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Abstract: Nowadays, the electrical power system has become a more complex, interconnected
network that is expanding every day. Hence, the power system faces many problems such as
increasing power losses, voltage deviation, line overloads, etc. The optimization of real and reactive
power due to the installation of energy resources at appropriate buses can minimize the losses and
improve the voltage profile, especially for congested networks. As a result, the optimal distributed
generation allocation (ODGA) problem is considered a more proper tool for the processes of planning
and operation of power systems due to the power grid changes expeditiously based on the type and
penetration level of renewable energy sources (RESs). This paper modifies the AO using a quasi-
oppositional-based learning operator to address this problem and reduce the burden on the primary
grid, making the grid more resilient. To demonstrate the effectiveness of the MAO, the authors
first test the algorithm performance on twenty-three competitions on evolutionary computation
benchmark functions, considering different dimensions. In addition, the modified Aquila optimizer
(MAO) is applied to tackle the optimal distributed generation allocation (ODGA) problem. The
proposed ODGA methodology presented in this paper has a multi-objective function that comprises
decreasing power loss and total voltage deviation in a distribution system while keeping the system
operating and security restrictions in mind. Many publications investigated the effect of expanding
the number of DGs, whereas others found out the influence of DG types. Here, this paper examines
the effects of different types and capacities of DG units at the same time. The proposed approach is
tested on the IEEE 33-bus in different cases with several multiple DG types, including multi-objectives.
The obtained simulation results are compared to the Aquila optimizer, particle swarm optimization
algorithm, and trader-inspired algorithm. According to the comparison, the suggested approach
provides a superior solution for the ODGA problem with faster convergence in the DNs.

Keywords: radial distribution network; multi-objective optimization; renewable distributed generation;
modified Aquila optimizer; real loss reduction; voltage deviation minimization
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1. Introduction

Optimization can simply be described as the process of finding the best or optimal
solution among several possible solutions for a given function [1]. Often times, this requires
finding the best combination of different specific parameters in the design process that gives
the best value for the function at hand. Optimization processes have found widespread
applications to real-world problems, ranging from structural engineering problems, trans-
portation problems, computer vision/image processing problems, power system problems,
etc. Several optimization algorithms have been developed and categorized based on their
design processes to solve these real-life problems. Although tremendous success has been
achieved, we note that towards ensuring proper performance of these algorithms, specifi-
cally the metaheuristic-based approaches, there is a need to maintain a balance between
the exploitation and exploration phase of the search process in the algorithms [2,3], as the
skewness of either of the processes leads to convergence to the local optimal solution. In
this regard, several metaheuristic-based optimization algorithms have been proposed as
documented in [4] and, more recently, an AO was developed based on different hunting
schemes of the Aquila bird for different kinds of prey [2]. Despite the considerable perfor-
mance recorded by the AO, attributed to its good global exploration capability, it sometimes
converges to local optimal solution due to its insufficient local exploitation capability [3].
To address this limitation, this paper modifies the AO using a quasi-oppositional-based
learning operator. The proposed variant of AO, called the modified Aquila optimizer, is
used to solve the optimal distributed generation problem (ODGP) in power systems.

The electrical grid is currently altering and maturing into a more responsive, and
perhaps more controlled, system than in the past. This opens the door to new developments
and upgrades. One of the most noticeable characteristics of smart grids is the widespread
incorporation of DGs into electric networks. If DGs are not adequately planned for, they
disrupt the network’s voltage stability conditions and power flow. Thus, voltage regulation
and lessening the power loss are the major issues to be addressed. However, the inclusion
of renewable energy sources in the traditional system poses several obstacles [5]. The size
and position of DGs are critical elements in using the DG strategy for loss reduction [6].

The balancing of active and reactive power and the demand to maintain acceptable
system voltages is a critical need for successful electric power system operation. The
peripheral technique of balancing the system’s power and voltage is to install DG units at
critical nodes. The grid-connected DG units serve as a power source to balance the system’s
demand for power. The optimal functioning of a power system must come before the
optimal planning of facilities such as production plants, and transmission and distribution
networks. To treat the large-scale optimal power flow problem, it is divided into two
parts: real power (P) optimization and reactive power (Q) optimization [7]. The P problem
intends to reduce production costs while the system voltages are kept the same, whereas
the Q problem seeks to lessen transmission loss while keeping real generated power fixed.

The network reconfiguration is carried out by adding multiple DG units with dis-
similar PQ capacitiesto the traditional grid to turn it into a smart grid. Ref. [8] addresses
several instances involving the actual and reactive power incorporation of RESs. Both the
placement and scale of DGs have a considerable influence on system losses in a distribution
network when including RESs.

Finding the best DG size and location is the most important aspect of DG deployment.
Many studies focus solely on reducing power loss as a primary goal for addressing the
DG deployment problem, utilizing a variety of analytic and computational intelligence
methods [9–14]. Metaheuristic techniques are ideally adequate for the DG placement
challenge. Voltage augmentation and loss reduction are now essential considerations in
power system planning. Loss reduction and voltage increase are based on proper DG
placement, which is achieved by using the best DG position configuration and DG size.

Many objectives are simultaneously optimized in the multi-objective DG allocation
(MODGA) problem, resulting in a convenient decision. The e-constrained technique
or the weighting sum approach is used to address MO optimization issues. The MO
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rendering indicator is determined as a weighted sum of several technical aspects such as
the reduction of actual power loss, minimization of voltage deviation, and operational cost
reduction [15–18]. Many studies have given reviews as well as polls on the DG layout issue
in recent years [9–18], which are based on a DG short caption, objective functions (OFs),
restrictions, and distinctive strategies.

Authors of [19] merged three goal functions (i.e., load shedding, total power, and volt-
age deviations) and presented them as a multi-objective index with different predilection
weightages by using particle swarm optimization and genetic algorithm approaches to
find the best position and size of DGs. The studies in [20] used PSO, GSA, and hybrid
PSO-GSA algorithms to address OFs such as actual power loss and voltage profile adjust-
ment. Ref. [21] examined power loss decreasing, voltage profile boosting, and operating
cost decline as MO, and the DG allocation issue was handled using a whale optimization
(WOA) algorithm.

In [22], the objective function to be reduced was obtained by power loss reduction,
and a new analytical approach was utilized to minimize the objective function through
determination of the ideal DG’s position and size. The quasi-oppositional swine influenza
model-based optimization with quarantine (QOSIMBO-Q) [23] method was used to address
the ODGA problem to reduce real power loss, better voltage stability, and foster the
voltage profile.

In [24] a backtracking search technique (BS) was used to optimize the multi-objective
function and that included lessening power losses, meliorating the voltage profile, and
combining static voltage stability indices. Fuzzy expert rules were used to identify DG
sites based on bus voltages and loss sensitivity factors (LSFs). Ref. [25] employed LSFs to
determine the placement of DGs, and the invasive weed optimization (IWO) method was
used to determine the size of DGs; using this method, the power loss lowering percent
was close to optimal when compared to other approaches. Ref. [26] employed a multi-
objective performance index (MOPI) to determine the appropriate DG allocation for voltage
stability improvement in a DS using a voltage sensitivity index and bus participation factors
derived from the continuation power flow for voltage stability enhancement and energy
loss minimization. The authors of [27] introduced a novel version called optimal RES
placement (ORESP) for optimal placement and sizing of distributed generation. In [28],
the authors created a multi-objective shuffled bat (MOSB) method using the shuffled frog-
leaping algorithm and the bat algorithm to select DG location and sizing by minimizing
the multi-objective function while accounting for power losses, voltage variance, and cost.

In [29], an improved differential search algorithm (IDSA) was employed to address
the optimization issue using a Pareto optimal strategy, with the technological and economic
benefits of DGs serving as targets. Refs. [30,31] examined power system expansion and
total investment and expansion costs, which were handled using a novel heuristic, namely,
the shuffled frog-leaping algorithm (SFLA). Authors of [32] introduced the MO opposition-
based chaotic differential evolution (MOCDE) method for tackling the MO issue through
power loss reduction, annual energy loss, and voltage drift as multi-objectives. In [33], an
improved raven roosting optimization (IRRO) approach was established for handling the
ODGA problem considering power losses, line loading, voltage stability, voltage profile,
and net saving cost as a weighted MO in the DS. The authors of [34] used an enhanced
metaheuristic technique, the quasi-oppositional chaotic symbiotic organisms search (QOC-
SOS) algorithm to choose the DG’s best location and size considering power loss reduction,
voltage profile refinement, and raising of the voltage stability. The authors of [35] presented
a novel technique called the trader-inspired algorithm (TIA), which was used to discover
the optimal selection of DG and power factor for lowering power losses and improving
the voltage stability by using a multi-objective function. The key disadvantages of all of
the preceding approaches are slow convergence and finding near-optimal solutions. RESP
problems in the previous studies are elaborated in Table 1.



Mathematics 2022, 10, 2129 4 of 39

Table 1. Applied approaches for RESP techniques.

Method Objective Function Approach Discussion Test Systems Ref. Year

ALO Lessen real power losses

LSF and VSF were utilized for finding the optimal bus
locations for multiple DGs. Then, the optimal size of

DGs was identified using ALO algorithm by
minimizing the total real power loss of the DN.

