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Abstract: Ever since the discovery of domination numbers by Claude Berge in the year 1958, graph
domination has become an important domain in graph theory that has strengthened itself as a theory
and has extended its contributions to various applications. Tree characterization is an important prob-
lem in graph domination. This survey focuses on presenting a collection of results on characterizing
trees using domination number.
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1. Introduction

In 1958, Claude Berge introduced the domination number in his book “Theory of
Graphs and its Applications” [1]. Cockayne and Hedetniemi used the notation γ(G) to
denote the domination number of graph G, which has become the most accepted nota-
tion. The literature on domination has been surveyed in detail in two eminent books by
Haynes et al. [2,3]. There are various survey articles available in the literature of dominat-
ing sets. We find only few results on characterizing trees using a domination number. In
this article, we have attempted to collectively provide a survey on the constructive charac-
terization of trees using various types of domination numbers. We believe that this survey
will be interesting for researchers interested in such characterizations. We could not include
all the available tree characterizations. We apologize to the authors for the omission.

A graph G = (V, E) consists of a set of V = {v1, v2, · · · } called vertices and another set
E = {e1, e2, · · · }, whose elements are called edges, such that each edge ek is identified with
an unordered pair (vi vj) of vertices. The number of vertices is called the order of graph
and denoted by |V| = n. The number of edges is called the size of the graph and denoted by
|E| = m. For any set S of vertices of G, the induced subgraph 〈 S 〉 is the maximal subgraph
of G with vertex set S. The degree of a vertex v denoted by d(v) is the number of vertices
adjacent to v. The minimum and maximum degrees of vertices in V(G) are denoted by δ(G)
and 4(G), respectively. A vertex v is said to be a weak support vertex if v is adjacent to
exactly one pendant vertex; otherwise, v is called a strong support vertex. We denote the
set of all pendant and support vertices of G by L(G) and S(G), respectively. The number of
pendant and support vertices of G is denoted by l and s, respectively. The distance d(u, v)
between two vertices u and v in G is the length of the shortest path joining them. A vertex
cover of a graph is a set D ⊆ V such that each edge of G is incident to at least one vertex
of D. The vertex cover number of G, τ(G), is the cardinality of a minimum vertex cover of
G. The open neighborhood N(v) of the vertex v consists of the set of vertices adjacent to v,
that is, N(v) = {u ∈ V(G) | (u v) ∈ E(G)}, and the closed neighborhood of v is N[v] = N(v)
∪ {v}. For any set S ⊆ V (G), its boundary B(S) = N(S) S. A graph is acyclic if it has no
cycles. A tree is a connected acyclic graph. K1,n denotes the star with n + 1 vertices. A tree
is a double star if it contains exactly two vertices that are not pendant vertices if one of
these vertices is adjacent to r pendant vertices and the other to s pendant vertices; then, we
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denote the double star by Sr,s. Pn, Cn and Kn denote the path, cycle and complete graph
with n vertices, respectively.

The subdivision of some edge e with endpoints {u, v} yields a graph containing
one new vertex w, with an edge set replacing e by two new edges: (u w) and (w v). A
subdivision of a graph G is a graph resulting from the subdivision of edges in G. The
vertex identification of a pair of vertices v1 and v2 in a graph produces a graph in which
the vertices v1 and v2 are replaced with a single vertex v, such that v is adjacent to the
union of the vertices to which v1 and v2 were originally adjacent. An edge contraction is an
operation which removes an edge from a graph while simultaneously identifying the two
vertices that it previously joined. For details on graph theory, we refer to [4,5].

A dominating set (DS) D of G is a set of vertices of G such that every vertex in V − D
is adjacent to a vertex in D. If D has the smallest possible cardinality of any dominating set
of G, then D is called a minimum dominating set—abbreviated as MDS. The cardinality of
any MDS for G is called the domination number of G, and it is denoted by γ(G). A γ-set
denotes a dominating set for G with minimum cardinality. The private neighborhood of
v ∈ D, denoted by pn(v, D), is defined by pn(v, D) = N[v] − N[D − {v}]. A vertex v is said
to be a down (critical) vertex if γ(G − v) < γ(G), a level vertex if γ(G − v) = γ(G) and an
up vertex if γ(G − v) > γ(G). For details on domination, we refer to [2].

2. Survey

There are various types of dominating sets that have defined to date. Once a new
type of dominating set is defined, researchers in general try to relate them to the exist-
ing dominating sets, leading to new types of dominating sets such as total restrained
domination, independent domination critical, two-outer independent domination, double
Roman domination, locating Roman domination, etc. Generally, tree characterizations are
determined for:

1. These types of dominating sets;
2. Equal domination numbers for two different kinds of dominating sets.

While surveying the articles on tree characterization using dominating sets, we, in
general, observe that the authors provide an iterative procedure for generating a tree T
from a sequence of subtrees T1, T2, · · · , Ti, (i > 1). To generate these trees, T1, T2, · · · , Ti
are defined in general graph operations starting from an initial tree. The authors provide
necessary and sufficient conditions for the existence of such trees and prove that the iterative
tree characterization developed by them satisfies the particular dominating set property.

From this brief discussion, we understand that there have been hundreds of dominat-
ing sets defined to date, for which tree characterizations are attempted and determined in
different ways. Based on the availability of these dominating sets, in this survey, we have
attempted to provide a possible list characterizing 19 different types of dominating sets.
We could not cover all the types of dominating sets in this short survey. We apologise to
the authors for the omissions.

3. Tree Characterizations

To characterize trees using dominating sets, the general technique adopted is an itera-
tive procedure of developing larger trees from smaller trees. For this, we start from some
basic tree, such as P1, P3 and star graphs. At each stage of the iterative procedure, the result-
ing trees belong to the particular kind of domination. For example, if we begin with P1, and
P1 has an independent dominating set, then this sequence of trees T1, T2, . . . , Tj generated
from P1 have independent dominating sets. For developing T1, T2, . . . , Tj, the general
graph operations adopted are vertex merging, edge addition, adding a path between two
trees and adding a sequence of vertices. For developing T1, T2, . . . , Tj, different authors
define different kinds of graph operations (such as attaching a path Pi, i = 1 to 5, attaching
some tree structures, adding stars, etc.). This totally depends upon the type of dominating
set used for developing these trees. We understand that even with the particular kind of
dominating set, the graph operations adopted for developing these trees vary as other
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parameters are included. For example, the graph operations for a Roman domination
number and double-Roman domination number will be different. In this section, we list
out the graph operations and tree characterizations by various authors. We have grouped
these graph operations into 19 different types based on a common dominating set share by
various other possibilities as discussed in Section 2. Throughout this article:

1. T1, T2, · · · , Tj, (j ≥ 1) is a sequence of trees.
2. Ti+1 can be generated recursively from Ti for i = 1, 2, · · · , j − 1 using any one of the

predefined operations.
3. T is the family of trees obtained from a sequence T1, T2, · · · , Tj (j ≥ 1).

Generally, while constructing T , Ti+1 can be obtained recursively from Ti and Tp
either by merging or adding an edge between (u v), where u ∈ Ti and v ∈ Tp. Figure 1
provides an example of the different types of domination to be discussed in this section.

Figure 1. Example for different types of dominating set.

For the graph G1 in Figure 1, every pair of two vertices is a γ-set: {1, 3} is an inde-
pendent dominating set; {1, 3} is a 2-dominating set; {1, 2, 3, 4} is a double dominating
set; {3} is the Roman domination number; {1, 2} is a restrained dominating set; {1, 2} is a
very excellent γ-set; and {1, 2} is a paired dominating set. The non-isolating two-bondage
number of G is 1. Moreover, {1, 2} is a complementary tree dominating set, and {1, 3} is
a disjunctive dominating set. G1 is a domination subdivision stable graph. G1 is also a
γ-uniquely colorable graph. Finally, {1, 2} is a total dominating set, and {(1 2), (3 4)} is an
edge-dominating set.

For the graph G2 in Figure 1, {2} is a unique minimum dominating set. G2 is a domi-
nation dot stable graph. G2 is also a non-domination subdivision stable graph.

3.1. Independent Domination

Berge and Ore formalized the theory of independent domination in 1962 [1,6]. A dom-
inating set D is said to be an independent dominating set (i(G)-set) if no two vertices
in D are adjacent. The independent domination number is the minimum cardinality of
an independent dominating set of G. Fricke et al. defined an i-excellent graph [7]. A graph
G is i-excellent if every vertex of G belongs to some i(G)-set. In 2002, Haynes et al. provided
a constructive characterization of i-excellent trees. For any vertex v of T, Haynes et al.
defined the status of v as sta(v) = A for all support vertex of v or sta(v) = B for all pendant
vertex v of T. Let T 1 be the family of trees such that T1 is a double star Sr,r for r ≥ 1, and
Ti+1 can be obtained from Ti by one of the Operations 1 or 2 [8].

Operation 1. Attach a star K1,t to T for t ≥ 1 by adding an edge between x and y, where x is the
center of K1,t and y ∈ V(T) and sta(y) = A, and t – 1 new pendant vertices adjacent to y. Let sta(x)
= A and sta(v) = B for each new pendant v that was added to T.

Operation 2. Attach St,t+1 to T by adding an edge between x and y, where x ∈ V(St,t+1) is adjacent
to t ≥ 0 pendant vertices and y ∈ V (T) with sta (y) = B. Let sta(v) = A if v ∈ S(St,t+1) ∪ {x}, and
let sta(v) = B for each new pendant v that was added to T.

In Theorems 1 and 2, we present properties satisfied by T ∈ T 1 and a characterization
of i-excellent trees.
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Theorem 1 ([8]). Let T ∈ T 1 and let u and v be vertices of T with sta(u) = A and sta(v) = B. Then:

1. T is an i-excellent tree.
2. There is an i(T)-set that contains N(u).
3. There is an i(T)-set S such that v ∈ S and pn(v, S) = {v}.

Theorem 2 ([8]). A tree T is i-excellent if and only if T ∈ {K1, K2} or T ∈ T 1.

It is to be noted that although i-excellent trees are excellent, the family of γ-excellent
trees is properly contained in the set of all i-excellent trees. The double star Sr,r for r ≥ 2 is
an example of an i-excellent tree that is not γ-excellent.

In i-excellent trees, T1 is a star graph, and the sequence of trees is also obtained by
attaching star graphs only. We observe that when edges are subdivided, this is not the case.

Sharada et al. introduced the concept of independent domination critical and stable
graphs upon edge subdivision [9]. A graph is an independent domination edge subdivi-
sion critical (i-critical) if the subdivision of an arbitrary edge increases the independent
domination number. In 2015, Sharada provided a constructive characterization of i-critical
trees. Let T 2 be the family of trees such that T1 is a star K1,t for t > 1 and Ti+1 obtained
from Ti by one of the Operations 3 or 4 [10].

Operation 3. Attach a path (u v x) to T by adding an edge between x and y, where y ∈ V(T) such
that sta(y) = B. Let sta(u) = B, sta(v) = A and sta(x) = B.

Operation 4. Attach a path (u v w x) to T by adding an edge between x and y, where y ∈ V(T)
such that sta(y) = A. Let sta(u) = B, sta(v) = A and sta(w) = sta(x) = B.

In Theorems 3 and 4 and Corollary 1, we provide properties of i-critical trees and
a characterization of T ∈ T 2.

Theorem 3 ([10]). A tree T is i-critical if and only if there is a unique minimum-independent
dominating set in T.

Corollary 1 ([10]). Let T be a tree of order at least three. Then, the following conditions are equivalent:

1. T belongs to the family T 2.
2. T is i-critical.
3. There is exactly one minimum independent dominating set in T.

Theorem 4 ([10]). If T is a tree T with at least three vertices, then T ∈ T 2 if and only if there is
a unique minimum-independent dominating set in T.

Theorem 4 provides a new insight that this theorem can be consider as a characteriza-
tion of trees having a single dominating set that is also independent.

For a secure dominating set, the operations slightly vary by attaching a star or a path
when T1 is a path. The problem of secure domination was introduced by Cockayne et al. [11].
A dominating set D of a graph G is said to be a secure dominating set (SDS) if each vertex
u ∈ V − D is adjacent to a vertex v ∈ D such that (D − v) ∪ {u} is a DS of G. The secure
domination number γs(G), is the minimum cardinality of an SDS of G. An SDS of G of
cardinality γs(G) is called a γs-set of G. If u ∈ V(T) is not a pendant of T and k = min{dT(u,
v): v ∈ V(T) and v is a pendant of T}, then u is called a k-stem of T. A one-stem is called
a stem of T. In 2017, Zepeng et al. provided a constructive characterization of trees with
equal independent and secure domination numbers. Let T 3 be the family of trees such that
T1 is P4 and Ti+1 can be obtained from Ti by one of the Operations 5–7 [12].

Operation 5. Attach a path (u x) to T by adding an edge between x and y, where y is a stem or
a 2-stem of T.
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Operation 6. Attach Rk to T by adding an edge between x and y, where x is a stem or 2-stem of T
and y is a 2-stem of Rk, where k ≥ 2, (where Rk is a k-star with each edge subdivided twice).

Operation 7. Attach Rk to T by merging a pendant edge of T and a pendant edge of Rk to a single
edge, where k ≥ 2.

In Theorems 5 and 6, we present results relating independent trees and secure domi-
nation trees.

Theorem 5 ([12]). If T ∈ T 3, then γ(T) = i(T) = γs(T).

Theorem 6 ([12]). Let T be a tree with at least three vertices. Then γ(T) = i(T) = γs(T) if and only
T ∈ T 3.

