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Abstract: During the broadcast of Coronavirus across the globe, many mathematicians made several
mathematical models. This was, of course, in order to understand the forecast and behavior of
this epidemic’s spread precisely. Nevertheless, due to the lack of much information about it, the
application of many models has become difficult in reality and sometimes impossible, unlike the
simple SIR model. In this work, a simple, novel fractional-order discrete model is proposed in order
to study the behavior of the COVID-19 epidemic. Such a model has shown its ability to adapt to
the periodic change in the number of infections. The existence and uniqueness of the solution for
the proposed model are examined with the help of the Picard Lindelöf method. Some theoretical
results are established in view of the connection between the stability of the fixed points of this
model and the basic reproduction number. Several numerical simulations are performed to verify the
gained results.

Keywords: SIR model; fractional-order discrete operators; stability; existence and uniqueness; Picard
Lindelöf method; basic reproduction number

MSC: 26A33; 39A05; 92B05

1. Introduction

Across the centuries, the world has seen the dissemination of several diseases, which
have caused extensive loss of lives. In the first quarter of 2020, the World Health Organiza-
tion (WHO) declared the COVID-19 pandemic around the world [1]. From such time up to
now, the total number of global deaths has surpassed the obstacle of 5 million deaths. The
world was compelled to track many preventive strategies such as using masks, sanitizers
and imposing quarantine.

In terms of a mathematician’s view, it is still essential to establish a proper mathe-
matical model that can describe the growth of the COVID-19 pandemic and its effects on
communities, see [2–9]. As a matter of fact, the Susceptible-Infectious-Removed model (or
simply SIR model) is deemed one of the most distinguished mathematical models, which
can be typically employed to outline the dynamics of such pandemic and evaluate possible
scenarios of infection. The SIR model can be extremely useful for assessing the effectiveness
of numerous strategies. This model depends in its construction on a kind of ordinary
differential equations that consider the total population with respect to its infection, the
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persons who unfortunately die, and the direction of persons who recover after infection
over a given time [10,11].

In mathematical modeling, the ordinary differential equations are commonly utilized
to establish certain models of continuous-time mode, whereas the difference equations are,
on the other hand, utilized to establish other models of discrete-time mode. Regarding the
continuous-time models, we find that there are some pioneer works that have recently dealt
with the COVID-19 disease in very practical manners. For instance, a novel version of time-
dependent SIR model was recently constructed in [12] to investigate the transmission rate
of COVID-19 disease in various regions of India, where such model was employed to show
the effect of the complete knockdown on the transmission rate of the COVID-19 infection in
Indian districts with the help of ArcGIS 10.2 by preparing district-wise spatial distribution
maps. In [13], another fractional-order SIR model was derived from the stochastic process
of a continuous-time random walk that incorporates a time-since-infection dependence on
both the infectivity and the recovery of the population. In [14], several infectious diseases,
including COVID-19 in its SIR form, were analyzed with the application of mathematical
modeling in the analysis of their spreading rates and treatments. In [15], certain random
walk models for the daily time series that confirmed COVID-19 cases for different countries
were introduced and discussed, where such model was derived from the evolutionary
equation for a specified memory function that can provide some non-ergodic fields, which
were evident in some available COVID-19 data. At the same time, the discrete-time models
have been recently employed to assess and explore the infectious diseases instead of the
continuous-time models, as pandemic data are accessible during the periods of discrete-
time [16]. In addition, the discrete-time models can demonstrate more rich dynamics than
the continuous-time ones. In order to provide an overview of some kinds of discrete models,
the reader may refer to [17–20]. In particular, a discrete SIR epidemic model with a constant
vaccination strategy in terms of its dynamical behavior was examined in [21], whereas the
authors in [22] investigated the bifurcations and stability of a proposed discrete-time model
of a susceptible-infected-susceptible (SIS) mode with vaccination. In addition, another
proposed discrete-time model with vaccination was examined in terms of its dynamical
behavior by Xiang et al. in [23]. In the same regard, a new generalization version of the
fractional-order SIR epidemic model for predicting the spread of the COVID-19 disease
was presented in [24], where the time-domain model implementation was based on the
fixed-step method using the nabla fractional-order difference Grünwald-Letnikov operator.

