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Abstract: Emergency material delivery is vital to disaster emergency rescue. Herein, the framework
of the emergency material delivery system (EMDS) with the unmanned aerial vehicle (UAV) as
the vehicle is proposed, and the problem is modeled into a multi-trip time-dependent dynamic
vehicle routing problem with split-delivery (MTTDDVRP-SD) in combination with the rescue reality,
which provides decision support for planning disaster relief material. Due to the universality of
dynamic interference in the process of material delivery, an optimization algorithm based on the
traditional intelligent auction mechanism is proposed to avoid system performance degradation
or even collapse. The algorithm adds pre-authorization and sequential auction mechanisms to the
traditional auction mechanism, where the pre-authorization mechanism improves the capability
performance of the system when there is no interference during the rescue process and the sequential
auction mechanism improves the resilience performance of the system when it faces interferences.
Finally, considering three types of interference comprehensively, which includes new task generations,
task unexpected changes and UAV’s number decreases, the proposed algorithm is compared with DTAP
(DTA based on sequential single item auctions) and CBBA-PR (consensus-based bundle algorithms-
partial replanning) algorithms under different dynamic interference intensity scenarios for simulation
experimental from two perspectives of the capability performance and resilience performance. The
results of Friedman’s test with 99% confidence interval indicate that the proposed algorithm can
effectively improve the capability performance and resilience performance of EMDS.

Keywords: emergency material delivery; MTVRP; DVRP; SDVRP; pre-authorization mechanism;
sequential auction mechanism; resilience

MSC: 90C39

1. Introduction

Earthquakes, floods and other large-scale natural disasters occur frequently, causing
serious damage and far-reaching impacts on modern society. How to deal with natural
disasters and their consequences can benefit the maintenance of social stability, and this
is an emerging topic that has garnered increasing attention from both practitioners and
academics in recent years. According to relevant research reports [1], the Wenchuan earth-
quake in 2008 caused 69,277 deaths, 374,643 injuries, 17,923 people missing, and direct
economic losses of more than 800 billion US dollars and the 2015 earthquake in Nepal
caused at least 8786 deaths, 22,303 injuries, and economic losses of about 113 billion yuan.
The way to reduce the impact of natural disasters on human life, the economy and the
environment requires not only to be prepared for detection and early warning before disas-
ters occur [2], but also rapid post-disaster relief supplies and post-disaster recovery work,
which led to the emergence of an EMDS. Due to the destruction of ground communication
facilities, road traffic, and increased environmental hazards, the selection of vehicles in
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EMDS presents challenges. While the use of UAVs as vehicles in EMDS can weaken the
impact of ground traffic on rescue work more than manned aircraft and unmanned vehicles
and avoid the loss of rescue equipment and personnel, UAVs as temporary communication
relay technology are also very mature, which can replace communication base stations to
restore certain communication capabilities in disaster areas [3].

The impact of the complex post-disaster environment is the urgent demand for ma-
terials by the disaster victims. Moreover, with the delay of time, the deterioration of the
health of the disaster victims will further aggravate the urgency of the relief materials
in the disaster area, resulting in greater casualties [4]. Song et al. [5] proposed an emer-
gency material scheduling model with multiple disaster points and multiple rescue points,
but the model is mainly aimed at the emergency material scheduling of disaster points
with the same emergency indicator of material demand. Based on the weight-TOPSIS
method, Guan et al. [6] determined the emergency indicator of the tasks in the disaster
area, considered the penalty cost of unmet needs in the disaster area, and they established
a collaborative disaster relief material scheduling model, but did not consider the change
of the emergency indicator of the tasks. At the same time, due to the aftershocks after
the earthquake and the crash of the UAVs, some other situations have brought great dy-
namics to the post-disaster rescue. On the other hand, considering the loading capacity
constraints of UAVs and battery life constraints, UAVs are often required to be reused,
and the material needs of a single disaster area may not be satisfied by a single UAV at
one time. These are all issues that EMDS should consider when completing disaster relief,
so we modeled it as a multi-trip time-dependent dynamic vehicle routing problem with
split-delivery (MTTDDVRP-SD), based on the classic multi-trip vehicle routing problem
(MTVRP) [7], which also takes into account the following characteristics: multi-trip per
UAV, time-dependent emergency indicator, dynamics of the environment, split-delivery,
and trip duration limit.

MTTDDVRP-SD takes into account various practical situations in the delivery of
emergency materials, which makes it unique and difficult. From the perspective of mod-
els, MTTDDVRP-SD can be seen as a combination of MTTDVRP, DVRP and SDVRP, al-
though these three models are more in line with the real problem, but the relevant research
is not sufficient, especially the combination of the three is less.

• In the delivery of emergency materials, it is common to allow vehicles to make multiple
trips, and it is also widely used in logistics [8], public transportation scheduling [9]
and other fields. Cattaruzza et al. [10] emphasized that allowing vehicles to make
multiple trips can significantly improve vehicle utilization and reduce the number
of vehicles required, thereby further reducing fixed costs and overall costs, and the
application in life is more realistic. Moreover, they theoretically proved that the
MTVRP problem was NP-hard. Dorling et al. [11] argued that existing VRPs are
insufficient for planning UAV deliveries, that is because multiple trips to the depot
are not permitted, resulting in too many UAV solutions, so they proposed two multi-
trip VRPs for UAV deliveries to address both problems. Sun et al. [12] proposed a
time-dependent multi-trip vehicle routing problem (TDMTVRP) with an improved
travel speed model, arguing that speed is time-dependent. Moreover, the experimental
results indicated that compared with the capacitated vehicle routing problem with the
time windows model (CVRPTW), the TDMTVRP model proposed can both decrease
the vehicle utilized times dramatically and shorten the vehicle travel distances slightly
in dealing with the vehicle routing problem (VRP).

• Dynamic VRP (DVRP) [13] emerged as a new variant of VRP and attracted more and
more attention. Li et al. [14] investigated the emergency material dispatching problem
under uncertainty and built a multi-objective optimization model to minimize the
total cost and maximize the affected rate of demand, but without considering the
case of multiple trips of vehicles. Nan et al. [15] investigated the dynamic demand
VRP with time windows for the model of mixed distribution of electric and fuel
logistics vehicles, i.e., the demand of the task changes randomly or a new task is
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generated randomly during the execution of the task. Sabar et al. [16] considered
the DVRP problem under vehicle speed uncertainty caused by traffic congestion,
but this uncertainty has regularity. Ouaddi et al. [17] proposed the MTDVRP problem
with a combination of MTVRP and DVRP and recognized the complexity of such
problems. Their work considered the problem of vehicle overloadable transportation
and distribution, with dynamics reflected in the cancellation and modification of user
orders and changes in vehicle speed due to congestion, but without considering the
problem of delivery splitting at a task.

• The split-delivery vehicle routing problem (SDVRP) is a variant of the Capacitated Ve-
hicle Routing Problem (CVRP) in which a customer can be served by more than one ve-
hicle, i.e., the requirement of a customer can be split among vehicles. Casazza et al. [18]
addressed a single commodity Pickup and Delivery Vehicle Routing Problem and as-
sumed that the requirements of both pickup and delivery nodes can be split, and each
node can be visited more than once. An extensive experimental analysis showed
their method to offer simultaneously more modeling flexibility and more compu-
tational effectiveness. Hartomo et al. [19] investigated the problem of distribution
of relief materials from a logistics center to a network of demand points, and their
assumptions included that the requirement for materials at a node would be served
by several trucks or over multiple trips. However, their work does not take into
account the dynamic changes in the environment and emergency indicator over time.
Zhang et al. [20] considered the case of a customer requiring multiple vehicles for
service, but without considering the change in capability due to the change in external
information during the working process, and the case of multiple trips.