Sometimes, the construction becomes simple by generating the entire tree with the
single operation, as in the case of independent dominating edge lift stable. Here, P2 is
attached to generate the entire tree. The process of edge lifting, or sometimes called edge
splitting, was introduced by Lovasz [13,14]. Let u and v be any two vertices in G at
a distance 2 apart, and let x be a common neighbor of both u and v. Then, uxv is an induced
path in G. An edge lifting defined on uxv is the process of removing the edges ux and xv
while adding the edge uv to E(G). The edges ux and vx are said to be lifted off the vertex x.
A graph is an independent domination edge lift stable if the lifting of an edge leaves the
independent domination number of the graph unchanged. In 2018, Sharada provided a
constructive characterization of trees which are independent domination edge lift stable.

The authors label the vertices of T ∈ T 4 as follows. Initially if T = P4, then sta(v) = A if
v is a support vertex of T and sta(v) = B if v is a leaf of T. Let T 4 be the family of trees, and
Ti+1 can be obtained from Ti by Operation 8 [15].

Operation 8. Let T be a path (a b c d) in T 4. Extend it by attaching a path (v w x) and the edge
(u v) where sta(u) = B and u ∈ T. Then sta(v) = sta(w) = A and sta(x) = B.

In Theorems 7 and 8, we present results relating independent domination edge lift
stable trees.

Theorem 7 ([15]). If T ∈ T 4 and Tuv
x is the tree obtained by the independent domination edge

lifting of uv of x, then i (Tuv
x) = i(T). That is, T is an independent domination edge lift stable tree.

Theorem 8 ([15]). T is an independent domination edge lift stable tree if and only T ∈ T 4.

3.2. Two-Domination

While developing the iterative procedures, sometime researchers have a unique and
different approach in developing the tree operations. Few of such graph operations is
presented in this Section on two-dominating sets.

The concept of a k-dominating set was first introduced by Fink and Jacobson in
1985 [16]. A vertex in V-D is k-dominated if it is dominated by at least k-vertices in D, that
is, |N(v) ∩ D |≥ k. If every vertex in V-D is k-dominated, then D is called a k-dominating
set. The k-domination number γk(G) is the minimum cardinality of a k-dominating set of
G. A subset S of V(G) is k-independent if the maximum degree of the subgraph induced
by the vertices of S is less or equal to k - 1. The maximum cardinality of a k-independent
set of G is the k-independence number βk(G). In 2011, Chellali et al. provided a tree
characterization that satisfies the condition γ2(T) = γ1(T) + 2. The authors developed an
elegant characterization by attaching paths of different length between two trees T1 and T2.
They developed nine different operations for this purpose. These operations are developed
by defining four families of trees. A summarized view is presented here. They defined the
following notations.
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Let B(T) be the set of subdivided vertices. Let A(T) = V(T) − B(T). Let F be the family
of extremal trees such that:

1. γ2(T) = γ(T) + 1;
2. F = F1 ∪ F2 ∪ F3, where F1, F2 and F3 are subdivided stars, the corona of stars and the

subdivided double stars of F, respectively.

Let X = X(T) consist of the pendant vertices adjacent to the vertex of maximum degree
if F in F2, where F = P2 and X = ∅ otherwise; let H = H(T) consist of the center vertex if
F ∈ F3 and H = ∅ otherwise.

They defined the family of G1 =
⋃4

i=1 Gi, where G1 is the family of trees obtained by
a path P2 = (u v) and a tree T ∈ F different to the path P4, by adding an edge (u w), where
w ∈ B(T) − H(T). G2 is the family of trees obtained by a tree T ∈ F different to the path
P2 by adding a new vertex attached to any support vertex of T. G3 is the family of trees
obtained by a path P3 and a tree T ∈ F2 ∪ F3 different to P2 and P4 by adding an edge (x y),
where x is any pendant vertex of P3 and y ∈ L(T) − X. G4 is the family of trees that are a
subdivision graph of a caterpillar having three or four support vertices, and the remaining
vertices of the caterpillar are pendant vertices. The family of T 5 can be constructed using
one of the Operations 9–17 [17].

Operation 9. Let T1, T2 ∈ F, each of an order of at least three. Form T from T1 ∪ T2 by adding an
edge between x and y, where x ∈ B(T1) − H(T1) and y ∈ B(T2) − H(T2).

Operation 10. Let T1, T2 ∈ F1. Form T from T1 ∪ T2 by adding an edge between x and y, where x
∈ V(T1) and y ∈ A(T2).

Operation 11. Let T1 ∈ F3 and T2 ∈ F1. Form T from T1 ∪ T2 by adding an edge between x and
y, where x ∈ H(T1) and y ∈ A(T2).

Operation 12. Let T1 ∈ F, T2 ∈ F2 ∪ F3, with T2 6= P2. Form T from T1 ∪ T2 by adding an edge
between x and y, where x ∈ B(T1) − H(T1) and y ∈ A(T2) − L(T2).

Operation 13. Let T1, T2 ∈ F, each of order at least four. Form T from T1 ∪ T2 by adding an
edge between x and y, where x ∈ A(T1) − L(T1) and y ∈ A(T2) − L(T2), or x ∈ L(T1) − X and
y ∈ A(T2) − L(T2) and at least T1 or T2 ∈ F1.

Operation 14. Let T1 ∈ F2, T2 ∈ F but not both a path P2. Form T from T1 ∪ T2 by adding a path
(x z y), where x is a vertex of a maximum degree in T1, y ∈ A(T2) − X(T2) and z is a new vertex.

Operation 15. Let T1 ∈ F1, T2 ∈ F3. Form T from T1 ∪ T2 by adding a path (x v w z y), where v,
w and z are new vertices; x ∈ A(T1); y ∈ A(T2); and at least one of x and y is not in L(T1) ∪ L(T2)
or x ∈ L(T1), y ∈ L(T2); and T1 = P3.

Operation 16. Let T1 ∈ F1 and T2 ∈ F1. Form T from T1 ∪ T2 by adding a path (x v w z y), where
x ∈ A(T1) and y ∈ A(T2).

Operation 17. Let T1 ∈ F3 and T2 ∈ F3. Form T from T1 ∪ T2 by adding a path (x v w z y), where
x ∈ A(T1) − L(T1) and y ∈ A(T2) − L(T2).

In Theorems 9 and 10, we present results relating the two-domination number of trees.

Theorem 9 ([17]). A tree T satisfies γ2(T) = γ(T) + 2 if and only if T ∈ G1 ∪ T 5

Theorem 10 ([17]). A tree T satisfies γδ (T) = γ(T) + 2 if and only if T ∈ G1 ∪ (T 5 − T 5
′
), where

T 5
′

is the sub family of T 5 consisting of all trees constructed by performing Operation 9.
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In 2012, Chellali et al. characterized (γ2, β2)-trees. A tree with equal two-domination
and two-independence numbers is said to be (γ2, β2) tree. Let T 6 be the family of trees
such that T1 is a star K1,t, where (t ≥ 1) and Ti+1 can be obtained from Ti by one of the
Operations 18–21 [18].

Operation 18. Attach a star K1,t, where (t ≥ 2) to T by adding an edge between x and y, where x
is the center of the star and y is an arbitrary vertex of T.

Operation 19. Attach a double star S1,l with support vertices u and x to T by adding an edge
between x and y, where y is an arbitrary vertex of T, with the condition that if γ2(T − y) = γ2(T) − 1.
Then, no neighbor of y in T belongs to a γ2(T − y)-set.

Operation 20. Attach a path (u x) to T by adding an edge between x and y, where y is a pendant
vertex of T that belongs to every β2(T)-set with the condition that β2(T − v) + 1 = β2(T).

Operation 21. Attach a path (u w x) to T by adding an edge between x and y, where y ∈ γ2(T)-set
and satisfies further γ2(T − y) ≤ γ2(T) with the condition that if γ2(T − y) = γ2(T) − 1, then no
neighbor of y in T belongs to a γ2(T − y)-set.

In Lemma 1 and Theorem 11, the author provided the (γ2, β2) tree characterization in
terms of global properties.

Lemma 1 ([18]). If T ∈ T 6, then γ2(T) = β2(T).

Theorem 11 ([18]). Let T be a tree of order n. Then γ2(T) = β2 (T) if and only if T = K1 or T ∈ T 6.

Note that Theorem 11 provides a constructive characterization for the upper bound of
the characterization γ2(T) ≤ β2(T) [16].

In 2017, Brause et al. provided a constructive characterization of the same with respect
to local properties of the tree at each stage of the construction. The authors have gracefully
used the operations of edge addition in six different operations. For this purpose, they
defined 25 different trees to make the characterization possible. The results are summarized
and presented here.

Let A = {T1, T2 · · · , T15} and B = {B1, B2 · · · , B10} be the graphs as seen in Figure 2. Let
Tp ∈ A ∪ B be a special tree, and let T be a tree. If T contains a subset U of vertices such
that T[U] ≡ Tp and the degree of every black vertex in VB(Tp) equals its degree in T, then
we say that the tree T contains Tp as a prescribed-degree-induced subtree, abbreviated as
PDI-subtree. In particular, we note that if Tp is a PDI-subtree of a tree T, then the degree
sequence of the vertices of VB(Tp) in T equals the degree sequence of the vertices of VB(Tp)
in Tp. Let T 7 be the family of trees such that Ti+1 can be obtained from Ti by one of the
Operations 22–27 [19].

Operation 22. Let Tp ∈ {T1, T2, T8} be a PDI-subtree of T
′

and v = v(Tp). Add a pendant edge at
v and label the pendant vertex as u.

Operation 23. Let Tp ∈ {T4, T11, T12, T13, T15} be a PDI-subtree of T
′

and v = v(Tp). Attach
a path (u v x) to T

′
by adding an edge between x and v.

Operation 24. Attach a path (u x v) to T
′
by adding an edge between x and y, where y is an arbitrary

vertex of T
′
.

Operation 25. Let Tp ∈ {T1, T2, T3, T5, T6, T7, T9 and T10} be a PDI-subtree of T
′

and v = v(Tp).
Attach a path (x u w) to T

′
by adding an edge between x and v.
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Operation 26. Let Tp ≡ T6 be a PDI-subtree of T
′

and let v1 = v1(Tp) and v2 = v2(Tp). Attach a
path (x u) to T

′
by adding an edge between x and v1. Add a pendant edge at v2 and label the pendant

vertex as u2.

Operation 27. Let Tp ≡ T14 be a PDI-subtree of T
′

and let v1 = v1(Tp), v2 = v2(Tp). Remove the
edge (v1 v2), and attach a path (u x w) by adding edges between and the vertices (u v1) and (x v2).

Figure 2. Set A and B trees.

In Theorems 12 and 13, the author provided the (γ2, β2) tree characterization in terms
of local properties.

Theorem 12 ([19]). If T is obtained from an arbitrary tree T
′

by applying one of the operations in
the family of T 7, then β2(T) − γ2(T) = β2(T

′
) − γ2(T

′
).

Theorem 13 ([19]). A tree is a (γ2, β2)-tree if and only if T ∈ T 7.

This characterization depends only on local properties of a tree at every stage of
construction. This varies from the characterization of [18], which uses global properties
of a tree which involves properties of minimum two-dominating set and maximum two-
independent set in the tree at each stage of the construction.

Another interesting characterization, where the authors have attempted to add a set of
l + 1 new vertices in their operations is presented here. As explained in [20], the annihilation
number of a graph was first introduced by Pepper [21]. The annihilation number α(G) is
the largest integer k such that the sum of the first k terms of the non-decreasing degree
sequence of G is at most |E(G)|. The upper annihilation number of a graph G is defined
as the largest integer k such that the sum of the first k terms of the degree sequence of G
arranged in non-decreasing order is at most |E(G)| + 1, and it is denoted by α∗(G). In 2014,
W. J. Desormeaux et al. characterized the trees relating the annihilation number and the
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two-domination number of T. Initially, they had constructed the family T i,j of trees such
that T2,j ∈ T i,j, where T2,j is a double star S1,j−1 and 2 ≤ i ≤ j. Let T 8 = {K2} ∪ (

⋃
i≥2 Ti),

where Ti =
⋃

j≥i T i,j be the family of trees such that Ti+1 can be obtained from Ti by one of
the Operations 28 and 29 [22].

Operation 28. If v ∈ V(T) is a pendant vertex in T, then adding the set {t, s1, s2, · · · , sl} of l + 1
new vertices to V(T), where l≥ i− 1 is arbitrary and adding an edge between t and s1, and the edges
between v and si, for all i = 1, 2, · · · , l to E(T). Add the resulting tree to the family Ti,min{j,l+1}.

Operation 29. If v ∈ V(T) has d(v) ≤ min {i, j − 1}, then adding the set {t, s1, s2, · · · , sl} of l + 1
new vertices to V(T), where l ≥ max {d(v) + 1, i} − 1 is arbitrary and adding an edge between t and
v, and the edges between t and si for all i = 1, 2, · · · , l to E(T). Add the resulting tree to the family
T max{d(v)+1,i},min{j,l+1}.

Theorems 14 and 16 provide upper bounds for γ2(T) and Theorem 15 provides a char-
acterization of T ∈ T 8.

Theorem 14 ([22]). For a tree T, the following hold:

1. γ2(T) ≤ α∗(T);
2. γ2(T) ≤ α(T) + 1.

Theorem 15 ([22]). γ2(T) = α(T) + 1 if and only if T ∈ T 8.

Theorem 16 ([22]). If T is a tree, then γ2(T) ≤ (n + l)/2 with equality if and only if T ∈ {K2}
⋃

(
⋃

j≥2 T 2,j).

This characterization proves that the conjecture γ2(T) ≤ α(T) + 1 is true when G is a tree.
The study of two-outer-independent domination was initiated by Jafari Rad [23].