In mathematical analysis, fractional calculus is considered one of the most important
subjects as a generalization of integer calculus [25–30]. It has been demonstrated that the
fractional-order derivative is significantly more precise than the integer-order one [31].
This is because it plays a key role as a powerful tool for outlining the effect of memory
on all kinds of materials and processing [32]. From the perspective of this view, a lot
of researchers have, over the last several years, been concerned with discrete fractional
calculus [33–37]. In fact, there are many applications of such field in reality, such as the
applications connected with biology, physics, neural networks, etc.

In the past few years, many epidemiology SIR models have been established in view
of fractional-order differential equations [38–40]. In particular, a fractional-order SIR model
was investigated in terms of its stability in implementing a discretization scheme in [41].
Naik proposed another fractional-order SIR model in terms of its global dynamics in [42].
Several numerical simulations with their analysis were performed for a new fractional-
order SIR model in [43]. A delayed incommensurate fractional-order SIR model was
also examined in terms of its bifurcation control and stability analysis in [44]. In view
of the above considerations, it should be emphasized that all the aforesaid studies were
established based on a continuous-time mode. This actually motivated us to propose a new
fractional-order discrete model to be considered in the epidemiology field. As far as we
know, the study of fractional-order discrete-time COVID-19 models has not probably been
explored till now. Thus, from this perspective, the main target of this work is to make a
contribution to the epidemiology field by proposing a new fractional-order discrete-time
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SIR model. In this regard, it is worth mentioning that due to the fact the proposed model is
just a fractionalization of the discrete SIR-type system and due to the pandemic time series
that can be generated from its dynamics, we believe that this model will, in general, have
several potential applications and perspectives.

In fact, in order to formulate the target mathematical model, which will enable us
later to predict the COVID-19 behavior according to the available information, we suppose
that the society is divided into four different classes; susceptible class S, infected class I,
recovered class R and death class D. In addition, we suppose that the transition between
these classes takes place according to the scheme exhibited in Figure 1.

Figure 1. Disease transmission flow of the proposed model.

In light of this figure, the values of all parameters reported in the model at hand can
be explained, as shown in Table 1.

Table 1. Description of the model’s parameters.

Parameters Description

µ Corona death rate
δ Natural death rate
θ The number of new births
b Infection rate
e Recovery rate
η The rate at which a recovering person is at risk of infection

As a matter of fact, the disease transmission flow of the proposed fractional-order dis-
crete SIR model, which is shown in its compartmental form in Figure 1, can be furthermore
described by the following nonlinear system:

S(n + 1) = S(n) + θ + ηR(n)− bS(n)I(n)− δS(n),
I(n + 1) = I(n) + bS(t)I(n)− (µ + δ + e)I(n),
R(n + 1) = R(n) + eI(n)− (δ + η)R(n),
D(n + 1) = D(n) + µI(n),

(1)

subject to the following initial conditions:

S(0), I(0), R(0), D(0) ≥ 0. (2)

Since the first three equations in the proposed system (1) are not related to class D,
and because this class can be studied alone from using the equation:

N(n) = S(n) + I(n) + R(n) + D(n), (3)
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then the last equation of system (1) might be ignored. This would actually facilitate our
examination by focusing only on the first three equations of that system. At the same time,
it should be noted that because the value of the parameter b is very small (b = pk

N , where
k is the rate of contacts per unit of time so 0 ≤ k ≤ 1, p is the probabilities of contagion
so 0 ≤ p ≤ 1, and N is the number of the total population in the tens of thousands or
more), the two terms bS(n) and bI(n) are also very small. The fact that we did not mention
the age groups and vaccination does not mean that they were neglected, but the high life
expectancy in a society can be seen as one of the causes of the high death rate due to the
virus. As for vaccination, we know that it does not provide 100 percent immunity, but
it reduces the possibility of infection (which reduces b), reduces virus mortality (η), and
increases the recovery rate (e).

