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Abstract: Copy number variation (CNV) detection based on second-generation sequencing technol-
ogy is the basis of much gene research, but the read depth is affected by mapping errors, repeated
reads, and GC bias. The existing methods have low sensitivity to variation regions with a short
length and small variation range. Therefore, it is necessary to improve the sensitivity of algorithms to
short-variation fragments. This study proposes a new CNV-detection method named WAVECNV
to solve this issue. The algorithm uses wavelet clustering to process the read depth and determine
the normal cluster and abnormal cluster according to the size of the cluster. Then, according to the
distance between genome bins and normal clusters, the outlier of each genome bin is evaluated.
Finally, a statistical model is established, and the p-value test is used for calling CNVs. Through
this method, the information of the short variation region is retained. WAVECNV was tested and
compared with peer methods in terms of simulated data and real cancer-sequencing data. The results
show that the sensitivity of WAVECNV is better than the existing methods. It also has high precision
in data with low purity and coverage. In real data experiments, WAVECNV can detect more cancer
genes than existing methods. Therefore, this method can be regarded as a conventional method in
the field of genomic mutation analysis of cancer samples.

Keywords: copy number variations; next-generation sequencing data; outlier detection; tumor
purity; wavelet

MSC: 92D20

1. Introduction

Copy number variation (CNV) is a mutation that often occurs during cell division.
Generally, it is defined as the duplication or deletion of DNA fragments greater than
1 KB, accounting for 12–16% of the whole human genome [1,2]. In many next-generation
sequencing (NGS) [3] data-based studies, the influence of CNV needs to be considered,
such as somatic mutation calling [4], cancer sub-clonal population inferring [5], and so
on. Therefore, obtaining accurate mutation location and copy number (CN) through CNV-
detection methods is necessary for NGS data analysis. In recent years, many classical CNV-
detection methods have been developed using machine learning and statistical analysis.
However, most of these methods used circular binary segmentation (CBS) [6] by default
as the division method of CNV segments. For example, one of the classical methods,
iCopyDav [7], filters the low-quality read segments first, and then, CBS is employed to
segment the sequencing data. This filtering process filters out many low-quality reads
but does not further process the sequenced data. Therefore, very little information can be
retained for data with low coverage, resulting in poor detection accuracy. To solve this
issue, after filtering the low-quality reads, CNVkit [8] further fits the filtered data and uses
CBS to segment the sequencing data, which improves the accuracy of detection. However,
CBS also has its inherent defects. CBS generally erases the segments with short lengths
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and only retains the segments with large differences or areas when processing data [9]. In
other words, CBS often ignores short CNV segments in sequencing data. Some research
did not employ CBS as the default segmentation approach, such as CNV-IFTV [10], which
uses the isolated forest to calculate the read depth (RD) of each bin and uses the p-value
to detect the CNV. Because this method ignores the positional relationship between each
bin, the detection results are discontinuous, and the length of segments is short. One
of the most popular CNV-detection methods, CNVnator [11], uses bins to count the RD
of each base in sequencing data and uses the mean-shift [12] algorithm to segment the
bins. Then, the segments with similar RDs are merged by bandwidth, and the CNVs are
identified according to each segment’s t-test. However, the bandwidth has a great influence
on the accuracy of CNVnator results, and the length of CNVs is affected by the segment,
which cannot locate the start and the end of CNVs accurately. LOF-CNV [13] uses the
local outlier factor (LOF) as the evaluation standard of CNV. This method considers the
correlation between the RD and the position of each bin. However, the score of outliers
cannot accurately fit the existing distribution. Therefore, when setting the threshold to
divide the variation area, the cutoff method is used, and the stability of the algorithm is
difficult to ensure.

