under focus f the send and receive actions are renamed, the fo-
cus f being used as a port name for the process algebra notation, we obtain \(f.H(s)) =
∑m∈J(rf(m) · ((sf(true) · \(H(η(m, s, true))))Cθ(m, s)B (sf(false) · \(H(η(m, s, false))))))
A trivial manner in which the reply condition can be non-functional is to have it dependent
of the focus by which the service is made accessible (using multiline notation for better
readability and subscripts for the reply condition and effect function so that unambiguous
reference to these from outside the architerm can be made).

\(f.H(s)) = ∑m∈J(rf(m)·
((sf(true) · \(H(ηH(m, s, true))))

CθH(m, s)B
(sf(false) · \(H(ηH(m, s, false))))
)

)

Multiple services, H1, . . . , Hn accessible under pairwise different foci g1, . . . , gn are
combined into a single service using the service composition operator⊕: g1.H1⊕ . . .⊕ gn.Hn.
For the details of service composition, we refer to [4]. In terms of the process algebra, one
finds \(g1.H1 ⊕ . . .⊕ gn.Hn) = \(g1.H1)|| . . . ||\(gn.Hn), at least in case the gi are pairwise
different. Thread algebra allows different representations in terms of process algebra. For
instance, for some applications, an interpretation into a discrete time process algebra (see,
for example, [11]) is preferable. Below, the thread algebra notation is used unless the
additional detail of how a basic action is realised via a pair of atomic actions matters.
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A thread P may be defined in different ways. First of all, threads can be defined, like
processes in process algebra, by means of recursion equations or systems of recursion
equations; for instance P = SE f.m1D (PE g.m2D D). Otherwise, comparable with the use
of a transition system as a process definition in process algebra, a thread, say P, can be
defined by means of thread extraction from an instruction sequence, say X: P = |X|. An
expression of the form ∂RS(P • g1.H1⊕ . . .⊕ gn.Hn) is referred to as an architerm, it describes
a so-called execution architecture for X, in the terminology of [12].

Process algebras contain behaviours as elements and provide composition operators
for these. Many different process algebras have been designed, and process algebras can
be tailor made for certain application areas. Conventionally, process algebras have been
studied in the context of parallel processes so that parallel composition is the primary com-
position operator. In thread algebra, behaviours represent sequential systems, including
deterministic systems that result from scheduled concurrent compositions of sequential
systems (see [1,5]).

Instruction sequences, as well as threads, allow, as much as possible, the separation of
data and control. For no datatype, not even for Booleans, the presence is taken for granted
in the setting of program algebra. Only Boolean feedback from operations on data (i.e.,
method calls), which are located in services, is used to influence the progression of control.

1.1. Prospecting, Foresight and Lookahead Conditions

We will discuss prospecting in the context of thread algebra. Prospecting allows an
agent participating in a system to survey (aspects of) the potential future behaviour of one
or more other agents in the system. We model prospecting as a capability of a service. We
use the term prospecting rather than the perhaps more appealing term lookahead in order
to diminish the connotation of statistically sound inference from available data. Dealing
with prospecting in a process algebra setting seems to be harder but may follow suit just as,
for instance, strategic interleaving was first defined in the context of thread algebra in [1]
and only thereafter in a setting of process algebra (see, for example, [13]).

Foresight constitutes the apparently successful ability of an agent in a system to take
future options of behaviour of the entire system into account. We use the term foresight
rather than forecasting, also in order to weaken the connotation of inference based on
scientifically rigorous methods. Indeed prospecting, as meant below, may be achieved by
way of magic, and forecasting may be based on unexplained or non-rigorous forecasting.
Foresight is a phenomenon which concerns a system as a whole because it combines the
intention of an agent in the system to take expectations or knowledge about the entire
system (including the agent) into account as well as some assessment of the success of the
agent in that respect.

Prospecting may allow successful foresight. One may think of an agent as a robot R the
software of which is known to another agent P in the form of a compiled source program.
Somehow P may be able to make useful predictions about the behaviour of R on the basis
of that information. We will not look into this particular scenario, and it is mentioned
only in order to indicate that it is not inconceivable that agent P uses intelligence to obtain
meaningful information regarding the future behaviour of another component R.

An example of prospect and foresight is as follows. With Imethod(H), We will denote
the method interface of H, and a detailed description of interfaces is given in Section 2.4.
Let m1 ∈ Imethod(K1) and m2 ∈ Imethod(K2). Now consider the following architerm: A =
((g2.m2 ◦ S)E g1.m1D S)E h.findD (SE g1.m1D (g2.m2 ◦ S))) • h.H⊕ g1.K1 ⊕ g2.K2.

The task is to design a service H with method interface Imethod(H) = {find} which
works in such a manner that in all circumstances, A = A(H, K1, K2) will perform the basic
action g2.m2. Suppose that H is an ordinary service, say H(s0) with state space SH and s0 ∈
SH, and with reply condition θH(find, s) and effect function ηH(−,−,−). Now suppose
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θH(find, s0) = true, then on the first call of a method (in this case h.find) a reply true is
received so that the next state of the computation will be

A? = ((g2.m2 ◦ S)E g1.m1D S) • h.H(ηH(s0, find, true))⊕ g1.K1 ⊕ g2.K2

Now assume that service K1 produces reply false on the first call of method m1. Then
(writing t0 for the initial state of K1) the subsequent state is

A?? = S • h.H(ηH(s0, find, true))⊕ g1.K1(ηK(t0, m1, false))⊕ g2.K2

Clearly, A?? will not perform basic action g2.m2. A similar argument can be given if it
is assumed that θH(find, s0) = false. It follows that an ordinary service H cannot have the
required property that always a call g2.m2 will take place.

Next, with a leap of imagination, one may allow the reply condition θH(find, s0)
to include K1 as an additional argument and to allow H to experiment with the (hy-
pothetical) future behaviour of K1. Now consider the following reply condition for H:
θ̂H(find, s0) ≡ [K1(m1) = true] (i.e. θK1(m1, t0) = true). This new condition is permitted
to acquire prospective information about another service in the architerm A. Let H(θ̂H) de-
note the service obtained from H by replacing the reply condition θ(find, s0) by θ̂(find, s0)
then the execution architecture A(H(θ̂), K1, K2) has the required property.

We will say that θ̂ is a lookahead condition which allows H(θ̂) to perform prospecting, a
state of affairs which then explains the fact that in configurations of the form A(H(θ̂), K1, K2)
a phenomenon of foresight can be observed. In this paper, we will demonstrate some
examples of lookahead conditions that may serve as non-ordinary reply conditions. The
design of a most general class of such conditions is non-trivial so it seems, and the following
problem is left open.

Problem 1. Is there a plausible definition of which conditions may occur as (non-ordinary) reply
conditions, so that prospection can be “exploited” to its limits?

This question applies in particular to configurations where more than one service may
use lookahead conditions.

1.2. Configurations and Intermediate Configurations

Configurations capture both initial stages and intermediate stages for computations in
an obvious manner: step after step, the basic actions of the thread are performed and the
states of various services are updated. Final states of such computations are mere service
families from which the thread has become trivial: either S or D.

The term configuration refers to a threads/service configuration. A typical (generic)
configuration has the form C ≡ P • g1.K1 ⊕ . . . ⊕ gn.Kn. In the setting of thread algebra
configurations compute by performing steps which correspond to (i) a method call being
made, (ii) a reply being computed, and (iii) the (side) effect on the state of the service
which is processing the call that is computed. Upon looking at the same run from the
perspective of process algebra, additional precision can be obtained, and intermediate states
and configurations appear. We will need some notation for intermediate configurations
and components thereof.

For a thread P, ‡(P) will denote that same thread, though with its first atomic action
(when present) missing. This idea can be made formal via the translation to processes:
\(‡(P)) is the unique process p such that for some atomic action a it is the case that
\(P) = a.p if such a decomposition of P atomic action exists and \(P) = δ (the inactive
process in ACP) otherwise. In particular, one finds: \(‡(PE f.mD Q)) = rf(true) · \(P) +
rf(false) · \(Q).

Moreover for two services H1, H2 with the same method interface J, let [H1]Cfθ Bf[H2]
denote a service, present under focus f, in the state just after having received a method
call and going to reply true, then moving on as H1 if the reply condition θ turns out to be
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true and going to reply false, while continuing as the service H2 otherwise. Upon reading
threads as process with \, one finds

\([H1]CfθBf[H2]) = (sf(true) · \(f.H1))CθB(sf(false) · \(f.H2))

Now consider the configuration A ≡ (PE f.mD Q) • f.H(s)⊕ g1.K1 ⊕ . . .⊕ gn.Kn. As
a process, \(A) takes smaller steps (one atomic action at a time) than as a thread/service
configuration (one basic action at a time). After performing one atomic action (sending m to
H via port f ), the following configuration A′ is obtained:

A′ ≡ ‡(PE f.mD Q))•
f.([H1(ηH1(s, m, true)]Cfθ(s, m)Bf [H2(ηH2(s, m, false)])⊕ g1.K1 ⊕ . . .⊕ gn.Kn.

The advantage of considering A′ is that it provides a precise picture of the situation in
which a reply condition determines which reply is to be returned after a method call has
been received and the corresponding reply has been computed by the service at hand, and
how the service at hand will proceed. This picture allows an informal answer to Problem 1.

Definition 1 (Informal definition of lookahead conditions). In the configuration A′, a lookahead
condition θ(s, m) may depend on

(i) all focus and method names which play a role in A′,
(ii) the threads P and Q, and
(iii) the services K1, . . . , Kn.

What matters is that dependence on the services H1 and H2 is not permitted. The reason
to be so cautious about H1 and H2 lies in the observation that it is more likely than not that
the same lookahead condition θ(m, s) occurs in these services as well. That may happen,
for instance, if H1 and H2 are chosen as both continuations of a single service H upon having
received method call f.m in state s and if after a number of steps, the same state is visited
once more during the computation of A′. A complicated self-reference might result, which
is now excluded, however.

In this manner, a reasonable upper bound to the notion of a lookahead condition in
the context of A′ is obtained. A meaningful restriction, however, is that θ(s, m) is built up by
logical connectives and quantifiers over primitive assertions, which can be understood as
expressing outcomes of hypothetical experiments with configurations of the form

A′ ≡ ‡(PE f.mD Q)) • f.([L1]Cfθ(s, m)Bf [L2])⊕ g1.K1 ⊕ . . .⊕ gn.Kn

for various ordinary services L1 and L2 with the same method interface J as is required for
H1 and H2 in the configuration A′.

Below, we will make use of the following notation: P • f1.H1⊕ · · · ⊕ fn.Hn sat CALL(fi.m)
expresses that after zero or more intermediate steps (counting atomic actions as steps), the
computation starting with the architerm B ≡ P • f1.K1 ⊕ · · · ⊕ fn.Kn will perform a call fi.m
(or more precisely, \(B) will perform an action cf(m) which constitutes the synchronisation
of a send action and a receive action with content m along port f (in ACP style process
algebra terminology). Taking A′ for B the condition A′ sat CALL(f.m) is an example of an
assertion which can be understood as expressing information concerning outcomes of
experimentation with runs of A′ and, for that reason, as a lookahead condition.

