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Abstract: This paper is concerned with the global prescribed-time stabilization problem for a class
of uncertain high-order nonlinear systems (HONSs) with an asymmetric actuator dead-zone. Firstly,
a new state-scaling transformation (SST) is developed for high-order nonlinear systems to change
the original prescribed-time stabilization into the finite-time stabilization of the transformed one.
The defects of the conventional one introduced in Song et al. (2017), which is unable to ensure the
closed-loop stability behind a prespecified convergence time and a closed-loop system, which is
only driven to the neighborhood of destination, is successfully overcome by introducing a switching
mechanism in our proposed SST. Then, by using the adding a power integrator (API) technique, a state
feedback controller is explicitly constructed to achieve the requirements of the closed-loop prescribed
time convergence. Lastly, a liquid-level system is utilized to validate the theoretical results.

Keywords: high-order nonlinear systems (HONSs); asymmetric actuator dead-zone; state-scaling
transformation (SST); prescribed-time stabilization
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1. Introduction

During the past few years, high-order nonlinear systems (HONSs) have received a
great deal of attention due to their significant value both in theory and practice [1,2]. How-
ever, the Jacobian linearization of HONSs is neither controllable nor feedback linearized,
and feedback stabilization of such systems has been recognized as meaningful and chal-
lenging work. Fortunately, with the help of an added power integrator (API) [3] technique,
many significant results have been produced regarding the asymptotic stabilizing/tracking
control of HONSs; for examples, see [4–7] and references therein.

On the other hand, in recent years, the research on finite-time control has become a
hot research area due to the finite-time stable system performing superior properties, such
as both fast response and good disturbance rejection. Since the groundbreaking work in
which the Lyapunov finite-time stability of nonlinear systems was introduced in [8], lots
of important results have been established [9–17]. However, it should be pointed out that
the above-mentioned results are subject to the issue that settling time functions is seriously
dependent on initial system conditions, which causes their convergence time to experience
unacceptably large increases as the magnitude of the initial conditions grows. To address
this faultiness, the idea of fixed-time stability, which requires the upper boundedness of the
involved settling time function be independent of initial system conditions, is put forward
in [18]. So, under this new framework, many works have appeared to address fixed-time
control of linear/nonlinear systems. Generally speaking, there are two kinds of existing
design methods of fixed-time control: the bi-limit homogeneous-based method [18,19] and
the Lyapunov-based method [20–28]. It should be mentioned that both methods suffer
from some inherent shortcomings. In the former, the upper bound of the settling time
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(UBST) function exists, but it is usually unknown, and in the latter, the UBST is bounded
and adjustable, but it is difficult or even impossible to prespecify discretionarily in the light
of requirements because the derived settling time function relies on design parameters,
whose choice is laborious when satisfying a pregiven settling time.

In fact, a prespecifiable settling time is desirable in many practical applications, e.g.,
missile guidance [29]. As a result, prescribed/predefined-time control has become an
active research topic [30–35]. In particular, research has explored scaling the states using a
function that increases unboundedly, trending towards the terminal time, a state-scaling
design method to address the prescribed-time stabilization (PTS) of Brunovsky systems
in [30]. By employing a switching mechanism to address the computationally singular
aspect of the proposed controller, this technique was further extended to study the PTS of
planar linear systems in [35]. However, only the linear case is studied in [35], which implies
the proposed technique has difficulty handling strongly nonlinear systems, e.g., high-order
nonlinear systems (HONSs) which are intrinsically nonlinear systems. This describes
many practical systems [1]. Moreover, another common drawback of the aforementioned
results is that the effect of the actuator dead-zone is ignored. Nevertheless, owing to
physical limitations of device, many actual systems are usually inevitably subjected to input
dead-zone nonlinearity during operation. Such undesirable property may significantly
degrade the system’s performance or even system damage [36–42]. Therefore, an interesting
question naturally arises: For HONSs with actuator dead-zone, is it possible to devise a controller
to achieve the PTS? If possible, how can one design it? This paper focuses on addressing the
problem of global PTS for a kind of HONSs with asymmetric actuator dead-zone and giving
an affirmative answer to the above question. The significant contributions are underlined
as follows.