A subset D ⊆ V(G) is a two-outer-independent dominating set (2OIDS) of G denoted by
γ2

oi(G)-set, if every vertex of an independent set V-D has at least two neighbors in D. The
two-outer-independent domination number γ2

oi is the minimum cardinality of a 2OIDS
of G. In 2015, Krzywkowski provided a constructive characterization of trees with equal
two-domination and two-outer-independent domination numbers. Let T 9 be the family of
trees such that T1 is any tree that belongs to the family of trees in which, for every pair of
adjacent vertices of a degree of at least three, at least one of them has an even number of
pendant vertices. Ti+1 can be obtained from Ti using the Operation 30 [24].

Operation 30. Attach a star K1,t to T by joining x with y, where x is the center of a star, each
edge of a star can be subdivided by any non-negative even number of times and y belongs to some
γ2

oi(T)-set.

In Theorems 17 and 18, we provide results relating two-domination and two-outer-
independent domination numbers.

Theorem 17 ([24]). If T ∈ T 9, then γ2
oi(T) = γ2(T).

Theorem 18 ([24]). Let T be a tree. γ2
oi(T) = γ2(T) if and only if T ∈ T 9.

3.3. Double Domination

In this section on double domination, the authors have used vertex properties to
develop the graph operations. Harary et al. initiated the study on double domination in
graphs [25]. A double-dominating set is a dominating set that dominates every vertex of
G at least twice. The minimum cardinality of a double-dominating set of G is the double
domination number γ×2(T). Haynes et al. introduced a paired domination number in
1998 [26]. A paired-dominating set of a graph G is a dominating set of vertices whose
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induced subgraph has a perfect matching. The minimum cardinality of a paired domi-
nating set of G is the paired domination number γpr(T). In 2006, Blidia et al. provided
a constructive characterization for trees with equal paired and double domination numbers.
The authors have used support and pendant vertices for defining Operations 31–33. Let
C(T1) = ∅. Let T 10 be the family of trees such that T1 is P2 and Ti+1 can be obtained from
Ti by one of the Operations 31–33 [27].

Operation 31. Attach a path (u v x) to T by adding an edge between x and y, where y is a support
vertex of T. Let C(Ti+1) = C(Ti) ∪ {w}.

Operation 32. Attach a path (u x) to T by adding an edge between x and y, where y is an arbitrary
vertex of C(Ti). C(Ti+1) = C(Ti)

Operation 33. Attach a path (u v x w z) to T by adding an edge between x and y, where y is
arbitrary vertex of C(Ti). Let C(Ti+1) = C(Ti) ∪ {x}.

Note that for every i, 1 ≤ i ≤ k, C(Ti) is the set of vertices of Ti that are neither support
vertices nor leaves.

In Theorems 19 and 20, we provide results relating double domination and paired
domination numbers and a characterization of T ∈ T 10. The paired and double domination
numbers are generally not comparable. The authors have provided an illustration to
support this. This characterization proves the conjecture that γpr(T) = γ×2(T).

Theorem 19 ([27]). For any tree T, the following statements are equivalent:

1. γpr(T) = γ×2(T);
2. T = P2 or every support vertex of T is adjacent to exactly one pendant, no pair of support

vertices of T are adjacent and T has a unique γ×2(T)-set consisting of the support and pendant
vertices of T;

3. T ∈ T 10.

Theorem 20 ([27]). For any tree T, γpr(T) = γ×2(T) if and only if T ∈ T 10.

Around the same time, Chellali provided a constructive characterization for attaining
the upper bounds of double domination trees in terms of pendant and support vertices.
They also characterized the trees attaining the lower bound. The author claims that this
theorem gives a sense of good framing on the double domination number in trees. The
results are presented here. Let T 11 be the family of trees such that T1 is P2 and Ti+1 can be
obtained from Ti by one of the Operations 34 and 35 [28].

Operation 34. Attach a vertex x to T by adding an edge between x and y, where y is any support
vertex of T.

Operation 35. Attach a path (u v x) to T by adding an edge between x and y, where y is an arbitrary
vertex of T with the condition that if y is a pendant vertex of T, then its support vertex is not strong
in T.

We note that the properties of support vertices are used to define these operations.
We present the bounds on double domination number using the number of pendant and
support vertices in Theorem 21. Theorem 22 provides a tree characterization of T ∈ T 11.

Theorem 21 ([28]). If T ∈ T 11, then S(T) is a γ×2(T)-set of size (2n + l − s + 2)/3.

Theorem 22 ([28]). If T is a non-trivial tree of order n, then γ×2(T) ≥ (2n + l − s + 2)/3 with
equality if and only if T ∈ T 11.
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Based on the suggestions of Chellali, Krzywkowski provided a necessary condition so
that the double domination number of a tree is equal to this its two-domination number plus
one. He also provided a constructive characterization of these trees, which is presented here.

In 2012, Krzywkowski provided a constructive characterization of trees with a double
domination number equal to the two-outer-independence number. Let T be a tree. If T
is a path, then let C(T) be a one-element set containing a support vertex of T. If T is not
a path, then let C(T) be a set of vertices of T which have degree at least three. Two vertices
of C(T) are linked if the path joining them in T such that all interior vertices have a degree
two. Then, the path is called a link. The length of a link is the number of its edges. We call
paths joining pendant vertices of T to vertices of C(T) chains. The length of a chain is the
number of its edges. Let G2 be the family of trees such that every link has length two, every
chain has a length of one or three and each vertex of C(T) is adjacent to at least one chain
of length one. Let T 12 be the family of trees that either belong to the family G2, or can be
obtained from an element of G2, say T

′
, using one of the Operations 36 or 37. In both the

operations, x denotes a pendant vertex of T
′

[29]. In these two operations, the property of
N(y) of vertex y is also used for developing the operations.

Operation 36. Attach a vertex x to T by adding an edge between x and y, where y is a pendant
vertex of T such that the neighbor of y is a strong support vertex or has a degree at least three.

Operation 37. Attach a tree F of the family G2 to T by adding an edge between x and y, where y is
a pendant vertex of T such that the neighbor of y is the strong support vertex and x is any pendant
vertex in F.

In Theorem 23, we provide results relating double domination and two-domination
numbers. Theorem 24 provides a constructive characterization of T ∈ T 12.

Theorem 23 ([29]). If T ∈ T 12, then γ×2(T) = γ2(T) + 1.

Theorem 24 ([29]). Let T be a tree. γ×2(T) = γ2(T) + 1 if and only if T ∈ T 12.

3.4. Roman Domination

Roman domination was formally defined by Cockayne et al. [30]. Let f : V→ {0, 1, 2}
be a function of G. The weight of f is w(f) = ∑v∈V f(v), and let Vi = {v ∈ V : f(v) = i} for
i = 0, 1, 2. The function f is a Roman dominating function if, for every vertex v ∈ V0, there
exists u ∈ N(v) ∩ V2. The Roman domination number, denoted by γR(G), is the minimum
weight among all Roman dominating functions on G. A slightly different approach of
generating operations from rooted trees is used by Henning et al. They also used vertex
properties to define the operations.

In 2002, M. A Henning provided a constructive characterization of Roman trees. Let
G3 denote the family of all rooted trees such that every pendant vertex different from the
root is at distance 2 from the root and all children, except possibly one, of the root are
a strong support vertex. Let G4 denote the family of all rooted trees such that every pendant
is at distance 2 from the root and all but two children of the root are strong support vertices.
Let S ⊆ G and let VS(T) = {v ∈ V(T), v ∈ S(T) and γR(T – v) ≥ γR(T)}. Let T 13 be the
family of trees such that T1 is K1,r for r ≥ 1 and Ti+1 can be obtained from Ti by one of the
Operations 38–40 [31]. Pendant and central vertex properties are used for defining these
operations.

Operation 38. Attach a star K1,t, t ≥ 2 to T by adding an edge between x and y, where x is the
center of K1,t and y ∈ VS(T).
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Operation 39. Attach a tree F of the family G3 to T by adding an edge between x and y, where x is
an arbitrary vertex of T and y is the pendant vertex of F if F = P3 or y is the central vertex of T if
F 6= P3.

Operation 40. Attach a tree F of the family G4 to T by adding an edge between x and y, where x
denotes the central vertex of T and y ∈ VS(T).

In Theorem 25, we provide a constructive characterization of T ∈ T 13.

Theorem 25 ([31]). A tree T is a Roman tree if and only if T ∈ T 13.

Theorem 25 gives a solution to the open problem posted by Hedetniemi at the ninth
quadrennial international conference in June 2000.

A double Roman dominating function (DRDF) is a function f: V→ {0, 1, 2, 3}, if f(v) = 0
for a vertex v, then v has at least two adjacent vertices assigned 2 under f or one adjacent
vertex assigned 3 under f. If f(v) = 1, then v has at least one neighbor with f(w) ≥ 2. The
weight of a DRDF is defined as the sum f(V) = ∑u∈V f(v) and the minimum weight of a
DRDF on G is the double Roman domination number of G, denoted by γdR(G).

In 2019, M. A. Henning and N. Jafari Rad provided a constructive characterization of
double Roman trees, which provided the answer for the question posted by Beller et al. [32]
in 2016. Let G5 be the tree shown in Figure 3. For k ≥ 2, let G6 be the tree obtained from k
vertex disjoint copies of a path P5 by adding a new vertex u and joining it to the central
vertex of each path. When k = 2, the tree G6 is illustrated in Figure 3. The vertex u in G5
and G6 (k ≥ 2) are labeled the pivot vertex of the tree.

Figure 3. Trees G5 and G6.

Let T 14 be the family of trees and Ti+1 can be obtained from Ti by one of the
Operations 41–50 [33]. Different vertex properties such as strong the support vertex, central
vertex and pendant vertex are used to define the operations.

Operation 41. Attach a vertex x to T by adding an edge between x and y, where y is the strong
support vertex of T.

Operation 42. Attach a path (u x v) to T by adding an edge between x and y, where y is a vertex
of T that is at distance of 2 from a pendant vertex in T where the common neighbor of y and the
pendant vertex have degree 2 in T.

Operation 43. Attach a path (u v x) to T by adding an edge between x and y, where y is an arbitrary
vertex of T.

Operation 44. Attach a path (u x v) to T by adding an edge between x and y, where y is a strong
support vertex of T.

Operation 45. Attach a path (u x v) to T by adding an edge between x and y, where y is an arbitrary
vertex T that is adjacent to a strong support vertex of degree 3 in T with its two neighbors different
from y both being pendant vertices in T.
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Operation 46. Attach a star K1,3 to T by adding an edge between x and y, where x is a pendant in
K1,3 and y is an arbitrary vertex of T.

Operation 47. Attach a double star S2,2 by adding an edge between x and y, where x is a pendant
vertex of S2,2 and y is an arbitrary vertex of T that cannot be assigned the value 3 under any
γR-function of T.

Operation 48. Attach a tree G5 to T by adding an edge between x and u, where u is the pivot
vertex of G5 and x is the vertex of T that belongs to no γ-set of T and that is assigned the value 0 in
every γR-function of T.

Operation 49. Attach a path (u x) to T by adding an edge between x and y, where y is a vertex of
T such that the following holds. Firstly, the vertex y is the central vertex of a path P5 in T where the
degree of every vertex on this path is the same as its degree in T except for exactly one pendant of the
path which has degree at least 2 in T Secondly, every γdR-function of T assigns to the vertex y the
value 0.

Operation 50. Attach a tree G6, for some k ≥ 2 to T by adding an edge between x and y, where x
is the pivot vertex of G6 and y is an arbitrary vertex of T that belongs to some γ-set of T.

In Theorem 26, we provide a constructive characterization of T ∈ T 14 .

Theorem 26 ([33]). A tree T is a double Roman tree if and only if T ∈ T 14.

Adding a single edge helped in defining graph operations in many characterizations
related to Roman domination. These results are presented here. A generalization of Roman
domination under the name Italian domination was introduced in [34], where the authors
called it Roman {2}-domination. The function f is said to be a Roman {2}-dominating
function if, for every vertex v ∈ V0, ∑u∈N(v) f(u) ≥ 2. The Roman {2}-domination number,
denoted by γ2R(G), is the minimum weight among all Roman {2}-dominating functions
on G. The Italian domination number of G is denoted by γI(G). In 2017, M. Hajibaba et
al. provided a constructive tree characterization of Italian and double-Roman domination
numbers that satisfies the condition γI(T) = 2γdR(T)/3. Let T 15 be the family of trees
such that T1 is a double star K1,t for t ≥ 2 and Ti+1 can be obtained from Ti by one of the
Operations 51 and 52 [35]. We note that edge addition is used in these operations.

Operation 51. Let γI(T − y) ≥ γI(T). Attach a star K1,t, t ≥ 2 to T by joining x with y, where x
is the center vertex of K1,t, where t ≥ 2.

Operation 52. Attach a star K1,t, t ≥ 1 to T by joining x with y, where x is the center vertex of
K1,t and y is an arbitrary vertex of T, and then subdividing the new edge.

In Theorems 27 and 28, we provide a bound for double Roman domination and
a constructive characterization of T ∈ T 15.

Theorem 27 ([35]). For every graph G, γdR(G) / 2 ≤ γI(G) ≤ 2γdR(G) / 3.

Theorem 28 ([35]). If T is a tree of order n ≥ 3, then γI(T) =2γdR(T)/3 if and only if T ∈ T 15.

The authors have provided an infinite family of trees that achieve the equality for the
lower bound. They have also proven that if γdR(G) / 2 = γI(G), then γI(G) = γ2(G), V2 = ∅
for every γI(G)-function f = (V0, V1, V2) and have shown that the converse is not valid.