Currently, to solve these kinds of problems, the exact algorithm [21] and memetic
algorithm [17] are commonly used, but they are only suitable for solving small-scale
arithmetic cases. On the other hand, most of the processing methods of DVRP are dividing
time slices and decomposing into a series of static VRP problems [22,23], and then using
heuristic algorithms to solve them, but under the conditions of multi-trip and delivery
splittable, the solution search space is huge and the time complexity is very high, so much
so that it is not suitable for emergency material delivery scenarios under environmental
uncertainty. For this purpose, this paper considers an intelligent auction algorithm based
on the market mechanism, such as Guo et al. [24] who proposed an auction algorithm
that introduces the idea of “blockchain” to realize the task allocation problem in the “last
mile” logistics distribution. Auction algorithms have been improved in the literature,
Choi et al. [25] proposed a consensus-based auction algorithm (CBBA), which uses both
auction and consensus mechanisms for task selection and conflict resolution, thus reducing
the computational resource consumption of the algorithm and accelerating the convergence.
The performance improvement of CBBA algorithm over the initial auction algorithm was
experimentally verified, but the research does not address the dynamic change of task
information. In a later study, Buckman et al. [26] proposed the CBBA-PR algorithm for
partial replanning based on the CBBA algorithm in order to cope with dynamic changes
in the environment by mixing a subset of unfinished tasks with new tasks to achieve fast
reallocation. CBBA-PR ensures optimality in dynamic assignment and improves the fast
response of the algorithm to dynamic situations, but the algorithm is not effective in some
cases where real-time performance is required or the problem size is large. Chen et al. [27]
argued for the better applicability of online algorithms for the uncertain arrival of dynamic
tasks and proposed that tasks should be assigned one by one rather than in batches to
ensure the efficiency of UAV execution. Farinelli et al. [28] converted multi-robot patrol
into a task assignment problem, considered online decision making techniques, proposed
the DTAP algorithm based on sequential single auction, and verified the performance of
the algorithm on a real robot platform. However, they relied only on the task information
at the current moment, without considering more global known information. Of course,
centralized algorithms such as the genetic algorithm (GA) and particle swarm optimization
(PSO) can also solve VRP, but they are less adaptable to the dynamic situation of changing
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environment in the disaster area. For example, Luo et al. [29] pointed out that when the
global information of the task changes dynamically over time, the centralized algorithm
tends to decompose and re-iterate the constraint solution, which is less flexible than the
auction algorithm.

When EMDS is implemented to start the emergency material delivery task, it is still
necessary to pay attention to two aspects, i.e., not only to ensure the capability performance
to avoid secondary damage to the disaster area due to untimely rescue, but also to ensure
the resilience performance to have the ability to continue the task. In fact, accurate and
timely information about the disaster area can be obtained through efficient reconnaissance
detection [30]. However, the uncertainty of the environment in a disaster is common
and may cause the system to collapse, thus requiring the EMDS to adapt effectively to
interferences, i.e., to have a good resilience performance. While resilience was first intro-
duced to engineering systems in 1995 [31], defined as, “Resilience is the probability of a
system’s recovery from failures”, in 2009, Woods [32] argued that the focus should be on
the adaptability of a system facing more complex situations, thus giving the definition,
“Resilience, as a form of adaptive capacity, is a system’s potential for adaptive action in the
future when information varies, conditions change, or new kinds of events occur, any of
which challenge the viability of previous adaptations, models, or assumptions”. As to how
to quantitatively evaluate resilience, summarizing the research results over the years, it can
be broadly divided into two categories: time-dependent and time-independent models.

The core of time-dependent models is that the performance of systems (e.g., power
transmission systems [33] and communication systems [34]) is time-dependent and can be
expressed quantitatively, and such models usually describe the resilience of the system in
terms of performance change curves. In contrast, time-independent models are mostly used
to describe the system capability performance only calculated after the completion of the
task, such as air defense systems [35]. The integral resilience model is commonly used for
quantitative description of resilience, which describes the system resilience by comparing
the cumulative distributional impact of system performance over time with and without
interference, and can be found in the literature [36]. Dessavre et al. [37] studied the resilience
of offensive and defensive countermeasures based on the integral resilience metric, using
the number of OODA cycles as a performance indicator, but without considering the multi-
interference situation, so some improvements are needed in emergency material delivery.

Motivated both by the adaption of new technologies and delivering vehicle (UAV) in
practical transportation industry and the theoretical gap existing in the current literature,
we investigate a problem model (MTTDDVRP-SD) that is more adapted to the emergency
material delivery scenario in disaster areas. On this basis, due to the existence of two layers
of optimization of UAV routing and delivery quantity, which leads to a huge solution
search space of the traditional evolutionary algorithm and does not adapt to the objective
demand of the dynamics of the disaster area. So, we try to design a new algorithm based
on the intelligent auction mechanism and propose a resilience evaluation indicator under
dynamic multiple interferences. Specifically, the main contributions of this paper can be
summarized as follows.

• To meet the performance requirements of emergency material delivery, an overall
framework of EMDS with UAV as the vehicle is proposed, and the emergency material
delivery problem is described as a new variant of VRP (MTTDDVRP-SD);

• Based on the traditional intelligent auction algorithm, pre-authorization and se-
quential auction mechanisms are added, and sequential auction algorithm based
on pre-authorization (SAABoPA) is proposed to solve MTTDDVRP-SD to optimize
the system performance.

• Based on the integral resilience model, a multi-interference resilience evaluation
indicator suitable for emergency material delivery scenarios is proposed;

• The experiments are carried out under different dynamic interference intensities
through the post-earthquake emergency material delivery scenario and compared
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with the comparative algorithms from two perspectives of capability performance and
resilience performance to verify the effectiveness of the algorithm in this paper.

The problem MTTDDVRP-SD will be deeply analyzed and defined in the next section,
while in Section 3, the proposed method of SAABoPA for solving it is presented. The ex-
perimental results are reported in Section 4. Section 5 concludes this study and discusses
future research directions.

2. Problem Definition and Formulation
2.1. Problem Definition

UAVs with loading capacity were considered to deliver relief materials to the
earthquake-affected areas, and information about the danger in the affected areas was ob-
tained by satellite remote sensing technology, UAV reconnaissance technology, and ground
rescue teams [38]. The relief materials are concentrated in the distribution center at the
border of the disaster area, and the UAV makes task assignment according to the disaster
area danger information, determines the task target, loads the materials at the distribution
center, and then carries out the delivery to the disaster area target. The specific EMDS
framework is shown in Figure 1, which describes the interaction between the system and
the outside. The EMDS includes information processing subsystem (IPSys), command and
control subsystem (CCSys), and loading and transportation subsystem (LTSys).

Figure 1. EMDS interaction framework chart.

The subsystem functions can be described as follows:

1. IPSys: Responsible for filtering, standardizing and sharing task information. Task in-
formation provided by the disaster environment (DE) is filtered, standardized, and shared
with CCSys and LTSys. The sharing of task information is discontinuous and will only
be re-shared when there is a sudden change in the information.

2. CCSys: Responsible for task assignment and solution sharing. Based on the task
information shared by IPSys, the task assignment is executed by combining the
status and capability of each LTSys component. Due to the dynamic change of task
information, task assignment is not executed at once. After the allocation plan is
formed, it is shared to the material distribution center (MDC).
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3. LTSys: Responsible for task assignment and material delivery. Based on the task
information shared by IPSys, the task assignment is completed with the unified
scheduling of CCSys. After the assignment plan is determined, the UAVs in LTSys
load the materials stored in the MDC and execute the material delivery process.

The relevant assumptions of this paper are as follows:

1. The material requirements of the task may not be met by one UAV at a time;
2. A single deployment of a UAV may execute multiple tasks;
3. When the UAV is empty, it needs to be returned to the MDC and reloaded to be able

to execute the next task;
4. Obstacle avoidance among UAVs and against obstacles (e.g., mountains and forests)

is not considered. Obstacle avoidance can be accomplished by adjusting the height of
the UAV under certain conditions [39], and the increase in range due to height change
can be ignored because the height difference is small relative to the range;

5. In the case of emergency rescue, the UAV always maintains the maximum capacity,
i.e., the UAV always maintains the maximum power during the task. The UAV
endurance can be considered as fixed for a certain battery capacity;

6. Ignoring the deceleration of the UAV during the delivery of the material, as well as
the change in direction, the time variation from this is insignificant in comparison.
Theoretically, this variation could be integrated into the velocity and loading rela-
tionship, but we do not consider it in order to simplify the problem. Moreover, the
kinematic model of the UAV is not investigated in depth in this paper;

7. Consider using a single base, i.e., an MDC. For a general multi-base VRP, it can be
divided into sub-blocks by clustering methods, and within the sub-blocks still remains
a single base VRP;

8. The material in the MDC meets the material needs of all affected areas and only one
type of material is considered. The current national reserve of emergency resources
is sufficient, and the amount of emergency resources available can be considered
adequate in the face of a catastrophic event in a local area. In fact, many types of
materials are needed in disaster relief situations, including food, water, medicine,
etc. However, in order to facilitate the emergency and effective implementation of
relief, in many cases we do not count the requirements of various types of materials
too much and make a precise delivery, and the more general practice is to synthesize
various materials into a rescue kit [40].