IEEE 33-, 69- and
119-bus [8] 2021

SA-PSO Active power loss
minimization

A new hybrid SAPSO algorithm was used to
determine the correct DG installation. IEEE 33-bus [9] 2020

IWHO Active power loss and
reliability indices

A novel IWHO algorithm was used to define the
optimal DG siting and sizing.

IEEE 33-, 69- and
119-bus [10] 2022

MOHSA Total losses and
voltage deviation

For DG allocation, total losses and TVD were
employed as OF indices.

Debre Markos
feeder 3 [11] 2019

Hybrid
(TSA-SCA)

Active power loss,
TVD, and VSI

Multi-objective method for determining the best DG
location and size. IEEE 69-bus [12] 2021

MFO Active power loss,
emission, and VPI Developing RES to maintain sustainable development. IEEE 33-bus [14] 2021

MOPSO Active power loss and TVD
MOPSO was utilized to determine the optimal size and
location of DGs before and after reconfiguration of the

radial network.
IEEE 33-bus [15] 2021

Hybrid
(EGWO-PSO)

Active power loss, VDI,
emission, cost, and VSI

MOF was used for optimal placement and sizing of
DGs and CBs.

IEEE 33- and
69-bus [17] 2021

Hybrid
(GA-PSO)

Active power loss and
voltage regulation

Convert the conventional distribution systems into
resilient autonomous microgrid networks by inserting

optimal DGs.

IEEE 33- and
69-bus [19] 2019

Hybrid
(PSO-GSA)

Total losses and voltage
deviation

Firstly, LSF was used to determine the optimal location.
Then, the optimal size of DGs was determined by PSO,

GSA, and hybrid PSO-GSA algorithms.
IEEE 33-bus [20] 2016

WOA
Active power loss,

voltage profile, and
operating cost

WOA was used to find the optimal DGs for MOF. IEEE 33- and
69-bus [21] 2018

Analytical
approach

Active power loss
minimization

A new simplified analytical approach was introduced
to find the optimal choice of DGs.

IEEE 12-, 33- and
69-bus [22] 2019

BS-FLC Total power losses,
TVD, and VSI

Backtracking search algorithms were demonstrated
and marked on the DN to determine the best solution.
Among the best solutions, fuzzy was a decision-maker

to decide the best compromise solution among the
offered Pareto optimal solutions.

IEEE 33- and
94-bus [24] 2016

IWO
Active power loss,

voltage deviation, and
operating cost

LSF was used to determine the bus location, whereas
IWO algorithm was used to find the best size.

IEEE 33- and
69-bus [25] 2016

Analytical Total losses index, VSI,
VSM, and AVDI

The choice of the correct type of DG unit and its
optimal location to enhance the voltage stability and

improve the voltage profile was based on the analysis
for some indexes.

IEEE 33- and
136-bus [26] 2018

UPSO Active power loss
minimization

ODGP was solved by selecting the optimal size
and location of RES.

UPSO was used for solving ODGP and ORESP.

IEEE 33- and
118-bus [27] 2019

MOCDE Active power losses,
VD, and cost.

The proposed technique used logistic mapping to
generate a chaotic sequence for control parameters for

solving the MO problem.

IEEE 33- and
69-bus [32] 2019

IRRO Total losses, VPI,
VSI, and LLI

MOF considered to improve the technical aspects and net
economical saving cost with DG units integrated on RDS.

Pareto was used to make a set of the best solutions.

IEEE 33- and
69-bus [33] 2020

QOCSOS Active power loss,
VD, and VSI

QOCSOS was utilized to determine the ODGA by
solving the MOF.

IEEE 33-, 69- and
118-bus [34] 2020

TIA Active power loss and VSI TIA was employed to determine the optimal allocation
of multiple types of RESs-DGs, considering MOF. IEEE 33-bus [35] 2021
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Finally, the main contribution of this paper can be summarized below:

• This paper proposes an improved variant of the Aquila optimizer (AO), called the
modified Aquila optimizer, to beat all of the aforementioned drawbacks in terms of
the complexity of the algorithms and slower convergence and stagnation at the end of
the optimization process, as it has only a few control parameters in comparison with
other intelligent algorithms.

• The new variant integrates the quasi-oppositional operator with the AO for im-proved
convergence and quality of solutions.

• The efficacy of the outcomes of this approach are demonstrated as the effectiveness of the
MAO; the authors first test the algorithm performance on twenty-three competition on
evolutionary computation (CEC) benchmark functions considering different dimensions.

• For the first time, a modified Aquila optimizer (MAO) is introduced in the power
system to tackle the optimal distribution generation allocation (ODGA) problem,
augment search quality, and shun an early convergence to a local minimum.

• This research assesses the work in two directions in addition to optimal allocation and
size. The first part examines the influence of expanding the number of DGs, whereas
the second part discusses and compares the different PQ capabilities of DGs producing
real power only, reactive power only, and combined real and reactive power.

• The efficacy of the outcomes of this approach are also demonstrated in terms of
lowering losses and meliorating the voltage deviation considering distinct restrictions
such as voltage limits, real power boundaries, DG capacity limit, and DG location to
obtain the optimal solution.

• Smart grid concepts based on network reconfiguration, obtained through the inte-
gration of DGs by using soft computing approaches, are all treated under a single
umbrella and numerous scenarios are studied and compared.

• The performance of the methodology proposed is verified using the typical IEEE
33-bus test system to detect its superiority for handling the problems and compare to
other published approaches.

This paper is organized as follows: Section 2 illustrates the suggested methodology,
formulates the load flow issue, and formulates the objective problems. Section 3 displays
the simulated results and compares the proposed methodology to the other methods. The
conclusions are driven in Section 4.

2. Materials and Methods

This section describes the detailed procedure adopted in this research. The relevant
mathematical requirement for the implementation of the quasi-oppositional-based Aquila
optimizer is presented.

2.1. The Aquila Optimizer

The Aquila optimizer was proposed in [2] to model the hunting behavior of Aquila
birds. This entailed mimicking the agile nature, speed, large sturdy feet, and sharp talons
of Aquila birds used in grabbing their prey during hunting. The four major types of prey
hunting schemes devised by the Aquila birds were modeled, which are used depending
on the hunting situation [2]. The first hunting scheme popularly used for hunting flying
birds involves the Aquila bird flying at a high soar with a vertical stoop, in which success
depends on the Aquila bird having a height advantage over its prey [2,3]. The second
scheme involves the bird hovering around in a contour-like pattern at a low distance
to the ground level and using a short glide-like attack on its prey, often used to hunt
seabirds [2]. The third scheme involves a slow, low flight descent attack on prey, such as
foxes, with slow speed and response. The last hunting scheme by the Aquila bird involves
the direct grabbing of prey while walking on land. The intelligence of the Aquila bird gave
it the flexibility of quickly varying its hunting scheme back and forth between the four
hunting techniques. The success of this nature-inspired hunting process displayed by the
Aquila bird serves as the motivation for the development of the Aquila optimizer algorithm
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for the purpose of optimization. Further details on the hunting movement pattern and
theoretical mathematical formulation of it can be found in [2,3]. The optimization process
of the AO begins by randomly generating the initial population, which comprises a set
of randomly generated candidate solutions. A search scheme that tries to balance the
exploration and exploitation of the search space towards converging at the best optimal
solution using four strategies along the path repetition was adopted. These search strategies
are expanded diversification, narrowed diversification, expanded intensification, and
narrowed intensification.

The expanded exploration (x1) utilizes the high soar with the vertical stoop hunting
scheme. This involves the Aquila bird flying at a high soar to explore and determine its
search space area while identifying its prey and choosing the best hunting area. This is
modeled mathematically [2] as shown in Equation (1).

x(t+1)
1 = x(t)best ×

(
1− t

T

)
+
(

x(t)M − rand× X(t)
best

)
(1)

where the maximum number of iterations is represented as T and t is the current iteration
whose next iteration solution x(t+1)

1 is obtained through the first search in the population

of the candidate solution (x1), and x(t)best denotes the best solution obtained until the tth
iteration. The number of iterations is employed to regulate the scope of the exploration of
the search space using (1− t/T) and x(t)M is the mean value of the locations of connected
tth iteration current solutions, computed using Equation (2) for a given population size N
of dimension size D.

x(t)M =
1
N

N

∑
i=1

xi(t), ∀j = 1, 2, · · ·, D (2)

The narrowed exploration (x2) is characterized by the contour-like flight pattern with
short glide attack in a narrowly explored search space for prey by the Aquila birds. This
search method is used to obtain a solution X(t+1)

2 for the next iteration of t as expressed
mathematically in Equation (3).

x(t+1)
2 = x(t)best × Levy(D) + x(t)R + (y− x)× rand (3)

where Levy(D) is the levy flight distribution for the dimension space D and the random
solution is x(t)R obtained at the ith iteration in the range of [1 N]. The levy flight distribution
is computed based on a fixed constant value s usually set to a value of 0.01, as well as
a number picked at random between 0 and 1 for the parameter u and v as expressed
in Equation (4).

Levy(D) = s× u× σ

|v|
1
β

(4)

where the parameter σ is computed using Equation (5), with a fixed constant parameter β
set to 1.5.