Although the above methods have significant effects in some scenarios, there are still
some drawbacks: (1) The algorithms based on the CBS method will ignore the fragment
with a small copy number or length [14]. (2) Some algorithms do not deal with the
unbalanced amplitude between gene sequence duplication and deletion, and therefore, the
detection results are inaccurate. (3) Some algorithms did not use a statistical test to call the
variation fragments but used the cutoff values to filter the variation area, which cannot
ensure the universality of the algorithm. Considering the aforementioned issues in the
existing methods, we propose a new CNV detection method based on wavelet clustering,
called WAVECNV. The method used WaveletCluster [15] to cluster bins after correcting
GC bias and filtering low-quality reads. Then, according to the clustering results, the RD
distribution was corrected by calculating the distance between clusters, and the unbalanced
amplitude was corrected between the deletion and duplication segments by a logarithmic
function. Finally, the outliers of clustering were scored, and the abnormal interval was
divided by the p-value check. Compared with the CBS algorithm, wavelet clustering can
retain more detailed information with shorter segments and smaller variations. Therefore,
the region of CNV can be detected more accurately in data with low coverage and low
purity. Compared with the isolation forest [16] algorithm, the main feature of wavelet
clustering is that it adds the location information of each bin and considers the relationship
between adjacent RDs, and the start and end positions of segments are more accurate.
Compared with the CNVnator algorithm, wavelet clustering weakens the influence of
parameters on the variation results of copy numbers.

To demonstrate the efficacy and reliability of our proposed algorithm, we used the
simulation data and the real lung cancer WGS data to compare and verify the precision
and sensitivity of our proposed algorithm with the existing five methods (CNVnator [11],
CNVkit [8], FREEC [17], CNV-IFTV [10], and iCopyDav [7]). The comparison results
show that our algorithm is similar to the existing algorithms in precision while higher in
sensitivity than the compared algorithms and can detect many short CNV segments.

2. Materials and Methods
2.1. Workflow of WAVECNV

RD is affected by many artifacts, including sequencing error, repeatability of reads,
and GC bias, which will lead to the uneven distribution of reads mapped in the reference
genome. WAVECNV infers CNV by RD values in a single sample without control-matched
samples. WAVECNV accepts alignment files stored in BAM format as input, which is
usually aligned by BWA [18] software. Based on the BAM file, WAVECNV detects CNV
through the following five processes, as shown in Figure 1: (1) Preprocessing: In this step,
we discard the positions of “N” in the reference genome, every 1000 bases are considered
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as a bin, and the RD of each bin are counted. Then, the total number of bases “G” and
“C” are counted in each bin, and GC bias correction is performed [19]. (2) Clustering the
RDs of bins by wavelet clustering: In this step, we use the wavelet clustering method
to cluster all the bins. The center position and average RD of clustering results are also
recorded. (3) Distinguishing normal and abnormal clusters: In this step, several clusters
with the largest number of bins are taken as the main clusters, and the number of bins
in these main clusters should reach 80% of the total number. (4) Calculating the scores
of each bin: In this step, the relative distance between each bin and the normal cluster
is used as one of the important basis for scoring. Then, we use the logarithmic function
to eliminate the imbalance between the amplitudes of missing and repeated segments.
(5) Calling CNVs by p-value verification: In this step, we use the p-value to predict CNVs
according to the distribution of scores. The complete method process is published at
https://github.com/BDanalysis/waveCNV (accessed on 30 May 2022).
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Figure 1. The workflow of WAVECNV.

2.2. Preprocessing

In this stage, we used the widely effective methods in prior research for reference [20],
filtered the invalid data in the gene, counted the RDs, and corrected the GC bias. Firstly, the
“N” positions were removed from the reference genome. Secondly, the starting positions of
reads were obtained from the BAM file, and the number of reads on 1000 consecutive bases
was recorded as the RD of each bin. Finally, the GC deviation was corrected according to
the ratio of bases “G” and “C” in each bin [19].

2.3. Clustering the RDs of Bins by Wavelet Clustering

In the clustering stage, we considered that each bin has its RD and position, so the basis
of clustering should comprehensively consider these two features. We used Wavelet Cluster
instead of the segmentation function of CBS. Compared with CBS, wavelet clustering can
preserve the characteristics of small segment variation [14]. These preserved small segment
variation characteristics help us find the variation area that is ignored by the CBS method.

https://github.com/BDanalysis/waveCNV
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Wavelet clustering determines different clusters through the density relationship of data
in a grid. The parameters of wavelet clustering control the number of units to segment
data, and the number of clusters is not required as parameter input. We chose the same
cluster with a density error of less than 1% by controlling the threshold to merge clusters
with similar densities. Finally, we obtained the final clustering result. The detailed steps of
wavelet clustering are described in the Supplementary Materials.