The rest of this paper is organized as follows: Section 2 recalls some basic definitions
and primary facts associated with discrete fractional calculus. In Section 3, we use the
fixed point theory coupled with the Picard Lindelöf method for the purpose of showing
the existence and uniqueness of the solution for the proposed fractional-order discrete-time
COVID-19 model. In Section 4, we analyze the stability of the fixed points of the proposed
model, and we find the basic reproduction number of an infectious disease. Section 5 shows
several numerical simulations performed to verify the theoretical findings, followed by
Section 6, which summarizes the conclusions of this work.

2. Preliminaries

During the past few decades, fractional calculus has demonstrated high efficiency in
providing more practical outcomes than that of traditional calculus. This, actually, is due to
its flexibility and ability to provide approximations of several phenomena better than before.
However, in order to gain more depth in understanding the proposed fractional-order
model in this work and its impact on reality, it is useful to outline some definitions and
basic facts connected with discrete fractional calculus. From now on, we will assume that
all functions are defined on the set Na := {a, a + 1, a + 2, · · · }, where a ∈ R.

Definition 1 ([45]). The αth-fractional sum of the function f : Na → R is defined by:

∆−α
a f (t) =

1
Γ(α)

t−α

∑
s=a

(t− s− 1)(α−1) f (s), for t ∈ Na+α, (4)

where α > 0, Γ(·) is the Euler’s gamma function and t(α) = Γ(t+1)
Γ(t+1−α)

.

Definition 2 ([45]). The αth-order Rimann–Liouville fractional difference operator of the function
f defined on Na is outlined by:

∆α
a f (t) := ∆∆−(1−α)

a f (t) =
1

Γ(1− α)
∆

t−(1−α)

∑
s=a

(t− s− 1)(−α) f (s), for t ∈ Na+1−α, (5)

where 0 < α < 1.

Definition 3 ([45]). The αth-order Caputo fractional difference operator of the function f defined
on Na is outlined by:

C∆α
a f (t) =

 ∆−(1−α)
a ∆ f (t) = 1

Γ(1−α)

t−(1−α)

∑
s=a

(t− s− 1)(−α)∆ f (s), 0 < α < 1

∆ f (t), α = 1,
(6)

where 0 < α ≤ 1 and t ∈ Na+1−α.
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Proposition 1 ([45]). Let f be a function defined on Na. Then:

∆−α
a+(1−α)

C∆α
a f (t) = f (t)− f (a), ∀t ∈ Na, (7)

where 0 < α ≤ 1.

Proposition 2 ([45]). Let f be a function defined on Na. Then:

C∆α
a f (t) = ∆α

a f (t)− (t− a)(−α)

Γ(1− α)
f (a), ∀t ∈ Na−α+1, (8)

where 0 < α < 1.

Lemma 1 ([46]). Let α > 0, α /∈ N and f be a function defined on Na. Then:

f (t) = f (a) +
1

Γ(α)

t−α

∑
r=a+1−α

(t− r− 1)(α−1) C∆α
a f (r), ∀t ∈ Na+1. (9)

Remark 1. One might observe the following states:

• If C∆α
a f (t) ≥ 0, then the function f is nondecreasing for all t ∈ Na.

• If C∆α
a f (t) ≤ 0, then the function f is nonincreasing for all t ∈ Na.

Theorem 1 ([47]). Suppose h(t, y) and k(t, y) are two real-valued functions defined on [0,+∞)×R.
If the function k satisfies the Lipschitz condition in y with Lipschitz constant Lk such that 0 < Lk ≤ α,
then y1(t) and y2(t) are, respectively, two unique solutions for the following initial value problems:{

∆α
a y(t) = h(t + α− 1, y(t + α− 1)), t ∈ Na+1−α

∆α−1
a y(t)

∣∣
t=a = y0,

(10)

and {
∆α

a y(t) = k(t + α− 1, y(t + α− 1)), t ∈ Na+1−α

∆α−1
a y(t)

∣∣
t=a = y0.