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

 (5)

The spiral shape in the search space as contained in Equation (3) is denoted by y and x
and expressed in Equations (6) and (7), respectively.

y = r1 + UD1 cos
(
−ωD1 +

3π

2

)
(6)

x = r1 + UD1 sin
(
−ωD1 +

3π

2

)
(7)
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where r1 is assigned values between the range of 1–20 for a specified number of search
iterations, and U and ω are assigned fixed values of 0.00565 and 0.005, respectively. D1 is
an integer number 1 to the length of the dimension D of the search space.

A slow, low flight descent attack is used by the Aquila bird to attack its prey, having
accurately mapped out the prey area through the exploration process. This expanded
exploitation x3 is mathematically expressed as shown in Equation (8).

x(t+1)
3 =

(
x(t)best − x(t)M

)
× α− rand + ((ub− lb)× rand + lb)× δ (8)

where the next iteration of the t solution is denoted by x(t+1)
3 , the best solution obtained

until the ith iteration is denoted by x(t)best, and x(t)M is the mean value of the present solution
computed based on Equation (2). The adjustment parameters α and δ are usually assigned
a value of 0.1 each and the random number generated between 0 and 1 is assigned to rand.
The upper and the lower bound are denoted by ub and lb, respectively.

The last hunting scheme used by the Aquila birds involves the direct grabbing of
prey based on their random movement pattern while working on the land. This hunting
scheme was used for the design of the narrowed exploitation (x4) used to generate the tth
iteration of the next solution x(t+1)

4 , as expressed in Equation (9). A balance between the
search scheme was ensured by the introduction of a quality function, QF, as expressed
in Equation (10).

x(t+1)
4 = QF× x(t)best −

(
G1 × rand× x(t)1

)
− G2 × Levy(D) + rand× G1 (9)

where G1 and G2 denotes the Aquila prey tracking motion pattern and the flight slope to
attack during elopement from the initial location to the last location, respectively, computed
using Equations (11) and (12) where t is the current iteration and the maximum iterations
are represented as T.

QF(t) = t
2×rand()−1

(1−T)2 (10)

G1 = 2× rand− 1 (11)

G2 = 2×
(

1− t
T

)
(12)

The Aquila optimization process is summarized in the pseudocode in Algorithm 1 [15].

2.2. The Proposed Modified Aquila Optimizer

The search operator quasi-oppositional-based learning (QOBL), which was used to
improve the initialization of the AO and local searching at the end of the AO algorithm, is
described as follows.

2.2.1. Oppositional and Quasi-Oppositional-Based Learning

The OBL is a mathematical operator which was introduced for improving the perfor-
mance of modern optimization algorithms. As proposed by Tizhoosh, the OBL is based on
the idea that the probability of the opposite numbers to obtain a fitter solution is higher than
random numbers [36]. Various studies have shown that OBL has improved the performance
of numerous population-based optimization algorithms in terms of solution accuracy and
convergence speed. Despite the encouraging results of OBL in various studies, the method
had been modified to become quasi-oppositional-based learning [34]. The QOBL shows
that using a quasi-opposite number is more effective than the opposite number in deter-
mining optimal results to an optimization problem. In QOBL, both the present nominee
population, its opposite population, and its quasi-opposite population are used to form the
fittest population. Assuming x is a 1-dimensional real number in the hyperspace. Let the
opposite number be x0 and the quasi-opposite number be xq0 of x, defined as:

x0 = lb + ub− x (13)
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where x ∈ R and x ∈ [lb, ub].

xq0 = rand
(

lb + ub
2

, x0
)

(14)

Algorithm 1: Aquila Optimizer
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Algorithm 1: Aquila Optimizer 

1. Parameter Initialization (nPop, nVar,  ,  , maxIter, etc.) 

2. Randomly generate initial positions 

3. while (Termination is not met) do: 

4.    Compute the fitness of initial positions 

5.    Obtain the best individual with the best fitness values as xbest(t) 

6.    for (i = 1: nPop) do: 

7.       The current solution’s mean value if updated. 

8.       Update x, y, G1, G2, Levy(D) 

9.       if 
2

3
t T

 
  
 

 then: 

10.         if 0.5rand   then: 
11.            Update the current using Equation (1) %% Step 1: Expanded Diversification (x1) 

12.            if f(x1(t + 1)) < f(x(t)) then 

13.              x(t) = x1(t + 1) 

14.              if f(x1(t + 1)) < f(xbest(t)) then 

15.                xbest(t) = x1(t + 1) 

16.              end if 

17.            end if 

18.         else  
19.            Update the current Solution Using Equation (5) % Step 2: Narrowed Diversification (x2) 

20.  

21.            if f(x2(t + 1)) < f(x(t)) then 

22.              x(t) = x2(t + 1) 

23.              if f(x2(t + 1) < f(xbest(t)) then 

24.                xbest = x2(t + 1) 

25.              end if 

26.            end if 

27.         end if 

28.       else  

29.          if 0.5rand   then 
30.            Use Equation (8) to update the current solution %% Expanded Intensification (x3) 

31.             if f(x3(t + 1)) < f(x(t) then 

32.               x(t) = x3(t + 1) 

33.               if f(x3(t + 1) < f(xbest(t)) then 

34.                 xbest(t) = x3(t + 1) 

35.               end if 

36.             end if 

37.          else 
38.            Use Equation (9) to update the current solution %% Narrowed Exploitation 

39.             if f(x4(t + 1)) < f(x(t)) then 

40.               x(t) = x4(t + 1) 

41.               if f(x4(t + 1) < f(xbest(t)) then 

42.                 xbest(t) < x4(t + 1) 

43.               end if 

44.             end if 

45.          end if 

46.        end if 

47.     end for 

48.   end while 

49. Return best solution (xbest) 
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2.2.2. Opposite Points and Quasi-Opposite Points

Assuming x(x1, x2, . . . , xn) is a 1-dimensional point in the optimization hyperspace,
then, the opposite point x0(x0

1, x0
2, . . . , x0

n
)

and quasi-opposite point xq0
(

xq0
1 , xq0

2 , . . . , xq0
n

)
can be computed by:

x0
i = lbi + ubi − xi (15)

where xi ∈ R and xi ∈ [lbi, ubi] ∀i 1, 2, . . . , n.

xq0
i = rand

(
lbi + ubi

2
, x0

i

)
(16)

In this paper, the QOBL was used in the population initialization of the original Aquila
optimization algorithm. Concurrently, both the present population and the quasi-opposite
population were utilized to generate a fitter population. This enables the AO to hurdle to a
new nominee of the solution that has a fitter fitness value. The pseudocode in Algorithm 2
describes the procedures of the implemented quasi-oppositional-based learning.

Algorithm 2: Pseudocode of quasi-oppositional-based learning
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The QOBL strategy described in Algorithm 2 was incorporated into the original
AO algorithm to establish the modified Aquila optimizer. After randomizing the initial
population of the AO, the QOBL was implemented to obtain a new, improved initial
population. Thereafter, each step of the AO was implemented. For each step of the
AO, the QOBL was reimplemented to guarantee a better balance amid diversification
and intensification and to ensure that the best solution was obtained. This process was
repeated until termination criteria were met. The detailed procedure of the MAO is given
in Algorithm 3.

The flowchart for implementing the quasi-oppositional-based Aquila optimizer is
given in Figure 1 as follows.
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Algorithm 3: Pseudocode of the MAO algorithm
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2. Randomly initialized population 

3. Compute ,

qo

i jx  using Algorithm 2. 

4. while (termination is not met) do: 

5.     Compute fitness value 

6.     Obtain the best individual with the best fitness values as Xbest(t) 

7.     for (i =1: nPop) do: 

8.        if 
2

3
t T

 
  
 

 then: 

9.           if () 0.5rand   then: 

10.              Perform expanded exploration  

11.              Perform QOBL 

12.           else 

13.              Perform narrowed exploration 

14.              Perform QOBL 

15.           end if 

16.        else 

17.            if () 0.5rand   then: 

18.               Perform expanded exploitation 

19.               Perform QOBL 

20.            else  

21.               Perform narrowed exploitation 

22.               Perform QOBL 

23.            end if 

24.        end if 

25.     end for 

26. end while 

return best solution Xbest 

The flowchart for implementing the quasi-oppositional-based Aquila optimizer is 

given in Figure 1 as follows. 

2.3. Methods of Evaluation

This section is further separated into two subsections. In the first subsection, the
procedures used to evaluate the performance of the modified Aquila optimizer on twenty-
three competition on evolutionary computation (CEC) benchmark functions in addition
to the original Aquila optimizer are presented. The second subsection provides detailed
procedures on the application of the modified Aquila optimizer on engineering problems.

2.3.1. The CEC Benchmark Functions’ Description

Performance of the developed modified Aquila optimizer was evaluated using twenty-
three benchmark functions of diverse properties. The twenty-three commonly used bench-
mark functions used in this paper were organized into three separate groups. The first
group which comprises seven multidimensional, unimodal benchmark functions in the
range of F1–F7 is given in Table 2. The second group given in Table 3 comprises six mul-
tidimensional multimodal benchmark functions in the range of F8–F13. The last group
comprises benchmark functions of different dimensionality ranging from F14–F23 as shown
in Table 4. Detailed information about the test functions can be found in [2].
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Figure 1. Flowchart of modified Aquila optimizer.