(i) Different from finite-time convergence in [41] or fixed-time convergence in [42], fully
taking into consideration of practical system requirements, both asymmetric actuator
dead-zone and prescribed-time convergence are included to study the stabilization
problem of HONSs.

(ii) To effectively overcome the computationally singular problem of the conventional
scaling function-based design in [30], a novel switched scaling function with the
switching rule involving both state and time is introduced.

(iii) Under some weaker restricted conditions on characterizing system nonlinearities, a
systematic design method is proposed by delicately utilizing the API technique to
ensure the achievement of the performance requirements.

Notations. In this paper, the used notations are standard. Specifically, for a vector
x = (x1, . . . , xn)T ∈ Rn, denote x̄s = (x1, . . . , xs)T ∈ Rs, s = 1, . . . , n, and the function dxec
is defined as dxec = sign(x)|x|c, with sign(·) being the signum function.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

Consider a kind of HONSs given by

ż1 = d1(t)dz2ep1 + f1(z1),
ż2 = d2(t)dz3ep2 + f2(z̄2),

...
żn−1 = dn−1(t)dznepn−1 + fn−1(z̄n−1),
żn = dn(t)D(u) + fn(z̄n),

(1)

where z̄i = (z1, . . . , zi)
T ∈ Ri is the system state (vector), and di ∈ R, pi ∈ R+ (with pn = 1),

i = 1, . . . , n are the control coefficients and the power orders of the system, respectively.
fi : Ri → R, i = 1, . . . , n are uncertain continuous functions satisfying fi(0) = 0. u ∈ R is
the real control input, and D ∈ R denotes the asymmetric actuator dead-zone which can be
modeled as
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D(u) =


mr(t)(u− br(t)), u ≥ br(t),
0, −bl(t) < u < br(t),
ml(t)(u + bl(t)), u ≤ −bl(t),

(2)

where mr(t), ml(t) and br(t), bl(t) are the corresponding the slopes and the breakpoints of
the dead-zone characteristic, respectively.

The aim of this paper is to find a state feedback control mechanism which stabilizes
system (1) within prescribed finite time under the following wild assumptions.

Assumption 1. For i = 1, . . . , n, there are smooth functions ϕi ≥ 0 and a constant τ > 0 such that

| fi(z̄i)| ≤ ϕi(z̄i)
i

∑
j=1
|zj|

λi−τ
λj , (3)

where λis are recursively defined by

λn+1 = τ, piλi+1 = λi − τ ≥ 0, i = 1, . . . , n− 1. (4)

Assumption 2. There are positive constants di and di, i = 1, . . . , n such that di ≤ di(t) ≤ di.

Assumption 3. There are positive constants mr, ml , br and bl , such that

mr ≤ mr(t), ml ≤ ml(t), br(t) ≤ br, bl(t) ≤ bl . (5)

Remark 1. Assumption 1 can be regarded as a new growth-like condition where λis are different
from the traditional ones [4–7] where they are recursively given by λ1 = 1, piλi+1 = λi − τ ≥
0, i = 1, . . . , n. In addition, it should be mentioned that it is reasonable in engineering practice
to impose the control coefficients and the unknown dead-zone parameters (i.e., the slopes and
breakpoints) bounded in Assumptions 2 and 3. Similar requirements can be found in the existing
literature [40,41].

2.2. Preliminaries

Consider the nonlinear system

ż = f (t, z), z(0) = z0 ∈ Rn, (6)

where f : R×Rn → Rn is continuous with respect to x and satisfies f (t, 0) = 0.