(11)

Herein, based on the above theorem, it can be noted the following observations:

• If h(t, y) < k(t, y), then y1(t) ≤ y2(t) for t ∈ Na.
• If h(t, y) > k(t, y), then y1(t) > y2(t) for t ∈ Na.

Remark 2. In view of Proposition 2, we can notice that Theorem 1 remains true if we replace ∆α
a

by C∆α
a .

In accordance with the nonlinear model given in (3), we can now define the fractional-
order model, which will be taken into consideration in this work from now on. This model
has the following form:

C∆α
0S(t + 1− α) = θ + ηR(t)− bS(t)I(t)− δS(t),

C∆α
0 I(t + 1− α) = bS(t)I(t)− (µ + δ + e)I(t),

C∆α
0 R(t + 1− α) = eI(t)− (δ + η)R(t),

(12)

subject to the following initial conditions:

S(0), I(0), R(0), D(0) ≥ 0, (13)

where 0 < α < 1 and t ∈ N. Continuing to move forward in our examination, we recall
below an important result that clarifies the stability of the solution of system (12).
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Theorem 2 ([48,49]). Let α ∈ (0, 1). If

λ ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2− α

)α

and |arg z| > απ

2

}
, (14)

for all the eigenvalues λ of J, then the fixed point of system (12) is asymptotically stable, where J is
the Jacobite matrix of the second member of system (12) at the fixed point itself.

3. Existence and Uniqueness

In the following content, we intend to use the fixed point theory together with the
Picard Lindelöf method to show the existence and uniqueness of solution for system (12).
For this purpose, we may rewrite such system in the following classical form:{ C∆α

0 X(t) = F(t− 1 + α, X(t− 1 + α)),
X(0) = X0,

(15)

where t ∈ NTmax
1−α in which (Tmax − 1 + α) ∈ N, X(t) = (S(t), I(t), R(t), D(t))T and the

function F(t, X(t)) is defined as follows:

F1(t, S) = θ + ηR(t)− bS(t)I(t)− δS(t),
F2(t, I) = bS(t)I(t)− (µ + δ + e)I(t),
F3(t, R) = eI(t)− (δ + η)R(t).

(16)

In order to proceed with the existence and uniqueness investigation, we use the initial
condition X(0) as well as Proposition 1. This would immediately transform system (12)
into the following sum equations:

S(t)− S(0) = ∆−α
1−α(θ + ηR(t)− bS(t)I(t)− δS(t)),

I(t)− I(0) = ∆−α
1−α(bS(t)I(t)− (µ + δ + e)I(t)),

R(t)− R(0) = ∆−α
1−α(eI(t)− (δ + η)R(t)),

(17)

for t ∈ NTmax
1−α . Using system (17) and Definition 1, we can obtain the state variable in terms

of Fi(t, X(t)), where i = 1, 2, 3. In other words, we have:

S(t) = S(0) + 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F1(s− 1 + α, S(s− 1 + α)),

I(t) = I(0) + 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F2(s− 1 + α, I(s− 1 + α)),

R(t) = R(0) + 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F3(s− 1 + α, R(s− 1 + α)),

t ∈ NTmax
1 . (18)

Thus, with the help of Picard iterations, we can obtain the following equations:

Sn+1(t) = S(0) + 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F1(s− 1 + α, Sn(s− 1 + α)),

In+1(t) = I(0) + 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F2(s− 1 + α, In(s− 1 + α)),

Rn+1(t) = R(0) + 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F3(s− 1 + α, Rn(s− 1 + α)),

t ∈ NTmax
1 . (19)

Consequently, based on system (17), together with its initial condition, we can gain
the following sum equation:

X(t) = X(0) +
1

Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F(s− 1 + α, X(s− 1 + α)), (20)
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where t ∈ N1. As a result of the previous groundwork, we can infer the following theoretical
results that concern the existence and uniqueness of a solution for the system at hand.