1.3. Thread Algebra, an ACP Representable Domain Specific Process Algebra

An action f.m in the context of program algebra and thread algebra is called a basic
action. Seen from the viewpoint of process algebras, basic actions are not atomic actions.
Instead, a basic action can be explained in terms of synchronous communication of atomic
actions. As was outlined above, thread algebra, services, and service composition can
be interpreted in process algebra, and in fact, different such interpretations exist. We
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prefer to understand this kind of interpretation as a representation. The process algebra
provides a well-known semantic standard based on bisimulation semantics, while the
thread algebra is to some extent a matter of ad hoc design. By thinking in terms of
representations of thread algebra in process algebra, the conceptual primacy of process
algebra is emphasised. Upon adopting a specific representation, e.g., as indicated above, the
use of thread algebra instead of the underlying process algebra becomes merely a matter of
convenience. Thread algebra does not come with the ambition to acquire any new semantic
insights or principles for concepts, such as sequential composition, concurrent composition,
atomicity of actions, abstraction from internal (silent) steps, and the proper definition
and use of infinite state systems. Thread algebra is a domain-specific process algebra
that features two kinds/classes of domain-specific processes: threads and service families.
Thread algebra offers several domain-specific combinators on these domain-specific classes
of processes (apply, use, and reply), each of which are instances of reactive concurrent
composition when understood from the perspective of process algebra. Thread algebra is
ACP representable in the sense that there is a preferred representation (\) of thread algebra
into ACP-style process algebra.

Thread algebra is one of several domain-specific process algebras that have been
developed on the basis of representation in ACP. Process algebra based on asynchronous
communication constitutes a domain-specific process algebra which may be further spe-
cialised for use with dataflow networks. Alternatively, systolic arrays may be modelled with
a highly concurrent version of ACP. The notation µCRL [14] and its successor mCRL2 [15]
may be understood as domain-specific process algebras which exploit data as parameters of
processes rather than to have as separate semantic entities wrapped in a dedicated process,
or as parameters of an additional operator (viz. the state operator of [16]).

For threads and services, the notion of an interface is vital. Interface calculus is a “sister”
of the alpha–beta calculus for ACP in [17]. As it turns out, due to the built-in symmetries
in ACP, the idea of an interface boils down to a set of actions, which is relatively simple
compared with the notion of an interface, as it is needed for the setup of thread algebra.

Thread algebra involves threads and services, representing two types of agents with
threads having a focus on control, and services a focus on data. Thread algebra is more
specific for sequential, deterministic, and reactive systems and, therefore, less general than
process algebra, which is meant to capture arbitrary concurrent systems.

Different forms of process algebra come into play for different themes. In this paper,
we will look at prospecting, both phenomena which one may at least hypothetically ascribe
to the behaviour of an agent, and foresight, a capability which, again hypothetically, may
be ascribed to the participation of an agent in a system.

For software engineering, the idea of prospecting is rather uncommon, though very
common in processor pipelines. Prospecting is usually expected of rational agents. Prospect-
ing and foresight play a role already in sequential systems, and for that reason, the investi-
gation of these topics may well start with thread algebra rather than in process algebra.

Process algebra is a tool for analysing the options for mutual communication and
understanding in a multi-agent network. Such networks are thematic for AI. Thread
algebra, and an underlying program algebra, provide specialised algebraic approaches for
dealing with sequential subsystems of such networks.

Prospecting services were studied in [12] (then named forecasting services) and in [4],
where it was shown that such services cannot correctly forecast halting when giving replies
in a two-valued logic only. In [4], different forms of the halting problem are formalised in
the context of thread algebra. Apparently, thread algebra is better suited for analysing such
applications, where control and data are to be treated on equal footing than process algebras,
where control is the dominant feature and data are an “add on” feature to some extent.

1.4. Process Algebra, Thread Algebra, and AI

Process algebra can help to analyse the boundaries of what can be computed. What
Turing machines do for computability, allowing techniques for analysing what can and
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what cannot be done, can be repeated and adapted in a plurality of models of concurrency
when it comes to analysing the notion of algorithmic impossibility for interacting agents.
Process algebra, as an approach with a plurality of instances, each of which serves as a
model for concurrency, allows some uniformity for the analysis of such models. Analysing
what cannot be done in qualitative terms is of relevance for AI as much (or even more) as it
has been for computer science.

When it comes to proving the impossibility of computational phenomena, arguments
often depend on diagonalisation. At face value, the liar paradox and the Russel paradox
on the one hand and undecidability of the halting problem and the incompleteness of the
axioms of Peano arithmetic (following Gödel) are similar phenomena. However, there is
a difference: the liar paradox and the Russel paradox show that certain combinations of
features are clearly inconsistent. These are paradoxes. The unsolvability of the Halting
problem and the incompleteness of Peano arithmetic show that certain problems are just
too complex to be solved by certain limited means, and these express unfeasibility rather
than a paradox. Admittedly, this discrepancy is gradual; provability logics in arithmetic
bridge this kind of gap, and in [4], it was analysed how Turing incompleteness can take
the form of a paradox-like manifest incompatibility when working in a setting of program
algebra and thread algebra.

The famous observation by Cohen dating back to 1984 [18] (see also [19,20]) that an
agent cannot decide whether or not its behaviour will be harmful, brings to the surface a
disparity of the first kind: a certain combination of features, including a form of forecasting
is paradoxical, i.e., leads to a manifest contradiction, while at closer inspection, a somewhat
different casting of the same theme brings it closer to the halting problem and Gödel
incompleteness. What is tried cannot be achieved in full generality because it is too difficult,
not because it is a paradoxical (self-contradictory) idea as such.

In this article, we elaborate on these matters with the following general question
in mind.

Problem 2. Where are the boundaries and what are the options concerning self-reflection about the
future of a computation, the self-reflection being understood as a part of the same computation?

In light of the objectives of this special issue, it matters contemplating how and why
this particular problem might matter for AI.

1. Contemplating the Cohen impossibility result, several follow-up questions arise. To
begin with, one may ask how the software engineering life-cycle for certain safety
critical components would change (would have changed) if the result would have
been the opposite to what it has been. How would the tests (which, after all, do not
exist) would be used in practice.
The software engineering life-cycle is a computational model where computed phases
and human actions take place in an interleaved manner. However, as a result of
progress in AI, increasingly, many of the human steps are becoming incorporated in
the computed phases. The question arises if the availability of the program/machine
that Cohen showed not to exist would, hypothetically, show up in systems design for
automated programming. Apparently, an attempt to incorporate a component which
is blessed with successful foresight about whether or not another component is viral
(assuming a particular definition of that) into a larger system induces a change of the
requirements on said component. As a consequence of that change, instead of being
paradoxical, it becomes merely unfeasible (as in the case of the halting problem) to
determine virality.
Unfeasible problems may have useful automated approximations, however, which
then could be used for imperfect but still practical automated improvements of an
ordinary software engineering life-cycle. By working with approximations of software
components that provably do not exist, hypothetical foresight may be transformed
into plausible forecasting.
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2. The Cohen impossibility may be considered, like the halting problem, to constitute
merely a conceptual matter. However, one may consider the notion of a program fault.
The formidable literature on program faults provides some principled approaches, e.g.,
in [21,22], where the idea is that a fault must have two properties, it can be the cause of
a failure during a run and it allows a (preferably provable, otherwise at least evidence
based) improvement such that said cause is removed. For a survey of approaches to
the notion of a program fault, we refer to [23]. Faults may be understood as options for
forecasting certain failures, and in a fully automated software engineering life-cycle,
one can imagine tools for dealing with, i.e. profiting from, such forms of foresight.

3. Another link between AI and forecasting arises when contemplating robot morality.
Without assuming any form of lookahead, it is hardly possible to imagine any moral
judgement regarding the control software for a military robot. For some reflection on
this matter, we refer to [24].

4. Another area where lookahead plays a role is garbage collection, where, given a pool of
linked objects which is used for the processing of a single instruction sequence only, the
notion of garbage may be made dependant on the future behaviour of said instruction
sequence. This idea gives rise to the notion of shedding (see [25]), which involves
run-time foresight by a thread about its own future behaviour. Comparable to the case
of virus detection, it takes care to avoid self-contradictory requirements, and indeed
AI methods for automated self-reflection might become useful for garbage collection.

1.5. Survey of the Paper

Thread algebra is introduced as a domain-specific process algebra. In particular, thread
algebra is ACP representable. The use of process algebra facilitates the introduction of
so-called intermediate states, which proves very helpful for introducing the informal notion
of a lookahead condition (in Definition 1). Two more informal notions, prospecting service
and foresight pattern, are introduced. The relevance of non-paradoxical foresight patterns
is motivated.

A fairly complete account is presented of interfaces in the context of thread algebra.
That is done both in intuitive and semantic terms and by way of an axiomatisation which is
informative, though lacking known formal properties.

The new results are as follows: Proposition 3 demonstrates a case where foresight
cannot be realised, while this is not entirely obvious. Proposition 5 introduces a new
foresight mechanism, which indicates that the Cohen impossibility result is shown in a
context where the sought forecasting pattern is not paradoxical. Theorem 2 indicates that
for the same requirements, paradoxical circumstances arise in the presence of a second
service with prospecting capability. The basic action foresight pattern is introduced, and in
Proposition 4, a prospecting service is obtained which can implement this pattern.

2. Threads, Services, and Architerms

At risk of repeating some elements that were covered in the introduction, we will
proceed with some additional remarks on threads, services and service families. We will use
without further reference the elements of program algebra, thread algebra, and instruction
sequence theory which are surveyed in [3,26], and which have been set out in detail in the
papers referenced therein. In these papers, the focus method notation f.m provides a basic
instruction, where the focus f represents the name of (a link to) a service and m names a
method to be applied to (as seen from an instruction sequence) and processed by (as seen
from the service) the service, under the assumption that (i) the service will send a Boolean
reply back to the instruction sequence which made the method call f.m in such a manner
that the continuation of the computation as prescribed by the instruction sequence may
(but need not) depend on the reply value, (ii) as a consequence of processing the method m,
the service may update its state, and (iii) in between the processing of subsequent method
calls, say f.m1 and f.m2, the service may interact with external components working as
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an independent process, concurrently with other services. The architerm, also termed
configuration, which will mostly be used below, is thus:

∂ U(P • g1.K1 ⊕ · · · ⊕ gn.Kn)

with P a thread and g1.K1 ⊕ · · · ⊕ gn.Kn, a service family which offers access to service
Ki under focus gi for 1 ≤ i ≤ n, and with U ⊆ {g1, . . . , gn}. More often than not, the
encapsulation operator will be omitted from an architerm.

The service combination operator _⊕ _ is assumed to be commutative and associative
so that the ordering of the services in an expression for an execution architecture does not
matter. ∂ U(−) performs restriction to the services with a focus outside U. The representa-
tion of restriction in ACP-style process algebra satisfies \(∂ U(P • g1.K1 ⊕ · · · ⊕ gn.Kn)) =
∂RS(U)(\(P • g1.K1 ⊕ · · · ⊕ gn.Kn)) with RS(U) containing the communication actions along
port f, that is

RS(U) = {cf(m), cf(b) | f ∈ {g1, . . . , gn}, m ∈ Imethod(Hi), b ∈ {true, false}}

Here cf(m) = sf(m)|rf(m) and cf(b) = sf(b)|rf(b) with −|−, the communication function
of ACP. Services with a focus in U may be used as containers for inputs or as containers
for auxiliary data only of use during a computation. All outputs are located as states in
services with a focus outside U. For this particular notion of an execution architecture for
instruction sequences and for threads, we refer to [12] and to the further development
thereof in [4]. Below, we will use architerm as an abbreviation of execution architecture.