Definition 1 ([8]). The origin of system (6) is said to be globally finite-time stable if it is globally
asymptotically stable and for any z0 ∈ Rn, a settling time function T : Rn \ {0} → (0, +∞) exists
to ensure all solutions z(t, z0) of (6) satisfying z(t, z0) = 0, ∀t ≥ T(z0).

Definition 2 ([20]). The origin of system (6) is said to be globally fixed-time stable if it is globally
finite-time stable and its settling-time function T(z0) is bounded by a positive constant; that is to
say, ∃ Tmax > 0, s.t. T(z0) ≤ Tmax, ∀z0 ∈ Rn.

Definition 3 ([32]). The origin of system (6) is said to be globally prescribed-time stable if it is
globally fixed-time stable and for any prescribed time Tp > 0, a tunable designing parameter θ ∈ R
exists to ensure T(z0) ≤ Tp, ∀z0 ∈ R.

Lemma 1 ([8]). For system (6), if there is a C1 and positive definite function V(z) and some real
numbers c > 0 and 0 < α < 1 such that

V̇(z) ≤ −cVα(z), ∀ z ∈ Rn.
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Then, the origin of system (6) is finite-time stable with

T(z0) ≤
V1−α(0)
c(1− α)

, ∀ z ∈ Rn

Lemma 2 ([3]). For any u ∈ R, v ∈ R, and a constant m ≥ 1, one has (i)|u + v|m ≤ 2m−1|um +
vm|; (ii)(|u|+ |v|)1/m ≤ |u|1/m + |v|1/m ≤ 2(m−1)/m(|u|+ |v|)1/m.

Lemma 3 ([3]). For any constants c, d > 0 and real-valued function δ(u, v) > 0, one has
|u|c|v|d ≤ c

c+d δ(u, v)|u|c+d + d
c+d δ−c/d(u, v)|v|c+d.

Lemma 4 ([4,43]). For any u, v ∈ R and constants 0 < m ≤ 1 and b > 0, then , one has
|duebm − dvebm| ≤ 21−m|dueb − dveb|m.

3. Main Results

This section proposes a constructive switching design mechanism of a state feedback
controller to stabilize system (1) within any prescribed finite time Tp > 0.

3.1. Scaling Function

For the aim of this paper, the following switched scaling function is introduced.

z =

{
Γ, z ∈ {Rn − Ξ} & t < Ts,
1, otherwise,

(7)

where Ξ is a small closed neighborhood of origin and

Γ =
Ts

Ts − t
, (8)

with the positive design parameter Ts satisfying 0 < Ts < Tp.

Remark 2. It is obvious that Γ monotonically increases on [0, Ts) with Γ(0) = 1 and Γ(Ts) = +∞.
To address the incapability of ensuring the closed-loop viability and stability behind Ts, a new
switched scaling function (7) is introduced in this paper. In comparison with the one used in [30],
its novelty is that the switching rule is dependent on both state and time, i.e., it uses a small closed
neighborhood of origin Ξ to replace the origin, which renders the system trajectory z(t) to the
switching set Ξ at some moment before Ts can effectively overcome the computationally singular
problem (∞× 0 type) of the resulting controller as t→ Ts.

3.2. Controller Design

Based on the above switched scaling function, the following novel coordinate transfor-
mation is given.

ζi = z(1+c)λi zi, i = 1, . . . , n, D(v) = z(1+c)λn+1 D(u), (9)

where c ≥ (1/τ)− 1 is a design constant.
With the aid of (9), system (1) is redescribed as

ζ̇1 = z(1+c)τ(d1dζ2ep1 + F1(ζ1)
)
,

ζ̇2 = z(1+c)τ(d2dζ3ep2 + F2
(
ζ̄2
))

,
...