The locating Roman dominating function was introduced by Jafari Rad [36]. An RDF
f = (V0, V1, V2) is called a locating Roman dominating function (or just LRDF) if N(u) ∩ V2
6= N(v) ∩ V2 for any pair u, v of distinct vertices of V0. The locating Roman domination
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number γL
R(G) is the minimum weight of an LRDF of G. In 2018, Jafari Rad et al. provided

a constructive tree characterization of the locating Roman domination number that satisfies
the condition γL

R(T) = (4n + l + s)/5. The authors define a vertex w of degree at least two
in a tree T is called a special vertex if the following conditions hold:

1. If f(w) = 2 for a γL
R(G)-function f = (V0, V1, V2) , then pn(w, V0) 6= ∅.

2. If f(w) = 1 for a γL
R(G)-function f = (V0, V1, V2) , then N(w) ∩ V2) = ∅.

Let T 16 be the family of trees such that T1 is P4, and Ti+1 can be obtained from Ti by
one of the Operations 53–56 [37]. We note that edge addition is used in these operations.

Operation 53. Attach a vertex x to T by adding an edge between x and y, where y is a support
vertex of T.

Operation 54. Attach a path P5 to T by joining x with y, where x is a pendant vertex od P5 and y
is a pendant vertex in T.

Operation 55. Attach a path P2 to T by joining x with y, where x is a pendant vertex of P2 and y
is a special vertex of T.

Operation 56. Attach a path P9 to T by joining x with y, where x is the central vertex of P9 and y
is an arbitrary vertex of T, d(T) ≥ 2 and γL

R(T − w) ≥ γL
R(T).

In Theorems 29 and 30, we present a bound for locating Roman domination with
respect to number of vertices, pendant and support vertices and a constructive characteri-
zation of T ∈ T 16.

Theorem 29 ([37]). For any tree T of order n ≥ 2, γR
L(T) ≤ (4n + l + s)/5.

Theorem 30 ([37]). For a tree T of order n ≥ 2, γR
L(T) = (4n + l + s)/5 if and only if T = K1,n−1

or T ∈ T 16.

In 2019, A. C. Martinez et al. provided a constructive characterization of trees with
equal Roman domination {2} and a Roman domination number.

A near Roman {2}-dominating function relative to a vertex v, abbreviated near-R2DF
relative to v, on a graph G = (V, E) is a function f = (V0, V1, V2) satisfying the follow-
ing. For each vertex u in V such that f(u) = 0, if u = v, then ∑u∈N(v) f(u) ≥ 1, while if
u 6=v, then ∑u∈N(v) f(u) ≥ 2. The weight of a near-R2DF relative to v on G is the value
f(V) = ∑u∈N(v) f(u). The minimum weight of a near-R2DF relative to v on G is called the
near Roman {2}-domination number relative to v of G, which the authors denotes γn

R(G;v).
The authuors used stable and near vertex for their discussions, and it can be defined as
follows. A vertex v is said to be a stable vertex in G, if γR(G − v) ≥ γR2(G), while v is a
near stable vertex in G if γn

R(G;v) = γR2(G). Let T 17 be the family of trees such that T1 is
P3 and Ti+1 can be obtained from Ti by one of the Operations 57–62 [38]. We note that edge
addition is used in these operations.

Operation 57. Attach a star K1,3 to T by adding an edge between x and y, where x is a pendant
vertex of K1,3 and y is an arbitrary vertex of T.

Operation 58. Attach a double star S1,2 to T by adding an edge between x and y, where x is the
weak support vertex of S1,2 and y is an arbitrary vertex of T.

Operation 59. Attach a path (u x v) to T by adding an edge between x and y, where y is a stable
vertex of T.
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Operation 60. Attach a path (u v x) to T by adding an edge between x and y, where y is a near
stable vertex of T.

Operation 61. Attach a vertex x to T by adding an edge between x and y, where y ∈ S2,R(T).

Operation 62. Attach a vertex x to T by adding an edge between x and y, where y ∈ L(T) is a near
stable vertex.

In Theorem 31, the author provided a necessary and sufficient for the graph G satis-
fying the equality γ2R(G) = γR(G). Also in Theorem 32, they provided a constructive tree
characterization of T ∈ T 17.

Theorem 31. Let G be a graph. Then, γ2R(G) = γR(G) if and only if there exists a γ2R(G) function
f = (V0, V1, V2) such that V0, V1 = ∅.

Theorem 32 ([38]). A tree of order n ≥ 3, γ2R(T) = γR(T) if and only if T ∈ T 17.

3.5. Restrained Domination

The concept of restrained domination was introduced by Telle et al. [39]. He had stud-
ied it as a vertex partitioning problem. In 1999, G. S. Domke et al. labeled the same problem
as restrained domination. A set D ⊆ V is a restrained dominating set if every vertex not in
D is adjacent to a vertex in D and to a vertex in V-D. The restrained domination number
γr(G) is the minimum cardinality of a restrained dominating set of G [40]. As observed in
Section 3.4, in this section, all the graph operations also depend on a single edge addition.
In 2000, G. S. Domke et al. provided a constructive characterization of trees for restrained
domination number. Let T 18 be the family of trees such that γr(T) =

⌈ n+2
3
⌉
. For k = 1, 2, let

Tk be the tree obtained from K1,3 by subdividing k edges once. Ti+1 can be obtained from
Ti by one of the Operations 63 or 64.

Operation 63. Attach a path P2 at y, where y is a vertex of T not belonging to some minimum
restrained dominating set.

Operation 64. Attach a path P3 at y, where y belongs to some minimum restrained dominating set
of T.

Later, they defined three families of trees as follows. Let G1 be the family of trees
with order 3k, which can be obtained from the tree T2 by a finite sequence of Operation 64.
Let G2 be the family of trees with order 3k + 1, which can be obtained from P4 by a finite
sequence of operations 64. Let G3 be the family of trees with order 3k + 2, which can be
obtained from P5 or from the tree T1 by a finite sequence of operations 64 with the union
of the family of trees with order 3k + 2, which can be constructed from the tree T2 by
a finite sequence of Operation 64, followed by Operation 63 and then by a finite sequence
of Operation 64. Let G7 be the family of trees obtained from G1, G2 or G3 [41].

In Theorems 33 and 34, we present a bound for restrained domination and a construc-
tive characterization of T ∈ T 18.

Theorem 33 ([41]). If T is a tree of order n ≥ 1, then γr(T) ≥ d n+2
3 e.

Theorem 34 ([41]). A tree of order n ≥ 4, T 18 = G7.

Pushpam and Padmapriea et al. introduced the concept of restrained Roman domina-
tion in graphs [42]. An RDF, f = (V0, V1, V2) on a graph G is a restrained Roman dominating
function, or just rRDF on G if every vertex of V0 has a neighbor in V0. The restrained
Roman domination number of G γrR(G), is the minimum weight of an rRDF on G. In 2011,
Jafari Rad et al. provided a constructive characterization of a restrained Roman domination
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number of trees that satisfies the condition γrR(T) ≥ (2n + l − s + 4)/3. Let T 19 be the
family of trees such that T1 ∈ {P4, P5, P6} and Ti+1 can be obtained from Ti by one of the
Operations 65–67 [43]. We note here that, since the Roman domination number is involved,
these operations are involved with single edge addition.

Operation 65. Attach a vertex x to T by adding an edge between x and y, where y is a support
vertex of T.

Operation 66. Attach a path (u v x) to T by adding an edge between x and y, where y is a vertex of
T adjacent to a path P3.

Operation 67. Attach a path (u v x) to T by adding an edge between x and y, where y is a pendant
vertex adjacent to a weak support vertex of T.

In Theorems 35 and 36, we provide a bound for restrained Roman domination and
a constructive characterization of T ∈ T 19.

Theorem 35 ([43]). For almost every graph G, we have γrR(G) = γR(G).

Theorem 36 ([43]). For a tree T of diameter at least three, γrR(T) ≥ (2n + l − s + 4)/3, with
equality if and only if T ∈ T 19.

In this article, the authors have proven that the restrained Roman domination decision
problem is NP-complete by reducing the vertex cover decision problem, which is known to
be NP-complete. The authors have further provided various properties for general graphs
that have restrained Roman domination.

3.6. The Global Offensive Alliance

In [44] Kristiansen et al. introduced several types of alliances in graphs, including
defensive and offensive alliances. A set D⊆ V is a global offensive alliance of G if, for every
v ∈ V − D, |N[v] ∩ D| ≥ |N[v] − D| and is a global strong offensive alliance of G if, for
every v ∈ V − D, |N[v] ∩ S| > |N[v] − D|. The minimum cardinality of the global offensive
alliance set and a global strong offensive alliance set is said to be a global offensive alliance
number γo(G) and a global strong offensive alliance number γô(G) respectively. In 2009,
Chellali et al. provided a constructive characterization of trees that satisfied the condition
i(T) = γô(T). Since it is a characterization on equality with independent domination, the
graph operations match with the discussion in Section 3.1, where a star graph is attached
from a star T1. Let T 20 be the family of trees such that T1 is a star K1,t, t ≥ 2, x is the center
of a star and Ti+1 can be obtained from Ti by one of the Operations 68–71 [45]. When
an operation is performed on a tree Ti, the authors use the notation A(Ti+1) = A(Ti) ∪
Lx, where A(T1) = Lw and where Lw denotes the set of all pendant vertices adjacent to a
vertex w.

Operation 68. Attach a star K1,t, t ≥ 1 to T, by adding an edge between x and y, where x is the
center vertex of K1,t and y is a pendant vertex of T.

Operation 69. Attach a star K1,t, t ≥ 1 to T, by adding an edge between x and y, where x is the
center vertex of K1,t and y is a support vertex of T.

Operation 70. Attach a star K1,t, t ≥ 1 to T, by adding an edge between x and y, where x is the
center vertex of K1,t and y ∈ V(T) − L(T).

Operation 71. Attach a star K1,t, t ≥ 3 to T, by adding an edge between x and y, where x is the
center vertex of K1,t and y ∈ V(T) − L(T) and |N[y] ∩ L(T)| ≥ |N[y] ∩ (V(T) − A(T))| + 2.
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In Theorem 37, we provide results relating domination, global offensive alliance,
packing, independence, two-domination and global strong offensive alliance numbers. In
Theorem 38, we provide a tree characterization of T ∈ T 20.

Theorem 37 ([45]). For every non-trivial tree T, γ(T) ≤ γo(T) ≤ τ(T) ≤ i(T) ≤ γ2(T) ≤ γô(T).

Theorem 38 ([45]). Let T be a tree. Then, i(T) = γô(T) if and only if T = K1 or T ∈ T 20.

In 2009, M. Bouzefrane et al. provided a constructive characterization of trees with
equal domination and global offensive alliance numbers. Let T 21 be the family of trees
such that T1 is P2 and Ti+1 can be obtained from Ti by one of the Operations 72–75 [46].

Operation 72. Attach a vertex x to T by adding an edge between x and y, where y is a support
vertex of T.

Operation 73. Attach a path P2 to T by adding an edge between x and y, where y is a support
vertex of T.

Operation 74. Attach a subdivided star SSk , k ≥ 2 to T by adding an edge between x and y, where
x is a center of SSk, y is a vertex of T and y does not belong to a γo(T)-set. Then, a strict majority of
N [v] are in the γo(T)-set.

Operation 75. Attach a path (x u v) to T by adding an edge between x and y, where y is an arbitrary
vertex that belongs to a γo(T)-set.

In the same paper, they have defined a new family of trees and label it as F. Here, F
is the family of trees of an order of at least three that can be obtained from r disjoint stars
by first adding r − 1 edges so that they are incident only with centers of the stars and
the resulting graph is connected and then subdividing each new edge exactly once. In
Observation 1, we provide the result relating the global offensive k-alliance number, and
in Theorem 39, we present the upper bound for γo(T). In Theorem 40, we present a tree
characterization of T ∈ T 21.

Observation 1 ([46]). Let T be a tree obtained from a non-trivial tree T
′

by attaching a subdivided
star SSk, k ≥ 2, of center x with an edge (x y) at a vertex y of T

′
. Then:

1. γ0(T
′
) ≤ γo(T) − k, with equality if y belongs to some γo(T

′
)-set or a strict majority of its

closed neighborhood belong to some γ0(T
′
)-set.

2. γ(T) = γ(T
′
) + k.

Theorem 39 ([46]). Let T be a tree of order n ≥ 3 with l leaves and s support vertices. Then, γo(T)
≥ (n − l + s + 1)/3 with equality if and only if T ∈ F.

Theorem 40 ([46]). Let T be a tree. Then, γo(T) = γ(T) if and only if T = K1 or T ∈ T 21.

In this article, the authors have provided an upper bound for trees in terms of pendant
and support vertices and characterized trees attaining this upper bound.

A generalization of offensive alliances, namely global offensive k-alliances was defined
by Shafique and Dutton [47,48]. A set D ⊆ V is a global offensive k-alliance of G if, for
every v ∈ V − D, |N[v] ∩ D| ≥ |N[v] − D| + k. The global offensive k-alliance number
γo

k(G) is the minimum cardinality of a global offensive kalliance in G. For a positive integer
p, a nontrivial tree T is called Np-tree if T contains a vertex, say w, of degree at least p
− 1 and d(x) ≤ p − 1 for every vertex of x ∈ V(T) − {w}. The vertex w is said to be the
special vertex of T. An Np-tree with special vertex w is called exact if d(w) = p − 1. In
2010, Chellali provided a constructive characterization of trees for equal global offensive
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k-alliance numbers and k-domination numbers, k ≥ 2. In Section 3.2, we observed that
many characterizations on two-domination numbers involve unique trees. Similarly the
equality of global offensive k-alliance number with k-domination involves T1 to be a Nk
tree. All the operations here also involve attaching an Nk tree. Let T 22 be the family of
trees such that T1 is a Nk tree with special vertex w of degree at least k − 1 and Ti+1 can be
obtained from Ti by one of the Operations 76 and 78 [49].