The equality of architerms is denoted with ≡. Architerm equality is a somewhat
informal motion because it depends on the context as to how much abstraction comes with
≡. Writing A ≡ ∂ U(P • g1.K1 ⊕ · · · ⊕ gn.Kn), it is confirmed that A denotes an architerm
involving restriction (removal of auxiliary services from the result by ∂ U(−)), a thread
P, which is applied to (processing determined by •) n services which are accessible via
foci g1, . . . , gn, respectively. No further structural information is given (via A) regarding
P and the respective services. We will always assume that the gi are pairwise different.
With U = {gj1 , . . . , gjk}, the service family gj1 .Kj1 ⊕ · · · ⊕ gjl .Kjk contains the services with
either a pure input status or an auxiliary status (or a combination of both) for the architerm
A. With B ≡ |+ f.m1; #3;−g.m2; f.m3; X; !| • f.K⊕ g.L, it is required that a thread is applied
which is obtained via thread extraction from an instruction sequence beginning with
+f.m1; #3;−g.m2; f.m3 and ending with !. The idea is then that said instruction sequence
(+f.m1; #3;−g.m2; f.m3) constitutes a part of the architerm. By substitution for variables, the
architerms can be refined.

2.1. Reply Function Services

Each service H comes with (i) an input alphabet J = Imethod(H) and (ii) a reply function
α : J+ → {true, false}. When a method call m ∈ J takes place, the reply is α(m) and the
new reply function is λu ∈ J+α(m u). A reply-only service has implicit states, and the reply
function serves as its state.

We write RFS(J,α) for the service with method interface Imethod(RFS(J,α)) = J and
reply function α : J+ → {true, false}. When available under focus f, the (single-service)
service family f.RFS(J,α) has provided interface Iprovided(f.RFS(J,α)) = {f.m | m ∈ J}.
f.RFS(J,α) will process method call f.m by asking RFS(α, J) to process the call m.

2.2. Stateful Services

A service may also have an explicit state space. Then, H comes with a state space
S containing an initial state s0 and a reply condition function θ : S× J → {true, false}
and an effect function η : S× J × {true, f alse} → S. Upon method call m ∈ J and when in
state s, the condition θ(s, m) is evaluated. Let b ∈ {true, false} be the result of evaluating
θ(s, m), then b is returned to the calling thread as a reply, and the next state is η(s, m, b).
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Such services are called stateful. We write SFS(J, S, s0,θ,η) (for stateful service) for
the service with method interface J, state space S, with initial state s0 ∈ S reply condition
function θ, and effect function η.

The architectural primitive − • − indicates that thread P is run in the context of
the service family g1.K1(s1)⊕ · · · ⊕ gm.Km(sn), with si, assuming encapsulation ∂U with
U = {gi1 , . . . , gik}, a state of Ki, with as an output, in case of termination, a service
family gi1 .Ki1(s

′
i1
)⊕ · · · ⊕ gik .Km(s′ik). In case of non-termination as well as in the case of

divergence after a number of method calls have been processed, the result is gi1 .0service ⊕
· · · ⊕ gik .0service, where 0service is the unique service which accepts no methods.

2.3. Threads and Thread Extraction

A thread P is either S (stop, termination), or D or P1 E g.mD P2 for some method call
(basic action ) g.m and some threads P1 and P2. PE f.mD P can be abbreviated to f.m ◦ P.

Instruction sequences and threads are connected via the thread extraction operator |P|,
for instance: |f.m; g.m1; h.m2; !| = f.m ◦ g.m1 ◦ h.m2 ◦ S, |+ f.m; #2; g.m1; h.m2; !| = (h.m2 ◦ S)E
f.mD (g.m1 ◦ h.m2 ◦ S), and |f.m;+g.m1; !;−h.m2; #0; !| = f.m ◦ (SE g.m1D (SE h.m2D D)),
where g.m ◦ P = PE g.mD P.

For the construction of an apply architerm, it is required that the interfaces of the
thread and service family match, i.e., that every method call can be processed by one of
the services. Expressing these requirements rests on a notion of interface, which we will
discuss in some detail.

2.4. Interfaces: Required Interfaces and Provided Interfaces

Interfaces serve as abstractions of components which are made in order to facilitate
reasoning about the design and composition of components. Consider the instruction
sequence, X ≡ +f.m1; g.m2; !. The processing of X works as follows: (i) apply method m1

to the service accessible with focus f; (ii) if the reply false is returned, skip the second
method call and terminate; and (iii) if instead true is replied, perform the method call g.m2
and then terminate, irrespective of the reply which has been returned. X requires of an
execution environment that it provides a service accessible under focus f which is able to
process a method named m1 and another service accessible under focus g which will process
a method named m2. This information can be combined in the interface J = {f.m1, g.m2}.
The interface J is a required interface, it conveys what an environment must provide for
X to be properly effectuated. Now consider Y =!;+f.m1; g.m2; !. Y will terminate at once
and make no method calls. It is plausible to say that its required interface is empty. If,
however, a jump from outside is allowed and a run may not start with the first instruction
(e.g., in Z ≡ #3; Y), then it is not plausible to think of Y as having an empty interface.
With Irequired(P), we will denote the required interface of an instruction sequence P, which
contains a mere collection of all basic actions (f.m), which occur in X (either as a void basic
instruction f.m, as a positive test instruction +f.m or as a negative test instruction −f.m).
Thus, with Y as above, Irequired(X) = Irequired(Y) = {f.m1, g.m2}.

Given the task to design an instruction sequence, say X, which computes some given
function or otherwise performs some specified task, there may be constraints (requirements
on) on the required interface of X for instance one may wish that Irequired(X) ⊆ J for some
interface J. For the programming task at hand, J is an access-constraining interface. Access-
constraining interfaces play a key role in complexity questions about instruction sequences
when looking for the shortest, or otherwise best, instruction sequence in some format (say
PGLB of [2]) that achieves a certain given task.

Complementarily to the required interface of an instruction sequence, one may con-
sider the method interface Imethod(H) of a service, say H, e.g., {m1, m2, m3}. A method
interface of a service is a provided interface. If a service family H offers only S accessible
under focus f, then the provided interface of H is Iprovided(H) = {f.m1, f.m2, f.m3}. If one
has the task to design a service family, say L, then it may be required that a certain interface
J is provided by L: Iprovided(L) ⊇ J.
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2.5. Some Naming Conventions; Equations for Interfaces

The paper involves a range of different types of entities, and we will follow some
informal, and non-strict rules for the naming of variables for these types. We will use X, Y, Z
for instruction sequences, P, Q, R for threads, I, J for interfaces, H, K, L for services, S, T for
state spaces of (stateful) services with s, t for states in the state space of stateful services,
and V, W for service families. Methods often are given names involving m or n, and foci often
have names involving f, g, or h.

Using these conventions, some equations that loosely specify the various types of and
operations about interfaces are given in Tables 1 and 2. Concerning these tables, some
comments are in order.

• Interfaces are by default sets of focus method pairs. Interfaces may serve as the
required interface for a thread, as the provided interface for a service family, or as
the constraining interface for a (forthcoming) thread. ∅interface is the empty interface.
0service−family is the empty service family. Its interface is empty as well.

• Services have a method interface which consists of method names only. ∅method−interface
is the empty method interface. 0service is the unique service without any method.

• The service family f.0service differs from ∅interface because it involves a focus f. This
complication is useful because it allows ⊕ to be a total, commutative, and associative
operator. Suppose m ∈ Imethods(H1) ∩ Imethods(H2) the result of a call f.m to a service
family f.H1 ⊕ f.H2 is hard to define. Non-determinism is to be avoided, and ⊕ is
supposedly commutative. A simple way out is to avoid service families with multiple
services under the same focus. Adopting f.H⊕ f.K = 0service−family fails, as it renders⊕
as being non-associative. However, adopting f.H⊕ f.K = f.0service, blocks ambiguous
method calls and allows ⊕ to be commutative and associative, though not idempotent
(i.e. V⊕ V = V fails on any service family V with Iprovided(V) 6= ∅interface).

• The notion of an interface occurs in quite different ways in the literature on soft-
ware technology. Three clusters of use of the term “interface” may be distinguished
as follows:

– Operational interfaces: collections of primitives with definite meaning.

* API: an application programmer interface is a toolkit in a software engineer-
ing environment;

* Processor instruction sets;
* Collections of message passing primitives (e.g., MPI).

– Requirements of specification-oriented interfaces (interface elements come with
limited information regarding semantics).

* Modal interfaces (see, for example, [27]);
* Interface automata (see, for example, [28]);
* Algebraic specifications as interface of data types.

– Syntactic interfaces. (comprising declarations of syntactic elements; interface
elements come without a predefined semantics, but may have suggestive names
or symbols).

* Similarity types in universal algebra (interfaces for first order theories);
* Signatures as interfaces for algebraic (abstract data type) specifications;
* Sets (alphabets) of atomic actions as process interfaces in process algebra

(see, for example, [17]);
* Sets of basic actions as interfaces in program algebra and thread algebra

(following, for example, [26].

In the context of thread algebra, interfaces are used in the capacity of syntactic in-
terfaces as well as in the capacity of operational interfaces (though in a theoretical
manner).



Mathematics 2022, 10, 2232 12 of 27

Table 1. Equations for provided interfaces.

x∪∅interface = x (1)
x∪ y = y∪ x (2)

x∪ (y∪ z) = (x∪ y) ∪ z (3)
x∪ x = x (4)
f.{m} = {f.m} (5)

f.∅method−interface = ∅interface (6)
f.(h∪ u) = f.h∪ f.u (7)

H⊕ 0service−family = H (8)

H⊕ L = L⊕ H (9)
H⊕ (K⊕ L) = (H⊕ K)⊕ L (10)

∂ ∅focus−collection(H) = H (11)

∂ U(0service−family) = 0service−family (12)

∂{f}(f.R) = 0service−family (13)

f 6= g→ ∂{f}(g.R) = g.R (14)

∂{f}(H⊕ K) = ∂{f}(H)⊕ ∂{f}(K) (15)

∂ U∪ V(H) = ∂ U ◦ ∂ V(H) (16)
f.H⊕ f.K = f.0service (17)

Imethod(0service) = ∅method−interface (18)
Imethod(H) = {m | m is a method of H} (19)

Iprovided(0service−family) = ∅interface (20)

Iprovided(f.H) = f.Imethod(H) (21)
Iprovided(f.H⊕ ∂{f}(K)) = Iprovided(f.H) ∪ Iprovided(∂{f}(K)) (22)

Ifocus−collection(0service−family) = ∅focus−collection (23)

Ifocus−collection(f.H) = {f} (24)
Ifocus−collection(V⊕ W) = Ifocus−collection(V) ∪ Ifocus−collection(W) (25)

x ⊆ y⇐⇒ x∪ y = y (26)

Table 2. Equations for the required interfaces of threads and instruction sequences.

Irequired(S) = ∅interface (27)

Irequired(D) = ∅interface (28)

Irequired(PE f.mD Q) = Irequired(P) ∪ {f.m} ∪ Irequired(Q) (29)

Irequired(!) = ∅interface (30)

Irequired(#n) = Irequired(\#n) = ∅interface (31)

Irequired(+f.m) = Irequired(−f.m) = Irequired(f.m) = {f.m} (32)

Irequired(X; Y) = Irequired(X) ∪ Irequired(Y) (33)

Irequired(X
!) = Irequired(X) (34)
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2.6. Thread Service Interaction, Instruction Sequence Processing Operators

In PGA-style program algebra and the corresponding theory of instruction sequences,
the general idea of an execution architecture is as follows: given a instruction sequence
X, thread extraction produces a thread |X|. Threads are processes captured in a thread
algebra which is a simplified process algebra. Threads have three forms: S, the terminat-
ing (stopping) thread, D the deadlocked (diverging, improperly terminating) thread and
P ≡ QE f.mD R, the basic action form of a thread. The stopped thread may be equipped

with a result value, for instance, a bit: S0 and S1. Threads in basic action form can perform
a unique basic action, say, for P: f.m, which works as follows:

(step 1) Let the service in focus f (say the service name H, which at the time of the
method call is in state s, or more precisely H(s)) performs the (its) method named m, the
service is offered from the context as given by the execution architecture.