2.2. Problem Formulation

In this section, the mathematical model proposed to solve the above problem is intro-
duced. However, before that we need a formal description of the disaster area environment
and dynamic interferences.

2.2.1. DE Formulation

Here, we first formalize spatio-temporal characteristics and dynamic properties of DE
based on task information of the disaster area.

Definition 1. Task environment G. The task environment is modeled as an undirected graph
G = (V, E), where V denotes the set of vertices in Euclidean space, E denotes the set of edges.

In G, V includes the task node T and the MDC node VB. The edge E ⊂ V × V
indicates that two neighboring vertices are reachable between them and are paths for
the UAV to move. A task node represents a delivery task, and the set of all tasks is
T = {T1, T2, . . . , Tj, . . . , T|T|}.

Definition 2. Time t. Time is represented by a set of discrete sequences, t ∈ {0, 1, 2, . . .}.

Take the time of the first UAV taking off for the task as the base time 0.
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Definition 3. Coordinates (x, y). The node position is represented by the two-dimensional coordi-
nates (x, y).

The node coordinates considered in this paper include the task coordinates and MDC
coordinates, and the task coordinates are used to characterize the nearby affected areas that
need relief materials.

Definition 4. Quantity required R(t). At t moments, the quantity of material required by the task
Tj ∈ T is denoted by Rj(t).

To simplify the problem, the quantity required is unitized, e.g., Rj(t) = 3 means that
the quantity of material required for the task Tj at time t is 3 units.

Definition 5. Emergency indicator E(t). At t moments, the emergency of the task Tj ∈ T on the
material is denoted by Ej(t).

The emergency indicator [6] indicates the urgency of the requirement for materials at
the task, which varies with time and the delivery of materials. When the upper threshold is
reached, it will cause secondary damage to the disaster area due to the lack of replenishment
of materials for a long time [41]. This is similar to a time window constraint, but the
difference is that the emergency indicator can describe the range of time constraints,
the value of the task is varying, i.e., the sooner the task is completed the higher the value.
The formula is expressed as follows.

Ej(t) =


0, Rj(t) ≤ 0,
1, Ej(t) ≥ 1,

Ej(t0) + a · (t− t0)−
Ej(t0)

Rj(t0)
·MDij(t), others.

(1)

where t0 denotes the moment of the last IPSys shared information. Equation (1) indicates
that the emergency indicator Ej(t) of a task gradually increases with time t, but the material
replenishment decreases the value of Ej(t). In fact, the task emergency indicator formula is
a fit to the actual indicator, and IPSys shares the information every time the task information
changes, i.e., the task emergency indicator can be corrected at the t0 moment.

2.2.2. Dynamic Interference Formulation

The dynamic scenarios in this paper consider three possible types of interferences in
which their occurrence is unpredictable, and are therefore described in terms of stochastic
processes and defined as follows.

Definition 6. Dynamic interference type 1: new task generations. This means that during the
delivery of emergency materials, new tasks will emerge as the disaster continues.

Taking the stochastic process
{

X̃(n1), n1 ∈ {1, 2, . . . ,
∣∣DIS1

∣∣}} denotes the occurrence

of dynamic interference events of the type new task generations, where X̃(n1) = (t̃(n1), x̃(n1),
ỹ(n1), R̃(n1), Ẽ(n1)), and each random variable t̃(n1), x̃(n1), ỹ(n1), R̃(n1), Ẽ(n1) satisfies a
certain probability distribution, respectively, t̃(n1) ∼ DiscreteU(0, Tend), x̃(n1) ∼ U(x, x),
ỹ(n1) ∼ U(y, y), R̃(n1) ∼ DiscreteU(R, R), Ẽ(n1) ∼ U(E, E). The result of the occurrence
of dynamic interference events of this type causes the task T to be expanded, and the
information of the new task is all generated randomly in the random vector X̃(n1), which
is represented by the following equation.

T = T ∪ {T|T|+n1}, t = t̃(n1) (2)
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Definition 7. Dynamic interference type 2: task unexpected changes. This means that during
the delivery of emergency materials, information on the material requirements and emergency
indicator of currently known tasks will deteriorate as the disaster continues and disaster information
is reevaluated.

Taking the stochastic process
{

Ỹ(n2), n2 ∈ {1, 2, . . . ,
∣∣DIS2

∣∣}} denotes the occurrence
of dynamic interference events of the type task unexpected changes, where
Ỹ(n2) = (t̃(n2), j̃(n2), ∆̃R(n2), ∆̃E(n2)), and each random variable t̃(n2), j̃(n2), ∆̃R(n2),
∆̃E(n2) satisfies a certain probability distribution, respectively, t̃(n2) ∼ DiscreteU(0, Tend),
j̃(n2) ∼ DiscreteU(1, |T|), ∆̃R(n2) ∼ DiscreteU(0, R/2), ∆̃E(n2) ∼ U(0, E/2). The result
of the occurrence of dynamic interference events of this type causes changes in the informa-
tion about the material requirements and emergency indicator in the current task T, and the
amount of changes in the information are generated randomly in the random vector Ỹ(n2),
which is represented by the following equation.

R j̃(n2)(t) = R j̃(n2)(t) + R̃(n2), t = t̃(n2) (3)

Ej̃(n2)(t) = Ej̃(n2)(t) + Ẽ(n2), t = t̃(n2) (4)

Definition 8. Dynamic interference type 3: UAV’s number decreases. This means that during the
delivery of emergency materials, the number of available UAVs will be reduced due to failure and
other circumstances.

Taking the stochastic process
{

Z̃(n3), n3 ∈ {1, ...,
∣∣DIS3

∣∣}} denotes the occurrence of

dynamic interference events of the type UAV’s number decreases, where Z̃(n3) = (t̃(n3), ĩ(n3)),
and each random variable t̃(n1) ∼ DiscreteU(0, Tend), ĩ(n3) ∼ DiscreteU(1, |U|). The result
of the occurrence of dynamic interference events of this type causes the number of currently
available drones is reduced, which is represented by the following equation.

U = U − {Uĩ(n3)}, t = t̃(n3) (5)

2.2.3. MTTDDVRP-SD

In summary, The MTTDDVRP-SD is formulated as follows.

f = min ∑NT
1 Ej(Tend) (6)

0 ≤ Lk
i (t) < Lmax

i (7)

Lk
i (t) = Lk

i (sTk
i )−∑|T|

j=1 xk
ij ×MDij(t) (8)

Lk
i (sTk

i ) > 0 (9)

0 ≤ MDij(t) ≤ Lk
i (t) (10)

aTk
i − sTk

i ≤ Tduration
i (11)

vi(t) = vunload
i − δi × Lk

i (t) (12)

1 ≤ Exi (13)
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∑Exi
k=1 xk

ij ∈ {0, 1} (14)

∑|T|
j=1 xk

ij ≥ 1 (15)

∑|U|
i=1 ∑Exi

k=1 xk
ij ≥ 1 (16)

0 ≤ MDij(t) ≤ Rj(t) (17)

xk
ij ∈ {0, 1} (18)

Equation (6) aims to minimize the number of tasks whose emergency indicator reaches
the threshold 1 at the end of the emergency material delivery. Different from the general
objective function of the VRP and its variants problem, which considers minimizing trans-
portation and inventory costs or maximizing transportation and inventory rewards [42,43].
In the disaster area emergency material delivery problem, this paper considers, based on
the rescue work after the earthquake disaster, to ensure the safety of victims’ lives and
avoid more secondary injuries. Equation (7) indicates that the loading of any UAV at any
time is less than the maximum loading and is non-negative. Equation (8) represents the
change in the current UAV loading. Equation (9) represents the loading capacity of the
UAV Ui when it is deployed from the MDC is strictly large 0. Equation (10) indicates
that the quantity delivered by the UAV Ui to the task Tj is less than the current loading
capacity of the UAV i. Equation (11) represents the flight time constraint for a single UAV
trip. Equation (12) represents the relationship between the UAV speed and the loading
capacity [44]. Equation (13) indicates the constraint on the number of trips of a single UAV.
Equation (14) indicates the entire emergency material delivery process, the UAV Ui to the
task Tj at most once. Equation (15) indicates that a single UAV executes at least one task in
a single trip. Equation (16) indicates that the entire emergency material delivery process,
task j is executed at least once. Equation (17) indicates that the quantity of UAV Ui to task
Tj delivery is less than the current requirement of task Tj. Equation (18) represents the
decision variables.