Operation 76. Attach an Nk tree to T by adding an edge between x and y, where x is a special
vertex of Nk with degree at least k + 1 and y does not belongs to a γo

k(T)-set D, the |N(y) ∩ D| >
|N(y) − D| + k.

Operation 77. Attach an Nk tree to T by adding an edge between x and y, where x is a special
vertex of Nk with degree at least k − 1 or k, and y belongs to a γo

k(T)-set.

Operation 78. Attach an exact Nk tree with special vertex x and q ≥ 1 new trees, all vertices of
degree at most k − 1 by adding edges between x and a new vertex of each new tree to a vertex y of T
of degree exactly k − 1.

In Observation 2 and Theorem 41, we present results relating global offensive k-alliance
number and k-domination number of trees.

Observation 2 ([49]). Let k ≥ 2 be an integer and T be a tree obtained from an Nk-tree H with
special vertex w by adding an edge between w and a vertex v of a tree T

′
. Then, γo

k(T
′
) ≥ γ0

k(T)
− |V(H)| + 1 with equality if:

1. v belongs to a γ0
k(T

′
)-set;

2. d(w) ≥ k + 1 and v satisfies |NT′ (v) ∩ D| > |NT′ (v) ∩ D| + k, where D is γo
k(T

′
)-set such

that v is not in D.

Theorem 41 ([49]). Let k ≥ 2 be an integer and T ∈ T 22, then γ0
k(T) = γk(T).

A characterization of trees with γ0
1(T) = γ1(T) has been determined by Bouzefrane

and Chellali. In Theorem 42, we provide a tree characterization of T ∈ T 22.

Theorem 42 ([49]). Let k ≥ 2 be an integer. A tree T satisfies γo
k(T) = γk(T) if and only if either

4(T) ≤ k – 2 or T ∈ T 22.

In Sections 3.7–3.18, we provide the operations for different kinds of dominating sets.
In these sections, operations related to the particular kind of the dominating set alone
are presented. Results related to comparing these dominating sets with other kinds of
dominating sets, if any, are not consider here.

3.7. Very Excellent Domination

Very excellent (VE) domination was studied in 2003 [50]. An excellent graph G is said
to be very excellent (VE) if there is a γ-set D of G such that, for each vertex u ∈ V − D,
there is a vertex v ∈ D such that D − {v} ∪ {u} is a γ-set of G. A γ-set D of G satisfying this
property is called a very excellent γ-set of G. In this case, we say that u and v are vertex
exchangeable. M. Yamuna characterized all VE trees. Let T 23 be the family of trees such
that T1 is P2 and Ti+1 can be obtained from Ti by one of the Operations 79–81 [50].

Operation 79. Attach a path P2 to T at y, where y is a level vertex of T.

Operation 80. Attach a path P3 to T at y, if there exist a very excellent γ-set D of T such that
y ∈ D and D-y dominates T-y.
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Operation 81. Attach a tree path (u v x w z) to T by adding an edge between x and y, where y is
an arbitrary vertex of T.

In Theorems 43 and 44, we provide a necessary and sufficient condition of a VE graph
and a characterization of T ∈ T 23.

Theorem 43 ([50]). A graph G is VE if and only if there exists a γ-set D of G such that to each u
not in D, there is a vertex v ∈ D such that PN[v, D] ⊂ N[u].

Theorem 44 ([50]). A tree T is VE if and only if T ∈ T 23.

3.8. Paired Domination

In 2004, Erfang Shan et al. provided a constructive characterization of trees for which
the paired domination number is twice the matching number. Let T 24 be the family of trees
such that T1 is P2 and Ti+1 can be obtained from Ti by one of the Operations 82 and 83 [51].

Operation 82. Attach a path P1 to a vertex of T, which is in every γpr(T)-set.

Operation 83. Attach the subdivided star to a vertex of T, which is in every γpr(T)-set.

In Theorem 45, we present a characterization of T ∈ T 24.

Theorem 45 ([51]). A tree T is a (γpr, 2β1)-tree if and only if T ∈ T 24.

3.9. Packing and Independent Domination

A γ-set D is a packing domination if the vertices in D are pairwise at distance at least
3 apart in G. The packing number ρ(G) is the maximum cardinality of a packing. A graph
G is said to be ρ-i-graph if D is both independent and packing set. In 2006, Dorfling et al.
provided a constructive characterization of ρ-i-trees. The status of the vertex and all types
of operations as seen in Figure 4.

Figure 4. Vertex status of A, B, C and the six Operations 84–89.

Let T 25 be the family of trees that contains (P1, D1), where the single vertex has status
D and contains (P2, D2), where one vertex has status A and the other status C such that
Ti+1 can be obtained from Ti by one of the Operations 84–89 [52].

In the Operations 84–89, y denotes a random vertex of T.

Operation 84. Attach a vertex x to T by adding an edge between x and y with the condition that
sta(x) = B, sta(y) ∈ {A, D}.

Operation 85. Attach a path (x w) to T by adding an edge between x and y with the condition that
sta(x) = B, sta(w) = D and sat(y) ∈ {A, B}.
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Operation 86. Attach a path (x w) to T by adding an edge between x and y with the condition that
sta(x) = A, sta(w) = C and sat(y) = B.

Operation 87. Attach a path (x w z) to T by adding an edge between x and y with the condition
that sta(x) = B, sta(w) = A, sta(z) = C and sat(y) ∈ {B, C}.

Operation 88. Attach a path (x w z) to T by adding an edge between x and y with the condition
that sta(x) = B, sta(w) = C, sta(z) = A and sat(y) = A.

Operation 89. Attach a path (v u x w z) to T by adding an edge between x and y with the condition
that sta(x) = B, sta(w) = sta(v) = C, sta(z) = sta(u) = A and sat(y) = B.

In Theorem 46, we present a characterization of T ∈ T 25.

Theorem 46 ([52]). A labeled tree is a ρ-i-tree if and only if T ∈ T 25.

3.10. Non-Isolating Two-Bondage

Bondage in graphs was introduced by Fink et al. in 1990 [53]. In 2013, Krzywkowski
introduced the non-isolating two-bondage number of G, denoted by b2

′(G) as the minimum
cardinality among all sets of edges E

′ ⊆ E, such that δ(G − E
′
) ≥ 1 and γ2(G − E

′
) > γ2(G).

If for every E
′ ⊆ E, either γ2(G − E

′
) = γ2(G) or δ(G − E

′
) = 0, then b

′
2(G) = 0, and G is said

to be a γ2-non-isolating, strongly stable graph. In the same paper the author characterized
all γ2-non-isolating, strongly stable trees. The author define two trees G1 and G2 as seen in
Figure 5.

Figure 5. Trees G1 and G2.

Let T 26 be the family of trees such that T1 ∈ {P1, P2, P3} and Ti+1 can be obtained from
Ti by one of the Operations 90–94 [54].

Operation 90. Attach a vertex x to T by adding an edge between x to y, where y is a strong vertex
of T.

Operation 91. Attach a path (u x v) to T by adding an edge between x to y, where y is a pendant
vertex of T 6= P3 the neighbor of which has degree at most two.

Operation 92. Attach a path (u x v) to T by adding an edge between x to y, where y is a vertex of
T which is not a pendant vertex.

Operation 93. Let x mean a vertex of Tk adjacent to a tree G1 through the vertex u. Remove that
tree G1 and attach a tree G2 by joining the vertex u to the vertex x, Where G1 and G2 are the graphs
as seen in Figure 5.

Operation 94. Attach a path (u x v) to T by adding an edge between x and y, where x is a
support vertex of P3 and y is a pendant vertex of T the neighbor of y is adjacent to at least three
pendant vertices.
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In Theorems 47 and 48, we present results on non-isolating, strongly stable domination
and a constructive tree characterization of T ∈ T 26.

Theorem 47 ([54]). Let T be a γ2-non-isolating, strongly stable tree. Assume that T
′ 6= K1 is

a subtree of T such that T-T
′

has no isolated vertices. Then b2
′
(T) = 0.

Theorem 48 ([54]). Let T be a tree. Then b2
′
(T) = 0 if and only if T ∈ T 26.

In this article, the properties of non-isolating two-bondage numbers of a graph are dis-
cussed. For different classes of graph, the non-isolating two-bondage number is determined.

3.11. Unique Minimum Domination

Gunther et al. studied graphs with unique minimum dominating sets [55]. In 2015,
Sharada provided a constructive characterization of trees with a unique minimum domi-
nating set. Let T 27 be the family of trees such that T1 is a star K1,t, t > 1, x is the center of
K1,t and Ti+1 can be obtained from Ti by one of the Operations 95 and 96 [56].

In both the operations, y denotes a random vertex of T. The statuses used in Opera-
tions 95 and 96 are the same as those discussed in Section 3.1.

Operation 95. Attach a star K1,t, t > 1 to T by adding an edge between x and y, where x is
a support vertex of K1,t and y is an arbitrary vertex of T. Let sta(x) = sta(y) = A, sta(w) = B, where
w is a pendant vertex of K1,t.

Operation 96. Attach a star K1,t, t > 1 to T, by adding an edge between x and y. Let sta(y) = B.
Let y be adjacent to z in T. If d(z) > 2, then x is a support vertex of K1,t. If d(z) = 2, then x is
a pendant vertex of K1,t. Let sta(w) = A if w is a support vertex of K1,t and sat(w) = B, if w is
a pendant vertex of K1,t.

Theorems 49 and 50 provide a result on the UMD tree and tree characterization of
T ∈ T 27.

Theorem 49 ([56]). Let T be a tree of order n ≥ 3. Then, the following conditions are equivalent.

1. T is a UMD-tree with γ(T)-set D.
2. T has a γ(T)-set D for which every vertex v ∈ D is a support vertex or satisfies |pn(v, S)| ≥ 2.
3. T has a γ(T)-set D for which γ(T − v) > γ(T) for every v ∈ D.

Theorem 50 ([56]). A tree has the unique minimum dominating set if and only if T ∈ T 27.

This theorem can be considered as a characterization of trees having a UMD set. We
recollect that the characterization of trees with the UMD set is discussed in Section 3.1.
Corollary 1 states that these trees are i-critical as well. It would be good if the critical
property can be discussed on UMD to provide some insights for comparison of independent
and dominating sets.

3.12. Complementary Tree Domination

Complementary tree domination was introduced and studied by Muthammai et al. [57].
A complementary tree dominating set of a graph G is a set D of vertices of G such that
D is a dominating set and the induced sub graph V-D is a tree. The complementary
tree domination number γctd(G) is the minimum cardinality of a complementary tree
dominating set of G. Edge–vertex domination in graphs was introduced by Peter [58].
An edge–vertex dominating set of a graph G is a set D of edges of G such that every
vertex of G is incident with an edge of D or incident with an edge adjacent to an edge of
D. The edge–vertex domination number of a graph, denoted by γev(G), is the minimum
cardinality of an edge–vertex dominating set of G. In 2015, Krishnakumari et al. provided
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a constructive characterization of trees with equal domination number and complementary
tree domination number. Let T 28 be the family of trees such that T1 is P4 and Ti+1 can be
obtained from Ti by one of the Operations 97 and 98 [59].

Operation 97. Attach a path P2 to T by joining x with y, where x is a pendant vertex P2 and y
is a vertex of T such that which is not a pendant vertex, and it is adjacent to a support vertex of
degree 2.

Operation 98. Attach a path P2 to T by joining x with y, where x is a pendant vertex of P2 and y
is any support vertex of T.

Observation 3 provides bounds on γctd(G) trees. Theorem 51 provides a characteriza-
tion of T ∈ T 28.

Observation 3 ([59]). For every graph, we have γ(G) ≤ γctd(G).

Theorem 51 ([59]). Let T be a tree. Then γ(T) = γctd(T) if and only if ∈ T 28.

In the same paper, they have characterized another family of trees that satisfies the
condition γctd(T) = γev(T) + 1. Let T 29 be the family of trees such that T1 ∈ {P3, P4} and
Ti+1 can be obtained from Ti using Operation 99 [59].

Operation 99. Attach a path P2 to T by joining x with y, where x is a pendant vertex of P2 and y
is not a pendant vertex, and it is adjacent to a support vertex of degree 2.

Theorem 52 provides bounds on γctd(G) trees. Theorem 53 provides a characterization
of T ∈ T 29.

Theorem 52 ([59]). For every tree, we have γctd(T) > γev(T).

Theorem 53 ([59]). Let T be a tree. Then, γctd(T) = γev(T) + 1 if and only if T ∈ T 29.

3.13. Disjunctive Domination

Goddard et al. introduced and studied the concept of disjunctive domination in a
graph [60]. A set D of vertices in G is a disjunctive dominating set in G if every vertex
not in D is adjacent to a vertex of D or has at least two vertices in D at distance two.
The disjunctive domination number, γd

2(G) is the minimum cardinality of a disjunctive
dominating set in G. In 2015, Henning et al. provided a constructive characterization of
trees with γ(T) = 2γd

2(T) − 1. Let T 30 be the family of trees such that it contains (K2, S0
∗),

where S0
∗ is the labeling that assigns to one vertex sta(A) and to the other sta(C), as seen in

Figure 6. Ti+1 can be obtained from Ti by one of the Operations 100–102 [61].

Figure 6. Vertex status of A, B, C, D, E and the three Operations 100–102.
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In both the operations y denotes a random vertex of T.

Operation 100. Attach a vertex x to T by adding an edge between x and y, where sta(x) = C and
sta(y) ∈ {A, B}.

Operation 101. Attach a path (u x v w) to T by adding an edge x and y, where sta(u) = sta(w) = C,
sta(x) = B, sta(v) = A and sta(y) = A.

Operation 102. Attach a path (x u v w z) to T by adding an edge x and y, where sta(x) = sta(v) = E,
sta(u) = D, sta(w) = A, sat(z) = C and sta(y) = A.