(step 2) A Boolean reply is expected, at reply true, the run proceeds with Q, and
at reply false, the run proceeds with R, and the reply is found by evaluating the reply
condition θ(s, m) for method m to state s, thereby obtaining Boolean value b.

(step 3) In both cases the state s of H is updated with the effect function η to H(η(s, m, b)).
Three operators connecting instruction sequences and service families come into play:

(i) The reply operator: |X| ! H, which produces a bit in {true, false} and in which X is
understood as a way to define (compute) a function from (states of) service families to bits.
To allow definition of the reply operator, two different termination instructions are needed:
!:true (terminate with result true) and !:false (terminate with result false).

(ii) The apply operator |X| • H in which X is supposed to describe a transformation
from H to a new state of it (i.e., to a new state for each of the services contained in it).

(iii) The use operator |X|/H, which produces a thread rather than a value or a service
family (carrying the states of the various services). For |X|/H, the services combined in H

act as local resources, to begin with memory sources, which support X in computing thread
|X|/H.

Typically, one may imagine compositions (|X|/V) • W where it is plausible though not
necessary that the service families V and W have no focus in common (i.e., Ifocus−collection(V)∩
Ifocus−collection(W) = ∅focus−collection). Encapsulation drops services from a service family:
with U, a collection of foci, ∂ U(V) removes from V each service accessible under a focus in U.
Assuming that V and W involve disjoint collections of foci results in the following useful
identity:

Ifocus−collection(V) ∩ Ifocus−collection(W) = ∅focus−collection →

(|X|/V) • W = ∂Ifocus−collection(V)(|X| • (V⊕ W)))

3. Prospecting Services: Endowed with a Non-Ordinary Capability

Below, further lookahead conditions are introduced, as a follow up on the ones men-
tioned in Section 1.1. Prospecting refers to the capability of a service to evaluate one or
more lookahead conditions. That is a non-ordinary capability. Foresight is a property of a
system (here, an execution architecture) where one or more services perform as if they were
able to forecast the actual and potential future behaviour of the system. Proper foresight is
present if no ordinary service meets the given requirements.

The basic action foresight pattern, when realised, allows a system to use a certain
service (here, H) to operate in such a manner that a given basic action (viz. gi.m) will
certainly be performed provided that basic action might occur with non-deterministic
behaviour for H. For an explanation of the conditions of the form A sat CALL(h.m), see
Section 1.2 above.

Definition 2 (Basic action foresight pattern). Let n > 1 and let J1, . . . , Jn be method interfaces.
Further, let H be a service with Imethod(H) = {find} then an open architerm
(X1 E h.findD X2) • h.H⊕ g1.Y1 ⊕ · · · ⊕ gn.Yn realises the basic action foresight pattern for
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some i ∈ {1, . . . , n} and method m ∈ Ji if for all ordinary (but arbitrary) services K1, . . . , Kn with
Imethod(K1) ⊆ J1, . . . , Imethod(Kn) ⊆ Jn, and for all threads P, Q with
Irequired(P) ∪ Irequired(Q) ⊆ Iprovided(h.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn), the following holds:

if P • h.H⊕ g1.K1⊕ · · · ⊕ gn.Kn sat CALL(gi.m) or Q • h.H⊕ g1.K1⊕ · · · ⊕ gn.Kn sat CALL(gi.m)
then also, (PE h.findD Q) • h.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat CALL(gi.m).

The example in Section 1.1 above (taking i = 2 and m = m2) provides a proof of the
following proposition.

Proposition 1. No ordinary service H satisfies the requirements of the basic action foresight pattern.

In Theorem 4 below, a prospecting service named MCP is shown to satisfy the require-
ments of the basic action foresight pattern. From the latter observation, it follows that the
basic action foresight pattern is not self-contradictory.

3.1. Forecasting versus Prospection: Forecasting Patterns and Prospecting Services

Proposition 1 asserts that a certain foresight pattern will not emerge unless a service
with prospecting capability is available. A foresight pattern may also be inconsistent
(paradoxical, self-contradictory).

Foresight is reflexive in the sense that it works as if an agent (service) is well-informed
about its own future behaviour, as well as about the behaviour of other agents (services).
Prospection is non-reflexive, and refers to the capability of a service to acquire knowledge
about the future behaviour of threads and other services in the same system. Lookahead
conditions which occur in a service will work under the hypothesis that the service proceeds
as an ordinary service (even if, in fact, it does not). For this limitation, see the preliminary
definition of lookahead conditions and the remarks in Section 1.2 above. Using these
conventions, prospection realised in a service by way of lookahead conditions will not
have any paradoxical consequences, however hypothetical the evaluation of lookahead
conditions in practice may be.

Proposition 2. Let i ∈ {1, . . . , n}, and let K1, . . . , Kn be ordinary (i.e., non-prospecting) services
and let the interface J be given by J = {f.ok} ∪ Iprovided(g1.K1⊕ · · · ⊕ gn.Kn). Further let TERM
be a lookahead service with Imethod(TERM) = {ok}.

Now, it is not possible that for all threads P of the form P ≡ QE f.okD Q′, with Irequired(P) ⊆
J, the following holds: the first call along focus f of the computation P • f.TERM⊕ g1.K1 ⊕ · · · ⊕
gn.Kn returns true if and only if the computation of P • f.TERM⊕ g1.K1 ⊕ · · · ⊕ gn.Kn properly
terminates.

Proof. Suppose otherwise, and take Q ≡ D, Q′ ≡ S. Now the computation (DE f.okD S) •
f.TERM⊕ g1.K1 ⊕ · · · ⊕ gn.Kn terminates properly (ends in S) if and only if the first (and
only) method call f.ok returns true if and only if the same computation diverges (ends in
D).

Proposition 2 is a rephrasing of the argument on the non-existence of malware detec-
tion by Cohen [18]. The latter result works with an action do:harm instead of termination.
We will discuss this forecasting pattern in more detail in Section 3.3 below. It is informative
to phrase Proposition 2 in terms of a foresight pattern.

3.2. More Primitive Lookahead Conditions R

Primitive lookahead conditions have the quality that these may be understood as
outcomes of experimenting with an architerm as outlined in Definition 1 and subsequent
comments. Besides the lookahead condition A sat CALL(f.m), which is introduced below
Definition 1, the following lookahead conditions (for an architerm A) are used below:

• A sat PERP holds if the computation from A does not terminate (i.e., perpetuates).
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• A sat TERMINATION(ok) if the computation starting from A properly terminates.
• A sat TERMINATION(not_ok) asserts that the computation starting from A improperly

terminates (i.e. ends in D).
• A sat TERMINATIONat(n, ok) asserts that in the n’th step proper termination occurs.
• A sat TERMINATIONat(n, not_ok) asserts that at the n’th step improper termination

occurs.
• A sat noCALL(f.m) asserts that the computation from architerm A at no stage performs

a method call f.m. Here, the computation may not terminate or may terminate properly
or improperly and if f 6∈ {g1, . . . , gm}, ¬(A sat noCALL(f.m)) holds.

• A sat CALLat(k, f.m) asserts that the computation from architerm A performs a method
call f.m in step number k for a natural number k > 0.

Definition 3 (Termination foresight pattern A). Let n > 1 and let J1, . . . , Jn be method
interfaces. Further, let H be a service with method interface Imethod(H) = {ok} then an open
architerm XP • f.H⊕ g1.Y1 ⊕ · · · ⊕ gn.Yn realises the termination foresight pattern A if the
following holds:

let K1, . . . , Kn be ordinary services such that Imethod(K1) ⊆ J1, . . . Imethod(Kn) ⊆ Jn. Then,
for all threads Q, Q′ with Irequired(Q) ∪ Irequired(Q′) ⊆ Iprovided(f.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn), it
is the case that: (QE f.okD Q′) • f.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat TERMINATION(ok), if and only if
the first call of f.ok in the computation (QE f.okD Q′) • h.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn returns true.

Proposition 1 entails that the termination foresight pattern A cannot be realised, not
even with a prospecting service. That state of affairs is hardly surprising. Here is a similar
foresight pattern for which it is less obvious that it cannot be realised.

Definition 4 (Termination foresight pattern B). Let n > 1 and let J1, . . . , Jn be method inter-
faces. Further let H be an SFS service (see Section 2.2 above) with method interface Imethod(H) =
{ok} and with state space S and initial state s0 ∈ S, then an open architerm XP • f.H⊕ g1.Y1 ⊕
· · · ⊕ gn.Yn realises the termination foresight pattern B if the following holds:

let K1, . . . , Kn be ordinary services such that Imethod(K1) ⊆ J1, . . . Imethod(Kn) ⊆ Jn and
assume that m ∈ Imethod(Ki). Then for all threads Q, Q′ with Irequired(Q) ∪ Irequired(Q

′) ⊆
Iprovided(f.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn), and for each state s ∈ S, it is the case that Q • f.H(s)⊕
g1.K1 ⊕ · · · ⊕ gn.Kn sat TERMINATION(ok) if and only if the first call of f.ok in the computation
(QE f.okD Q′) • h.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn returns true.

Termination foresight pattern B is unrealisable, irrespective of any conceivable prospect-
ing capabilities of H:

Proposition 3. Termination foresight pattern B cannot be realised by any ordinary or non-ordinary
service H.

Proof. Let S be the state space of H so that H = H(s0) and choose Q and Q′ as follows:
Q = QE f.okD S, Q′ = S.

If θH(s0, ok) = false then Q • f.H(s0)⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat TERMINATIONat(2, ok)
which contradicts the assumptions of the proposition. It follows that θH(s0, ok) = true,
Now consider s1 =ηH(s0, ok, true). For s1 it follows in the same way that θH(s1, ok) =
true. In this way, an infinite sequence s0, s1, s2, .. results such that for all i, θH(si, ok) =
true and si+1 =ηH(si, ok, true). It follows that Q • f.H(s0)⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat PERP
so that termination does not occur, which contradicts the assumption that the reply to the
first method call equals true, i.e., θH(s0, ok) = true.

3.3. SHRD: A Hypothetical Service for Security Hazard Risk Detection

We contemplate a service SHRD (security hazard risk detection), according to which
the occurrence of method call gi.do:harm constitutes a security hazard, and which supports
running a thread in such a way that the risk of a security hazard is detected and an
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alternative option for proceeding the computation is taken. The following result states the
impossibility result of Cohen in terms of threads and services. This formalisation is based
on [29].

Malware detection in practice, and in theory, amounts to much more than the mere de-
tection of the future occurrence of a single basic action. For instance, in [30], the occurrence
of runs of certain instruction sequences as subcomputations, perhaps interspersed with
other steps, of the run of an instruction sequence is considered an indication/confirmation
of a virus infection.

Proposition 4. Let i ∈ {1, . . . , n} and let K1, . . . , Kn be ordinary services with do:harm ∈
Imethod(Ki), and let the interface J be given by J = {f.ok} ∪ Iprovided(g1.K1 ⊕ · · · ⊕ gn.Kn).
Let SHRD (for security hazard determination) be a (possibly non-ordinary) service with method
interface Imethod(SHRD) = {ok}.

Now, it is not possible that for all threads P of the form P ≡ QEf.okDQ′ with Irequired(P) ⊆ J,
the following holds: the first call along focus f of the computation P • f.SHRD⊕ g1.K1⊕ · · · ⊕ gn.Kn
returns true if and only if the computation of P • f.SHRD⊕ g1.K1 ⊕ · · · ⊕ gn.Kn does not involve a
method call gi.do:harm.