3. Method: SAABoPA
3.1. Overall Framework

In the EMDS framework, CCSys and LTSys use the SAABoPA algorithm for task
assignment based on the task information shared by IPSys. The tasks shared by IPSys are
equivalent to auction items. CCSys acts as the auctioneer and sends the task information to
the UAVs in the corresponding LTSys. The UAV acts as a bidder, calculates the net benefit
for each task with the task price stated by CCSys, and sends the bid price of the task back to
CCSys. CCSys decides the pre-authorization and authorization of the task based on the bid
price, and sends the task to the authorized UAV and the overall framework of SAABoPA is
shown in Figure 2.

The SAABoPA algorithm requires the UAV to obtain at most one task authorization
and one task pre-authorization in one auction. The algorithm is based on pre-authorization
to ensure the system capability performance, and based on sequential auctions to effectively
improve the system resilience performance and avoid the frequent occurrence of interfer-
ence that causes the system performance degradation by reallocation or adjustment of the
assignment results. It should be noted that since the published task is executed in the future
time and has no effect on the current execution process, the UAV can participate in the
auction during the execution of the task [27], but it can only obtain the pre-authorization of
the task instead of the authorization.

There are two possibilities for starting an auction:
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1. CCSys active start: in case of interference.

• In EMDS, when the task information changes abruptly (due to new task Tnew gen-
eration, unexpected changes in task information and completion of one delivery),
IPSys shares the current task information with CCSys. Based on the shared infor-
mation and the set of previous authorization information Y, CCSys can determine
the cause of the task information mutation. If a task is completed, the auction
is not started; if a new task Tnew is created and the task information changes
unexpectedly, the auction is started and the previous set of preauthorization
information X is deleted and the task price vector P(t) is updated;

• In the case that the UAV Ui is lost, the UAV Ui task completion time is known
from the elements in the previous set of authorization information from CCSys
(expected arrival time t1

i ). If IPSys shares the information with CCSys at this
point and it matches the expected change, the task is successfully executed and
the auction is not started; otherwise, it means that the UAV is malfunctioning
and there is one less bidder in the next auction, so ask IPSys to share the task
information at this moment, start a new auction, and delete the previous set of
pre-authorization information X and reset the task price vector P(t).

2. CCSys passive start: in case of no interference.
After the UAV Ui arrives at the MDC V0, it sends an auction asking to CCSys. If Ui has
been pre-authorized, it is directly converted to authorization and sent to Ui. Mean-
while, what needs to be achieved is to add the pre-authorization quintuple relation
related to Ui to the authorization set Y and remove it from the pre-authorization set
X; conversely, start the auction and CCSys sends the task information set TASK to all
UAVs that are not pre-authorized.

Update task information based 
on current time

Interference or 
task achieved?

Execution: task publication phase

No task?

Start

End

Task 
information 
changes?

Execution: bidding phase

Interference

UAVs share  asking for 
auction instructions

Pre-authorized?

Task 
achieved

Execution: authorization phase

UAVs loading and delivery

Execution: pre‐authorization phase

Authorized?

Update the set of
pre-authorization

LTSysCCSysIPSys

Yes

Yes

Yes

No

No

No

Figure 2. Overall framework of SAABoPA.

3.2. Mechanism Design

In MTTDDVRP-SD, after a task is executed once, if it is not completely completed, it
is considered as a new task and the gain obtained from the execution is recalculated. In a
dynamic environment, interference new tasks generations and task unexpected changes occur
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without burden to the proposed algorithm. This is because newly generated tasks or tasks
with unintended changes in information are treated the same as tasks after one execution.
Moreover, in the auction mechanism, UAVs lose their capabilities due to failures, which is
equivalent to a reduction in the number of auctioneers. Due to the loose coupling between
UAVs, no additional burden is imposed on the algorithm of this paper.

The SAABoPA mechanism consists of four phases: (1) Task Publication Phase, (2) Bid-
ding Phase, (3) Pre-authorization Phase and (4) Authorization Phase. The CCSys performs
the task publication, pre-authorization and authorization phases, and the UAV in the LTSys
performs the bidding phase.

3.2.1. Task Publication Phase

At the beginning of an auction, CCSys releases to LTSys the estimated set of task
information TASK = {T, (x, y), R′, E′, P(τ)}, where T denotes the set of uncompleted tasks
at the current τ moment. When task Tj is partially completed, Tj will not be deleted from
T, but the information of material requirements and emergency indicator will be updated;
when task Tj is fully completed, Tj will be deleted, T = T − {Tj}; when a new task Tnew
appears, the set of tasks T is expanded, T = T

⋃{Tnew}. NT denotes the number of elements
in the set T. (x, y) = {(xj, yj)|Tj ∈ T} denotes the position information of the uncompleted
tasks. R′ = {R′j(τ)|Tj ∈ T} denotes the estimated material requirement of the uncompleted

tasks. E′ = {E′j(τ)|Tj ∈ T} denotes the estimated value of the emergency indicator of the
uncompleted tasks. P(t) is the price vector consisting of the prices of all current outstanding
tasks, and the initial moment price vector P(0) = 0.

In the r-th auction, there are some tasks that have been authorized but not executed in
the r− 1-th auction. In order to accurately calculate the rewards of the UAV for the tasks in
the r-th auction, we introduce the material requirement information prediction R

′
j(τ) and

the emergency indicator information prediction E
′
j(τ). The R

′
j(τ) and E

′
j(τ) of the task Tj

are calculated based on the Rj(τ) and Ej(τ) true values and the authorized UAV Uij in the
r− 1 auction delivery MDij j(τ), expressed as follows.

R
′
j(τ) = Rj(τ)−MDij j(τ) (19)

E
′
j(τ) =

Ej(τ)−
Ej(τ)

Rj(τ)
·MDij j(τ), R

′
j(τ) 6= 0,

0, others.
(20)

3.2.2. Bidding Phase

Different loadings of UAVs lead to different speeds, so that UAVs may obtain different
rewards for the same task. Accordingly, while completing the task assignment in EMDS,
the loading and delivery of UAVs can be determined. The pseudo-code is shown in
Algorithm 1.

Before bidding, the UAVs in LTSys calculate the income values based on their own
computational resources based on the set of task information shared by CCSys, and form
the income matrix:

INCOMEi,T(t) =


Income1

i,1(t) · · · IncomeLi
i,1(t)

...
. . .

...
Income1

i,|T|(t) · · · IncomeLi
i,|T|(t)


|T|×Li

(21)

where, INCOMEi,T(t) denotes the income matrix of the UAV Ui for the current set of
outstanding tasks T at t moments. The matrix elements are calculated as:

IncomeLi
ij (t) = ValueLi

ij (t)− CostLi
ij (t) (22)
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ValueLi
ij (t) =

Ej(t0) + a · ( Dij
vi(t)

+ t− t0) +
Ej(t0)

Rj(t0)
·max(MDij, Li), Ej(t) +

a·Dij
vi(t)

< 1,

0, others.
(23)

CostLi
ij (t) =


s·(t1

i −t0
i +−

dj,V0
vi(t

1
i )
)

Tduration
i −T f ly

i

, t1
i − t0

i +−
dj,V0
vi(t1

i
)
+ T f ly

i ≤ Tduration
i ,

∞, others.

(24)

where, IncomeLi
ij (t) denotes the reward value that a UAV Ui with loading Li of materials

can obtain by executing a task Tj at time t, which is determined by the value of the task

ValueLi
ij (t) and cost C ostLi

ij (t); s is the scaling factor; t0
i denotes the expected time to start the

task Ti; t1
i denotes the expected time to complete the task Tj, satisfying Dij =

∫ t1
i

t vi(τ)dτ;

T f ly
i denotes the time that the UAV Ui has flown; MDij denotes the time that the UAV

Ui has performed the task Tj of material delivery, satisfying MDij = min{Li, Rj(t)}; Dij
denotes the actual flight distance of the UAV Ui from the current position to the task Tj.

Algorithm 1: Bidding phase (Part of LTSys, take Ui as an example).
Input : set of task information TASK;
Output : Set of bidding BIDi.