In Theorems 54 and 55, we present a bound on γ2
d(T) and a characterization of

T ∈ T 30.

Theorem 54 ([61]). For every tree T, we have γ(T) / γ2
d(T) < 2, and this bound is asymptotically

tight.

Theorem 55 ([61]). For every tree T, we have γ(T) ≤ 2γ2
d(T) − 1. Furthermore, the non-trivial

trees T satisfying γ(T) = 2γ2
d(T) − 1 are precisely those trees T such that (T, D) ∈ T 30, for some

labeling D.

Various graph operations have their impact on changing the domination number of
any graph. Certain graph operations do not change the domination number of the resulting
graph. The characterization of such graphs on two graph operations edge subdivision
and vertex merging is considered. The tree characterization of such graphs is provided in
Sections 3.14–3.17.

3.14. Domination Dot Stable Graphs

Domination dot stable graph was introduced by Yamuna et al. [62]. A graph G is said
to be domination dot stable (DDS) if γ(G • uv) = γ(G) for all u, v ∈ V(G), u adjacent to
v. In 2006, Yamuna et al. provided a constructive characterization of DDS trees. Let T 31
be the family of trees such that T1 is K1 and Ti+1 can be obtained from Ti by one of the
Operations 103 and 104 [63].

Operation 103. Attach a path P2 to T by joining a vertex x with y, where x is a pendant vertex of
P2 and y is a good vertex of T.

Operation 104. Attach a path P3 to T by joining a vertex x with y, where x is a pendant vertex of
P3 and y is a bad vertex of T.

In Theorem 56, we provide a necessary and sufficient condition of DDS graphs, and in
Theorem 57, we present a characterization of T ∈ T 31.

Theorem 56 ([62]). A graph G is DDS if and only if every γ-set of G is an independent dominat-
ing set.

Theorem 57 ([62]). A tree T is DDS if and only if T ∈ T 31.

3.15. Domination Subdivision Stable Graphs

Domination subdivision stable graphs were defined and studied by Yamuna et al.
A graph G is said to be domination subdivision stable (DSS) if the domination number of
G does not change by subdividing any edge of G [64]. In the same year, they provided
a constructive characterization of DSS trees. Let T 32 be the family of trees such that T1 is
K1 and Ti+1 can be obtained from Ti by one of the Operations 105 and 106 [65].
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Operation 105. Attach a path P2 to T by joining a vertex x with y, where x is a pendant vertex of
P2 and y is a good vertex of T to generate T1 with the conditions, γ(T) = γ(T1), y is a selfish vertex
with respect T, y is a good vertex with respect to Tsd uv, for all (u v) ∈ V(T).

Operation 106. Attach a path P3 to T by joining a vertex x with y, where x is a pendant vertex of
P3 and y is a level vertex of T.

In Theorem 58, we provide a necessary and sufficient condition of DSS graphs, and in
Theorem 59, we present a characterization of T ∈ T 32.

Theorem 58 ([64]). A graph G is DSS if and only if for every u, v ∈ V(G), there is a γ-set
containing u and v, there is a γ-set D such that either pn(u, D) = {v} or v is two-dominated.

Theorem 59 ([65]). A tree T is DSS if and only if T ∈ T 32.

3.16. Non-Domination Subdivision Stable Graphs

Non-domination subdivision stable graphs were introduced by Yamuna et al. A graph
G is said to be non-domination subdivision stable (NDSS) graph if γ(Gsd uv) = γ(G) +
1 for all u, v ∈ V(G), u adjacent to v. In the same paper, they provided a constructive
characterization of NDSS trees. Let T 33 be the family of trees such that T1 is P2, and Ti+1
can be obtained from Ti by one of the Operations 107 and 108 [66].

Operation 107. Attach a path P2 to T by joining a vertex x with y, where x is a pendant vertex of
P2 and y is a good vertex of T.

Operation 108. Attach a path P4 to T by joining a vertex x with y, where x is a pendant vertex of
P4 and y is a bad vertex of T.

In Theorem 60, we provide a necessary and sufficient condition of NDSS graphs, and
in Theorem 61, we present a characterization of T ∈ T 33.

Theorem 60 ([66]). A graph G is NDSS if and only if for every possible γ-set D for G, N(u, D),
N(v, X) ∈ V − D for all u, v ∈ D, where X = B(D).

Theorem 61 ([66]). A tree T is NDSS if and only if T ∈ T 33.

In this article, the authors have provided results related to NDSS graphs. They have
also provided a MATLAB program to identify NDSS graph.

3.17. γ-Uniquely Colorable Graphs

The chromatic partition of any graph is defined as the minimum number of indepen-
dent sets that covers all the vertices of G. The cardinality of this set also gives the coloring
of this graph. The chromatic partition is used for defining a new kind of dominating set.
The tree characterization of such graphs is presented in this section. In 2007, Yamuna et
al. introduced and studied γ-uniquely colorable graphs. Given a simple, connected graph
G, partition all vertices of G into the smallest possible number of disjoint, independent
sets. This is known as the chromatic partitioning of graphs. A graph G is said to be
uniquely colorable if at least one set in the chromatic partition is a γ-set. In addition, they
provided a constructive characterization of γ-uniquely colorable trees in [67]. Let T 34
be the family of trees such that T1 is K1 and Ti+1 can be obtained from Ti by one of the
Operations 109–111 [67].

Operation 109. Attach a path P2 to T by joining x with y, where x is a pendant vertex of P2 and y
is a vertex of T to generate T1, so that γ(T) = γ(T

′
), y ∈ D where D is a γ-uniquely colorable γ-set

with respect to T.
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Operation 110. Attach a path P2 to T by joining x with y, where x is a pendant vertex of P2 and y
is a vertex of T to generate T1, so that γ(T1) = γ(T) + 1, y is a bad vertex with respect to T.

Operation 111. Attach a path P2 to T by joining x with y, where x is a pendant vertex of P2 and y
is a vertex of T to generate T1, so that γ(T1) = γ(T) + 1, y is not a selfish vertex with respect to T.

In Theorem 62, we provide a necessary and sufficient condition of uniquely colorable
graphs, and in Theorem 63, we present a characterization of T ∈ T 34.

Theorem 62 ([67]). Let G be a uniquely colorable graph. Let P be the chromatic partition for G. Let
D be an independent γ-set for G. D ∈ P if and only if there exists a partition P1 of V-D such that:

1. P1 is unique;
2. Every set in P1 is independent;
3. |P1| = k − 1, where |P| = k.

Theorem 63 ([67]). A tree T is a γ-uniquely colorable tree if and only if T ∈ T 34.

It is to be noted that the chromatic number of the graphs that are γ-uniquely colorable
can be determined without direct calculation. This characterizes a group of graphs for
which the chromatic number is known.

In the literature of domination theory, once a dominating set is defined, discussions
are immediately continued on total dominating sets as well. This is true even for tree
characterization using dominating sets. Total domination in graphs was introduced by
Cockayne, Dawes and Hedetniemi. A set D of vertices in a graph G is a total dominating
set of G if every vertex of G is adjacent to some vertex in D (other than itself) [68]. For
details on total domination, we can refer to two books [2,3]. In this section, we provide
the operations for different kinds of total dominating sets. We also discuss necessary and
sufficient condition theorems (whenever available) and tree characterization theorems for
different total dominating sets discussed in this section.

3.18. Total Domination

Haynes et al. investigated graphs with unique minimum total dominating sets.
A graph G is a unique total domination graph, or just a UTD-graph, if G has a unique γt(G)-
set. They provided a characterization for trees with unique minimum total dominating sets
in the same paper. The authors adopt the following notations for their discussion.

Let T be a UTD-tree of an order of at least 4, and let S be the unique γt(T)-set. ipn(v,
S) = pn(v, S) ∩ S. Let the vertices of T be partitioned into sets SA, SB, SC, SD and SE as
follows: SA = {v ∈ S, v ∈ ipn(w, S) for some w ∈ S − S(T) with |pn(w, S) |= 2}; SB = S − SA;
SC = {v ∈ V − S, pn(w, S) = v, there is some w ∈ S}; SD = {v ∈ V − S, v ∈ pn(w, S), for some
w ∈ S − S(T − v) with |pn(w, S) |= 2}; and SE = (V − S) − (SC ∪ SD). Note that if v ∈ SC,
then v ∈ L(T). The vertices of SX have status X, where X ∈ {A, B, C, D, E}.

Let F1 and F2 be two vertex disjoint UTD-trees each of an order of at least 4. For
i ∈ {1, 2}, Si denote the unique γt(Fi)-set. Then, Si consists of the vertices of status A and B.
They have presented three operations that can be allowed to link up F1 and F2 to produce
a new UTD-tree T. Let T 35 be the family of trees such that T1 is P2 and Ti+1 can be obtained
from Ti by one of the Operations 112–114 [69]. It is observed here that unlike in the case of
unique minimum dominating set, the graph operations defined here are different. We hence
understand that for a dominating set and a total dominating set, the tree characterization
operations can be distinct.

Operation 112. Join a vertex x of status D or E in F1 to a vertex y of status D or E in F2.

Operation 113. Join a vertex x of S1 to a vertex y of status E in F2.
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Operation 114. Join a vertex x of status B in F1 to a vertex y of status B in F2.

Theorem 64 provides a characterization of UTD trees.

Theorem 64 ([69]). Let T be a tree of order at least 4. Then, T is a UTD tree if and only if T ∈ T 35
∪ G8, where G8 is the family of trees with V(T) = L(T) ∪ S(T), |S(T)| ≥ 2.

As discussed earlier, a comparison on critical conditions on unique dominating sets
and unique total dominating sets would be worth comparing for new results.

Fricke et al. defined a graph G to be total domination excellent (γt-excellent) if every
vertex belongs to some total dominating set of G of minimum cardinality [7]. In 2003,
Henning provided a constructive characterization of total domination excellent trees. If
T = K2, then sta(v) = A for each vertex v of T. If T = K1,t with t ≥ 2, then sta(v) = A for
the central vertex of T, sta(v) = B for every pendant v of T, except for one pendant, and
sta(v) = C for the remaining pendant vertex of T. Let T 36 be the family of trees such that T1 is
a star K1,t for t ≥ 1 and Ti+1 can be obtained from Ti by one of the Operations 115–118 [70].
Surprisingly, the operations defined here match with the operation of i-excellent trees
discussed in Section 3.11.

Operation 115. Attach a path (x u v w) to T by adding an edge between x and y, where y is
an arbitrary vertex of T and sat(y) = A, sta(x) = sta(u) = B, sta(v) = sat(w) = A.

Operation 116. Attach a star K1,t for t ≥ 3 with center w, subdivided one edge (x w) once and
then adding the edge between x and y, where y is an arbitrary vertex of T and sat(y) = sta(w) = A
and sta(z) = C for exactly one pendant z adjacent to w and sta(v) = B for each remaining vertex v
that was added to T.

Operation 117. Attach a path (x w z) to T by adding an edge between x and y, where y is
an arbitrary vertex of T and sta(y) = sta(x) = B and sta(w) = sta(z) = A. If the vertex y

′
of status A

adjacent to y is adjacent to a vertex c of status C, and if y
′

is not a strong support vertex in Ti+1,
then we can change the status of the vertex c from status C to status A.

Operation 118. Attach a star K1,t for t ≥ 3 with center w to T by adding an edge between x and
y, where x is a vertex adjacent to w and y is an arbitrary vertex of T such that sta(y) = B. Let
sta(w) = A, sta(z) = C for exactly one pendant vertex z ( 6= x) adjacent to w, and let sta(v) = B for
each remaining vertex v that was added to T. If the vertex y

′
of status A adjacent to y is adjacent to

a vertex c of status C, and if y
′

is not a strong support vertex in Ti+1, then we change the status of
the vertex c from status C to status A.

Theorems 65 and 66 provide results and a characterization of T ∈ T 36.

Theorem 65. Let T ∈ T 36 have length m in T, and let v be a vertex of T. Let U denote the set of
vertices of T of status A or status C. Then:

1. T is a γt-excellent tree and γt(T) = 2m;
2. If sta(v) = A, then γt(T) = γt

v(T; v) + 1;
3. γt(T; U) = γt(T);
4. If sta(v) = B or C, then γt(T) = γt

v(T; v);
5. If sta(v) = A, then no pendant is at distance 2 or 3 from v.

Theorem 66 ([70]). A nontrivial tree T is γt-excellent if and only if T ∈ T 36.

A comparison of the tree results on i-excellent trees by Henning et al. is worth
comparing for writing similar kinds of characterizations.
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In 2004, Erfang Shan et al. provided a constructive characterization of trees with
equal total domination and paired-domination numbers. They have define an almost total
dominating set (ATDS) of G relative to v as a set of vertices of G that totally dominates all
vertices of G, except possibly for v. The almost total domination number of G relative to v,
denoted γt(T; v), is the minimum cardinality of an ATDS of G relative to v. An ATDS of G
relative to v of cardinality γt(T; v) is said to be a γt(T; v)-set. Let T 37 be the family of trees
such that T1 is P2 and Ti+1 can be obtained from Ti by one of the Operations 119–121 [51].

Operation 119. Attach a path (u x) to T by adding an edge between x and y, where y is in some
γpr(T)-set.

Operation 120. Attach a path (u v x) to T, by adding an edge between x and y, where y is
an arbitrary vertex of T and γt(T) = γt(T; y)

Operation 121. Attach a path (u v w x) to T, by adding an edge between x and y, where y is
an arbitrary vertex of T.

Observation 4 provides results on (γt, γpr)-trees. Theorem 67 provides a characteriza-
tion of T ∈ T 37.