Lemma 2. The function F(t, X(t)) defined in (16) satisfies the following Lipschitz condition:

‖F(t, X(t)− F(t, X∗(t))‖ ≤ β‖(X(t)− X∗(t))‖, (21)

where

β = max
{

max‖bS(t)− (µ + δ + e)‖,
max‖(δ + bI(t))‖, ‖(δ + η)‖

}
. (22)

Proof. By taking S(t) and S∗(t) as two coupled functions, we obtain:

‖F1(t, S)− F1(t, S∗)‖ = ‖(δ + bI(t))(S− S∗)‖. (23)

At the same time, by taking into account:

β1 = max‖(δ + bI(t))‖, (24)

one can reach:
‖F1(t, S)− F1(t, S∗)‖ ≤ β1‖(S− S∗)‖. (25)

Continuing in a similar manner yields the following two inequalities:

‖F2(t, I)− F2(t, I∗)‖ ≤ β2‖(I − I∗)‖,
‖F3(t, R)− F3(t, R∗)‖ ≤ β3‖(R− R∗)‖, (26)

where
β2 = max‖bS(t)− (µ + δ + e)‖,
β3 = ‖(δ + η)‖. (27)

From (24)–(26), we can confirm that the kernels F1, F2 and F3 satisfy the Lipschitz
condition. Moreover, if βi < 1, then the kernel Fi is a contraction for i = 1, 2, 3.

Theorem 3. Assume that condition (21) is satisfied, then there exists a unique solution of system
(12) if:

(Tmax − 1 + α)(α)

Γ(α + 1)
β < 1. (28)

Proof. Actually, the solution of system (12) can be outlined as:

X(t) = P(X(t)), (29)

where P is the Picard operator defined by:

P(X(t)) = X(0) +
1

Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)F(s− 1 + α, X(s− 1 + α)). (30)

Based on the previous arguments, we can have:
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‖P(X1(t)− P(X2(t))‖ =

∥∥∥∥ 1
Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)(F(s− 1 + α, X1(s− 1 + α))

−F(s− 1 + α, X2(s− 1 + α)))‖,

≤
1

Γ(α)

t−α

∑
s=1−α

(t− s− 1)(α−1)‖(F(s− 1 + α, X1(s− 1 + α))

−F(s− 1 + α, X2(s− 1 + α)))‖,

≤
1

Γ(α)

(
t−α

∑
s=1−α

(t− s− 1)(α−1)
)

max
s∈Nt−α

1−α

‖(F(s− 1 + α, X1(s− 1 + α))

−F(s− 1 + α, X2(s− 1 + α)))‖,
≤ (t−1+α)(α)

Γ(α+1) β‖(X1(t)− X2(t))‖.

Since (Tmax−1+α)(α)

Γ(α+1) β < 1, then the operator P is a contraction, where t ≤ Tmax. Hence,
system (12) has a unique solution.

In this regard and based on the aforesaid discussion, we can deduce, for the population
size N = S + I + R, the following assertion:

C∆α
a N(t + 1− α) = θ − δN(t)− (µ + γ)I(t) ≤ θ − δN(t). (31)

This, consequently, yields:

C∆α
a N(t + 1− α) ≤C ∆α

aY(t + 1− α), (32)

where { C∆α
aY(t + 1− α) = θ − δY(t),

Y(a) = N(a).
(33)

Thus, with the help of using Theorem 1 and Remark 2, it follows that:

N(t) ≤ Y(t), (34)

that is because N(a) ≤ θ
δ . Now, if we assume t∗ ∈ Na is the first point, where Y(t∗) > θ

δ ,
then we have:

Y(t∗) = Y(a) + 1
Γ(α)

t∗−α

∑
r=a+1−α

(t∗ − r− 1)(α−1) C∆α
a Y(r)

= Y(a) + 1
Γ(α)

t∗−1−α

∑
r=a+1−α

(t∗ − r− 1)(α−1) C∆α
a Y(r) + (α−1)(α−1)