1 calculate INCOMEi,T(t);
2 calculate NETi,T(t);
3 if all(NETi,T(t)(:) < 0) then
4 P

′
i(t)← (−∞,−∞, ...,−∞)T ;

5 BIDi ← {Ui,∅, Pi
′
, 0, 0, 0};

6 NODEi ← NODEi ∪ {V0} and go to V0;
7 else
8 netmax

i,T (t)← max NETi,T(t);
9 (Tji , Li)← index(netmax

i,T (t));
10 MDiji ← min{Li, Rji (t)};
11 t1

i ← f (Diji , t, vi(τ));
12 netmax

i,T−{Tji }
(t)← max NETi,T−{Tji }

(t);

13 calculate P
′
i(t);

14 send BIDi ← {Ui, Tji , Pi
′
, Li, MDij, t1

i } to CCSys;

In Equation (23), under the constraint of
Ej(t)

a +
Dij

vi(t)
< 1, the first two terms of the

right-hand side of the ValueLi
ij (t) calculation equation indicate the emergency indicator

at the moment before the task is executed, which reflects the basic value of the UAV to
execute the task; the third term of the equation reflecting the additional value of the UAV
Ui executing task Tj, i.e., the UAV loads as much materials as possible under the condition
that the material is obtained before the emergency indicator of the task Tj reaches 1.

The UAV Ui based on the price vector P(t) of the uncompleted tasks, combined with
the income matrix can be calculated to obtain the net income matrix NETi,T(t) as:

NETi,T(t) = INCOMEi,T(t)− [PT(t); PT(t); ...; PT(t)]NT×Li
(25)

The maximum net income netmax
i,T (t) is:

netmax
i,T (t) = max NETi,T(t) (26)
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Then, the tasks Tji bid by the UAV Ui, the material load Li and the delivery MDiji to
the task Tji are:

(m, n) = index(netmax
i,T (t)) (27)

Tji = T(m) (28)

Li = n (29)

MDiji = min{Li, Rji (t)} (30)

where the function (m, n) = index(a) in Equation (27) means to obtain the values of the
ranks of a in the matrix A, and if there are multiple values of a in the matrix A, then a
randomly selected rank value.

To further determine the bidding of the UAV Ui to the task Tji , the maximum net
income value netmax

i,T−{Tji }
(t) in the net income matrix of the UAV Ui other than the task Tji

is also needed, expressed as follows:

netmax
i,T−{Tji }

(t) = max NETi,T−{Tji }
(t) (31)

where T − {Tji} denotes the deletion of elements of the set Tji from the set of tasks T.

Combining Equations (21)∼(31), the bidding vector Pi
′
(t) of the UAV Ui for all tasks

is determined as follows.

Pi
′
(t) = (p

′

i,1
(t), p

′

i,2
(t), ..., p

′

ij
(t), ..., p

′

i,NT
(t))T (32)

p
′
ij(t) =

IncomeLi
i,ji (t)− netmax

i,T−{Tji }
(t) + ε, j = ji,

−∞, j 6= ji.
(33)

where ε > 0 is a slack parameter [42] that ensures that the algorithm does not enter a dead
loop when multiple UAVs compete for the same task because the bids do not improve;
P
′
ij(t) denotes the bidding of the UAV Ui for the task Tj at time t.

If the elements of the net income matrix NETi,T(t) are all non-positive, which means
that the UAV Ui will not profit from bidding on any task at the current price, then the
UAV Ui abandons further bidding in this auction and sets P

′
i(t) = (−∞,−∞, . . . ,−∞)T ,

as shown in lines 3∼6 of Algorithm 1; lines 7∼13 show that if there are positive values of
the elements in the net income matrix, the UAV Ui participates in the bid, and the task,
loading and bid price of the bid are determined by Equations (26)∼(33).

After the UAV Ui in LTSys completes the bidding phase, it sends the set of bid informa-
tion BIDi = {Ui, Tji , P

′
i, Li, MDij, t1

i }. The elements in the set BIDi denote the UAV order
number, the bid task, the bid vector to the task, the material loading, the delivery to the
task, and the expected arrival time, respectively.

3.2.3. Pre-Authorization Phase

The CCSys receives the bid information from the UAV and starts the pre-authorization
phase, the pseudo-code is shown in Algorithm 2.

As in lines 1∼3 of Algorithm 2, CCSys waits to receive the bid information BIDi and
then updates its own stored bidding matrix P′(t) based on the bidding vector in the bid
information, expressed as follows.
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P
′
(t) =


P
′
1,1(t) · · · P

′
|U|,1(t)

...
. . .

...
P
′
1,|T|(t) · · · P

′
|U|,|T|(t)


|T|×|U|

(34)

Pre-authorize the task Tj to the UAV with the highest bid Uij ,

Uij = arg max
Ui∈U

{
P
′
1,j(t), P

′
2,j(t), ..., P

′
|U|,j(t),

}
(35)

We consider removing the quintet of relations (Ui, Li, MDij, t1
i , Tj) associated with the

task Tj from the set of pre-authorized information X, and adding new quintet of relations
(Uij , Lij , MDij j, t1

ij , Tj), as shown in lines 4∼8.
Where line 7 indicates that once the task Tj is pre-authorized to the UAV Uij at moment

t, the price vector P(t) of all uncompleted tasks is updated, i.e., the price of the task Tj is
updated to the bidding price of the UAV Uij ,

pj(t) = P
′

ij ,j(t) (36)

As in lines 9∼13 of Algorithm 2, at the end of an auction round, CCSys sends a rebid
command to the UAVs Ui that have not abandoned their bids and are not pre-authorized,
and sends a set of current information about all tasks TASK. The UAVs that receive the
rebidding command start a new round of the auction process, while the other UAVs enter
the waiting phase. Lines 14∼15 indicate that the iterative process terminates with the
condition that all UAVs that have not abandoned their bids during the auction process are
pre-authorized for the task.

Algorithm 2: Pre-authorization phase (CCSys part).
Input : Bid vector BIDi;
Output : Set of task TASK.

1 BID ← BIDi;
2 wait;
3 P

′
(t)← BID;

4 for Tj ← T1 to T|T| do
5 Uij ← arg maxUi∈U{P

′
1,j(t), P

′
2,j(t), ..., P

′
|U|,j(t)};

6 if Uij 6= 0 then
7 pj(t)← P

′

ij ,j(t);

8 X ← X− {xi} and X ← X ∪ {xij}; // Update the set of
pre-authorization

9 f lag← 0;
10 for Ui ← U1 to U|U| do
11 if Pi

′
(t) 6= (−∞,−∞, ...,−∞)T and xi == ∅ then // Indicate that Ui has

not abandoned the bid and is not pre-authorized
12 send TASK to Ui and f lag← 1;
13 Execution: bidding phase;

14 if f lag 6= 1 then // Indicates the end of the pre-authorization phase of
an auction

15 Execution: authorization phase;

3.2.4. Authorization Phase

CCSys updates the set of authorization information Y based on the set of pre-authoriz-
ation information X, adds the pre-authorization quintet relation to Y for UAVs Ui that are
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pre-authorized but not authorized, and removes it in X, while resetting the task price vector.
CCSys sends the authorization quintet yi to the UAVs authorized in this auction, sends the
loading information Ui, Li to the MDC, and saves the set of pre-authorization information
and the set of authorization information Y as the initial state for the next auction.

3.3. Algorithm Analysis

The algorithm involves internal system interaction and inevitably has communication
problems. On the one hand, in the disaster area environment, ground communication base
stations are damaged, and it is necessary to restore communication, and UAVs are mature
and widely used as temporary communication relays [3]; on the other hand, the bidding
process is performed by UAVs, which greatly reduces the state information interacted
between CCSys and UAVs, and can be used in a limited bandwidth environment [27].

The computation time of one auction in the SAABoPA algorithm is much less than that
of the traditional auction algorithm [25], although the former requires multiple executions of
the algorithm during the completion of all tasks, resulting in a longer cumulative execution
time. However, considering the case of excessive interference, the traditional auction
algorithm needs to reset or partially reset the previous allocation results and reallocate them.
If we consider the case of poor communication, the conventional auction algorithm may
cause excessive waiting time due to waiting for communication in a single execution, which
may affect the timely departure of UAVs [28], and thus affect the capability performance
and resilience performance of EMDS. In the EMDS framework, a single auction execution
can be performed during the UAV’s return trip or by using another gap time. As argued in
the literature [45], real-time does not mean that the faster the computation time is, the more
real-time it is, but that the solution to the problem is found within a limited time.