Proof. Suppose otherwise, and take Q ≡ do:harm ◦ S, Q′ ≡ S. Then, one finds that the
computation ((do:harm ◦ S)E f.okD S) • f.SHRD⊕ g1.K1 ⊕ · · · ⊕ gn.Kn avoids performing
gi.do:harm if and only if the first (and only) method call f.ok returns true if and only if the
same computation performs gi.do:harm (and then terminates).

Now assume, irrespective of Proposition 4, that an SHRD-like service is available as
suggested in the proposition. Plausibly, SHRD would be used in the following manner: in a
context (QE f.okD Q′) • f.SHRD⊕ g1.K1 ⊕ · · · ⊕ gm.Km call f.ok in order to prevent a run of Q
leading to a method call gi.do:harm and instead to engage in a run of Q′, thereby hopefully
avoiding gi.do:harm. Although SHRD as indicated above in Proposition 4 cannot exist, a
lookahead service which allows the particular use just mentioned is conceivable. In the
following paragraph, such a service is defined under the name SHRAT. SHRAT will be a
service of the form Lok,s

θ according to the following definition.

Definition 5. Let the service Lm,s
θ has singleton state space {s} and Imethod(L

m,s
θ ) = {w} and

when accessible under focus f in an architerm A it works as follows: on method call f.m evaluate
b =θ(s, m), then return b, without changing the state.

3.4. SHRAT: A Prospecting Service for Security Hazard Risk Assessment

In [31], the possibility of a service SHRAT (security hazard risk assessment) service
is contemplated, which, supposedly, determines during the operation of an instruction
sequence X, the text of which is known to the service, and can determine whether or not the
thread created by the instruction sequence will in the future perform a method call do:harm
to an unnamed service.

A method call ok to SHRAT aims to determine whether or not “the future is ok”, i.e.,
no do:harm action will be performed. We will rephrase this idea with more emphasis on
interfaces than in the presentation in [31]. To begin with the unnamed service is given
name K and is present via the interface under focus g.

We imagine a service SHRAT with a single method ok and a single state s. In slight
contrast with SHRAT one may imagine a service Ki with method interface Imethod(Ki)
containing a method do:harm. Most methods from Imethod(Ki) constitute useful (friendly)
operations on the state space of K, while the method do:harm brings its state in disarray, so
that it may be called only under special circumstances.

Let X be an instruction sequence such that

Irequired(X) ⊆ J =def Iprovided(f.SHRAT⊕ g1.K1(s1)⊕ · · · ⊕ gn.Kn(sn))
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The application of X to a service family g1.K1(s1)⊕ · · · ⊕ gn.Kn(sn) while making use
of the support of the (possibly non-ordinary) service SHRAT amounts to application of
the thread |X| extracted from the instruction sequence X to the service family f.SHRAT⊕
g1.K1(s1)⊕ · · · ⊕ gn.Kn(sn) followed by forgetting f.SHRAT, thereby obtaining

∂f(|X| • f.SHRAT⊕ g1.K1(s1)⊕ · · · ⊕ gn.Kn(sn))

Now the idea is that in a thread PE f.okD Q, when effectuated in the context of a
service family f.SHRAT⊕ g1.K1 ⊕ · · · ⊕ gn.Kn, the reply of SHRAT on the call ok is positive if
the computation of P • f.SHRAT⊕ g1.K1 ⊕ · · · ⊕ gn.Kn will not involve any call of the form
gi.do:harm while the reply is negative otherwise. Here, it is assumed that P and Q are
threads arising from thread extraction of states of X so that the required interface of both P

and Q is included in J as introduced above.
For example, taking n = 1, if P contains a single occurrence of g1.do:harm, it still may

be the case that this particular method call will certainly not be performed so that a positive
reply of f.ok can be given by SHRAT. For instance if K1(s) returns false on m1 then in

((g1.do:harm ◦ SE g1.m1D g1.m2 ◦ S)E f.okD S) • f.SHRAT⊕ g1.K1(s)

the call of f.ok returns true and thus:

∂f(((g1.do:harm ◦ SE g1.m1D g1.m2 ◦ S)E f.okD S) • f.SHRAT⊕ g1.K1(s)) =

(g1.m1 ◦ g1.m2 ◦ S) • K1(s) = K1(effectm2(effectm1(s)))

With this idea in mind, a definition of the functionality of the lookahead service SHRAT

can be given as follows. (RFS is defined in Section 2.1 above).

Definition 6. The assertion θSHRAT with arguments Q, K1, . . . , Kn is as follows: θSHRAT≡
∃β: {ok}+ → {true, false}[Q • g.RFS({ok},β)⊕ g1.K1⊕ · · · ⊕ gn.Kn sat noCALL(gi.do:
harm)]

Definition 7. SHRAT determines its reply to a method call (QE f.okD Q′) • f.SHRAT⊕ g1.K1 ⊕
· · ·⊕gn.Kn as follows: first determine the truth value (say b of the assertion θSHRAT as in Definition 6)
with arguments Q, K1, . . . , Km; then the reply given by SHRAT to the call f.ok equals b while the state
is left unchanged.

In this definition, the form of Φ matters. In particular, if one or more of the services
K1, . . . , Kn have prospecting capability and SHRAT is informed about that fact, then when eval-
uating θSHRAT, it is “known” that when evaluating Q • f.RFS({ok},β)⊕ g1.K1 ⊕ · · · ⊕ gn.Kn
the services Ki operate on the basis of the information that the service accessible via focus f
behaves as an ordinary service, thus reducing the number of non-ordinary services in the
service family at hand. It follows that replies of SHRAT are well defined also without the
assumption that the services K1, . . . , Kn are ordinary services.

3.5. Obtaining Lookahead Functionality with SHRAT

We first formalise with Proposition 5 the intuition that the sought foresight pattern
cannot be provided by an ordinary service. Then Theorem 1 captures how SHRAT realises
the required foresight pattern.

Proposition 5. Let i ∈ {1, . . . , n} and let K1, . . . , Kn be ordinary (i.e., non lookahead) services with
do:harm ∈ Imethod(Ki). Let H be an ordinary service with method interface Imethod(H) = {ok}.

Then it cannot be the case that for all threads P and Q both with required interfaces included
in J = Iprovided(f.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn) the following holds: the reply of the service H to the
first method call in the computation (PE f.okD Q) • f.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn equals true if and
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only if
P • f.H⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat noCALL(gi.do:harm).

Proof. There are two cases: replyok(H) = true and replyok(H) = false. In the first case,
choose P ≡ gi.do:harm ◦ S and Q ≡ S and in the second case choose P ≡ S and Q ≡ S. In
both cases the required equivalence fails.

Theorem 1. Let i ∈ {1, . . . , n} and let K1, . . . , Kn be ordinary (i.e., non lookahead) services
with do:harm ∈ IKi , and let P and Q be threads both with required interfaces included in J =
{f.ok} ∪ Iprovided(g1.K1 ⊕ . . .⊕ gn.Kn).

Then the reply of the service SHRAT (as defined above) to the first method call in the computation
(PE f.okD Q) • f.SHRAT⊕ g1.K1 ⊕ · · · ⊕ gn.Kn equals true if and only if
P • f.SHRAT⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat noCALL(gi.do:harm)

Proof. Without loss of generality, we will assume that n = i = 1 and we will write K

instead of K1 and g instead of g1. Let V be a state space with r ∈ V so that K = K(r). We will
distinguish two cases in this order: (i) the case that the computation P • f.SHRAT⊕ g.K(r)
involves a method call g.do:harm, and (ii) the case that it does not.

For case (i), suppose that the computation P • f.SHRAT⊕ g.K(r) involves a method call
g.do:harm. It is shown that the reply by SHRAT to the first method call of the computation
(PE f.okD Q) • f.SHRAT⊕ g.K(r) equals false. To this end, it suffices to prove that for each
infinite sequence of Boolean values β = b0, b1, . . ., the computation P • f.RFS({ok},β)⊕ g.K(r)
involves a basic action g.do:harm. If not, choose a thread P′ with required interface included
in J and r′ ∈ V = STATES(K) such that (i) the computation from architerm P′ • f.SHRAT⊕
g.K(r′)) involves a method call g.do:harm, (ii) for some finite or infinite sequence of Boolean
values β = b1, b2, . . . the computation P • f.RFS({ok},β)⊕ g.K(r′) involves no basic action
g.do:harm, (iii) the number n of steps of the computation of P′ • f.SHRAT⊕ g.K(r′) until its
first call of g.do:harm is minimal, say nmin. A contradiction is derived from a case distinction
on the structure of P′.

Consider first the case that P′ ≡ S, S • f.SHRAT⊕ g.K(r′) terminates at once and does not
involve an occurrence of the basic action g.do:harm, thereby contradicting requirement (i) on
P′ and r′. A similar argument applies if P′ ≡ D. Now suppose that P′ ≡ P′1E g.do:harmD P′2.
In this case, there is no β such that the computation P′ • f.RFS({ok},β)⊕ g.K(r′) avoids
performing basic action g.do:harm, thereby contradicting requirement (ii) on the choice
of P′ and r′. Next let P′ ≡ P′1 E g.mD P′2 for m ∈ IK. Now, two cases are distinguished:
replym(r′) = true and replym(r′) = false. Consider the first case, then in one step,
the architerm (P′1 E g.mD P′2) • f.SHRAT⊕ g.K(r′) evolves to the architerm P′1 • f.SHRAT⊕
g.K(effectm(r′). Now, it must be the case that (a) the computation from the latter architerm
involves an occurrence of g.do:harm (because of assumption (i) on P′ and r′), (b) for some β
(the same as for the combination P′ and r′) the computation P′1 • f.SHRAT⊕ g.K(effectm(r′))
does not involve an occurrence of the basic action g.do:harm, and (c) the number of steps in
the computation of P′1 • f.SHRAT⊕ g.K(effectm(r′)) until the first call of g.do:harm equals
nmin − 1 which contradicts the minimality of nmin. The case replym(r′) = false works in
the same way. Finally consider the case P′ ≡ P′1 E f.okD P′2. There are two subcases: in the
first step of the computation of P′ • f.SHRAT⊕ g.K(r′) SHRAT returns true (subcase 1) or it
returns false (subcase 2).

(Subcase 1). If SHRAT returns true, then it is known that (a) the computation of P′1 •
f.SHRAT⊕ g.K(r′) involves an occurrence of g.do:harm (because of requirement (i) on P′ and
r′), (b) there is a sequence α such that the computation P′1 • f.RFS({ok},α)⊕ g.K(r′) does
not contain an occurrence of g.do:harm (the existence of α is obtained from the definition of
SHRAT and the fact that its most recent reply was positive), and (c) the number of steps in
this computation until the first occurrence of g.do:harm equals nmin − 1. Together, (a), (b),
and (c) contradict the minimality of nmin for P′ and r′.
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(Subcase 2).The case that SHRAT returns false begins with the observation (a) that
because the computation (P′1 E f.okD P′2) • f.SHRAT⊕ g.K(r′) involves a call g.do:harm so
does the computation from the next step (because of the assumption made on the value
of the call f.ok) P′2 • f.SHRAT⊕ g.K(r′); observation (b) reads that b1 = false. To see this,
notice that due to the definition of SHRAT, the fact that the most recent reply to a call f.ok
was negative must have been caused by the fact that, for each α, each computation starting
from the architerm P′1 • f.RFS({ok},α)⊕ g.K(r′) involves a call g.do:harm. It follows from
the latter that b1 (the reply to the recent call f.ok as encoded in β) must be false.