2.4. Distinguishing Normal and Abnormal Clusters

According to Richard Redon’s study, CNVs only account for 12~16% of the whole
genome [2], but due to the influence of tumor purity, this ratio fluctuates for each sample.
As an “abnormality” in gene duplication, the length of copy number variants should be
smaller than the length of normal genes. However, there are cases where the length of
the copy number variation is greater than 20% of the total length. For these individual
cases, we use the threshold δ as an input parameter; on the one hand, we believe that the
normal gene length will not be less than 50% of the total length, and on the other hand, the
variation of this threshold has little effect on the results, and we set the default value to
80%. The selection process of normal clusters is as follows: (1) The clustering results were
sorted according to the number of bins to generate sequence C, and (2) the number of bins
of the first m clusters in sequence C was summed. If the sum of bins was greater than δ of
the total number, the first m clusters were regarded as normal clusters.

2.5. Calculating the Scores of Each Bin

To correctly measure the outlier degree of each bin, it is necessary to calculate the
distance between a bin and its nearest normal cluster. Each bin generally has two attributes:
its RD and position. Therefore, we use (ri, pi) to describe a bin, where ri and pi represent
the RD and the position of the i-th bin, respectively. Similarly, for the j-th cluster, there are
two attributes: average RD and center position, which are represented by

(
Rj, Pj

)
.

The calculation formula for outlier degree is as follows:

D(i) = min
1≤j≤m

[(
ri − Rj

)2
+
(

pi − Pj
)2
]

(1)

where D(i) represents the distance between the i-th bin and the nearest normal cluster.

S(ri) =
log2(ri + 1)
log2

(
R + 1

) (2)

where S(ri) represents the score of each bin, ri is the RD of i-th bin, and R represents
the average RD of the normal cluster closest to the i-th bin. Scoring each bin relative
to the nearest normal cluster through Formula (2) can eliminate the problem of uneven
RDs caused by sequencing errors and repeated reads and reduce the imbalance of the
amplitudes of CNVs between duplication and deletion.

The relationship between RD and location is shown in Figure 2a, and RD distribution
is shown in Figure 2b. The relationship between the score and position according to
Formula (2) is shown in Figure 2c, and the score distribution is shown in Figure 2d.

2.6. Calling CNVs by p-Value Verification

Since the distribution varies between samples, it is not reasonable to manually define
an appropriate cutoff value for each sample. Nevertheless, in statistical hypothesis testing, a
commonly used value can be assigned to the significance level. We assume that the outlier
score obtained by RDs through formula (2) fits the normal distribution. Then, the statistical
hypothesis test procedure was used to evaluate the significance of each abnormal bin. Consid-
ering the ability to detect variation in both duplication and deletion, we used the p-value of
the two-sided test as the criterion for calling CNV (i.e., P = P{|X| > C} , α = 0.01).
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After determining the CNV areas by p-value [21], it is necessary to determine the vari-
ant type of the areas and calculate the corresponding CN. We used the classical calculation
method to estimate the absolute copy number of the current fragment based on tumor
purity, ploidy, and average RD [22]. The specific formula is as follows:

CN =
(rt − (1− ϕ)·rn)·ρ

ϕ·rn
(3)

where rt represents the average RD of CNV fragments, rn represents the average RD of
normal fragments, ρ represents tumor ploidy, and ϕ represents tumor purity.
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Figure 2. The clustering result of chromosome 19 in sample EGAF00000057362. (a) RD–position
diagram shows the RD of each bin. The gray dots represent the bins in the normal cluster, and
the black dots represent the bins in the abnormal cluster, also known as an outlier. (b) RD vs.
frequency distribution curve. (c) This chart shows the score of each bin, in which the uneven RDs
have been corrected. (d) Fractional frequency distribution diagram. By correcting the uneven RDs
and unbalanced amplitudes, the normal distribution is able to fit the scores of all bins.
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3. Results

The evaluation and comparison of performance with existing methods is an important
step to verify the accuracy and universality of an algorithm. To compare the performance
of WAVECNV and other existing methods, we used IntSiM to generate 140 simulation
data with different purity and coverage. The precision, sensitivity, and F1 score of CNV
detection methods with different purity and coverage were compared between WAVECNV
and five existing methods (CNVnator, CNVkit, FREEC, CNV-IFTV, and icopydav). We also
used real data to compare the six methods. The real data come from the EGA database [23],
which records the gene sequencing files of a large number of cancer samples. We used
five samples from the lung cancer dataset numbered EGAD00000100144. The sequencing
data of these five samples are whole-genome sequencing data from different patients with
average coverage ranging from 5× to 12×. It is able to represent most of the possible
scenarios in human genomic cancer-sequencing data.