Specifically, we analyze the time complexity and space complexity of one auction
round in a single auction of SAABoPA. As mentioned above, an auction is divided into
the task publication phase, bidding phase, pre-authorization phase, and authorization
phase, and the main complexity is concentrated in the bidding phase and pre-authorization
phase. However, in the task publication phase and authorization phase, the main work
is to complete the packaging, sending, and assignment of data processing operations.
In the bidding phase, see (Algorithm 1), the main work is to complete the computation
of the INCOMEi,T(t) matrix, and the sorting operation to find the maximum element of
the matrix. Assuming that the time complexity of computing a single matrix element
is I and the space complexity is J, then the average time complexity is O(|T| ∗ Li ∗ I),
and the space complexity is O(|T| ∗ Li ∗ J). On the other hand, the sorting algorithms are
heap sorting, bubble sorting, and shell sorting, whose time complexity is O(log(|T| ∗ Li)),
O((|T| ∗ Li)

2), and O((|T| ∗ Li)
1.3), respectively, and the space complexity is is O(1). In the

Pre-authorization Phase (Algorithm 2), the main work is to complete the sorting oper-
ation to find the maximum element of the bidding vector BID for each task, similarly
using heap sorting, bubble sorting, shell sorting, their time complexity is O(|T| ∗ log(Li)),
O(|T| ∗ (Li)

2) and O(|T| ∗ (Li)
1.3), respectively, and the space complexity is O(1).

4. Computational Experiment

In this section, the effectiveness of the proposed method is verified by experiments.
The simulation experiments were performed using Visual Studio 2022 platform, C++
programming language, CPU is Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz 2.40GHz, OS
is Windows 10.

4.1. Experimental Settings
4.1.1. Case Scenario

The relevant data for the computational case were chosen using a combination of
real and hypothetical data, since some disaster data is not published or could not be
obtained through official reports [46,47]. The data of the UAVs are derived from some
public sources and scaled accordingly to fit the case scenario. Meanwhile, in order to verify
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the performance of the algorithm, large sample experiments are required in this section,
and the data for the experimental scenarios are randomly generated on the basis of known
partial data.

The earthquake disaster in a city in southwest China is simulated as a scenario, and the
affected area C is a rectangular area of 4000 × 4000 m, with |T| tasks uniformly distributed
in the area, and the quantity of material required for the tasks R(0) and the emergency
indicator E(0) also obey uniform distribution. The outside of the rectangular area is
secure, and a well-stocked MDC is deployed on the boundary of the disaster area with
a total of |U| UAVs involved in the task execution. The number of the three dynamic
interference types considered during the task execution is determined in advance as |DIS1|,
|DIS2|, and |DIS3|, but the time of occurrence of the dynamic interference types is random
and uncertain, and the values of the changed information obey a uniform distribution.
The specific parameters are shown in Table 1.

Table 1. Scenario parameters instructions.

Parameters Value Parameters Value

x, y U(0, 4000) (x0, y0) Boundary of C
R(0) DiscreteU(6, 10) Lmax U(11, 15)
E(0) U(0.1, 0.8) Vunload U(15, 20)
∆R DiscreteU(0, 5) Tduration U(400, 500)
∆E U(0, 0.4) δ 0.5

In order to investigate the effects of different dynamic interference intensities on the
performance of the algorithm, this paper designs experiments with seven different control
variables at different scenario scales, as shown in Table 2.

Table 2. Scenario scale instructions.

Name of Scenario |T| × |U| × |DIS1| × |DIS2| × |DIS3| 1

Scenario 1 50× 5× 10× 10× 2
Scenario 2 50× 5× 20× 10× 2
Scenario 3 50× 5× 30× 10× 2
Scenario 4 50× 5× 20× 20× 2
Scenario 5 50× 5× 20× 30× 2
Scenario 6 50× 5× 20× 10× 3
Scenario 7 50× 5× 20× 10× 4

1 Taking Scenario 2 as an example, 50× 5× 20× 10× 2 means that there are 50 tasks in the scenario, 5 UAVs,
and the number of three dynamic disturbances new task generations, task unexpected changes and UAV ’s number
decreases are 20, 10 and 2, respectively.

4.1.2. Comparison Algorithms

The experiments with 1000 random samples are conducted for each scenario, respec-
tively, considering all three interference types, and the SAABoPA algorithm under the
EMDS framework is compared with the DTAP (DTA based on sequential single item
auctions) [28] and CBBA-PR (consensus-based bundle algorithms-partial replanning) [26]
algorithms to verify and compare the capability performance and resilience performance of
EMDS under the three algorithms.

Numbered lists can be added as follows:

1. DTAP: Dynamic task assignment algorithm based on sequential single-item auctions
is an online algorithm that differs from the algorithm in this paper in that there is no
pre-authorization phase, and the DTAP algorithm starts once the auction timing is the
current target task completion.

2. CBBA-PR: Dynamic task assignment based on the consistent consent bundle algorithm
is an offline algorithm where one auction UAV gets one task sequence, i.e., one task
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bundle. When interference occurs, a certain percentage of unexecuted tasks with low
revenue are selected for authorization reset and the auction is restarted.

4.2. Performance Indicators

To verify the performance of EMDS based on the SAABoPA algorithm, the performance
metrics fully consider the trade-off between efficiency and resilience [48]. In this paper,
two main types of performance metrics are used: (a) capability performance, i.e., the
completion of the rescue mission; and (b) resilience performance, i.e., the change of the
system capability performance in the case of dynamic interference.

4.2.1. Capability Performance (CP)

In Definition 5, it is considered that when the emergency indicator reaches 1, the task
will not be completed for a long time and the actual rescue will not be timely and cause
secondary injuries. In this paper, the system capability performance is described as the
proportion of tasks that are not subject to secondary injuries, i.e., the proportion of tasks
whose emergency indicator fails to reach 1, which, combined with Equation (6), is expressed
as follows.

CP =
N− f

N
× 100% (37)

where N denotes the total number of tasks that occur during the entire EMDS emergency
material delivery.

4.2.2. Resilience Performance (RP)

The EMDS capability performance metric proposed in this paper is time-invariant,
not computable at any moment, and is obtained only at the end of the whole working
process. In order to describe the calculation of the resilience performance metric, this
paper considers the system capability performance as time-invariant and represents the in-
process capability performance by the calculated value CP. When an interference situation
occurs, for example, DIS1 occurs at ts

1
, the system capability performance after ts

1
moment

is denoted by the computed value CP; the computed value CP in the same initial situation,
under the condition that DIS1 does not occur at ts

1
moment denotes the system capacity

performance before ts
1

moments. The same is true for the case of multiple interferences.
The resulting EMDS capability performance metric is converted to time-dependent and the
system capability performance changes as shown in Figure 3.

0t

st et

t

3DIS

DIS

2DIS

1DIS

endt1t 2t 3t

( )CP t
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Figure 3. The change of system capability performance.

Since the capability performance at any moment of the whole working process is
expressed by the calculated value CP, this paper does not describe too much the change of
the system capability performance in a short time after the interference occurs, as Figure 3
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incorporates the capability degradation, maintenance and recovery phases of the system
after suffering from the interference [49].

Combined with the integral elasticity model, this paper defines the resilience perfor-
mance of the system expressed as follows.

RP(τ|DIS) =

∫ tend
t0

CP(τ|DIS)dτ∫ tend
t0

CP(τ)dτ
(38)

where RP(τ|DIS) denotes the system resilience performance with interference DIS occur-
ring, CP(τ) denotes the system baseline capability performance when τ without interfer-
ence, and CP(τ|DIS) denotes the system capability performance when τ with interference.

4.3. Algorithm Results of Hypothesis Testing: Friedman Test

Based on the experimental design of 1000 random instances of 7 scenarios in the
previous paper, the three algorithms can obtain 7 sets of experimental results. We compare
the computational results of the three algorithms pair-wisely for each group of results,
from three perspectives of no interference capability performance, interference capabil-
ity performance, and resilience performance, to test the performance of the SAABoPA
algorithm proposed in this paper by whether there are significant differences. Current
experiments on comparing the average performance of multiple algorithms on multiple
problem instances are widely and well-known by methods such as Complete Block Design
(CBD) ANOVA or Friedman’s test [50]. In this paper, Friedman’s test is used, but the
Friedman’s test can only test whether the average performance indicator value of at least
one algorithm has a significant difference from the average performance indicator value
of at least one algorithm, and cannot specifically determine which two algorithms have
a significant difference between them, so Multcompare is also required. The results are
shown in Figure A1. As an additional note, the confidence interval of Friedman’s test in
this paper is 99%.