The computation from architerm (P′1 E f.okD P′2)
′ • f.RFS({ok},β)⊕ g.K(r′) involves

no call g.do:harm, and together with b1 = false, it follows that the computation from
architerm P′2 • f.RFS(β′)⊕ g.K(r′) (with β′ = b2, b3, . . .) contains no call g.do:harm either.
Finally notice (c) that the length of the latter computation is nmin − 1. Together, (a), (b), and
(c) contradict the minimality of nmin, which concludes subcase 2.

In the second part of the proof, regarding case (ii) (P •f.SHRAT⊕g.K(r) does not involve
a method call g.do:harm) one may assume that the computation of P • f.SHRAT⊕ g.K(r) does
not contain a method call g.do:harm.

We show that the first reply of SHRAT to a call f.ok (in the computation of (PE f.okD
Q) • f.SHRAT ⊕ g.K(r)) equals true. Consider the finite or infinite sequence of Boolean
values α = a0, a1, . . . such that the successive calls (if any) of f.ok in the computation of
P • f.SHRAT⊕ g.K(r) are replied to by SHRAT as encoded in α. Making use of the fact that
K is not a lookahead service, and that, consequently, its replies will only depend on the
state of the service at the moment of a call being made and, of course, on the particular
method which is being called, while its replies cannot not depend on future behaviour
of the system, the architerm P • f.RFS({ok},α)⊕ g.K(r) produces the same computation,
and for that reason, it does not contain an occurrence of the method call g.do:harm. Now it
follows from clause (b) in the definition of the behaviour of SHRAT that the reply given to
the first call of f.ok in the computation of (PE f.okD Q) • f.SHRAT⊕ g.K(r) equals true.

Definition 8. SHRATfst/fss is the restriction of SHRAT to finite state threads (fst) and finite state
services (fss).

Proposition 6. SHRATfst/fss is a computable service taking as additional inputs for the determi-
nation of a reply on a method call ok a combination of two finite PGLB instruction sequences for the
representation of the threads P and Q and finite state machines for the representation of the services
K1, . . . , Km.

Proof. A decision method for Φ (in the definition of SHRAT) is as follows: Given arguments
P, K1, . . . , Kn let up = #STATES(P), u1 = #STATES(K1), . . . , #STATES(Kn) be the respective sizes
(number of elements) of the respective state spaces of these components. We find that a
computation path without a call gi.do:harm P • f.SHRAT⊕ g.K1⊕ · · · ⊕ g.Kn can have at most
u = up · u1 · . . . · un steps unless it gets into a cycle. So by checking all paths of a length of
u steps it can be found if there is a (possibly cyclic) path without a call to gi.do:harm, in
which case the sequence of successive replies to calls f.ok provides a cyclic sequence β as
required, while otherwise, no such β exists.

Definition 9. SHRATfst/fss/tts is the restriction of SHRAT to finite state threads (fst) and a
combination of finite state services (fss) with K1 a service for a Turing tape (tts).

Proposition 7. SHRATfst/fss/tts is a non-computable service taking as additional inputs for the
determination of a reply on a method call ok a combination of two finite PGLB instruction sequences
for the representation of the threads P and Q, a bit sequence for the tape architerm for K1, and finite
state machines for the representation of the services K2, . . . , Km.

Proof. We consider the collection U of PGLB instruction sequences with required interface
included in g1.Ir(TTS) and such that termination can only occur at the last instruction



Mathematics 2022, 10, 2232 20 of 27

(which must be !). Termination of computations of the form |P; !| • g1.TSS is well known
to be not computationally decidable. We find that for P; ! ∈ U: the computation from
|P; !| • g1.TSS terminates if and only if the computation from |P; g2.do:harm; !| • g1.TSS⊕
g2.K2 involves a call g2.do:harm, if and only if the initial call f.ok in the computation
(|P; g2.do:harm; !|E f.okD S) • f.SHRAT⊕ g1.TSS⊕ g2.K2 receives reply false. If SHRAT is a
computable service, it follows that the halting problem for PGLB instruction sequences
over a Turing tape service is decidable as well, which is not the case.

The notion of a lookahead service leaves open the possibility of the interaction of mul-
tiple lookahead services, and suggests possible generalisations of Theorem 1, with one or
more of the Ki featuring lookahead capability. This suggestion leads to the following result.

Theorem 2. The condition for Theorem 1 that K1, . . . , Kn are ordinary services is a necessary
condition for Theorem 1.

Proof. Let n = i = 2 in the notation of Theorem 1. We assume that Imethod(K1) =
{m1, m2, m3} and Imethod(K2) = {do:harm, u1, u2}. We consider the following example:
P ≡ (g2.u1 ◦ (g2.do:harm ◦ SE g1.m2D S))E f.okD (g2.u2 ◦ (g2.do:harm ◦ SE g1.m3D S)))E
g1.m1D S and Q ≡ S. Moreover, K2 is an ordinary service such that do:harm ∈ Imethod(K2).
K1, however, is a non-ordinary service, which is defined as follows:

(i) K1 has a single state only, so none of its actions results in a state change.
(ii) On m2 and m3, the reply is always true.
(iii) on m1, the evaluation of θ(s, m1) for K1 in a context (R1E g1.m1D R2) • f.H⊕ g1.K1⊕

g2.K2 depends on prospection as follows: θ(s, m1) is false (and with it the reply of f.K1
to the call f.m), if and only if there are two different ordinary services Ka and Kb so that
R1 • f.H⊕ g1.Ka ⊕ g2.K2 sat CALL(g2.u1) and R1 • f.H⊕ g1.Kb ⊕ g2.K2 sat CALL(g2.u2).

(iv) On m1 there is no state change.
Now adopting the definition of SHRAT as given above, consider the computation

starting from (PE f.okD Q) • f.SHRAT⊕ g1.K1 ⊕ g2.K2. This computation, however, does
not comply with the requirement on f.SHRAT as given in Theorem 1. In particular, it is the
case that:

(a) P • f.SHRAT⊕ g1.K1 ⊕ g2.K2 sat noCALL(g2.do:harm) while
(b) The first call of f.ok in the computation (PE f.okD Q) • f.SHRAT⊕ g1.K1 ⊕ g2.K2

receives reply false from SHRAT.
To prove (b), first notice that the call f.ok requests SHRAT to evaluate the reply condition

θSHRAT. It must be shown that for each reply function β : {ok}+ → {true, false} it is the
case that P • f.RFS({ok},β)⊕ g1.K1 ⊕ g2.K2 sat CALL(g2.do:harm). The latter computation
starts with the call g1.m1 which will return false if and only if two different ordinary
services Ka and Kb exist so that

R1 • f.RFS({ok},β)⊕ g1.Ka ⊕ g2.K2 sat CALL(g2.u1), and
R1 • f.RFS({ok},β)⊕ g1.Kb ⊕ g2.K2 sat CALL(g2.u2), with
R1 =(g2.u1 ◦ (g2.do:harm ◦ SE g1.m2D S))E f.okD (g2.u2 ◦ (g2.do:harm ◦ SE g1.m3D

S))).
There are two cases β(ok) = true and β(ok) = false. If β(ok) = true, then both

computations (for Ka and for Kb) proceed with a reply true in the next step, i.e., the call
f.ok, and both computations will subsequently perform a call of g2.u1 and will therefore
not perform a call of g2.u2. It follows, in this case, that the criterion for returning false on
the call g1.m1 is not satisfied, and true is returned as a reply. For the case β(ok) = false, a
similar argument leads to the same conclusion.

We find that the reply of g1.K1 on the method call g1.m1 in the computation starting
from P • f.RFS({ok},β) ⊕ g1.K1 ⊕ g2.K2 must be true and therefore the next state of the
computation is R1 • f.RFS({ok},β)⊕ g1.K1 ⊕ g2.K2. Now, two cases can be distinguished:
β(ok) = true and β(ok) = false.

In the first case, the computation of R1 • f.RFS({ok},β)⊕ g1.K1 ⊕ g2.K2 proceeds to
(g2.u1 ◦ (g2.do:harm ◦ SE g1.m2D S)) • f.RFS({ok},β)⊕ g1.Kb ⊕ g2.K2. After a step for the
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call g2.u1, the call g1.m2 will produce reply true (on the basis of the specification of K1), so
that the subsequent step is a call g2.do:harm. A similar argument applies if β(ok) = f alse.
This proves that the call g2.do:harm is unavoidable, which proves (b) above.

For (a), it must be shown that
(R1 E g1.m1D S) • f.SHRAT⊕ g1.K1 ⊕ g2.K2 sat noCALL(g2.do:harm). In the second step of
the computation, K1 produces a reply to the call g1.m1. The latter reply of K1 equals false.
To see this, one notices that when choosing Ka (as a possible future for itself, such that the
next reply on m2 is false and the next reply on m3 is true), the reply of SHRAT to the next
call of f.ok would be false, because otherwise g2.do:harm would become unavoidable.
Moreover, the action g2.m2 will take place.

Alternatively, upon contemplating Kb as a possible future behaviour of K1 so that the
next reply to a call m2 is true and the next reply on m3 is false, the reply of SHRAT to the
next call of f.ok would be true, because otherwise g2.do:harm would become unavoidable.
Moreover the action g2.u2 will take place.

So, given the fact that these two different computations for Ka and Kb are possible, the
reply of K1 to the initial method call g1.m1 (in the computation (R1 E g1.m1D S) • f.SHRAT⊕
g1.K1 ⊕ g2.K2) equals false (due to the particular non-ordinary definition of K1). So the
computation proceeds to S • f.SHRAT⊕ g1.K1 ⊕ g2.K2 which will not perform any basic
action any longer such that noCALL(g2:do:harm) is satisfied, which proves (a).

4. Promoting a Method Call

Rather than for avoiding a certain method call, prospection may, for whatever reason,
be used to promote it taking place, i.e., to guarantee that it will take place if that guarantee
can be given. However, the simplest foresight pattern to that extent fails. Instead of an
action do:harm, which is preferably avoided, the presence of an action do:no_harm which is
preferably performed may be assumed.

Theorem 3. Let m, i ∈ N, 1 ≤ i ≤ m and let K1, . . . , Km be ordinary services with do:no_harm ∈
Imethod(Ki). There is no single state service H with Imethod(H) = {find} such that the following
holds:

for all threads P and Q with required interfaces included in J = Iprovided(h.H⊕ g1.K1 ⊕
· · · ⊕ gm.Km), the reply of the service H to the first method call in the computation (PE h.findD
Q) • h.H⊕ g1.K1⊕ · · · ⊕ gm.Km equals true if and only if it is the case that P • h.H⊕ g1.K1⊕ · · · ⊕
gm.Km sat CALL(gi.do:no_harm).

Proof. Suppose otherwise, and let H meet the requirements of the Theorem. Using the
notation of Theorem 3, let P = PE h.findD (gi.do:no_harm ◦ S) and Q = gi.do:no_harm ◦ S.

First assume that H replies true on the first call h.find. Then after processing the
positive reply, the computation returns to precisely the same state as it was in before said
method call. Now, because H is a single-state service, the computation enters in a loop
from which it will not escape and during which no method call gi.do:no_harm will be
performed. It follows that on a positive reply to the first call to H, it is not the case that
P • h.H⊕ g1.K1 ⊕ · · · ⊕ gm.Km will perform the required method call, so that the requirement
on H is violated in that case.

Hence, it may be assumed that the first method call h.find receives reply false. In
that case, given the assumptions made on H in the theorem, such will also be the case of
the computation P • h.H⊕ g1.K1 ⊕ · · · ⊕ gm.Km, which is precisely the same and which is
processed with H from the same unique state. In that case, because of the negative reply,
the method call gi.do:no_harm will be performed in the computation of P • h.H⊕ g1.K1 ⊕
· · · ⊕ gm.Km so that a mismatch with the requirement on H arises.