ζ̇n−1 = z(1+c)τ(dn−1dζnepn−1 + Fn−1
(
ζ̄n−1

))
,

ζ̇n = z(1+c)τ(dnD(v) + Fn
(
ζ̄n
))

,

(10)
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where

Fi(ζ̄i) = ζi
(1 + c)λiż
z1+(1+c)τ

+z(1+c)(λi−τ) fi(z̄i), i = 1, . . . , n, (11)

for which there are the smooth functions ϕ̄i(ζ̄i) ≥ 0 such that

|Fi(ζ̄i)| ≤ ϕ̄i(ζ̄i)
i

∑
j=1
|ζ j|

λi−τ
λj , i = 1, . . . , n. (12)

Next, a state feedback stabilizing controller of system (10) is designed by employing
the API technique.

Step 1. Let ρ ≥ max1≤i≤n{λi} being a constant and take the Lyapunov function V1 as

V1 = W1 =
∫ ζ1

0

⌈
dse

ρ
λ1 − 0

⌉ 2ρ−λ1
ρ

ds. (13)

Applying Assumptions 1 and 2 and (12) produces

V̇1 = z(1+c)τdπ1e
2ρ−λ1

ρ (d1dζ2ep1 + F1)

≤ z(1+c)τ
(
dπ1e

2ρ−λ1
ρ d1(ζ2ep1 − dζ∗2ep1) + d1dπ1e

2ρ−λ1
ρ dζ∗2ep1 + |π1|

2ρ−λ1
ρ ϕ̄1

)
,

(14)

where π1 = dζ1e
ρ

λ1 and ζ∗2 is the virtual controller of ζ2.
Take the virtual controller

ζ∗2 = −dπ1e
λ2
ρ β

λ2
ρ

1 (ζ1), (15)

where

β1(ζ1) ≥
(

n + ϕ̄1

d1

) ρ
p1λ2

, (16)

is a smooth function. Then, by substituting (15) and (16) into (14), we have

V̇1 ≤ −nz(1+c)τ |π1|
2ρ−τ

ρ +z(1+c)τd1dπ1e
2ρ−λ1

ρ (dζ2ep1 − dζ∗2ep1). (17)

Step 2. Define π2 = dζ2e
ρ

λ2 − dζ∗2e
ρ

λ2 and take the Lyapunov function V2 = V1 +W2 with

W2 =
∫ ζ2

ζ∗2

⌈
dse

ρ
λ2 − dζ∗2e

ρ
λ2

⌉ 2ρ−λ2
ρ

ds. (18)

From 
∂W2

∂ζ2
= dπ2e

2ρ−λ2
ρ ,

∂W2

∂ζ1
= −2ρ− λ2

ρ

∂

(
dζ∗2e

ρ
λ2

)
∂ζ1

×
∫ ζ2

ζ∗2

∣∣∣∣dse ρ
λ2 − dζ∗2e

ρ
λ2

∣∣∣∣
ρ−λ2

ρ

ds,

(19)

a direct calculation gives



Mathematics 2022, 10, 2147 6 of 15

V̇2 ≤ −nz(1+c)τ |π1|
2ρ−τ

ρ +z(1+c)τd1dπ1e
2ρ−λ1

ρ (dζ2ep1 − dζ∗2ep1)

+
∂W2

∂ζ1
z(1+c)τ(d1dζ2ep1 + F1) +

∂W2

∂ζ2
z(1+c)τ(d2dζ3ep2 + F2)

≤ −nz(1+c)τ |π1|
2ρ−τ

ρ +z(1+c)τd1dπ1e
2ρ−λ1

ρ (dζ2ep1 − dζ∗2ep1)

+z(1+c)τ
(

∂W2

∂ζ1
(d1dζ2ep1 + F1) + d2dπ2e

2ρ−λ2
ρ (dζ3ep2 − dζ∗3ep2)

+d2dπ2e
2ρ−λ2

ρ dζ∗3ep2 + dπ2e
2ρ−λ2

ρ F2

)
,

(20)

where ζ∗3 is the virtual controller to be designed later. To continue, the following upper
bound estimates for some terms of (20) are needed.