Table 2. Unimodal benchmark functions.

Fn Description Dimension Range Fmin

F1 f (x) = ∑n
i=1 x2

i 10,50,100,500 [−100,100] 0

F2 f (x) = ∑n
i=0|xi|+ ∏n

i=0|xi| 10,50,100,500 [−10,10] 0

F3 f (x) = ∑d
i=1

(
∑i

j=1 xj

)2
10,50,100,500 [−100,100] 0

F4 f (x) = maxi{|xi|, 1 ≤ i ≤ n} 10,50,100,500 [−100,100] 0

F5 f (x) = ∑n−1
i=1

[
100
(

x2
i − xi+1

)2
+ (1− xi)

2
]

10,50,100,500 [−30,30] 0

F6 f (x) = ∑n
i=1([xi + 0.5])2 10,50,100,500 [−100,100] 0

F7 f (x) = ∑n
i=0 ix4

i + rand(0, 1] 10,50,100,500 [−128,128] 0
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Table 3. Multimodal benchmark functions.

Fn Description Dimension Range Fmin

F8 f (x) = ∑n
i=1

(
−xi sin

(√
|xi |
))

10,50,100,500 [−500,500] −418.9829n

F9 f (x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

10,50,100,500 [−5.12,5.12] 0

F10 f (x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e 10,50,100,500 [−32,32] 0

F11 f (x) = 1 + 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
10,50,100,500 [−600,600] 0

F12

f (x) = π
n {10 sin(πy1)}+ ∑n−1

i (yi − 1)2[1 + 10 sin2(πyi+1)
]
+

∑n
i=1 u(xi , 10, 100, 4), where,

xi+1
4 , u(xi , a, k, m)

 K(xi − a)m i f xi > a
0 − a ≤ xi ≥

K(−xi − a)m − a ≤ xi

10,50,100,500 [−50,50] 0

F13 f (x) = 0.1

(
sin2(3πx1) + ∑n

i=1(xi − 1)2[1+
sin2(3πxi + 1)] + (xn − 1)2 + sin2(2πxn)

)
+ ∑n

i=1 u(xi , 5, 100, 4) 10,50,100,500 [−50,50] 0

Table 4. Fixed-dimensional multimodal benchmark functions.

Fn Description Dimension Range Fmin

F14 f (x) =
(

1
500 + ∑25

j
i

j+∑25
i (xi−aij)

)−1
2 [−65,65] 1

F15 f (x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5,5] 0.00030

F16 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

F17 f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10 2 [−5,5] 0.398

F18
f (x) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

]
×[

30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] 2 [−2,2] 3

F19 f (x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij(xj − pij)
2
)

3 [−1,2] −3.86

F20 f (x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij(xj − pij)
2
)

6 [0,1] −3.2

F21 f (x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,1] −10.1532

F22 f (x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,1] −10.4028

F23 f (x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,1] −10.5363

2.3.2. Load Flow Formulation for Optimal Distributed Generation Allocation

For load flow evaluations, the BFS approach was used [9]. Figure 2 is a scale model of
a radial distribution network. It is assumed that the Nth line connects nodes “i” and “j”.
The BFS algorithm’s implementation may be inferred in two stages using Kirchhoff’s law.
The convergence is faster if the largest discrepancy within bus voltages is less than 0.00001.
As a result, the distribution grid’s active and reactive power loss is easily calculated. These
stages are as follows:

A. The power flow from the ith to jth nodes is expressed as the following equations
depending on the direction of the backward sweep from the last node.

Pij = P′ j + Rij

(
P′2j + Q′2j

)
V2

j
(17)
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Qij = Q′ j + Xij

(
P′2j + Q′2j

)
V2

j
(18)

P′ j = PLj + Pj, e f f (19)

Q′ j = QLj + Qj, e f f (20)

where PLj and QLj are connected loads at the jth node.
The forwarding sweep direction can be calculated using the voltage at the ith and jth

nodes, and the nodal current via the branch-sample with an impedance Zij = Rij + jXij
connected with ith and jth nodes can be calculated as follows:

Iij =
Vi∠δi −Vj∠δj

Rij + jXij
(21)

or Iij =
Pi − jQi
Vi∠− δi

(22)

The voltage at the jth node is provided by Equations (21) and (22), as follows:

Vj =

[
V2

i − 2×
(

PiRij + jQiXij
)
+
(

R2
ij + X2

ij

)
×
(

P2
i + Q2

i
)

V2
i

]0.5

(23)

Figure 2. A radial distribution feeder.

2.3.3. Problem Formulation

The key issue here is determining the ideal sizes and locations of DGs to be installed
on buses, which may be accomplished using the MAO algorithm. In load flow simulation,
the DG units are considered as a negative PQ load. To begin, it is believed that all system
buses, with the exemption of the substation bus, are candidates for DG placement. Using
an objective function as in (24), the DG locations and sizes are considered as the control
variables, and their optimal values are achieved through the proposed algorithm. The best
selection of DG is found using an MO function, which is a weighted sum of a single-OF.

A. Objective function (OF)

The ODGA problem’s goal or fitness function seeks to reduce power losses and voltage
variations while adhering to equality and inequality restrictions [9]:

OF = min{(W1 × PL) + (W2 ×VD)} (24)
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where PL is the real power loss, VD is the voltage deviation, and W1 and W2 are adaptive
weights of power loss minimization and voltage deviation, respectively; W1 ≥ 0, W2 ≥ 0,
and W1 + W2 = 1 for multi-objective function [26]. The specific variables, PL, and VD, are
as follows.

I. Real power loss (PL)

The overall real power losses of the system are given by:

PL = ∑Nl
k=1 Gk

(
V2

i + V2
j − 2ViVj cos

(
δi − δj

))
(25)

where Nl is the total of the transmission lines; Gk is the conductance of the line k; Vi and
Vj are the line voltages at the sending and receiving ends, respectively; and δi and δj are
voltages angles.

II. Voltage deviation (VD)

To guarantee quality service, the bus voltage magnitude is kept within the permitted
limit. The voltage profile is enhanced by limiting the variance of the load bus voltage, as
illustrated in Equation (26):

VD = ∑n
i=1|1−Vi| (26)

where n is the total system buses.

B. Constraints

The restrictions that ensure the system’s exceptional performance are classified as
technical and operational constraints, which determine the minimization of the objec-
tive function.

I. Operational constraints

They are known as equality constraints which formulate the active and reactive power
balance by load flow equations, as given below:

PGi − PDi −Vi ∑n
j=1 Vj

[
Gij cos θij + Bij sin θij

]
= 0 , ∀i ∈ n (27)

QGi −QDi −Vi ∑n
j=1 Vj

[
Gij sin θij + Bij cos θij

]
= 0, ∀i ∈ n (28)

where PG and QG are the real power and reactive power generation, PD and QD are the
real and reactive load demand, Gij and Bij are the mutual conductance and susceptance
between bus i and bus j, and θij is the voltage angle difference between bus i and bus j.

II. Technical constraints

They are known as inequality constraints and can be divided into:

• Voltage constraints ∣∣∣Vmin
i

∣∣∣ ≤ |Vi | ≤ |Vmax
i | , ∀i ∈ n (29)

• Current constraints
Ili ≤ Irated

li , ∀i ∈ b (30)

• DG size constraints
Pmin

DG ≤ PDG ≤ Pmax
DG (31)

Qmin
DG ≤ QDG ≤ Qmax

DG (32)

• DG location constraints
2 ≤ DGlocation ≤ nbus (33)

where
∣∣Vmin

i

∣∣ and
∣∣Vmax

i

∣∣ are the voltage boundaries at bus i, Ili is the line current flow
of line i, and Irated

li is the rated line current transferred.
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3. Simulation Results

This section provides a detailed comparative study of the developed quasi-oppositional-
based learning Aquila optimizer, called the MAO, and the original AO on twenty-three
CEC benchmark functions and ODGA engineering problems. The results and discussion on
the benchmark function, which comprises the solution accuracy and convergence analysis
of both the MAO and AO on the CEC benchmark functions, is presented in Section 3.1,
whereas the performance of both algorithms on the ODGA engineering problem is pre-
sented in Section 3.2. In both the CEC benchmark functions and the ODGA engineering
problem, the MATLAB R2020b simulation platform was used on a personal computer
running Windows 10, 64-bit operating system with Intel(R) Core (TM) i7-8550U CPU @
1.80 GHz 1.99 GHz, 16 GB RAM.

3.1. Benchmark Functions Result Analysis

This section is sub sectioned into two parts. The first part describes the solution
accuracy of the AO and MAO on the benchmark functions, whereas the convergence
accuracy of the algorithms is described in the second subsection.

3.1.1. Solution Accuracy

The MAO and original AO algorithms were implemented on the twenty-three bench-
mark functions described in Section 2.3. The benchmark functions were grouped into three
categories, namely, unimodal, multimodal, and fixed-dimensional benchmark functions. To
ensure a good level of comparison, we retained the same algorithm parameters presented
in the original AO algorithm. Both the MAO and AO were implemented for 200 iterations
using 50 search agents. To examine the computational complexity of the MAO with respect
to AO, we implemented the algorithms on the unimodal and multimodal functions by
considering 10, 50, 100, and 500 dimensions. The results obtained for each dimension
are presented in Tables 5–8. Table 5 gives the results obtained for both unimodal and
multimodal benchmark functions considering 10 dimensions. The same results obtained
for 50, 100, and 500 dimensions are presented in Tables 6–8, respectively.