Theorem 3 generalises to stateful prospecting services. First notice that the definition
of a single state prospecting service can be easily adapted to involve several methods:
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Definition 10 (Single state multi-method prospecting service). Lm1,...,mt
θ1,...,θt uses θi to

determine which reply to produce on a call of method mi. Definition 5 is adapted by using a
quantifier of type {m1, . . . , mt}+ → {true, false} instead.

Definition 11 (Stateful multi-method prospecting service). A prospecting service L with
method interface J, a state space S and an effect function η: J× S× {true, false} → S can be
defined if for each s ∈ S, and z ∈ J, a lookahead condition θ(s, m) ∈ CLA

Idm(I)
I is given which

determines the reply on method m ∈ J in state s of L.

A workable notation for a service of this form with method interface J is L(Z, S, s0,η,θ)
with η: Z × S × {true, f alse} → S and θ: Z× S a lookahead condition. We will refer to
services of this form as stateful with an ordinary effect function.

Services with multiple states will use the result of the evaluation of a reply condition
for determining the next state transition (the result of the effect function). Then, the effect
function has type effect: Z× S× BOOL → S where the third argument is taken to be the
reply value which is given in the same step.

Proposition 8. Let n, i ∈ N, 1 ≤ i ≤ n and let J1, . . . , Jn be method interfaces with do:no_harm ∈
Ji. Let J = {h.find} ∪ g1.J1 ∪ . . . ∪ gn.Jn. There is no stateful prospecting service
L ≡ L({find}, S, s0,η,θ) for which the following holds:

for all n-tuples of ordinary services K1, . . . , Kn, with Imethod(K1) ⊆ J1, . . . , Imethod(Kn) ⊆
Jn, for all states s ∈ S, and for all threads P and Q with required interfaces included in J, the reply
of the service L({find}, S, s,η,θ) to the first method call in the computation
(PE h.findD Q) • h.L({find}, S, s,η,θ)⊕ g1.K1 ⊕ · · · ⊕ gn.Kn equals true if and only if
P • h.L({find}, S,η(find, s, true),η,θ)⊕ g1.K1 ⊕ · · · ⊕ gn.Kn sat CALL(gi.do:no_harm).

Proof. Suppose otherwise, and let L({find}, S, s0,η,θ) meet the stated requirements. Choose
threads P and Q as follows: P = PE h.findD (gi.do:no_harm ◦ S) and Q = gi.do:no_harm ◦ S
and let s ∈ S: As ≡ P • h.L(find, S, s,η,θ)⊕ g1.K1⊕ · · · ⊕ gn.Kn. Suppose As sat ¬θ(s, find).
For s ∈ S let Us be the smallest subset of S which contains η(find, s, true) and which con-
tains η(find, t, true) for each t ∈ S. It must be the case that for all t ∈ Us, At sat θ(t, find),
because otherwise the computation from architerm Aη(find,s,true) will perform a method call
gi.do:no_harm after as many steps as needed to arrive at a state t ∈ Us with At sat ¬θ(t, find)
so that, given the requirements on L, As sat θ(s, find) must be expected instead, thereby
contradicting the above assumption that As sat ¬θ(s, find). It follows that for all states
s, of L({find}, S, s,η,θ) it is the case that As sat θ(s, find) whence As0 sat PERP without
ever performing gi.do:no_harm, from which it follows, with the requirements on L in the
theorem, that As0 sat ¬θ(s0, find) should hold, which yields a contradiction with the facts
just established about L, thus concluding the proof.

Method Call Promotion with a Single State Prospecting Service: MCP

The single state service MCP has state s and method interface {find}, and it is made
accessible via focus h, which differs from g1, . . . , gm. In a context (PE f.findD Q) • h.MCP⊕
g1.K1 ⊕ · · · ⊕ gm.Km, the intended foresight pattern comprises that MCP produces replies in
such a way that (i) a shortest path to a call of gi.do:no_harm is found, and (ii) a positive
reply is preferred in case (i) with both choices shortest paths to a call of gi.do:no_harm of
equal lengths can be found or (ii) no such paths can be found at all.

A reply r to the call h.find (i.e. θ(s, find), in the context (PE h.findD Q) • h.MCP⊕
g1.K1 ⊕ · · · ⊕ gm.Km as mentioned above) is computed as follows: r =θ(s, find) =ψ∨¬χ
with
ψ ≡ ∀α: {find}+ → {true, false}[

Q • h.RFS({find},α)⊕ g1.K1 ⊕ · · · ⊕ gm.Km sat noCALL(gi.do:no_harm)]

χ ≡ ∀α: {find}+ → {true, false}, ∀k ∈ N+[
P • h.RFS({find},α)⊕ g1.K1 ⊕ · · · ⊕ gm.Km sat CALLat(k, gi.do:no_harm)
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=⇒ ∃γ: {find}+ → {true, false}, ∃l ∈ N+[ l < k &
Q • h.RFS({find},γ)⊕ g1.K1 ⊕ · · · ⊕ gm.Km sat CALLat(l, gi.do:no_harm)]

]

In other words: the reply is true if upon processing that reply (i.e., proceeding with P), under
the assumption that H is non-deterministic, a shortest path (of a computation of (PE h.findD Q) •
h.H⊕ g1.K1 ⊕ · · · ⊕ gm.Km) to a call of gi.do:no_harm can be found, or if such a path does not exist.

Or, phrased alternatively, the reply is false if only upon proceeding with Q a path in the
computation of Q • h.H⊕ g1.K1 ⊕ · · · ⊕ gm.Km to a call of gi.do:no_harm (with non-deterministic H) can
be found, which is shorter than any such path in the computation of P • h.H⊕ g1.K1 ⊕ · · · ⊕ gm.Km.

Proposition 9. Let m, i ∈ N, 1 ≤ i ≤ m and let K1, . . . , Km be ordinary (i.e., non-lookahead) services with
do:no_harm ∈ Imethod(Ki).

Then, for all threads P with Irequired(P) ⊆ J = {h.find} ∪ g1.J1 ∪ . . . ∪ gm.Jm, the following implica-
tion holds: if there is a function β ∈ {find}+ → {true, false} such that
P • h.RFS({find},β)⊕ g1.K1 ⊕ · · · ⊕ gm.Km sat CALL(gi.do:no_harm) then also
P • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km sat CALL(gi.do:no_harm).

Proof. Without loss of generality and for the ease of notation, We will assume that m = 2 and i = 2.
Let for natural number k > 0, χk be the following assertion:

Let K1, K2 be ordinary (i.e., non-lookahead) services with do:no_harm ∈ Imethod(K2), and
let P be a thread with required interface included in J, then if there is a Boolean function β

such that
P • h.RFS({find},β)⊕ g1.K1 ⊕ g2.K2 sat CALLat(k, g2.do:no_harm),
then there is a natural number l ≤ k such that
P • h.MCP⊕ g1.K1 ⊕ g2.K2 sat CALLat(l, g2.do:no_harm).

It is immediate that ∀k.χk implies Proposition 10. To prove that for all k > 0, χk holds, use
induction on k with k = 1 as the basis. If k = 1 and P • h.RFS({find},β)⊕ g1.K1 ⊕ g2.K2 performs a
basic instruction g2.do:no_harm as the first step then P ≡ P1 E g2.do:no_harmD P2, for some threads
P1 and P2 from which it follows that P • h.MCP⊕ g1.K1 ⊕ g2.K2 performs g2.do:no_harm as the first
step.

Now let k = l+ 1, l > 0. In case P = S or P = D, the required implication is immediate as an
instance of material implication. In case P ≡ P1 E g2.do:no_harmD P2, the implication is immediate
too. The remaining cases to be checked are (a) P ≡ P1E gj.mjD P2 with j ∈ {1, 2} and mj ∈ Jj, except
the case that j = 2 and mj ≡ do:no_harm, and (b) P ≡ P1 E h.findD P2.

In case (a) there are two subcases, j = 1, j = 2 both of which have two subcases: Kj returns
true on the call gj.m1 and Kj returns false of the call gj.mj. Each of these cases works in the same
way. We consider the case that j = 1 and that true is returned. Now, P • h.RFS({find},β)⊕ g1.K1 ⊕
g2.K2 performs a single-step transition to P1 • h.RFS({find},β) ⊕ g1. ∂

∂m1
(K1) ⊕ g2.K2. Here, ∂

∂f (K)
denotes the state of a service K just after having replied to a call of method f ∈ IK. It follows
that P1 • h.RFS({find},β)⊕ g1. ∂

∂m1
(K1)⊕ g2.K2 performs g1.do:no_harm in at most l steps. Now the

induction hypothesis can be applied to the latter architerm, which yields that the computation of
P1 • h.MCP⊕ g1. ∂

∂m1
(K1)⊕ g2.K2 will perform a basic instruction g2.do:no_harm within the first l steps

from which it follows that computing P • h.MCP⊕ g1.K1⊕ g2.K2 involves a call of g2.do:no_harm within
the first k = l+ 1 steps.

In case (b), there are again two subcases: (b/t) β1 = true, and (b/f) β1 = false. In case (b/t), upon
performing a first step, the computation proceeds from P1 • h.RFS({find},β)⊕ g1.K1 ⊕ g2.K2 arriving
at a method call gi.do:no_harm at the l-th step. Using the induction hypothesis, the computation of
P1 • h.MCP⊕ g1.K1 ⊕ g2.K2 performs a method call g2.do:no_harm within the first l steps. Now, once
more, there are two cases: (b/t/t) the reply on the first method call in the computation of (P1 E
h.findD P2) • h.MCP⊕ g1.K1 ⊕ g2.K2 is true, and (b/t/f) the mentioned reply equals false. In the
first case, it is immediate that the computation of (P1 E h.findD P2) • h.MCP⊕ g1.K1 ⊕ g2.K2 contains
a call of g2.do:no_harm within l+ 1 steps. In the second case (b/t/f) in view of the definition of MCP,
with β′=λx ∈ {find}+.β(find_x), it must be so that the computation of P2 • h.RFS({find},β′)⊕
g1.K1 ⊕ g2.K2 performs a call of gi.do:no_harm, and in fact within less than l steps. Now, with the
induction hypothesis, it follows that the computation of P2 • h.MCP⊕ g1.K1 ⊕ g2.K2 involves a call
of g2.do:no_harm within l steps, from which it follows (with the assumption for case (b/t/f), that
the computation of P • h.MCP⊕ g1.K1 ⊕ g2.K2 involves a call of g2.do:no_harm within l+ 1 steps. The
argument in case (b/f) is very similar to the case for (b/t), and is deleted for that reason.
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Proposition 10. Let m, i ∈ N, 1 ≤ i ≤ m and let K1, . . . , Km and P, Q be as in Proposition 9
Then the reply of the service MCP (as defined above) to the first method call in the computation (PE

h.findD Q) • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km equals false if and only if the following condition is satisfied:
for some positive k ∈ N, the computation Q • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km performs the method call

gi.do:no_harm in the k’th step while P • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km does not reach an occurrence of the
method call gi.do:no_harm in l steps for some l ≤ k.