Observation 4 ([51]). Let T be a tree that is not a star. Then:

1. There is a γt(T)-set that contains no pendant.
2. If T is a (γt, γpr)-tree, there is a γpr(T)-set that contains no pendant.

Theorem 67 ([51]). A tree T is a (γt, γpr)-tree if and only if T ∈ T 37.

In 2006, Dorfling et al. provided a constructive characterization of ρ-γt-graph. The
authors define sta(A), sta(B) and sta(C) as seen in Figure 7. Let T 38 be the family of trees such
that T1 is P4 and Ti+1 can be obtained from Ti by one of the Operations 122–125 or 84 [52].

Operation 122. Attach a path P4 to T by joining a vertex x with y, where x is a pendant vertex of
P4 and y is a vertex of sta(B) which has no neighbor of sta(C).

Operation 123. Attach a path P4 to T by joining a vertex x with y, where x is an internal vertex of
P4 and y is a vertex of sta(B).

Operation 124. Attach a path P4 to T by joining a vertex x to y, where x is a vertex of P4 and y is
a vertex of sta(B) or sta(C).

Operation 125. Attach a path P2 to T by joining a vertex x with y with the condition that
sta(x) = A, sta(w) = C and sta(y) = A.

Figure 7. Vertex status of A, B, C and the four Operations 122–125.

Theorem 68 provides a characterization of T ∈ T 38.
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Theorem 68 ([52]). A labeled tree is a ρ-γt-tree if and only if T ∈ T 38.

In 2004, LemaOska proved that γt(T) ≥ (n + 2 − l)/3 [71]. Later in 2006, Chellali et al.
provided a constructive characterization of trees that satisfies the condition γt(T) ≥ (n +
2− l)/2. Let T1 is a path P4 with support vertices x and y. Let A(T1) = {x, y} and H be a path
P4 with support vertices u and v. Let T 39 be the family of trees, and Ti+1 can be obtained
from Ti by one of the Operations 126–128 [72].

Operation 126. Attach a vertex x to T by adding an edge between x and y, where y is an arbitrary
vertex of T. Let A(Ti+1) = A(Ti).

Operation 127. Attach a copy of H to T by adding an edge between x and y, where x is a pendant
vertex of H and y is any pendant vertex of T. Let A(Ti+1) = A(Ti) ∪ {u, v}.

Operation 128. Attach a copy of H by adding a new vertex w and edges (u w) and (w y), where y
is a pendant vertex of T. Let A(Ti+1) = A(Ti) ∪ {u, v}.

Theorems 69 and 70 provide bounds on γt(T) and a characterization of T ∈ T 39.

Theorem 69 ([71]). For every non-trivial tree of order at least three, then γt(T) ≥ (n + 2 − l)/3.

Theorem 70 ([72]). If T is a non-trivial tree, then γt(T) ≥(n + 2 − l)/2 with equality if and only
if T ∈ T 39.

The concept of total restrained domination was studied in [73,74]. The total restrained
domination number γtr(G) is the smallest cardinality of a total restrained dominating set
of G. In 2007, Hattingh et al. provided a constructive characterization of total restrained
domination in trees. Here, the authors have attempted to determine three families of trees
by applying different levels of iterations. For this purpose, they define two families of
trees. This method of developing three families of trees by iteration is a different approach.
These results are summarized and presented here. Let G9 be the class of trees such that
γtr(T) =

⌈ n+2
2
⌉
. Let T 40 be the family of trees such that T1 is P2, and Ti+1 can be obtained

from Ti by one of the Operations 129–132.

Operation 129. Attach a vertex x to T by joining x with y, where y is a pendant or support vertex
of T, |V(T)| is even.

Operation 130. Attach a path P3 to T by joining x with y, where x is a pendant vertex of P3 and y
is a pendant vertex of T = P3, |V(T)| is even.

Operation 131. Attach a path P4 to T by joining x with y, where x is a pendant vertex of P4 and y
is a pendant vertex of T = P3, |V(T)| is even.

Operation 132. Attach a vertex x to T by joining x with y, where x is a pendant vertex of each of
k-disjoint copies of P4 for some k ≥ 1 and y is a pendant or support vertex of T.

Theorems 71 and 72 provide bounds on γtr(T) and a characterization of T ∈ T 40.

Theorem 71 ([73]). Let T be a tree of order n ≥ 2, then γtr(T) ≥
⌈ n+2

2
⌉
.

Theorem 72 ([73]). If T is nontrivial tree, T ∈ G9 if and only if T ∈ T 40.

Later, they defined another family of trees G10 that satisfy the condition |T |≡ 0 mod 4
and γtr(T) =

⌈ n+2
2
⌉

+ 1. Let T 41 be the family of trees T
′

obtained from T ∈ T 40 by applying



Mathematics 2022, 10, 2173 29 of 39

one of the Operations 133–137. Let T 42 be the family of trees T
′′

obtained from T
′ ∈ T 41 by

applying Operation 131 [73].

Operation 133. Attach a pendant vertex x to T by adding an edge between x and y, where y is
a pendant or support vertex of T, where |T| ≡ 3 mod 4.

Operation 134. Attach K2 to T by adding an edge between x and y, where x is a vertex of K2, y is
a pendant vertex of T = P3, where |T| ≡ 2 mod 4.

Operation 135. Attach K2 to T by adding an edge between x and y, where x is a vertex of K2 and y
is a pendant vertex of T = P4, where |T| ≡ 2 mod 4.

Operation 136. Attach a path (u v x) to T by adding an edge between x and y, where y is a pendant
vertex of T = P3, where |T| ≡ 1 mod 4.

Operation 137. Attach a path (u v w x) to T by adding an edge between x and y, where y is
a pendant vertex of T = P4, where |T|≡ 1 mod 4.

Theorems 73 and 74 provide bounds on γtr(T) and a characterization of T ∈ T 42.

Theorem 73 ([73]). Let T be a tree of order n. If n ≡ 0 mod 4 and γtr(T) ≥
⌈ n+2

2
⌉

+ 1.

Theorem 74 ([73]). If T is nontrivial tree, T ∈ G10 if and only if T ∈ T 42.

In 2007, Raczek provided a constructive characterization of trees with equal total re-
strained and restrained domination numbers. Let T 43 be the family of trees T ∪ {P2, P6} such
that T1 is P3 and Ti+1 can be obtained from Ti by one of the Operations 138 and 139 [75].

Operation 138. Attach a vertex x to T by adding an edge between x and y, where y is a support
vertex of T.

Operation 139. Attach a path (x v w z) to T by adding an edge between x and y, where y is
a support vertex of T.

In Observation 5, we present result relating γr and γtr set. Theorem 75 provides
a characterization of T ∈ T 43.

Observation 5 ([75]). Let T be a (γr, γtr)-tree. Then, each γtr-set is a γr-set.

Theorem 75 ([75]). A tree T is a (γr, γtr)-tree if and only if T ∈ T 43.

In 2015, Sridharan et al. introduced and studied total very excellent (TVE) graphs. A
total excellent graph G is said to be total very excellent (TVE) if there is a γt-set D of G
such that for each vertex u ∈ V − D, there exists a vertex v ∈ D such that (D − v) ∪ {u} is
a γt-set of G. A γt-set D of G satisfying this property is called a total very excellent γt-set
(TVE γt-set) of G. They provided a constructive characterization of total VE trees. Let T 44
be the family of trees such that T1 is P2 and Ti+1 can be obtained from Ti by one of the
Operations 140–143 [76]. We observe that these operations are different from the operations
for VE trees discussed in Section 3.7.

Operation 140. Attach k or more pendant vertices to a support vertex y of T by adding edges
between them.

Operation 141. Let q ∈ D and pn(q, D) = x. Attach a path (y u v w z) to T at x, where y is
a pendant vertex of P5 and x is a vertex of T.
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Operation 142. Let γt(G – x) ≥ γt(G). Attach a path P4 to T at x, where x is a pendant vertex T.
Let the resulting graph be H and there is aγt-set D of H such that either x is not in D or x is not
isolated in 〈 D ∩ V(x) 〉.

Operation 143. Let q ∈ D such that pn(q, D) = x. Attach a path P7 to T by joining y and x, where
y is the central vertex of P7 and x is a vertex of T.

In Theorems 76 and 77, we provide a necessary and sufficient condition of a TVE
graph and a characterization of T ∈ T 44.

Theorem 76 ([76]). Let T = {a1, a2, · · · , ak} be a caterpillar (T 6= K2). T is TVE if and only if the
following conditions holds:

1. If ai 6= 0 (i < k), then either ai+1 = ai+2 = 0 and ai+3 6= 0 or ai+s = 0 for 1 ≤ s ≤ 6 and
ai+7 6= 0.

2. If ai 6= 0, ai+7 6= 0 then ai+14 = 0.

Theorem 77 ([76]). A tree T with n ≥ 2 vertices is TVE tree if and only if T ∈ T 44.

We note that the characterization of VE graph is already discussed in Section 3.7. From
these two discussions, we also observe that the graph operations for a dominating set and
total dominating sets need not be related while characterizing trees.

The disjunctive total domination number γd
t(G) is the minimum cardinality of a dis-

junctive total dominating set. In 2016, Henning et al. provided a constructive characteriza-
tion of trees that satisfies the condition γd

t(T) ≥ 2(n − l + 3)/5.
Let T 45 be the family of trees that contains (P4, S0

∗), where S0
∗ is the labeling that

assigns status A to both support vertices of P4, and both pendant status B and Ti+1 can
be obtained from Ti by one of the Operations 144 and 145 [77]. We observe that only two
operations are required here, while three operations are required in the case of disjunctive
domination numbers, as discussed in Section 3.1.

Operation 144. Let y be a vertex of T ∈ T 45 such that sta(y) = A. Attach a vertex x to T by adding
an edge between x and y, where y is a vertex of T and letting sta(x) = B.

Operation 145. Let y be a vertex of T ∈ T 45 such that sta(y) = B. Attach a path (x w u v z) to T
by adding an edge between x and y, where y is a vertex of T and letting sta(y) = sta(x) = sta(w) = C,
sta(u) = sta(v) = A and sta(z) = B.

In Theorem 78, we present a constructive characterization of T ∈ T 45.

Theorem 78 ([77]). If T is a nontrivial tree, then γt
d(T) ≥ 2 (n − l + 3)/5, with the equality if and

only if T ∈ T 45.

In [78], Dutton studied total vertex covers of minimum size. A (γt − τ)-set of G is
a minimum vertex cover which is also a minimum total dominating set. In 2017, Cesar
Hernandez-Cruz et al. provided a constructive characterization of trees having a minimum
vertex cover which is also a minimum total dominating set. A vertex v is D-quasi-isolated,
where D is a γt-set, if there exists u ∈ D such that pn(u, D) = {v}. A vertex v is quasi-isolated
if it is D quasi-isolated for some D. Let T 46 be the family of trees such that T1 is P4 and Ti+1
can be obtained from Ti by one of the Operations 146–149 [79].

Operation 146. Attach a path (u v w x) to T by adding an edge between x and y, where y belongs
to a (γt − τ)-set of T.

Operation 147. Attach a vertex x to T by adding an edge between x and y, where y belongs to
some (γt − τ)-set of T.
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Operation 148. Attach a path (u x) to T by adding an edge between x and y, where y belongs to
a (γt − τ) set of T and which is not a quasi-isolated vertex.

Operation 149. Attach a path (u x v w) to T by adding an edge between x and y, where x is a
support vertex of P4, and y is a vertex of T and is not a quasi-isolated vertex.

In Theorem 79, we present a constructive characterization of T ∈ T 46.

Theorem 79 ([79]). If T is a tree has (γt − τ)-set if and only if T ∈ T 46.

The concept of semitotal domination in graphs was introduced and studied by
Goddard et al. [80]. A set D of vertices in G is a semitotal dominating set of G if it is
a dominating set of G and every vertex in D is within distance 2 of another vertex of
D. The semitotal domination number, γt2(G), is the minimum cardinality of a semitotal
dominating set of G. In 2018, Zhuang et al. provided a constructive characterization of trees
that satisfies the condition γt2 ≥ 2(n − l + 2)/5 . Let T 47 be the family of trees satisfying
the condition that contains (P5, S’), where S’ is the labeling that assigns sta(A) to both the
two support vertices, sta(B) to the center vertex and sta(C) to the both pendant vertices of
P5. Ti+1 can be obtained from Ti by one of the Operations 150 or 151 [81].

In the Operations 150 and 151, y denotes a random vertex of T.

Operation 150. Let y be a vertex with sta(y) = A. Attach a vertex x to T by adding an edge between
x and y, where y is a vertex of T and sta(x) = C.

Operation 151. Let y be a vertex with sta(y) = C. Attach a path (x w u v z) to T by adding an edge
between x and y, where y is a vertex of T and sta(x) = sta(z) = C, sta(w) = sta(v) = A, sta(u) = B
and sta(y) = C.

Theorem 80 provides a bound for the semitotal domination number of trees. In
Theorem 81, we provide a characterization of T ∈ T 47.

Theorem 80 ([81]). If T is a tree, then γt2 ≥
2(n− l + 2)

5
.

Theorem 81 ([81]). Let T be a nontrivial tree. γt2 =
2(n− l + 2)

5
if and only if T ∈ T 47, for some

labeling D.

Later, they provided a constructive characterization of trees with equal domination
and semitotal domination numbers. Let T 48 be the family of trees such that T1 is P4 and
Ti+1 can be obtained from Ti by one of the Operations 152–155 [81].

Operation 152. Attach a vertex x to T by joining x with y, where y is a vertex of T and y is in
some γt2-set of T.

Operation 153. Attach a vertex P2 or P5 to T by joining an edge between x and y, where x is
a pendant vertex of P2 or P5 and γ(T; y) = γ(T).