The test results show the CNV overlaps detected among the six methods, and the
detection results were compared with the cancer genes in the cancer gene census (CGC) [24].
We compared the number of cancer genes that could be detected by the six methods.

3.1. Simulation Studies

IntSIM [25] software can generate simulated data with different purity and coverage
according to the parameters. The simulation data used in the experiment have tumor purity
from 0.2 to 0.8 and coverage of 4× and 6×. The simulation data contain 10 CNV regions
with length ranging from 5 kb to 50 kb. The precision and sensitivity of the compared
six methods in different purity and coverage data are shown in Figure 3. Among the
six methods, WAVECNV has the highest sensitivity in all tumor purity and sequencing
coverage configurations, which shows that wavelet clustering can effectively retain the
shorter CNV fragments in the RD data. Therefore, the sensitivity of WAVECNV to variation
fragments is higher than that of the other five methods. Considering the balance between
precision and sensitivity, the F1 scores of six methods are also calculated, among which
WAVECNV has the highest F1 scores in all of the configurations. Only in high-purity and
high-coverage data were some of the methods able to achieve the same precision and
sensitivity as WAVECNV.

In addition, we use the above six methods to detect the simulation data with noise,
and WAVECNV still has good performance. The detailed test results are shown in the
Supplementary Materials.

We also compared the time and memory consumed by the whole process of six
methods in processing these simulation data. We designed input files of different sizes
according to different lengths of chromosomes and counted the time and memory used
by the six methods in processing these files. According to Figure 4, in terms of computing
time, WAVECNV, FREEC, iCopyDav, and CNVkit methods use the shortest time. The time
used by WAVECNV is the same as that of the fastest method, CNVkit. Both CNVnator and
CNV-IFTV methods consumed a long time. The comparison of memory usage shows that
except for CNVkit, the memory usage of other methods is not much different.

3.2. Analysis of Samples from the EGA

In addition to simulation data, the application of our proposed method to real data is
equally important, and we used five samples from the lung cancer dataset EGAD0000100144
to compare the six methods. The five samples are EGAF00000057355, EGAF00000057362,
EGAF00000098594, EGAF00000098595, and EGAF00000098596. The comparison results
of the six methods are shown in Figure 5. It can be seen that WAVECNV has the widest
coverage of the CNV region and can detect the most CNV regions compared to other
methods. We also compared the detection results with the cancer genes published by the
CGC, retained the overlapping parts of the detection results with the cancer gene positions
published in the CGC, and compared the length distribution of the overlapping sections.
As can be seen from the curve in Figure 6a, the copy number length detected by WAVECNV
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is closest to the CGC gene length distribution. In further depth, the number of cancer
genes detected by the six methods, the length of overlapping segments, and the names
of cancer genes detected by each method can be seen in Figure 6b. Figure 6b shows that
WAVECNV detected the most cancer variant segments. The four cancer genes with long
variant segments can be detected by all six methods, and WAVECNV can detect other
shorter variant segments overlapping the cancer gene. This shows that WAVECNV can
find some new short-length variant regions in the detection of CNV in cancer samples.
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with wavelet clustering. (2) The distance-based scoring method can estimate the outlier
degree of the bin according to the RD difference between the bin and the normal segment.
That is, this method greatly reduces the impact of unbalanced RDs in sequencing data on
the detection results. (3) Using wavelet clustering to deal with RD data requires fewer pa-
rameters, which can avoid the uncertain influence of too many parameters on the variation
result of copy number.

Through experiments with a large number of simulated data and real data, we com-
pared the precision, sensitivity, and F1-score of WAVECNV and the existing five methods.
WAVECNV has the best sensitivity and F1 score, and in the calculation process, it takes a
short time and occupies a small memory. From the results of real data, WAVECNV can
accurately detect the position of CNV and detect many neglected CNV fragments in real
lung cancer data.



Mathematics 2022, 10, 2151 10 of 11

About work for future improvements, we plan to improve the function of WAVECNV
and open the input of some optional parameters so that users can more flexibly control
the precision of CNV-detection results [26]. We will use additional information from the
sequencing data, such as variant allele frequency (VAF) [27,28], to more accurately estimate
tumor purity and absolute copy number. In addition, we will develop a multi-sample
CNV-detection method of WAVECNV to study the changes in the absolute copy number of
genes in cancer patients at different periods [9] and lay a solid foundation for the inference
of tumor subclonal populations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/math10122151/s1.
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