Table 5. Results obtained for unimodal and multimodal functions with D = 10.

Unimodal Benchmark Functions with D = 10

Fn
AO MAO AO MAO

Best Avg Worst STD Best Avg Worst STD nTI Time(s) nTI Time(s) AR

F1 6.42 × 10−75 1.43 × 10−62 6.57 × 10−61 9.28 × 10−62 5.00 × 10−148 3.30 × 10−123 1.47 × 10−121 2.09 × 10−122 23 0.4238 10 0.3118 0.43

F2 2.39 × 10−37 2.36 × 10−32 6.60 × 10−31 1.03 × 10−31 1.54 × 10−73 7.00 × 10−63 1.95 × 10−61 3.19 × 10−62 60 0.2963 27 0.3685 0.45

F3 1.22 × 10−72 2.02 × 10−56 9.97 × 10−55 1.41 × 10−55 6.66 × 10−146 2.05 × 10−121 9.59 × 10−120 1.36 × 10−120 23 0.3866 6 0.3581 0.26

F4 1.24 × 10−38 3.67 × 10−27 1.84 × 10−25 2.60 × 10−26 2.51 × 10−72 6.85 × 10−62 3.42 × 10−60 4.83 × 10−61 60 0.2912 30 0.3630 0.50

F5 3.49 × 10−05 0.001681 0.012943 0.002854 1.12 × 10−05 2.21 × 10−02 0.173778 3.34 × 10−02 153 0.3554 197 0.3853 1.29

F6 2.89 × 10−08 1.08 × 10−04 1.20 × 10−03 2.31 × 10−04 9.88 × 10−09 5.05 × 10−04 3.60 × 10−03 8.34 × 10−04 137 0.2986 137 0.3655 1.00

F7 1.79 × 10−06 1.33 × 10−04 6.07 × 10−04 1.34 × 10−04 1.27 × 10−06 1.57 × 10−04 1.05 × 10−03 2.07 × 10−04 157 0.2429 16 0.3949 0.10

Multimodal Benchmark Functions with D = 10

F8 −6.78 × 10+04 −3.63 × 10+04 −1.76 × 10+04 1.39 × 10+04 −4.77 × 10+04 −1.96 × 10+04 −9.27 × 10+03 9.17 × 10+03 137 0.273260 32 0.344875 0.23

F9 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 27 0.270444 10 0.396144 0.37

F10 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 64 0.251370 26 0.384963 0.41

F11 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 30 0.283189 10 0.434610 0.33

F12 2.78 × 10−09 1.27 × 10−05 1.17 × 10−04 2.16 × 10−05 8.86 × 10−09 3.94 × 10−06 6.83 × 10−05 1.03 × 10−05 191 0.535182 138 0.642867 0.72

F13 7.86 × 10−09 5.23 × 10−05 5.73 × 10−04 9.84 × 10−05 4.70 × 10−09 4.82 × 10−05 3.70 × 10−04 8.10 × 10−05 148 0.593632 152 0.590624 1.03
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Table 6. Results obtained for unimodal and multimodal functions with D = 50.

Unimodal Benchmark Functions with D = 50

Fn
AO MAO AO MAO

Best Avg Worst STD Best Avg Worst STD nTI Time(s) nTI Time(s) AR

F1 7.91 × 10−76 5.27 × 10−48 1.05 × 10−49 7.45 × 10−49 1.24 × 10−157 4.34 × 10−131 2.16 × 10−129 3.06 × 10−130 20 0.346058 7 0.446555 0.35

F2 5.83 × 10−38 1.84 × 10−29 4.30 × 10−31 2.61 × 10−30 5.38 × 10−76 1.29 × 10−66 5.70 × 10−65 8.09 × 10−66 14 0.321249 8 0.510822 0.57

F3 1.77 × 10−70 8.58 × 10−52 3.00 × 10−53 1.39 × 10−52 2.29 × 10−155 2.10 × 10−130 9.62 × 10−129 1.36 × 10−129 12 0.782950 2 0.716966 0.166

F4 1.08 × 10−37 5.06 × 10−28 1.02 × 10−29 7.15 × 10−29 4.39 × 10−78 4.29 × 10−67 2.02 × 10−65 2.86 × 10−66 67 0.314908 23 0.407632 0.34

F5 5.17 × 10−07 0.087 0.0128 0.0209 2.01 × 10−05 0.1339 0.0134 2.78 × 10−02 10 0.323443 2 0.497856 0.20

F6 4.88 × 10−08 2.20 × 10−03 3.57 × 10−04 5.51 × 10−04 5.45 × 10−07 4.72 × 10−04 0.0045 8.44 × 10−04 11 0.415805 2 0.563604 0.18

F7 7.66 × 10−07 7.85 × 10−04 1.15 × 10−04 1.31 × 10−04 1.87 × 10−06 1.38 × 10−04 4.21 × 10−04 1.01 × 10−04 113 0.555977 136 0.547667 1.20

Multimodal Benchmark Functions with D = 50

F8 −2.09 × 10+04 −4.01 × 10+03 −8.35 × 10+03 5.01 × 10+03 −4.98 × 10+03 −2.80 × 10+03 −3.75 × 10+03 483.5646 172 0.415364 183 0.674151 1.06

F9 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 30 0.432322 4 0.482665 0.13

F10 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 74 0.416677 5 0.455358 0.01

F11 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 24 0.374171 21 0.490126 0.88

F12 6.33 × 10−08 2.71 × 10−06 1.60 × 10−05 3.32 × 10−06 5.67 × 10−08 5.92 × 10−06 5.92 × 10−05 1.05 × 10−05 7 0.990779 181 0.878485 25.86

F13 3.94 × 10−07 2.85 × 10−04 4.41 × 10−05 6.44 × 10−05 3.35 × 10−08 1.04 × 10−04 1.30 × 10−03 2.60 × 10−04 10 1.027384 196 0.878522 19.60

Table 7. Results obtained for unimodal and multimodal functions with D = 100.

Unimodal Benchmark Functions with D = 100

Fn
AO MAO AO MAO

Best Avg Worst STD Best Avg Worst STD nTI Time(s) nTI Time(s) AR

F1 1.25 × 10−77 4.93 × 10−59 1.07 × 10−60 6.98 × 10−60 7.17 × 10−152 2.84 × 10−128 5.78 × 10−130 4.02 × 10−129 22 0.284541 8 0.538532 0.36

F2 2.24 × 10−39 1.42 × 10−24 3.52 × 10−26 2.06 × 10−25 1.51 × 10−76 2.43 × 10−64 5.94 × 10−66 3.49 × 10−65 11 0.377031 2 0.587254 0.18

F3 1.46 × 10−69 5.55 × 10−49 1.11 × 10−50 7.85 × 10−50 1.49 × 10−149 3.07 × 10−128 1.20 × 10−129 5.90 × 10−129 30 1.523620 11 1.433964 0.37

F4 1.46 × 10−69 5.55 × 10−49 1.11 × 10−50 7.85 × 10−50 1.54 × 10−80 7.08 × 10−67 1.55 × 10−68 1.00 × 10−67 59 0.370328 23 0.612341 0.39

F5 1.97 × 10−04 0.1103 0.0219 0.0315 6.17 × 10−08 0.091609 0.015053 2.28 × 10−02 12 0.397905 159 0.722258 13.25

F6 2.91 × 10−06 7.19 × 10−04 1.97 × 10−04 1.61 × 10−04 1.94 × 10−06 1.14 × 10−02 8.39 × 10−04 1.77 × 10−03 161 0.357496 185 0.627708 1.15

F7 3.79 × 10−06 1.24 × 10−04 4.57 × 10−04 1.22 × 10−04 2.26 × 10−06 4.81 × 10−04 1.37 × 10−04 1.35 × 10−04 176 0.786597 26 1.063293 0.15

Multimodal Benchmark Functions with D=100

F8 −6.77 × 10+04 −2.08 × 10+04 −3.88 × 10+04 1.28 × 10+04 −1.87 × 10+04 −5.80 × 10+03 −3.89 × 10+03 2.20 × 10+03 177 0.522011 96 0.899167 0.54

F9 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 21 0.541459 9 0.528925 0.43

F10 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 60 0.579987 24 0.647832 0.40

F11 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 19 0.567551 7 0.679634 0.37

F12 2.12 × 10−09 1.28 × 10−05 1.89 × 10−06 3.20 × 10−06 3.31 × 10−08 3.05 × 10−05 4.56 × 10−06 5.88 × 10−06 198 1.771936 137 1.669248 0.69

F13 5.44 × 10−08 4.67 × 10−04 5.33 × 10−05 8.09 × 10−05 2.05 × 10−09 7.29 × 10−04 9.69 × 10−05 1.59 × 10−04 165 1.525974 151 1.500534 0.92

Table 8. Results obtained for unimodal and multimodal functions with D = 500.