From the results, in the seven scenarios, there are no significant differences in the capa-
bility performance of the system without interference under the SAABoPA and CBBA-PR
algorithms, but there are significant differences with the DTAP algorithm. However, there
are significant differences in the capability performance of the system with interferences
under the three algorithms. It indicates that the SAABoPA and CBBA-PR algorithms have
similar capability performance in the no interference case and are significantly better than
the DTAP algorithm. However, in the case of interferences, the capability performance
of the system under the CBBA-PR algorithm degrades more and is significantly worse
than SAABoPA and DTAP algorithms. Analyzing Figure A1c,f,i,l,o,r,u together, it can be
found that there are significant differences in the resilience performance of the system
under the three algorithms. The exception is that in Figure A1f,i (scenarios 2 and 3), there
is no significant difference between SAABoPA and DTAP algorithms regarding the system
resilience performance, which may be because the resilience performance of them gradually
approaches as the number of new tasks generation and the intensity of interference faced
by the system increases. However, compared to scenarios 4 and 5, 6 and 7, the system is not
yet facing the maximum intensity of interference, but the type of interference has changed,
which reflects the greater adaptability of the SAABoPA algorithm to new task generations
type of dynamic interferences. On the other hand, the specific performance gap also needs
to be analyzed in terms of average, standard deviation, CDF, etc.

4.4. Algorithm Comparison Analysis: Scenario 2 as an Example

At the scale of Scenario 2, 1000 random sample experiments were conducted. The re-
sults of the simulation experiments are studied from the mean and variance of the metrics,
as shown in Tables 3 and 4. The SAABoPA has a slightly lower capability performance than
the CBBA-PR and roughly 6% higher than the DTAP in the static case where no interference
occurs, because the DTAP, as an online algorithm, considers only the current deterministic
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information when making decisions, while the SAABoPA adds a pre-authorization process
that considers the current information along with the next task estimation information,
and achieved better results. However, it is obvious that the CBBA-PR, as an offline algo-
rithm, considers all the information of the whole system working process, so the derived
allocation scheme is better. It should be noticed that this algorithm requires higher accuracy
of information, and in the presence of errors in the model, the errors in the offline solution
will gradually accumulate causing the degradation of the solution quality.The resilience
performance of SAABoPA and DTAP is similar, which is more than 5% higher than that
of CBBA-PR, reflecting that the former two have better adaptability to the dynamic envi-
ronment and resistance to interference situations are stronger. After analysis, the reason is
that when there is an interference situation, the CBBA-PR needs to reallocate some of the
uncompleted tasks with the interference in a comprehensive consideration, and considering
the trade-off between algorithm execution time and optimality, it often cannot handle the
interference situation in time, and it causes a significant decrease in the system capability
performance, which reflects the lack of system resilience performance. Analyzing the mean
value of system capability performance and the mean value of resilience performance un-
der the three algorithms, although the mean value of resilience performance is above 0.85,
the resilience indicator integrally considers the time of occurrence of multiple interferences,
so the change of the calculated value of the indicator is relatively insignificant, but the
capability performance after corresponding to multiple interferences will have a large
reduction, for example, the highest resilient performance DTAP with multiple interferences
and the ability to perform without interference differ by about 14%.

Analyzing the system performance variance, it is found that the variance of both
metrics is around 0.01, which reflects the stability of the capacity performance and resilience
performance of EMDS under the three algorithms in the scale of Scenario 2, and the
experimental results are effective.

Table 3. Average of system performance with different algorithms for 1000 sample experiments.

Algorithm CP(τ) CP(τ|DIS) RP(t|DIS)

SAABoPA 0.9491 0.7992 0.9443
DTAP 0.8867 0.7506 0.9459

CBBA-PR 0.9497 0.6663 0.8916

Table 4. Variance of system performance with different algorithms for 1000 sample experiments.

Algorithm CP(τ) CP(τ|DIS) RP(t|DIS)

SAABoPA 0.0032 0.0102 0.0009
DTAP 0.0055 0.0115 0.0005

CBBA-PR 0.0031 0.0132 0.0013

A comparative analysis of the cumulative distribution functions (CDF) of the capability
performance and resilience performance of SAABoPA, DTAP and CBBA-PR (Figure 4)
shows that: (a) the CDF curves of the capability performance of the SAABoPA and CBBA-
PR almost overlap in the initial case where no interference occurs, and the percentage of
capability performance greater than 0.9 is 80% much higher than the 44% of the DTAP;
(b) the capability performance of all three algorithms decreases in the presence of multiple
disturbances. However, the SAABoPA maintains the best capability performance with 50%
of capability performance greater than 0.8 higher than 31% of DTAP and 10% of CBBA-
PR; (c) the CDF curves of the resilience performance of SAABoPA and DTAP are close,
and the percentage of resilience performance greater than 0.9 is over 90% much higher
than 41% of CBBA-PR algorithm. Moreover, the lower limit of the resilience performance
of SAABoPA and DTAP still exceeds 0.8, which indicates that SAABoPA and DTAP have
stronger resilience performance and better adaptability in the face of interference situations.
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Figure 4. Comparison of CDF of system performance under different algorithms: (a) Capability
performance without dynamic interference; (b) Capability performance with dynamic interference;
(c) Resilient performance.

For further analysis, the performance metrics of each sample were compared as shown
in Figure 5. To facilitate the observation of the experimental results, we adjusted the sample
serial numbers and reordered the samples in the lowest to highest order of SAABoPA’s
metrics. We found that although the experimental parameters are the same, the disaster
area environment and UAV parameters (e.g., mission coordinates, UAV speed, etc.) are
different for different samples, resulting in different performance metrics for different
samples by different algorithms, which we believe is reasonable, and there is a certain
applicability of different algorithms to different scenarios themselves, which is why we
consider large sample experiments.
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Figure 5. Comparison of system performance under different algorithms in each sample scenario:
(a) Capability performance without dynamic interference; (b) Capability performance with dynamic
interference; (c) Resilient performance.

4.5. Analysis of the Results under Different Dynamic Interference Intensity

As for the seven scenarios shown in Table 2, they are divided into three groups
(scenario 1, 2, 3, scenario 2, 4, 5 and scenario 2, 6, 7) according to the principle of controlled
variable method in this paper to study the effects of new task generations, task unexpected
changes and UAV ’s number decreases at different intensities on the performance of EMDS,
as shown in Figures 6–8. From the experimental results, the more new task generations type
of dynamic interferences have a certain degradation on the capability performance and
resilience performance of all three algorithms. The capability performance of the SAABoPA
proposed in this paper is optimal under different intensities of dynamic interference. On the
other hand, when the number of new tasks increases from 10 to 30 (from Scenario 1 to
Scenario 3), the capability performance of SAABoPA and DTAP decreases by about 10% and
the resilience performance decreases by about 4%, but the CBBA-PA decreases by about 22%
and 8%, respectively, which reflects the importance of the resilience performance indicator
in the scenario with dynamic interference, which can better describe the performance of
EMDS. task unexpected changes and UAV’s number decreases type of dynamic interference at
different intensities can still obtain the same conclusion as new task generations.

In the vertical comparison, compared with Scenario 2, the number of new tasks genera-
tions and task unexpected changes increases by 10 in Scenario 3 and Scenario 4, respectively,



Mathematics 2022, 10, 2184 22 of 30

but the capability performance of the three algorithms decreases by approximately 7%, 7%
and 13% in Scenario 3, and the resilience performance decreases by 3%, 3% and 5%, respec-
tively; then the capability performance of the three algorithms decreases by approximately
4%, 2% and 7% in Scenario 4, and the resilience performance decreases by 1%, 1% and 4%,
respectively. In Scenario 4, the capability performance of the three algorithms decreases
by about 4%, 2% and 7%, and the resilience performance decreases by 1%, 1% and 4%,
respectively. This reflects the fact that dynamic interference of the new tasks generations type
has a greater impact on the system capability performance and resilience performance than
task unexpected changes, which is reasonable. However, since UAV’s number decreases type of
dynamic interference is the reduction in task execution vehicles, it is not comparable to new
tasks generations and task unexpected changes.

To analyze the dynamic interference of UAV’s number decreases type individually,
from scenario 2 to scenario 6 to scenario 7, the UAVs are reduced by 1 in turn, which means
that the transport delivery capacity is reduced by 20% in turn (total number = 5), while
the capability performance reductions of the three algorithms become larger from 8%, 7%,
and 9%, respectively, with reductions of 13%, 19%, 12%; on the other hand, the reduction in
resilience performance becomes 4%, 4%, 4% from 3%, 2%, 3%, respectively. This indicates
that the smaller the number of available UAVs, the worse the system performance, and this
gap is increasing as the number of UAVs decreases. It can also be found that the DTAP
has a more drastic performance degradation compared to the SAABoPA and CBBA-PA
algorithms in scenario 7 (loss of 4 UAVs), and the reason for this analysis is that the
capability performance of EMDS under the DTAP is not high when no such interference
occurs, and the more UAVs are lost to the DTAP brings about a further degradation of the
task planning capability.