Γ(α)
C∆α

a Y(t∗ − α)

= Y(a) + 1
Γ(α)

t∗−1−α

∑
r=a+1−α

(t∗ − r− 1)(α−1) C∆α
a Y(r) + (α−1)(α−1)

Γ(α)
C∆α

a Y(t∗ − α)

= Y(a) + 1
Γ(α)

t∗−1−α

∑
r=a+1−α

(t∗−r−1)
(t∗−r−α)

(t∗ − r− 2)(α−1) C∆α
a Y(r) + (α−1)(α−1)

Γ(α)
C∆α

a Y(t∗ − α)

= Y(t∗ − 1) + 1
Γ(α)

t∗−1−α

∑
r=a+1−α

(α−1)
(t∗−r−α)

(t∗ − r− 2)(α−1) C∆α
a Y(r) + (α−1)(α−1)

Γ(α)
C∆α

a Y(t∗ − α)

≤ Y(t∗ − 1) + θ − δY(t∗ − 1)
≤ θ

δ , if δ < 1.

Thus, we have a contradiction. Therefore, from this result, we can also prove that if
δ < 1, then we can have:

Y(t) ≥ 0. (35)

This, actually, asserts that the solution of the system belongs to the region:{
X ∈ R3, 0 ≤ x1 + x2 + x3 ≤

θ

δ

}
. (36)
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It is worth mentioning that the solution of System (3) is positive when b is small
enough. However, it can not be shown that the solution of system (12) is positive. Actually,
the solution of this system sometimes has negative values, but it can then increase to have
positive values once again. For example, if we let t∗ be the first point at which S becomes
negative, we obtain:

C∆α
0S(t∗ + 1− α) = θ − δS(t∗)− bS(t∗)I(t∗) + ηR(t∗) > 0. (37)

Thus, in accordance with Remark 1, one can notice that the class S will then be
increased immediately. This assertion can be, in a similar manner, proven for the two
classes I and R. Although this matter is considered a paradox because the values of the
system should not be negative, what has been observed is that this system can give more
realistic results over time. However, this inference will be discussed later on.

4. Fixed Points and Stability Analysis

In this section, we will be concerned with analyzing the stability of the disease-free
fixed point by finding sufficient conditions connected with the parameters of system (12)
to ensure the stability of this point. To this aim, we will first find those fixed points by
equating the right-hand side of system (12) with zero. In other words, we have:

θ + ηR∗ − bS∗ I∗ − δS∗ = 0,
bS∗ I∗ − (µ + δ + e)I∗ = 0,
eI∗ − (δ + η)R∗ = 0.

(38)

It can be then seen that the above system has two fixed points at most. The first
one is called the disease-free fixed point (or simply DFF point), which can be obtained by
assuming I∗ = 0, i.e.,

E0 =

(
θ

δ
, 0, 0

)
. (39)

On the other hand, if we let I∗ 6= 0, then we obtain:

R∗ = e
(δ+η)

I∗

S∗ = (µ+δ+e)
b ,

I∗ =
(

δ(µ+δ+e)−bθ
b

)(
(δ+η)

ηe−(δ+η)(µ+δ+e)

)
.

(40)

This, actually, yields the second fixed point of the considered system, which is called
the pandemic fixed point E∗. In other words, this point can be yielded only when I∗ > 0,
and it has the form E∗ = (S∗, I∗, R∗), where S∗, I∗ and R∗ are defined above.