Firstly, from the definitions of πj and ζ∗j (j = 1, 2) and Lemma 4, one has

|dζ2ep1 − dζ∗2ep1 | =

∣∣∣∣∣∣
(
dζ2e

ρ
λ2

) λ2 p1
ρ

−
(
dζ∗2e

ρ
λ2

) λ2 p1
ρ

∣∣∣∣∣∣
≤ 21− λ2 p1

ρ

∣∣∣dζ2e
ρ

λ2 − dζ∗2e
ρ

λ2

∣∣∣ λ2 p1
ρ

= 21− λ2 p1
ρ |π2|

λ2 p1
ρ .

(21)

Thus, from (21), Assumption 2 and Lemma 3, it is obtained that

d1dπ1e
2ρ−λ1

ρ (dζ2ep1 − dζ∗2ep1) ≤ 21− λ2 p1
ρ d̄1|π1|

2ρ−λ1
ρ |π2|

λ2 p1
ρ

≤ 1
3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ $21,

(22)

where $21 ≥ 0 is a smooth function.
Secondly, from (12) and Lemma 2, one gets

|F2| ≤ ϕ̄2

(
|ζ1|

λ2−τ
λ1 + |ζ2|

λ2−τ
λ2

)
≤ ϕ̄2

(
|π1|

λ2−τ
ρ + |π2|

λ2−τ
ρ + β

λ2−τ
ρ

1 |π1|
λ2−τ

ρ

)
≤ ϕ̃2

(
|π1|

λ2−τ
ρ + |π2|

λ2−τ
ρ

)
,

(23)

where ϕ̃2 ≥
(

1 + β
λ2−τ

ρ

1

)
ϕ̄2 is a smooth function.

Using (23) and Lemma 3 yields

dπ2e
2ρ−λ2

ρ F2 ≤ dπ2e
2ρ−λ2

ρ ϕ̃2

(
|π1|

λ2−τ
ρ + |π2|

λ2−τ
ρ

)
≤ 1

3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ $22,

(24)

where $22 ≥ 0 is a smooth function.
Finally, note that

2ρ− λ2

ρ

∫ ζ2

ζ∗2

∣∣∣∣dse ρ
λ2 − dζ∗2e

ρ
λ 2

∣∣∣∣
ρ−λ2

ρ

ds ≤ 2ρ− λ2

ρ
|π2|

ρ−λ2
ρ |ζ2 − ζ∗2 |

≤ 2ρ− λ2

ρ
21− λ2

ρ |π2|,
(25)
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and ∣∣∣∣∣∣∣∣
∂

(
dζ∗2e

ρ
λ2

)
∂ζ1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∂(β1dπ1e)
∂ζ1

∣∣∣∣
≤

∣∣∣∣∂β1

∂ζ1

∣∣∣∣|π1|+
ρ

λ1
β1|π1|

ρ−λ1
ρ

≤ |π1|
ρ−λ1

ρ γ2,

(26)

where γ2 ≥ 0 is a smooth function.
Therefore, in the light of (23), (25), (26) and Lemma 3, one concludes that

∂W2

∂ζ1
(d1dζ2ep1 + F1)

≤ 2ρ− λ2

ρ

∫ ζ2

ζ∗2

∣∣∣∣dse ρ
λ2 − dζ∗2e

ρ
λ2

∣∣∣∣
ρ−λ2

ρ

ds×

∣∣∣∣∣∣
∂
(
dζ∗2e

ρ
λ 2

)
∂ζ1

∣∣∣∣∣∣(d1dζ2ep1 + F1)

≤ 1
3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ $23,

(27)

where $23 ≥ 0 is a smooth function.
Substituting (22), (24) and (27) into (21) yields

V̇2 ≤ −(n− 1)z(1+c)τ |π1|
2ρ−τ

ρ +z(1+c)τd2dπ2e
2ρ−r2

ρ (dζ3ep2 − dζ∗3ep2)

+z(1+c)τ
(

d2dπ2e
2ρ−r2

ρ dζ∗3ep2 + ($21 + $22 + $23)|π2|
2ρ−τ

ρ

)
.