Proof. This proof is a straightforward though somewhat tedious consequence of Proposition 9.
Suppose that the reply of MCP to the first method call in the computation (PE h.findD Q) • h.MCP⊕
g1.K1 ⊕ · · · ⊕ gm.Km equals false. Then in view of the definition of MCP, there exists a function β

such that the computation Q • h.RFS({find},β)⊕ g1.K1 ⊕ · · · ⊕ gm.Km performs gi.do:no_harm. With
Proposition 9, it follows that the computation Q • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km performs gi.do:no_harm,
say, at the k-th step. Following this computation, one finds that for some function α, it must be the
case that Q • h.RFS({find},α)⊕ g1.K1⊕ · · · ⊕ gm.Km performs gi.do:no_harm in the k-th step, moreover
for function α′, the computation Q • h.RFS({find},α′)⊕ g1.K1 ⊕ · · · ⊕ gm.Km performs gi.do:no_harm
within fewer than k steps. Now contemplating the definition of MCP, one notices that its condition ψ

is not satisfied, whence its condition χ must be satisfied, from which it follows that for no function γ,
it is the case that P • h.RFS({find},γ)⊕ g1.K1 ⊕ · · · ⊕ gm.Km performs gi.do:no_harm within k or fewer
steps, from which it follows by Proposition 9 that P • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km does not perform a
method call within k steps or less. This proves one direction of the Theorem; the argument in the
other direction is quite similar, and is deleted for that reason.

Theorem 4. With the same assumptions as in Propositions 9 and 10: for all threads P, Q with required
interface included in J = {h.find} ∪ g1.IK1 ∪ · · · ∪ gm.IKm , the following implication holds: if P • h.MCP⊕
g1.K1 ⊕ · · · ⊕ gm.Km performs a basic instruction gi.do:no_harm or Q • h.MCP⊕ g1.K1 ⊕ · · · ⊕ gm.Km performs
a basic instruction gi.do:no_harm then also (PE h.findD Q) • h.MCP⊕ g1.K1⊕ · · · ⊕ gm.Km performs a basic
instruction gi.do:no_harm.

Proof. This result follows from Proposition 10 plus the observation that if P • h.MCP⊕ g1.K1 ⊕ · · · ⊕
gm.Km performs a basic instruction gi.do:no_harm, then for some Boolean function β also P • h.MCPβ ⊕
g1.K1 ⊕ · · · ⊕ gm.Km performs a basic instruction gi.do:no_harm.

Problem 3. Consider architerms containing both a SHRAT service and an MCP service. Can Theorem 4 be
generalised to this case?

5. Lookahead Instructions
Threads provide abstractions from sequential programs. The impossibility result of Cohen on

virus detection was formulated in terms of programs rather than in terms of threads and services.
In this section, we will consider how the results on lookahead services may be used for obtaining
information at the lower abstraction level of instruction sequences.

Special instructions may be designed, which incorporate the support of lookahead services into
instruction (sequence) processing without making explicit calls to a lookahead service. Leaving apart
the task of designing a syntax for such instructions in general, it is already informative to consider
some simple special cases.

With a§f.m, for a a positive natural number, we will denote the following condition which may
be evaluated during a run at some position (instruction) in an instruction sequence. Let X; Y be an
instruction sequence such that LLOC(X) = b− 1. Now a§f.m, when evaluated at position b asserts that
a computation of X; Y when stated at the beginning of Y will proceed in such a manner that the a’th
step is a basic action involving a method call f.m, i.e., either the void method call or a test +f.m or a
test −f.m. If the computation has terminated, either properly or improperly, at or before the a’th step,
the value of a a§f.m is considered false.

Making use of a lookahead condition is not an obvious matter. The simplest idea is to use
the condition as a test which is evaluated at the position where it occurs. However, in X1 =
#1; g.m1;−(2§f.m); f.m; !, a difficulty arises. Assuming that at position 3, the condition 2§f.m takes
value true, then upon starting the run in position 3, the result of the test is positive and because of
its embedding in a negative test instruction, the instruction is performed as if it were #2 so that as a
second step in the run, termination (!) occurs, which implies that the evaluation of 2§f.m at position
3 should have taken value false in hindsight. Alternatively one may consider the possibility that
evaluation of the condition 2§f.m at position 3 yields value false, and then the third instruction is
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performed as if it were #1 so that the second step is f.m so that, again in hindsight, 2§f.m (evaluated at
position 3) should have yielded value true. The instruction −(2§f.m) is, in this context, paradoxical
because no evaluation of its embedded condition is possible. In that case, a run of X1 involving the
putting into effect of the third instruction is said to terminate improperly (just like #0).

By first jumping to another position, either forward or backward, the mentioned paradox
may be avoided, though not fully. With #b§a§f.m, the condition is denoted which, when eval-
uated at position p amounts to evaluating a§f.m at position p + b. If that position lies outside
the range of instructions, the result is false. Similarly the condition \#b§a§f.m is evaluated by
evaluating a§f.m at position p− b, again returning false if that position is 0 or lower. Consider
X2 = #1; g.m1;−(#1§2§f.m);+g.m2; f.m; #0; ! When evaluating #1§2§f.m at position 3, the hypothetical
computation has to start at position 4, then as the first step, the test +g.m2 is performed, and then
depending on the result either the call f.m is made (so that the evaluation of #1§2§f.m yields true) or
improper termination results (so that the evaluation of #1§2§f.m yields false).

A paradoxical situation may result if the computation started at position p+ b for an evaluation
of #b§a§f.m at position p visits the test instruction (say +(#b§a§f.m)) within k steps. In that case, it is
assumed that no definite value can be found for the condition #b§a§f.m and that the execution of the
instruction +(#b§a§f.m) at position p runs into improper termination. With the understanding that,
say −(2§f.m) is an abbreviation of −(#0§2§f.m), it is plausible to adopt the convention that −(2§f.m)
leads to improper termination immediately, because the test is called before an evaluation of the
embedded condition is known.

For the (hypothetical) processing of a condition #b§a§f.m, say, occurring as an embedded
instruction in a test +(#b§a§f.m) at position p in an instruction sequence X, we notice the following:

(i) It does not change the state of any service (because it is a hypothetical form of processing);
(ii) It returns true if, when (hypothetically) the computation is performed, that computation

will perform a basic action f.m in the a-th step (without any visit to the p’th instruction in between);
(iii) It returns false otherwise (including the cases that proper or improper termination arises

before the a’th step of the computation).

Implementing a Lookahead Instruction via a Prospective Service
A useful modification of the lookahead instructions +(#b§a§f.m) and −(#b§a§f.m) is as follows:

+(#b§F§f.m) and −(#b§F§f.m) include tests which require that at least once during a run, a basic
action or test based on the method call f.m is performed.

The positive result in Theorem 1 can be used for clarifying the feasibility of a specific lookahead
instruction. Here, the use of infinite instruction sequences, obtained via repetition of a finite instruc-
tion sequence, comes in handy. As was shown in [2], repetition, which underlies the program algebra
PGA, has the expressive power of arbitrary flow charts though without making use of backward
jumps.

Proposition 11. Let U ≡ −(#1§F§gi.do:harm). Let X be an instruction sequence with zero or more occur-
rences of U as its only lookahead instructions and without backward jumps and with required interface contained
in J = Iprovided(g1.K1 ⊕ · · · ⊕ gn.Kn). Let X′ be obtained from X by replacing each occurrence of U by the
method call +f.ok.

Then, upon defining |X| • g1.K1 ⊕ · · · ⊕ gn.Kn as |X′| • f.SHRAT⊕ g1.K1 ⊕ · · · ⊕ gn.Kn, the semantics
of instruction U is given in such a way that it complies with the (informal) definition given above for the
(lookahead) test instruction −(#1§F§gi.do:harm).

Proof. When using repetition as an instruction sequence constructor, an infinite, repeating, instruc-
tion sequence results in which only forward jumps are used. Using this fact, the correspondence
between the semantics of instruction U and its counterpart after thread abstraction is perfect.

6. Concluding Remarks
Several aspects of this paper suggest further work. The notion of a lookahead condition merits

more scrutiny. Perhaps we have not yet been able to prove anything positive about cases where
different prospecting services are simultaneously present. As intelligent agents will try to forecast
one-another’s behaviour, the idea of different forecasting mechanisms acting in parallel may be
considered intuitively obvious, while the mathematics of that situation is not at all clear.
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6.1. Multi-Agent Aspects
Suppose P1, . . . , Pn are threads and Wi are service families such that (i) the different focus

interfaces (Ifocus(Wi)) are pairwise disjoint and (ii) Irequired(Pi) ⊆ Iprovided(Wi). We will assume that
the threads constitute a so-called thread vector, so that the ordering matters as well. Following [1],
we will write this vector as follows: 〈P1〉y . . .y 〈Pn〉. Then strategic interleaving of the thread vector
is denoted with

||c(〈P1〉y . . .y 〈Pn〉)
In [1], a range of different strategic interleaving operations are provided. The idea behind

strategic interleaving operators is to model multi-threading in the way it is implemented in pro-
gramming systems which arrange for deterministic scheduling rather than for some form of the
arbitrary interleaving of concurrent threads. The advantage of modelling multi-threading with
strategic interleaving is that arguably, that is more realistic. A disadvantage, however, is that the very
well understood parallel composition operator based on arbitrary interleaving, which stands at the
basis of most process algebras, is replaced by a range of different strategic interleaving operators of
increasing complexity.

For cyclic interleaving and variations thereof (as discussed in detail in [1]), the required interface of a
thread vector is found by taking the union for the individual threads: Irequired(||c(〈P1〉y . . .y 〈Pn〉)) =
∪ni=1Irequired(Pi). Because Iprovided(W1 ⊕ . . .⊕ Wn) = ∪ni=1Iprovided(Wi) the architerm

||c(〈P1〉y . . .y 〈Pn〉) • W1 ⊕ . . .⊕ Wn

makes perfect sense. It follows from Proposition 5 that if, say, W1 contains f.SHRAT and this instance of
SHRAT attempts prospection on a basic action, say, g.m with g ∈ Ifocus(W2) that this will allow P1 to
use foresight to the extent that it may only perform certain basic actions in the case that P1 “knows”
that P2 will not perform g.m in the future. It follows from Theorem 2 that the situation becomes much
more complicated if different agents try to make use of prospecting services at the same time. On the
other hand, expecting that P1 may be equally certain about guarantees that P2 will actually perform
g.m in the future may be asking too much in view of Proposition 8.

Collective action and underlying collective intelligence rests upon knowledge that agents have
or pretend to have about other agents in the same flock. The results of the paper shed some light on
the options and limitations of such knowledge.

6.2. Why Thread Algebra, in the Context of Prospection and Foresight?
Viewed from the perspective of process algebra working with a domain-specific process algebra

is an overhead which one might preferably avoid.
The simplest idea on foresight in process algebra is to allow a condition noACT(ag(d)) which

is true if and only if an atomic action ag(d) (i.e., atomic action of type a at location/port g, with
parameter/data, d) will not be performed in the future of the system (process at hand). One may look
for a counterpart of Proposition 5 in this case, but there is a problem with that idea.

Indeed consider P = ag(d)C noACT(bg(d))B ag(d) with a 6= b. P is paradoxical in the sense
that the suggested foresight cannot exist. This very issue of foresight preventing self-reference is, at
least to some degree, avoided by working with thread algebra.

6.3. Potential Connections with Classical AI
While prospecting, services which allow the realisation of attractive foresight patterns may

be impossible or hypothetical. Reworking the concepts at hand in such a manner that prospecting
and foresight can be replaced by computable approximations thereof may be a workable approach.
Practical prospecting, especially when based on empirical data may be termed lookahead; practical
foresight, again when performed on a scientifically defensible basis, may be termed forecasting.
An option for further work along the lines of this paper is to adapt software engineering life-cycle
models in two stages: first to make use of the admittedly hypothetical advantage of prospecting
services and foresight patterns realised with the help of such services, and thereafter to work with
approximations of the various instances of prospecting and foresight, thereby obtaining computable
(non-hypothetical) lookahead services and forecasting patterns.
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