Operation 154. Attach a subdivided star X with at least two pendent vertices to T by joining x
with y, where x is the center vertex X and y is an arbitrary vertex of T.

Operation 155. Attach Y with three pendant vertices to T by joining x with y, where x is a pendant
vertex of y and y is an arbitrary vertex of T. Here, Y is a tree obtained from the star by subdividing
exactly one of the edges once.

In Theorem 82, we provide a characterization of T ∈ T 48.
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Theorem 82 ([81]). If T is a (γt, γt2) tree if and only if T ∈ T 48.

3.19. Edge Domination

Generally, when properties are discussed related to vertices, the same is continued
with edges. This is carried out in the case of dominating sets as well. Edge domination was
introduced and studied by Arumugam et al. A subset D of edges of a graph G is called
an edge-dominating set of G if every edge not in D is adjacent to some edge in D. The edge
domination number γ

′
(G) of G is the minimum cardinality taken over all edge dominating

sets of G [82]. In this section, we provide the operations for tree characterizations using
edge domination. We also discuss necessary and sufficient condition theorems (whenever
available) and tree characterization theorems for different edge dominating sets discussed
in this section.

End edge domination in graphs was established by Muddebihal and Sedamkar [83].
An edge e of degree one is called end edge of G. If D contains all end edges in G, then D is
called an end edge-dominating set of G. The end edge domination number of G, γe

′
(G),

is the minimum cardinality of an end edge-dominating set of G. In 2013, they provided a
constructive characterization of trees with equal edge domination and end edge domination
numbers. Sta(A) and sta(B) as seen in Figure 8. Let T 49 be the family of trees such that Ti+1
can be obtained from Ti by one of the Operations 156 and 157 [84].

Figure 8. Edge status of A, B and the two Operations 156–157.

Operation 156. Attach an edge e of sta(A) to a path (ex ey), where sta(ex) = A and sta(ey) = B.

Operation 157. Attach an edge e of sta(B) to a path (ex ey ez), where sta(ex) = sta(ey) = A, and
sta(ez) = B.

In Theorems 83 and 84, we present results relating edge domination numbers.

Theorem 83 ([84]). Let T ∈ T 49, the following properties hold:

1. The set SB is an edge packing.
2. Every e ∈ SA is adjacent to at least one edge in SA and to exactly one edge in SB.
3. SB is a γ

′
(T)-set, ρ

′
(T)-set and γe

′
(T)-set.

4. SB is the unique γ
′
e(T)-set.

5. SB is the unique ρ
′
(T)-set.

Theorem 84 ([84]). Let T be a tree. Then, the following statements are equivalent:

1. T ∈ T 49.
2. T has a ρ

′
(T)-set, and this set is an edge-dominating set of T.

3. T is an (γ
′
, γe

′
)-tree.

4. T is an γ
′
-excellent and T 6= K2, K3 .

Roushini Leely Pushpam et al. [85] initiated the study of the edge version of Roman
domination. An edge Roman dominating function f : E(G)→ {0, 1, 2} such that every edge
e with f(e) = 0 is adjacent to some edge e

′
with f(e

′
) = 2. The weight of an edge Roman
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dominating function f is the value w(f) = ∑e∈E(G) f(e). The edge Roman domination number

of G, denoted by γR
′
(G), is the minimum weight of an edge Roman dominating function

of G.
In 2010, Ebadi et al. provided the necessary and sufficient condition for γR

′
(G) =

2γ
′
(G) [86]. In 2017, Jafari Rad provided a constructive characterization of trees with edge

Roman domination number twice the edge domination number. A support vertex v of
a tree is called a special support vertex if no γR

′
(T)-function assigns 2 to a pendant edge

at v. Let G11 be the class of all rooted trees, such that the root has degree at least two, any
pendant vertex is within distance two from the root, and any child of the root is either
a pendant vertex or a strong support vertex. For a, b ≥ 2, a double star whose support
vertices have degree a and b is denoted by Sa,b. Let T 50 be the family of trees such that
T1 is a star K1,t for t ≥ 2 or a double star and Ti+1 can be obtained from Ti by one of the
Operations 158–162 [87]. We observe that the initial tree T 1 is same as in the case of regular
Roman domination. Here, rooted trees are also used for defining Operation 158.

Operation 158. Attach G11 to T by joining x with y, where x is the root of G11 and y is an arbitrary
vertex of T.

Operation 159. Attach K1,t, t ≥ 4 to T by joining x and y, where x is a pendant vertex of K1,t and
y is an arbitrary vertex of T.

Operation 160. Attach a path P3 to T by joining x with y, where x is a pendant vertex of P3 and y
is a special support vertex or pendant vertex of T, or Attach Sa,2 to T by joining x with y, where x is
the center of Sa,2 whose degree is a and y is a special support vertex or pendant vertex of T.

Operation 161. Attach a path P3 to T by joining x with y, where x is a pendant vertex of P3 and
y is an arbitrary vertex of T that has a neighbor w of degree at least two such that any vertex of
N(w)-{y} is a pendant vertex, or Attach Sa,2 to T by joining x with y, where x is the center of Sa,2
whose degree is a and y is an arbitrary vertex of T that has a neighbor w of degree at least two such
that any vertex of N(w)-{y} is a pendant vertex.

Operation 162. Attach a path P3 to T by joining x with y, where x is a pendant vertex of P3, or
Attach Sa,2 to T by joining x with y, where x is the center of Sa,2), whose degree is a. Here, y is
an arbitrary vertex of T such that:

1. A component of T-{y} is a path (u v w), where u ∈ N(y), or
2. A component of T-{y} is a double star Sa,2, where y is adjacent to a vertex of maximum

degree Sa,2.

In Theorems 85 and 86, we present results relating edge domination and edge Roman
domination numbers.

Theorem 85 ([86]). For a graph G, γR
′
(G) = 2γ

′
(G) if and only if there is a γR

′
(G) function f

with E1 = ∅.

Theorem 86 ([87]). For a tree, γR
′
(T) = 2γ

′
(T) if and only if T ∈ T 50.

Vertex–edge domination in graphs was introduced by Peter [58], and the outer-connected
domination number of a graph was introduced by Cyman [88]. For a given graph G = (V, E),
a set D ∈ V(G) is said to be an outer-connected vertex–edge dominating set if D is a vertex–
edge dominating set and the graph G-D is connected. The outer-connected vertex–edge
domination number of a graph G, denoted by γ oe

ve(G), is the cardinality of a minimum
outer connected vertex–edge dominating set of G. In 2018, Krishnakumari et al. provided
a constructive characterization of trees that satisfies the condition γoe

ve(T) are bounded
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below (n − l + s + 1)/3. Let T 51 be the family of trees such that Ti+1 can be obtained from
Ti by one of the Operations 163–165.

Operation 163. Attach a vertex x to T by adding an edge between x and y, y is any support vertex
of T.

Operation 164. Attach a path (u v x) to T by adding an edge between x and y, where y is a vertex
of T adjacent to a path P3.

Operation 165. Attach a path (u v x) to T by adding an edge between x and y, where y is a support
vertex of T.

In Observation 6, we provide results relating OCVEDS and VEDS graphs. In Theorem 87,
we present a characterization of T ∈ T 51.

Observation 6 ([89]).

1. Every OCVEDS is a VEDS of a graph G. Thus, we have γve(G) ≤ γve
oc(G) .

2. For any graph G, 1 ≤ γve
oc(G) ≤ (n − 1). The upper bound is attained for K2.

Theorem 87 ([89]). If T is a nontrivial tree of order n ≥ 3, then γve
oc(T) ≥ (n − l + s + 1)/3 with

equality if and only if T ∈ T 51.

Later, they provided a constructive characterization of trees with equal domination
and outer connected vertex–edge domination numbers. Let T 52 be the family of trees such
that Ti+1 can be obtained from Ti by one of the Operations 166–169 [89].

Operation 166. Attach a vertex x to T by adding an edge between x and y, where y is a support
vertex of T.

Operation 167. Attach a path (u x) to T by adding an edge between x to y, where y is a vertex of T
adjacent to a path P2.

Operation 168. Attach a path (u x) to T by adding an edge between x to y, where y is a support
vertex of T.

Operation 169. Attach a path (u v x) to T by adding an edge between x to y, where y is a support
vertex of T.

We observe that the family of trees T 51 and T 52 have similar kind of graph operations
with minor modifications. In Theorem 88, we present a characterization of T ∈ T 52.

Theorem 88 ([89]). Let T be a tree. Then γ(T) ≤ γve
oc(T) with equality if and only if T = P2 or T

∈ T 52.

The set D is said to be a double edge-dominating set of graph G if every edge of G
is dominated by at least two edges of D. The double edge domination number of G, γ

′
d

is the minimum cardinality of a double edge dominating set of G. In 2012, Muddebihal
et al. provided a constructive characterization of trees with equal total edge and double
edge domination numbers. Let T 53 be the family of trees such that T1 is P3 and Ti+1 can be
obtained from Ti by one of the Operations 170–175 [90]. The authors have attached paths of
lengths 0, 1, 2, 3 and 4 using different operations. This way of attaching paths of different
lengths up to a length of four is different from the routine operations.
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Operation 170. Attach a vertex x to two vertices u and w which are incident with eu and ew,
respectively, of T, where eu and ew are located at the component of T − exey such that either ex or ey
is in γd-set of T.

Operation 171. Attach a path P2 to a vertex v incident with the e of tree T, where e is an edge such
that T − e has a component P3.

Operation 172. Attach k ≥ 1 number of paths P3 to the vertex v which is incident with an edge e
of T, where e is an edge such that either T − e has a component of P2 or T − e has two components,
P2 and P4, and one end of P4 is adjacent to e in T.

Operation 173. Attach a path P3 to a vertex v which is incident with the e of tree T by joining its
support vertex to v, such that e is not contained in any γt-set of T.

Operation 174. Attach a path P4 (n), n ≥ 1 to a vertex v which is incident with an edge e, where e
is in a γt-set of T if n = 1.

Operation 175. Attach a path P5 to a vertex v incident with e of tree T by joining one of its support
to v such that T − e has a component H ∈ {P3, P4, P6}.

In Theorems 89 and 90, we present results relating edge domination and double edge
domination numbers.

Theorem 89 ([90]). For any tree T, γ
′
d(T) ≥ γ

′
t(T).

Theorem 90 ([90]). For any tree T, T ∈ G11 if and only if T ∈ T 53 ∪ P3, where G11 is family of
trees with equal total edge domination number and double edge domination number.

An edge–vertex dominating set of a graph G is a set D of edges of G such that every
vertex of G is edge–vertex dominated by an edge of D. The edge–vertex domination number
of a graph G is the minimum cardinality of an edge–vertex dominating set of G. In 2016,
Krishnakumari et al. provided a constructive characterization of trees with total domination
number equal to the edge–vertex domination number plus one. Let T 54 be the family of
trees such that T1 is P2 or P3 and Ti+1 can be obtained from Ti by one of the Operations 176
and 177 [91].

Operation 176. Attach a vertex x to T by joining x with y, where y is a support vertex of T.

Operation 177. Attach a vertex x to T by joining x with y, where y is any support vertex of T, or
Attach a path P2 to T by joining x to y, where x is a vertex of P2 and y is one of the vertex of T
adjacent to a path P2.

In Lemma 2, the author provided an upper bound relating total domination and edge–
vertex domination number. In Theorem 91, we present a constructive characterization of T
∈ T 54.

Lemma 2 ([91]). For every tree, we have γt(T) > γev(T).

Theorem 91 ([91]). Let T be a tree. Then γt(T) = γev(T) + 1 if and only if T ∈ T 54.

A vertex v VE-dominates an edge e which is incident to v, as well as every edge
adjacent to e. A set D ⊆ V is a VE-dominating set if every edge of a graph G is VE-
dominated by at least one vertex of D. The minimum cardinality of a VE-dominating set
is the VE-domination number γt

ve(G). In 2018, B. Sahin et al. provided a constructive
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characterization of trees with γve
t(T) = γt(T). Let T 55 be the family of trees such that T1 is

P2, P3, P4 or P8, and Ti+1 can be obtained from Ti by one of the Operations 178 and 179 [92].

Operation 178. Attach a vertex x to T with an edge to any support vertex of T.

Operation 179. Attach a vertex x to T with an edge to any vertex of T adjacent to a path P2.

In Theorem 92, we present a constructive characterization of T ∈ T 55.

Theorem 92 ([92]). Let T be a tree, γve
t(T) = γt(T) if and only if T ∈ T 55.

4. Conclusions

Dominating sets are a special topic in graph theory with multiple inputs in various
angles by different researchers. In general, one interested in graph theory is also interested
characterizing trees using dominating sets. In this article, we have attempted to provide
a brief survey of tree characterization using different kinds of dominating sets. In this
survey, we observe the following:

1. Vertex merging, edge addition and attaching a particular kind of tree are the general
graph operations used for building trees.

2. In many cases, the initial tree T1 is either a path or a star graph.
3. The most frequently used trees in the iterations are Pn, star and double star trees.

From this survey, we also observe that characterizing trees with equal domination
number is also of interest to researchers. This survey provides a collective information
of all these for different kinds of dominating sets. This review can help beginners to
focus and develop new characterizations in a different dimensions. It would help them to
compare the existing operations used for different dominating sets and develop unique
set of operations, which we believe would help in characterizing multiple dominating
sets, using these set of operations only. The characterizations presented here on trees with
equal domination numbers will support them to reason out the possibilities of deciding
the equality of domination number between different types of domination even, before
developing a new characterization in this view. It would also help them to justify the
need to characterize trees with equal domination numbers. It would be useful for them to
reason why the particular types of dominating sets are picked for equality characterizations.
We believe that this well-summarized review can assist beginner researchers to grasp the
concepts and further develop new characterizations.
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