In the same regard, the so-called basic reproduction number R0 can be defined as
the number of infections caused by the first disease case. This ’infections’ number typi-
cally appears in an appointed population where everyone is assumed to be susceptible
to infection [40]. The importance of R0 lies in knowing the rapidity of the spread of the
emerging disease among the inhabitants and the proportion of the population to be immu-
nized [40]. To be precise, the population spread of the epidemic will occur when R0 > 1,
where it is difficult to control. The method to enumerate the basic reproduction number can
be performed by finding the spectral radius of the next generation matrix Y (i.e., R0 = ρ(Y)).
The matrix Y is a multiplication of F by V−1, where:

F =
[

∂Fi(E0)
∂tj

]
and V =

[
∂Vi(E0)

∂tj

]
, (41)

where Fi refers to the stream of freshly infected cases into compartment tj, and Vi refers
to the entering/leaving streams connected with tj, for i, j = 1, 2, 3, · · · , m such that m is
the total of compartments demonstrated in the model. Based on the aforesaid argument,
one might calculate R0 for the fractional-order model (12) by obtaining the two primary
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matrices F and V. To this aim, we can note that the infected compartment I can yield the
following assertion:

C∆α
a I(t + 1− α) = bS(t)I(t)− (µ + δ + e)I(t). (42)

This consequently implies the following Jacobian matrix:

J =
(

bθ

δ

)
− (µ + δ + e). (43)

Accordingly, the above matrix can be decomposed in terms of the two matrices F and
V so that J = F−V, where:

F =

(
bθ

δ

)
, (44)

and
V = (µ + δ + e). (45)

Therefore, the basic reproduction number R0 can be then calculated to be given as:

R0 = ρ(Y) = ρ(FV−1) =
bθ

δ(µ + δ + e)
. (46)

Remark 3. It should be noted that:

I∗ =
(δ + η)θ

(µ + δ + e)(δ + η)− ηe

(
1− 1

R0

)
, (47)

which asserts that the pandemic fixed point E∗ will hold only when R0 > 1.

In what follows, we will analyze the stability of the DFF point. This will be imple-
mented by establishing some sufficient conditions related to the parameters of system (12)
to ensure the stability of this point. In order to achieve this objective, we introduce the next
theoretical result.

Theorem 4. In case of R0 < 1, the DFE point (E0) of system (12) is locally asymptotically stable if

max{(δ + µ + e)(1− R0), (δ + η)} < 2α. (48)

Proof. The Jacobian matrix of F at E0 can be given as:

J(E0) =

 −δ − bθ
δ η

0 bθ
δ − (µ + δ + e) 0

0 e −(δ + η)

. (49)

Consequently, the characteristic polynomial will be as:

det(λId− J(E0)) = (λ + δ)(λ + δ + η)

(
λ +

δe− bθ + δ2 + µδ

δ

)
,

⇔
det(λId− J(E0)) = (λ + δ)(λ + (δ + η))(λ− (δ + µ + e)(R0 − 1)).

This implies:
det(λId− J(E0)) = 0,

⇔
λ1 = −δ < 0 (50)

λ2 = −(δ + η) < 0 (51)
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and
λ3 = (δ + µ + e)(R0 − 1) < 0. (52)

Thus, when R0 < 1, we have:

−2α < λ1 < 0
−2α < λ2 < 0.

(53)

Hence, according to Theorem 2, the DFE point is locally asymptotically stable if
R0 < 1.

5. Application to Predict the Behavior of COVID-19 in Germany

In this section, we will perform several numerical simulations to verify the results
inferred in the previous sections. For this purpose, we will apply our study to predict the
behavior of the virus in Germany. We will take all the statistics of a million people, which
means we will take the initial population size N(0) as 1,000,000. According to [50], we
can easily find: the number of new births per day for a million people θ = 26.3308 and
the death rate δ = 3.15× 10−5. We can also obtain the stats described in Table 2 from the
site [51].

Table 2. Real data: The number of active infections in Germany in the period 26 April to 23 May
2020 [51] .