(28)

Then, one can design the virtual controller

ζ∗3 = −dπ2e
λ3
ρ β

λ3
ρ

2 (ζ̄2), (29)

where the smooth function β2 satisfies

β2(ζ̄2)≥
(

n− 1 + $21 + $22 + $23

d2

) ρ
q2λ3

, (30)

such that

V̇2 ≤ −(n− 1)z(1+c)τ
(
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ

)
+z(1+c)τd2dπ2e

2ρ−r2
ρ
(
dζ3ep2 − dζ∗3ep2

)
. (31)

Following the same arguments of Step 2 for details, for Step i ( i = 2, . . . , n), we can
find a C1 and positive definite Lyapunov function Vi = ∑i

j=1 Wj with

Wi =
∫ ζi

ζ∗i

⌈
dse

ρ
λi − dζ∗i e

ρ
λi

⌉ 2ρ−λi
ρ

ds, (32)

and a row of continuous virtual controllers ζ∗j+1 = −dπje
λj+1

ρ β

λj+1
ρ

j (ζ̄ j), j = 1, . . . , i, such
that

V̇i ≤ −(n− i + 1)z(1+c)τ
i

∑
j=1
|πj|

2ρ−τ
ρ +z(1+c)τdidπie

2ρ−ri
ρ (dζi+1epi − dζ∗i+1epi ). (33)
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As a result, the previous inductive step indicates that there is a desired dead-zone
output

ζ∗n+1 = −dπne
λn+1

ρ β

λn+1
ρ

n (ζ̄n), (34)

such that

V̇n ≤ −z(1+c)τ
n

∑
j=1
|πj|

2ρ−τ
ρ +z(1+c)τdπne

2ρ−λn
ρ
(

D(v)− ζ∗n+1
)

≤ −z(1+c)τ
n

∑
j=1
|πj|

2ρ−τ
ρ +z2(1+c)τdπne

2ρ−λn
ρ

(
D(u)−z−(1+c)τζ∗n+1

)
.

(35)

where

Vn =
n

∑
j=1

Wj =
n

∑
j=1

∫ ζ j

ζ∗j

⌈
dse

ρ
λj − dζ∗j e

ρ
λj

⌉ 2ρ−λj
ρ

ds. (36)

Therefore, Assumption 3 instructs that the state feedback control u designed as

u =



(
z−(1+c)τζ∗n+1

mr
+ br

)
, ζ∗n+1 > 0,

0, ζ∗n+1 = 0,(
z−(1+c)τζ∗n+1

ml
− bl

)
, ζ∗n+1 < 0,

(37)

renders(
D(u)−z−(1+c)τζ∗n+1

)

=


mr

(
z−(1+c)τζ∗n+1

mr
+ br − br

)
−z−(1+c)τζ∗n+1 > 0, ζ∗n+1 > 0,

0, ζ∗n+1 = 0,

ml

(
z−(1+c)τζ∗n+1

ml
− bl + bl

)
−z−(1+c)τζ∗n+1 < 0, ζ∗n+1 < 0.

(38)

By noting −dπne
2ρ−λn

ρ ζ∗n+1 ≥ 0, one gets

V̇n ≤ −z(1+c)τ
n

∑
j=1
|πj|

2ρ−τ
ρ ≤ −

n

∑
j=1
|πj|

2ρ−τ
ρ . (39)

Consequently, the following result is obtained.

Theorem 1. For system (1) with Assumptions 1–3, the state feedback controller (37) drives the
states of the CLS to zero within prescribed finite time Tp > 0.