Unimodal Benchmark Functions with D = 500

Fn
AO MAO AO MAO

Best Avg Worst STD Best Avg Worst STD nTI Time(s) nTI Time(s) AR

F1 1.50 × 10−74 8.20 × 10−48 1.64 × 10−49 1.16 × 10−48 9.80 × 10−151 1.25 × 10−132 5.88 × 10−131 8.32 × 10−132 17 1.188284 7 1.092645 0.41

F2 2.69 × 10−36 1.27 × 10−30 7.35 × 10−32 2.12 × 10−31 2.17 × 10−77 6.73 × 10−66 3.17 × 10−64 4.48 × 10−65 15 1.264532 6 1.253314 0.40

F3 3.17 × 10−68 5.83 × 10−44 1.17 × 10−45 8.25 × 10−45 8.20 × 10−146 8.36 × 10−126 4.02 × 10−124 5.69 × 10−125 33 9.089672 9 7.793591 0.27

F4 7.47 × 10−37 1.29 × 10−25 2.60 × 10−27 1.83 × 10−26 3.67 × 10−77 5.78 × 10−68 2.83 × 10−66 4.00 × 10−67 60 1.323380 22 1.408070 0.37

F5 6.09 × 10−04 4.674197 0.340405 0.772287 4.44 × 10−05 1.407068 0.142883 2.35 × 10−01 136 1.265221 7 1.233198 0.05

F6 1.03 × 10−05 2.00 × 10−02 1.76 × 10−03 3.05 × 10−03 2.04 × 10−06 3.31 × 10−03 0.025907 5.12 × 10−03 20 1.377631 154 1.166943 7.70

F7 1.62 × 10−06 4.57 × 10−04 9.92 × 10−05 9.26 × 10−05 1.08 × 10−06 1.43 × 10−04 4.83 × 10−04 1.16 × 10−04 63 1.974413 59 1.966353 0.94

Multimodal Benchmark Functions with D = 500

F8 −7.43 × 10+04 −2.14 × 10+04 −3.75 × 10+04 1.09 × 10+04 −3.45 × 10+04 −1.56 × 10+04 −7.98 × 10+03 5.55 × 10+03 198 1.430414 7 1.418343 0.04

F9 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 25 1.226005 10 1.244486 0.40

F10 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.00 × 10+00 73 1.217467 24 1.266437 0.33

F11 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 24 1.287624 7 1.333875 0.29

F12 2.07 × 10−09 1.54 × 10−05 1.49 × 10−06 3.24 × 10−06 4.14 × 10−10 1.49 × 10−06 1.27 × 10−05 2.58 × 10−6 137 7.622310 17 4.425322 0.12

F13 4.12 × 10−06 4.14 × 10−03 9.53 × 10−04 1.16 × 10−03 7.21×10−07 5.02 × 10−04 4.02 × 10−03 8.25 × 10−04 14 4.602769 144 4.367627 10.28
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For the fixed-dimensional CEC functions, the results obtained are given in Table 9.
In each CEC benchmark function, the best, average, worst, and standard deviation of the
computations after 50 independent runs are presented. The simulation time taken by each
algorithm to obtain their respective optimal results is also given in each table as nTI. From
the tables, the values in bold give the best results obtained by either the MAO or AO.
The values in bold italics are used to represent a situation where both the MAO and AO
obtained the same results for any of the benchmark functions.

Table 9. Results obtained for fixed-dimensional benchmark functions.

Fn
AO MAO AO MAO

Best Avg Worst STD Best Avg Worst STD nTI Time(s) nTI Time(s) AR

F14 0.998004 1.411677 10.76318 1.467424 0.998186 7.301936 12.67051 1.996737 7 1.327123 56 1.054049 8.00

F15 3.39 × 10−04 5.44 × 10−04 1.13 × 10−03 1.79 × 10−04 3.45 × 10−04 9.51 × 10−04 1.68 × 10−03 3.87 × 10−04 6 0.382481 6 0.399001 1.00

F16 −1.0316 −1.0315 −1.03063 1.77 × 10−04 −1.0316 −1.03083 −1.02881 6.33 × 10−04 140 0.379773 139 0.379187 0.99

F17 0.397887 0.397935 0.398303 6.46 × 10−05 0.398349 0.421134 0.479731 1.96 × 10−02 185 0.321453 70 0.407058 0.38

F18 3.00012 3.038106 3.007461 0.00734 3.020373 3.969685 8.562764 1.156593 194 0.306667 88 0.376014 0.45

F19 −3.86274 −3.86073 −3.85411 0.002118 −3.86195 −3.7668 −3.637 0.055039 178 0.333752 75 0.393799 0.42

F20 −3.2984 −3.1204 −2.8735 0.0972 −3.2097 −2.7442 −2.0352 0.2411 200 0.380213 153 0.449120 0.76

F21 −10.1532 −10.1402 −9.9756 0.0263 −10.1338 −9.5941 −7.9488 0.4674 3 0.442247 187 0.435953 62.33

F22 −10.4028 −10.3868 −10.3251 0.0186 −10.4022 −9.7427 −7.4474 6275 5 0.401554 192 0.469871 38.40

F23 −10.5358 −10.5163 −10.4322 0.0257 −10.5303 −9.84755 −8.51132 0.512047 3 0.524773 197 0.479695 65.67

From the result tables, it can be observed that for the set of unimodal benchmark
functions (F1–F7) the modified optimizer, MAO, demonstrated its superiority over the
standard AO in all the functions when ten-dimensional variables were considered. For
the set of multimodal functions (F8–F13), the MAO also showed superior performance by
obtaining the best results in F8 and F13 and jointly obtaining the best results in F9–F11. The
AO only performed better in this scenario in F12. When fifty-dimensional variables were
considered, the MAO also showed superior performance over the AO in F1–F4 unimodal
benchmark functions, whereas the AO marginally performed better in F5–F8 unimodal
functions. Considering the same dimensional variables for the multimodal benchmark
functions, the MAO obtained the best results in F12 and F13 whereas the AO obtained the
best results only in F8. Both algorithms, however, obtained the same results in F9–F11.
For the one-hundred-dimensional variables, the MAO showed very good performance in
all the unimodal benchmark functions by performing better than the AO in all the seven
benchmark functions. For the multimodal functions of these dimensional variables, the
MAO also showed better performance over the AO by obtaining the best results in F8 and
F13, where the AO obtained the best result only in F12. For this dimensional variable, both
algorithms obtained the same results in F9–F11. Similarly, for 500-dimensional variables,
the MAO also demonstrated its superiority over the AO by obtaining the best results in
all the unimodal functions. For the multimodal functions, the MAO also obtained the
best results in F8 and F11–F12, whereas both algorithms jointly obtained the same results
in F9–F11. These results are a demonstration that irrespective of the size of the search
space, the modified optimizer maintained a superior performance over the original AO on
unimodal and multimodal functions.

When applied to the CEC benchmark functions of fixed dimension in the range of
F14–F23, the modified optimizer, MAO, obtained the best results in F14, F17, and F19–F20.
For these function groups, the original AO obtained the best result in the F15, F18, and
F21–F23 benchmark functions. However, both the MAO and AO obtained the same results
in the F16 benchmark function. This is also a demonstration that the MAO can effectively
solve the benchmark functions of a fixed dimension in comparison with the standard AO.

To examine the robustness and superiority of the results of any of the algorithms
over the other, the Wilcoxon rank-sum nonparametric study was conducted using the
50-independent runs performed in this paper. This test was conducted as a benchmark
where none of the algorithms obtained exactly the same results or exactly the same global
solution. This is because the nonparametric test for two equal samples of the same size is
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not a real or complex number. Thus, this paper carried out the Wilcoxon rank-sum test at a
significant probability level of 5% (p-value = 0.05) for the benchmark function results of 50
dimensions and fixed dimensions as shown in Table 10.

Table 10. Wilcoxon rank-sum test for D = 50.

Fn p-Value h-Value

F1 0.2009 0

F2 7.0661 × 10−18 1

F3 1.3695 × 10−13 1

F4 7.0661 × 10−18 1

F5 5.1090 × 10−06 1

F6 2.8118 × 10−08 1

F7 0.8388 0

F8 1.9072 × 10−16 1

F12 0.5147 0

F13 0.1152 0

F14 1.1485 × 10−12 1

F15 1.5445 × 10−10 1

F16 3.2423 × 10−04 1

F17 1.0754 × 10−17 1

F18 1.0703 × 10−16 1

F19 7.4858 × 10−16 1

F20 2.5415 × 10−16 1

F21 4.2058 × 10−17 1

F22 5.3319 × 10−16 1

F23 3.5254 × 10−17 1

From Table 10, when a p-value ≤ 0.05 and corresponded to a null hypothesis, where
h-value = 1, then the difference in solution sets obtained by either of the algorithms over the
other was significant. Similarly, if the p-value > 5 and the h-value = 0, the solution quality
obtained by either of the algorithms over the other was not significant. From the table, it
can be observed that for functions where none of the algorithms obtained the same results,
the MAO dominate AO, especially for F2–F6, F14, F16–F17, and F20. Similarly, F8, F15,
F21, F22, and F23 showed that the results obtained by the AO dominated MAO for these
functions. However, for F1, F7, F12 and F13, results showed nonsignificant performance of
any of the algorithms over the other by obtaining an h-value of 0.