26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 1-May 2-May

30,791 29,637 28,642 28,126 27,845 27,375 26,262

3-May 4-May 5-May 6-May 7-May 8-May 9-May

25,884 25,693 24,826 24,234 23,968 23,565 22,531

10-May 11-May 12-May 13-May 14-May 15-May 16-May

21,817 21,253 20,707 20,664 20,557 20,250 19,914

17-May 18-May 19-May 20-May 21-May 22-May 23-May

19,200 18,254 17,411 16,687 16,435 16,151 15,092

Using Table 2 and [51], we find the contact rate b = 5.1160× 10−7, the recovery rate
e = 0.0789, the rate at which a recovering person is at risk of infection η = 0.87, and the
corona death rate µ = 0.1. We also find that the initial number of the susceptible people is
S(0) = 686,400, while the initial number of the exposed people is I(0) = 33,966, and finally,
the initial number of the infected people is R(0) = 279,630. In order to apply Theorem 4,
we first calculate the basic reproduction number:

R0 =
bθ

δ(µ + δ + e)
= 0.73013 < 1, (54)

and
max{(δ + µ + e)(1− R0), (δ + η)} < 2α = 0.87003 < 2α. (55)

Note that the conditions of Theorem 4 are validated, then the DFE point is locally
asymptotically stable. Anyhow, based on these, we plot Figures 2 and 3, which represents a
numerical simulation, confirming the stability of the system (12) in this case.
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Figure 2. Numerical simulation of system (12).
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Figure 3. Numerical simulation of infected class with integer and commensurate fractional-order
and comparison with the real data.

In order to obtain a better modeling use the incommensurate order system
C∆α1

0 S(t + 1− α) = θ + ηR(t)− bS(t)I(t)− δS(t),
C∆α2

0 I(t + 1− α) = bS(t)I(t)− (µ + δ + e)I(t),
C∆α3

0 R(t + 1− α) = eI(t)− (δ + η)R(t),
(56)

where 0 ≤ α1, α2, α3 ≤ 1. In this case, the existence of a direct and simple condition that
deals with the stability of the system (56) is difficult and may be impossible in comparison
with establishing a simple condition that deals with the stability of the commensurate
system (12). However, it can indeed study the stability of the fixed points for system (56)
by knowing the values of αi, 1 ≤ i ≤ 3. In such a case, we need to report the next corollary.

Corollary 1 ([48]). Suppose that 0 < αi < 1, for 1 ≤ i ≤ 3, and M is the least common multiple
of ui and vi so that αi =

vi
ui

with gcd(ui, vi) = 1 and 1 ≤ i ≤ 3, where gcd(·, ·) is denoted to the
greatest common divisor. If at least one root of the following equation:
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det
(

diag(λMα1 , λMα2 , λMα3)−
(

1− λM
)

J
)
= 0, (57)

lies inside the set
C\K

1
M , (58)

then the trivial solution of system (56) corresponding to (S(0), E(0), I(0)) is locally asymptotically
stable, where

K
1
M =

{
z ∈ C : |z| ≤ (2 cos(M|arg z|))

1
M and |arg z| ≤ π

2M

}
. (59)

Overall we will consider α1 = 0.223, α2 = 0.2, α3 = 0.232. In this case, we obtain
a more accurate approximation than the commensurate order case. Figure 4 shows a
numerical simulation of this case, and Figure 5 represents the comparison of this case with
the real data, while Figure 6 represents the comparison between the integer order case, the
commensurate order case, the incommensurate order case, and the real data. It can be seen
that each time, the system is more accurate.
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Figure 4. Numerical simulation of system (56) with (α1 = 0.223, α2 = 0.2, α3 = 0.232 (56).
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It can be seen that system (56) is more accurate than system (12), and this reduces the
error rate in prediction.
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Figure 6. The comparison between the integer order, the commensurate order, and the incommensu-
rate order systems with the real data.

6. Conclusions

In this work, a novel fractional-order discrete model has been proposed with the aim
of studying the behavior of the COVID-19 pandemic. With the help of using the Picard
Lindelöf method, the existence and uniqueness of the solution for the proposed model
have been investigated. In light of the relationship between the stability of the fixed points
of this model and the basic reproduction number, some useful theoretical results have been
established. To verify these results, several numerical simulations have been performed via
MATLAB scripts. In general, we can assert that the presented model in this work can be
applied to study the COVID-19 pandemic in many regions around the world, even if this
model is formulated with the fractional-order backward operator in its commensurate or
incommensurate cases.
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