Proof. Since Vn is positive definite and proper, therefore from (39) and Lemma 4.3 in [44],
there are class K∞ functions η1, η2 and η3, such that

η1(|ζ|) ≤ Vn(ζ) ≤ η2(|ζ|), (40)

V̇n ≤ −η3(|ζ|), (41)

which indicates that ζ(t) is asymptotically convergent and bounded.
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On the other hand, the SST (9) gives

zi(t) = z−(1+c)λi ζi(t) =
(

Tc − t
Tc

)(1+c)λi

ζi(t), i = 1, . . . , n. (42)

Consequently, it is further obtained that

lim
t→Ts

zi(t) = lim
t→Ts

(
Ts − t

Ts

)(1+c)λi

ζi(t) = 0, i = 1, . . . , n. (43)

Therefore, when z = Γ, (39) indicates that the domain Ξ is prescribed-time attractive
and the convergence time satisfies Ta < Ts.

When z = 1, let C = max
ζ∈Ξ

Vn(ζ). Then, (39) indicates that the origin of the CLS is locally

finite-time stable in the attraction domain Ξ and the convergence time satisfies

Tl ≤
2V

τ
2

n (0)
cτ

≤ 2C
τ
2

cτ
. (44)

Therefore, by selecting c ≥ (2C
τ
2 )/(τT1 − τTs), one has Tl ≤ Tp − Ts.

From the existence and continuation of the solutions properties, we know that the
whole system is globally Lyapunov stable. As a result, it is concluded that the origin
of the CLS is globally prescribed-time stable within Ta + Tl < Tp. Thus, the proof is
completed.

Remark 3. The frame structure of control system (1) is as:
Step 1: For the considered system (1) and any given T > 0, take T1 = ϑT with ϑ ∈ (0, 1).
Step 2: The designed controller (37) with z = Γ drives the system state ζ(t) to a (small)

prespecified attraction domain Ξ at some Ta < T1.
Step 3: Appropriately choosing parameter c, which, together with designed controller (37)

with z = 1, ensures that once the system state ζ(t) enters the attraction domain Ξ, it converges to
and stays at the origin ζ = 0 for all t ≥ Ta + Tl < Tp.

4. An Application Example

To verify the applicability of the proposed control scheme, we consider a liquid-level
system exhibited in Figure 1, the dynamics of which are represented by

C1Ḣ1 = Q1
C2Ḣ2 = Q−Q1 −Q2

Q1 =

{
k1
√

2g|H2 − H1|, H2 ≥ H1,
−k1

√
2g|H2 − H1|, H2 < H1,

Q2 = k2
√

2gH2,

(45)

where the physical meanings of system parameters are as

Hi liquid levels of tank i;
H steady-state liquid levels of two tanks;
Ci cross sections of tank i;
k1 cross sections of the inlet manual valves of tanks 1 and 2;
k2 cross sections of the right outlet manual valves of tank 2;
Q inflow rate of this system;
Q1 inflow rate from tank 2 to tank 1;
Q2 outflow rate of this system;
g gravitational acceleration.
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Tank 1 Tank 2

Q

1
H 2

H

1
Q

2
Q

Figure 1. Schematic diagram of the liquid-level system.

By introducing the variable changes

z1 = H1 − H, z2 = H2 − H1, u =
Q
C2
−

k2
√

2gH
C2

, (46)

and taking the input dead-zone nonlinearity into account, the dynamics of (45) can be
further modeled as

ż1 = d1dz2e
1
2 ,

ż2 = D(u) + f2(z̄2),
(47)

where d1 =
k1
√

2g
C1

and f2(z̄2) = −C1
C2

d1dz2e
1
2 − k2

√
2g

C2
dz1 + z2 + He 1

2 +
k2
√

2g
C2
dHe 1

2 , D de-
notes the output of dead-zone input nonlinearity described by (2) with
mr = ml = 1 + 0.1 sin t, br = 0.2 + 0.1 sin t and bl = 0.4 + 0.1 cos t, respectively. Based on
Lemma 4, it is easily verified that Assumptions 1–3 hold with λ3 = τ = 1, λ1 = λ2 = 2,

mr = ml = 0.9, br = 0.3, bl = 0.5, ϕ2 =

√
2g

C2
(k1 + k2).