3.1.2. Convergence Study

To effectively analyze the convergence of both the MAO and AO, and to avoid unnec-
essary repetition of convergence, the convergence characteristics of both algorithms on ten-
and fifty-dimensional variables are considered in this paper. Since the benchmark functions
considered in this paper are organized into three different categories, we present the conver-
gence plots according to these categories. For example, Figure 3 shows the superimposed
convergence plots of the MAO and AO on unimodal functions considering ten-dimensional
variables, whereas the convergence plots for both algorithms on the multimodal functions
for the same dimensional variables are shown in Figure 4. For fifty-dimensional variables,
the convergence characteristics for both unimodal and multimodal functions are presented
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in Figures 5 and 6, respectively. Finally, the convergence for the fixed-dimensional variables
is given in Figure 7.

Figure 3. Convergence analysis of unimodal benchmark functions with D = 10.
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Figure 4. Convergence analysis of multimodal benchmark functions with D = 10.
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Figure 5. Convergence analysis of unimodal benchmark functions with D = 50.
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Figure 6. Convergence analysis of multimodal benchmark functions with D = 50.

Looking at the convergence plots given in Figures 3–7, it can be observed that the
modified optimizer has faster convergence in almost all the benchmark functions and all
the benchmark function classifications and dimensionalities, as considered in comparison
with the original optimizer. For example, in Figure 3, the MAO converges faster in F1, F2,
F3, F4, and F7, which constitute 71.43% of the total unimodal benchmark functions with
10 dimensions. In Figure 4, which shows the convergence study of multimodal functions
with 10-dimensional variables, the MAO obtained the best convergence in F8, F9, F10, F11,
and F12, constituting 83.33%, whereas the AO converged faster only in F13. When the
number of dimensional variables was increased to 50 to examine robustness of the MAO
on problems with a larger hyperspace, the MAO maintained its superior performance over
the AO. In this context, the MAO obtained the fastest convergence in F1–F6, constituting
85.75% of the benchmark unimodal functions as given in Figure 5. However, for multimodal
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functions with 50-dimensional variables shown in Figure 6, the MAO obtained the fastest
convergence in F9, F10, and F11 whereas the AO also obtained the best convergence in F8,
F12, and F13.

This superior convergence of the MAO is further demonstrated by the acceleration
rate computed in Tables 5–9. From these tables, it can be seen that nearly all the AR values
computed for the dimension whose convergence was generated showed a value of less
than 1 (i.e., AR < 1), except in a few cases where AR > 1 was observed, such as F5 and F13 in
Table 5, F7, F8, F12, and F13 in Table 6, F5 and F6 in Table 5, and F6 and F13 in Table 8. For
the fixed-dimensional benchmark functions, the MAO also had better convergence in most
of the benchmark functions except in F14 and F21–F23. This superior convergence of the
MAO over AO was also a clear demonstration of the effectiveness of the QOBL operator as
an effective mechanism for population initialization and local search operation. Though
the MAO showed superior performance considering solution accuracy and convergence
speed, the original AO required less computational resources. The AO recorded a lesser
simulation time to finish all the specified iterations, unlike the MAO. However, it was
observed that as the dimension of the benchmark functions was increased up to D = 500,
the MAO tended to obtain its optimized results in lesser computational time compared to
the AO algorithm.

Figure 7. Cont.
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Figure 7. Convergence analysis of fixed-dimensional benchmark functions.

Note: an AR value of less than one is an indication that the MAO converged first
before the AO, whereas an AR value of greater than one is an indication that the AO
converged faster.

To evaluate the stability of the MAO and AO in solving the benchmark functions
effectively, the plot of the objective function values for all the independent runs performed
fifty times were generated. This plot of independent runs was generated for only the
fifty-dimensional variables considered in this paper, as the interpretation and empirical
meaning remains the same irrespective of the dimensional variables considered. The plots
of independent runs performed for the unimodal and multimodal functions considering
fifty-dimensional variables is shown in Figures 8 and 9, respectively, whereas the plots of
independent runs performed for the fixed-dimensional variables is given in Figure 10.

As a measure of robustness, Figures 8–10 gives the distribution of the objective function
value obtained by MAO and AO algorithms. From these figures, it can be observed that the
MAO provided better quality solutions in F1–F4 and F8, indicating the superiority of the
MAO in global searching capability of optimized solutions for these functions. The AO, in
turn, obtained more quality solutions for F6 and F16–F23 over the MAO. Both algorithms
obtained the same solution quality for F9–F11, whereas the quality of solution obtained
for the remaining functions was not as good, even though the global solution for such
functions was attained by the algorithms.

Lastly, the convergence curve for all the 50 independent trials juxtaposed on a single
figure is presented to examine if the MAO maintained similar convergence characteristics
irrespectively of the trials. This was implemented considering the number of dimensional
variables as 50 only. In Figure 11, the convergence curve of the MAO for 50 indepen-
dent trials of the unimodal functions considering 50-dimensional variables is presented.
Similarly, the convergence curve of the MAO for the same number of trials and same dimen-
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sional variables generated for multimodal and fixed-dimensional variables are presented
in Figures 12 and 13, respectively.

Figure 8. Independent runs of unimodal benchmark functions with D = 50.
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Figure 9. Independent runs of multimodal benchmark functions with D = 50.



Mathematics 2022, 10, 2129 27 of 39

Figure 10. Independent runs of fixed-dimensional benchmark functions with D = 50.
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Figure 11. Convergence of MAO over 50 trials for unimodal functions of 50-dimensional variables.
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Figure 12. Convergence of MAO over 50 trials for multimodal functions of 50-dimensional variables.
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Figure 13. Cont.
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Figure 13. Convergence of MAO over 50 trials for fixed-dimensional variables.

From Figures 11–13, it can be observed that the convergence characteristics of the
MAO had very similar behaviors in all the unimodal functions (F1–F7) irrespective of the
number of trials. For multimodal functions (F8–F13), the MAO also obtained very similar
convergence characteristics in all the functions. In the case of fixed-dimensional variables,
the convergence of the MAO showed similar behaviors for F16 and F21–F23. However, F14,
F15, and F18–F20 indicated irregular behavior of the MAO in terms of convergence. This
demonstrated the stability and robustness of the algorithm in solving various degrees of
optimization problems of different complexity and modality.

3.2. ORPD Test Problems

The described algorithm was employed and validated on the IEEE 33-bus network to
ensure its usefulness. The starting node voltage was assumed to be 1 pu, and all loading
buses were considered viable installation options.

Figure 14 clarifies a single-line schematic of this system [9]. Real and reactive power
consumption for the 33-bus test system was 3715 kW and 2300 KVAR, respectively. The
test system’s initial power loss was 202 kW, and its minimum voltage was 0.9042 pu.

Figure 14. Standard IEEE 33-bus test system.
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In this section, the effectiveness of the MAO algorithm is verified. The main DG
forms that are used are given in Table 11. The main parameters of algorithm and operative
restrictions are listed in Table 12.

Table 11. Various DG types.

DG Type P Q Example

I + 0 Fuel cells and photovoltaic devices
II 0 + Capacitors
III + + Synchronous generators and wind turbines

Note: (+) produces (−) absorbs

Table 12. The algorithm parameters and operative restrictions.

Parameters Value

Number of population 30
Maximum iteration numbers 100

α 0.2
δ 0.13

Base MVA 100 MVA
Base kV 12.66 kV

Node system voltage constraints 0.95 pu ≤ Vi ≤ 1.05 pu
DG’s power generation constraints 0 MW ≤ PDG ≤ 3 MW

Scope of Work

The proposed work includes two scenarios with different cases.

A. Scenario I: using one DG in different types for supplying various PQ capacities to
optimize a certain objective function as below:

Case 1: optimal DG allocation based on minimization of power losses.
Case 2: optimal DG allocation based on minimization of voltage deviation.
Case 3: optimal DG allocation based on loss minimization and voltage deviation reduction.

B. Scenario II: using a number of DGs for supplying various PQ capacities to optimize
a certain objective function as below:

Case 4: optimal DG units for minimization of power losses.
Case 5: optimal DG units for minimization of voltage deviation.
Case 6: optimal DG units for loss minimization and voltage deviation reduction.

In the first scenario, a single DG is used with different types at a time to minimize a
candidate’s multi-objective function. Three cases are implemented, as in case 1, the power
loss is minimized, whereas in case 2, it is based on voltage deviation minimization, and
minimization of both real power loss and voltage deviation are considered in case 3. The
optimal locations and sizes were determined via the AO and MAO and compared with
conventional PSO and TIA. The set of optimal values attained by the AO and MAO are
given in Tables 13–15.

Table 13. Case 1: optimal DG allocation based on loss minimization.

DG Type

AO MAO

Location Size
KW KVAR Ploss VD Location Size

KW KVAR Ploss VD

Base case - - - 201.90 1.6961 - - - 201.90 1.6961
DG I 6 2588.6 - 102.79 0.7929 6 2608.1 - 102.79 0.786
DG II 30 - 1311.9 141.84 1.2610 30 - 1310.3 141.84 1.2616
DG III 6 2465 1847.6 61.537 0.4791 6 2515.9 1745.3 61.323 0.4833
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Table 14. Case 2: optimal DG allocation based on voltage deviation.