Comparing the standard deviations of the experimental results under each experi-
mental scenario, it can be found that the resilience indicator RP is smaller compared to CP
under no interference and CP under multiple interferences, reflecting that the resilience
indicator of multiple interferences proposed in this paper is more stable under large sample
experiments, and it is robust and convincing to describe the system resilience performance
by RP.

scenario1 scenario2 scenario3 scenario1 scenario2 scenario3 scenario1 scenario2 scenario3
SAABoPA 0.9490 0.9491 0.9501 0.8373 0.7992 0.7301 0.9597 0.9443 0.9173
DTAP 0.8854 0.8867 0.8894 0.7935 0.7506 0.6848 0.9641 0.9459 0.9184
CBBA-PR 0.9495 0.9497 0.9507 0.7511 0.6663 0.5376 0.9288 0.8916 0.8456

0

0.2

0.4

0.6

0.8

1

( | )CP DIS( )CP  ( | )RP DIS

Figure 6. Comparison of system performance of each algorithm at different dynamic strengths
(different number of new task generations).
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scenario2 scenario4 scenario5 scenario2 scenario4 scenario5 scenario2 scenario4 scenario5
SAABoPA 0.9491 0.9490 0.9503 0.7992 0.7593 0.7373 0.9443 0.9302 0.9203
DTAP 0.8867 0.8874 0.8851 0.7506 0.7320 0.7216 0.9459 0.9375 0.9331
CBBA-PR 0.9497 0.9490 0.9503 0.6663 0.5976 0.4918 0.8916 0.8567 0.8292

0

0.2

0.4

0.6

0.8

1

( | )CP DIS( )CP  ( | )RP DIS

Figure 7. Comparison of system performance of each algorithm at different dynamic strengths
(different number of task unexpected changes).

scenario2 scenario6 scenario7 scenario2 scenario6 scenario7 scenario2 scenario6 scenario7
SAABoPA 0.9491 0.9508 0.9542 0.7992 0.7139 0.5833 0.9443 0.9132 0.8699
DTAP 0.8867 0.8887 0.8948 0.7506 0.6863 0.5934 0.9459 0.9210 0.8869
CBBA-PR 0.9497 0.9514 0.9542 0.6663 0.5798 0.4579 0.8916 0.8641 0.8227

0

0.2

0.4

0.6

0.8

1

( | )CP DIS( )CP  ( | )RP DIS

Figure 8. Comparison of system performance of each algorithm at different dynamic strengths
(different number of UAV’s number decreases).

In summary, the capability performance of the SAABoPA proposed in this paper is
similar to that of CBBA-PA under no interference and better than that of the DTAP; the
capability performance of the SAABoPA under multiple interference is better than that
of the DTAP and CBBA-PA; the resilience performance of the SAABoPA under multiple
interference is similar to that of the DTAP and better than that of the CBBA-PA, and it is
more adaptable to dynamic scenarios.

5. Conclusions

This paper presents a basic framework for applying UAVs as important components
of EMDS to emergency material delivery scenarios, and proposes SAABoPA for capability
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performance and resilience performance optimization. Combined with the actual material
delivery, the problem is modeled as MTTDDVRP-SD on the basis of the VRP problem, while
several features are considered, including multi-trip per UAV, time-dependent emergency
indicator, dynamics of the environment, split-delivery, and trip duration limit. Three
types of dynamic interference scenarios are considered, including: new task generation,
task unexpected changes, and UAV’s number decreases. To solve this new problem, this
paper proposes the SAABoPA algorithm, which adds a pre-authorization and sequential
auction mechanism. Meanwhile, in order to describe the effect of dynamic disturbances on
EMDS, we improve the integral resilience model under single interference and propose
a resilience performance indicator adapted to multiple interference scenarios. Finally,
through comparison experiments with DTAP and CBBA-PR in scenarios with different
dynamic intensities, and using Friedman’s test with 99% confidence interval, we verified
the effectiveness of SAABoPA, which can improve the resilience performance of the system
while maintaining a better capability performance, compensating for the shortcomings of
CBBA-PR which only focuses on capability performance and DTAP algorithm which only
focuses on resilience performance.

It should be noted that the scenario in this paper is material delivery under disaster
area rescue, which mainly considers task survival measured by task emergency indicator
as the optimization objective, and may need to trade-off more objectives if it is applied to
other scenarios such as UAV logistics, combat equipment delivery, and cluster fire strike.
In the future, we consider building a small hardware experiment bed to test the algorithm
effectiveness and system performance, and try to solve more practical problems to extend
to real applications.
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Notations
Some of the parameters involved in the model and their meanings are as follows.
Sets
U Set of UAVs
VB Set of MDC, VB = {V0}
DIS1 Set of dynamic interference types 1
DIS2 Set of dynamic interference types 2
DIS3 Set of dynamic interference types 3
Indices
i Index of UAV serial numbers, Ui ∈ U
j Index of task serial numbers, Tj ∈ T
k Index of UAV trips, k ∈ {1, 2, ..., Exi}

n1, n2, n3
Index of the serial numbers of dynamic interference types 1, 2 and 3,
which are parameters of the stochastic process, n1 ∈ {1, 2, ...,

∣∣DIS1
∣∣},

n2 ∈ {1, 2, ...,
∣∣DIS2

∣∣}, n3 ∈ {1, 2, ...,
∣∣DIS3

∣∣}
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Operator
| • | Number of elements in the set
•̃ Random variable or random vector (bold font)
• Upper limit of possible values of the random variable
• Lower limit on the possible values of the random variable
U(•, •) Continuous uniform distribution between two values
DiscreteU(•, •) Discrete uniform distribution between two values
Parameters
Tduration

i Maximum duration of the UAV Ui
δ Ratio coefficient of the speed of the UAV with the weight of the loading
a Constant parameter
L

max

i
Upper limit of the loading capacity of the UAV Ui

Vunload
i Speed of the UAV Ui at no-load

(xj, yj) Two-dimensional coordinates of the task Tj
(x0, y0) Two-dimensional coordinates of the MDC V0
Variables
t Discrete time series
Tend Moment of completion of emergency material delivery task
Exi Number of UAV Ui trips
sTk

i Departure time of the k-th trip of the UAV Ui
aTk

i Arrival time of the k-th trip of the UAV Ui
vi(t) Speed of the UAV Ui at t moments
Ej(t) Emergency indicator of the task Tj at t moments
Rj(t) Quantity of material Requirement of the task Tj at t moments
Lk

i (t) Loading of the k-th trip of the UAV Ui at t moments
MDij(t) Quantity of material delivered by the UAV Ui to the task Tj at t moments
(xi(t), yi(t)) Two-dimensional coordinates of the UAV Ui at t moments
∆R Quantity of change in the material requirements of the task
∆E Value of change in the material emergency indicators of the task

MDk
ij

Decision variable, quantity of material delivered by the UAV Ui to the
task Tj in k-th trip

xk
ij

Binary decision variable, if the UAV Ui execute task Tj in k-th trip, xk
ij = 1;

otherwise xk
ij = 0

Appendix A

The results of pair-wise comparisons of 1000 random instances for 7 scenarios are
shown in Figure A1, which provide the confidence intervals (adjusted for a familywise error
rate of α = 0.01) for all comparisons between the SAABoPA algorithm and the comparison
algorithm. Note that in each subplot of Figure A1, blue and red indicate that the results
of the two algorithms for this scenario have significant differences at the 99% confidence
intervals, while blue and black indicate that the results of the two algorithms for this
scenario have no significant differences at the 99% confidence intervals.
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Figure A1. Cont.
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Figure A1. Cont.
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(s) (t) (u)

Figure A1. Pair-wise comparison of system performance under different algorithms in 7 scenarios: (a,d,g,j,m,p,s) Capability performance without dynamic
interference of scenarios 1 to 7, respectively; (b,e,h,k,n,q,t) Capability performance with dynamic interference of scenarios 1 to 7, respectively; (c,f,i,l,o,r,u) Resilient
performance of scenarios 1 to 7, respectively.
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