Introducing ζi = z(1+c)λi zi, i = 1, 2 with

z =


Ts

Ts − t
, ζ ∈ {R2 − Ξ} & t < Ts,

1, otherwise,
(48)

where Ξ is a small closed neighborhood of origin and taking ρ = 2 and c = 0 , according to
Theorem 1, one can design a state feedback controller

u =



(
z−1ζ∗3

mr
+ br

)
, ζ∗3 > 0,

0, ζ∗3 = 0,(
z−1ζ∗3

ml
− bl

)
, ζ∗3 < 0,

(49)

ζ∗3 = −(0.1 + $21 + $22 + $23)dπ2e
1
2 , (50)

with β1 = (1.1 + 2
Ts
(1 + ζ2

1)
1
2 )/d1 if ζ ∈ {R2 − Ξ} & t < Ts and β1 = 1.1/d1 otherwise,

π2 = ζ2 − ζ∗2 , ζ∗2 = −β1ζ2
1, ϕ̃2 = (1 + β

1
2
1 )(1 + c)λ2|ζ2|τ/λ2 /Ts + ϕ2, $21 = 3.7712d

3
2
1 ,

$22 = 0.6667ϕ̃
3
2
2 + ϕ̃2, $23 = | ∂ζ∗2

∂ζ1
d1|+ 0.6667| ∂ζ∗2

∂ζ1
|3(d1β

1
2
1 + 2

Ts
(1 + ζ2

1)
1
2 )3, which can render

the system (47) globally prescribed-time stable.
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For the simplicity, take the system parameters as H = 100 cm, g = 9.8 m/s2,
C1 = C2 =

√
2g = 4.427 cm2, k1 = 1 cm2 and k2 = 0.25 cm2 and the prescribed time

as Tp = 4 s, Ts = 3.8 s, Ξ = {ζ : ζ2
1 + ζ2

2 ≤ 0.01}. For (z1(0), z2(0)) = (0.5,−1) and
(z1(0), z2(0)) = (5,−10), Figures 2–5 are given to exhibit the responses of the CLS via
MATLAB2020. It can be clearly observed that the convergence time of the system maintains
below the prescribed time 4s, which confirms the effectiveness of the control scheme.
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Figure 2. The state responses of the CLS with initial condition (z1(0), z2(0)) = (0.5,−1).

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

Time(sec)

 

 

D(u)

u

3.5 4 4.5
−1

−0.5

0

0.5

0 0.02 0.04 0.06
−100

−50

0

50

Figure 3. The input responses of the CLS with initial condition (z1(0), z2(0)) = (0.5,−1).
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Figure 4. The state responses of the CLS with initial condition (z1(0), z2(0)) = (5,−10).
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Figure 5. The input responses of the CLS with initial condition (z1(0), z2(0)) = (5,−10).

To text the robustness of the proposed controller, the external disturbance
ω(t) = 0.1 sin t is introduced in the input channel. With the same parameters, the re-
sponses of the CLS are given in Figures 6 and 7, from which it is observed that the proposed
controller is robust against small external disturbances.
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Figure 6. The state responses of the CLS with external disturbance and initial condition
(z1(0), z2(0)) = (−1, 5).
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Figure 7. The input responses of the CLS with external disturbance and initial condition
(z1(0), z2(0)) = (−1, 5).

5. Conclusions

In this paper, a global prescribed-time stabilizing controller has been developed for
a kind of HONSs with asymmetric actuator dead-zone. Due to the novel introduced SST,
the significant advantage of the presented scheme is that its settling time can be preset and
adjusted arbitrarily according to practical requirements by choosing the positive design
parameter Ts. How to develop a prescribed-time controller for HONSs with parameter un-
certainty and/or disturbances will be a topic for our future works. Applying the proposed
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method to practical systems such as rigid bodies [45], quadrotor UAVs [46] and induction
motors [47] is another of our future topics.
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