DG Type

AO MAO

Location DG Size
KW KVAR Ploss VD Location Size

KW KVAR Ploss VD

Base case - - - 201.90 1.6961 - - - 201.90 1.6961
DG I 9 3000 - 149.55 0.3717 9 3000 - 149.55 0.3717
DG II 10 - 2869.2 266.89 0.5292 10 - 2894.19 269.5 0.529
DG III 26 3000 3000 91.685 0.2537 26 3000 3000 91.685 0.2537

Table 15. Case 3: optimal DG allocation based on loss minimization and voltage deviation.

DG Type

AO MAO

Location
Size
KW

KVAR
Ploss VD Location

Size
KW

KVAR
Ploss VD

Base case - - - 201.90 1.6961 - - - 201.90 1.6961
DG I 7 3000 - 107.26 0.595 7 3000 - 107.26 0.595
DG II 30 - 1876.6 115.26 0.805 30 - 1832.2 114.55 0.825
DG III 7 2430.4 1685.0 103.41 0.801 7 2479.7 130.20 103.37 0.783

Without DG installation, the power losses and the total voltage deviation were 202 kW
and 1.7 pu, respectively. Table 13 illustrates that when case 1 took place by employing the
proposed three DG types, the power losses were reduced by 49.1%, 29.78%, and 69.64%,
respectively. Moreover, the total voltage deviation (TVD) decreased by 53%, 25.6%, and
71.5%. Similarly, from case 2, it was found that the power losses were decreased by 26%,
increased by 32%, and decreased by 54.6%, whereas the TVD decreased by 78%, 68.8%, and
85%, as shown in Table 14. Finally, case 3 indicated, as shown in Table 15, that the power
losses were reduced by 46.9%, 43.29%, and 48.8%. Additionally, the TVD decreased by
64.9%, 52.5%, and 53.8%.

The voltage profiles before and after enhancement are shown in Figure 15. The
results emphasize that if case 1 occurred, the DG of type 2 failed to maintain the system
voltage within the minimum permissible limits as illustrated in Figure 15a. Noticeably, the
performance of the DG of type 3 can strongly outperform that of the other types. Under
case 2, the results described in Figure 15b illustrate that the DGs of types 1 and 3 succeeded
in keeping the system voltage within the permissible limits, but the remaining type failed
to preserve these limits. Moreover, a DG of type 3 showed a substantial impact on the
system enhancement level. When considering case 3, the results confirm that the DGs of
types 1 and 3 showed a high impact on improving the system performance as clarified in
Figure 15c. Noticeably, the DG of type 2 failed to maintain the system voltage within the
standard limits.

Figure 15. Voltage profile for IEEE 33-bus test system.
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The simulation results proved that considering only a single objective improves this
variable at the other’s expense. Moreover, it was found that under the power loss mini-
mization criterion, the network minimum TVD had a slight improvement and vice versa.
The outcomes showed that the voltage deviation improved and power loss was reduced by
applying the DG units of three types based on the three different OFs, considering both
objectives are needed to obtain the best performance. The convergence curves of the AO
and MAO algorithms for optimizing type 3 are presented in Figure 16. It can be of concern
that the MAO converged to the steady value within a period of less than 50 iterations
whereas the AO took more than 100 iterations and fell into local optimal solutions, as
shown in Figure 16a. The MAO had the best performance along with lower computation
time compared with the AO algorithm without trapping into a local optimal solution.

Figure 16. Convergence curve of the IEEE 33-bus system.

Table 16 displays the outcomes of the suggested approach for determining the best
size, site, and power factor of DG units in a 33-bus system. According to this table, the
suggested algorithm obtained the lowest power loss when compared to the PSO [35] and
TIA [35].

Table 16. The compared results of different algorithms in the IEEE 33-bus test system.

DG Type Comparison MAO AO PSO TIA

DG I

Location 6 6 6 6

Size
KW 2608.1 2588.6 2588 2590

KVAR 0 0 0 0
Ploss 102.79 102.79 111 111
VD 0.786 0.7929 - -

DG II

Location 30 30 30 30

Size
KW 0 0 0 0

KVAR 1310.3 1311.9 1257 1260
Ploss 141.84 141.84 151 151
VD 1.2616 1.2610 - -

DG III

Location 6 6 6 6

Size
KW 2515.9 2465 2700 2560

KVAR 1745.3 1847.6 1307.7 1920
Ploss 61.323 61.537 71 68
VD 0.4833 0.4791 - -

In the second scenario, simultaneous optimal placement of multi-DGs was imple-
mented for supplying various PQ capacities in the distribution networks, considering
power loss lessening and voltage deviation enhancement as an objective function. Table 17
explains the results obtained for choosing the third type of DG, considering power loss
reduction only, whereas Tables 18 and 19 present the ODGA, considering voltage deviation
reduction only and power loss and voltage deviation minifying together, respectively.
Figure 17 shows the voltage profiles for the IEEE 33-bus system in various cases. From the
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aforementioned tables, it was deduced that power loss was 202 kW and the min voltage
obtained was 0.9038 pu at bus 18 without DG. If a single DG was installed at bus 6, the
power loss could be reduced to 69.94% and the min voltage would be 0.975 pu at bus 18,
whereas placing two DGs simultaneously yielded an 81.2% reduction in power. Figure 17a
depicts the voltage profile at various buses for varying numbers of DGs in the network.

Table 17. Case 4: optimal DG III allocation based on loss minimization.

DG Units Location DG Size
KW KVAR Ploss VD

1 DG 6 2515.9 1745.3 61.323 0.4833

2 DG
11 1117.1 851.1

38.1 0.198529 1213.9 1145.2

Table 18. Case 5: optimal DG III allocation based on voltage deviation.

DG Units Location DG Size
KW KVAR Ploss VD

1 DG 26 3000 3000 91.685 0.2537

2 DG
23 1536.82 1032.2

109.2637 0.244226 609.009 270.12

Table 19. Case 6: optimal DG III allocation based on loss minimization and voltage deviation.

DG Units Location DG Size
KW KVAR Ploss VD

1 DG 7 2430.4 1685.0 103.41 0.801

2 DG
12 2030.7 1218.2

107.7715 0.678126 1391.0 971.04

Figure 17. Voltage profile for IEEE 33-bus test system including multiple DGs.

4. Conclusions

In this study, a novel alternate metaheuristic approach, named the modified Aquila
optimizer, was created. The performance of the developed MAO was first evaluated using
23 benchmark functions to establish its superiority over the standard Aquila optimizer.
Thereafter, both the MAO and AO were used to design a multi-DG placement with the
objectives of cutting losses and developing voltage profiles. Proper DG selection consider-
ably diminishes the power loss in the system. The third type of DG that injects real and
reactive power reduced the power losses by more than the first and second types of DG
for the same number of DG placements. The suggested approach is efficient in terms of
loss reduction and voltage enhancement. It also enhances the voltages at the nodes at the
tail end.
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The study performed in this work was worthwhile, but some significant issues should
be emphasized. The basic principles were optimal siting and scaling of DGs in the IEEE
33-bus system; however, other parallel types of study have been conducted to enhance
the results. The impacts of the number and type of DG were addressed in this paper. The
DG providing varied PQ capabilities was also covered, including cases of P only, Q only,
and P and Q together. Three distinct algorithms were used to compare and assess all
of the findings (MAO, PSO, and TIA). The following are the visible final conclusions of
the research:

(1) The MAO gives the overall best results for the CEC benchmark functions considering
solution accuracy and convergence time.

(2) The MAO was tested on the IEEE 33-bus test system to detect its notability.
(3) The MAO gives the optimal result for the ODGA problem in a very short time.
(4) Placement of two DGs is the best case, demonstrating that higher DG incorporation

reduces overall power losses and reinforces the voltage profile in the system.
(5) DG delivering both real (P) and reactive (Q) power is the best-suited option for the

system, indicating that DG produces the greatest outcomes while operating in an
ideal power factor environment.

(6) The proposed algorithm is preferred for obtaining the control variables (DG locations
and sizes) to find the best optimal values of the fitness function.

(7) The traditional system is restructured by optimally merging the DG in ideal locations
with optimal dimensions. This makes the grid work smarter, which falls within the
purview of a smart grid environment.

According to the previous discussion that illustrated the developed MAO’s superiority,
it can open a wide range of future works. This includes applying the MAO to various
applications such as PV parameter estimation, PI parameter tuning, management appli-
cations such as energy management and load management, conventional and smart grid
applications, industry and engineering applications, other benchmark test functions, and
smart home applications. It can also be extended to real-world applications dependent on
binary-, discrete-, and multiple-objective optimization. Moreover, it can be mixed with
other stochastic algorithms for enhancing their results of optimization problems, escaping
the local minima problem, and obtaining a global solution.
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Nomenclature
ABC artificial bee colony
AO Aquila optimizer
ALO ant lion optimization
AVDI aggregate voltage deviation index
BS backtracking search
CB capacitor bank
CEC competition on evolutionary computation
DG distributed generation
DNs distribution networks
DS distribution system
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FLC fuzzy logic control
GA genetic algorithm
GSA gravitational search algorithm
IDSA improved differential search algorithm
IRRO improved raven roosting optimization
IWHO improved wild horse optimization
IWO invasive weed optimization
LSF loss sensitivity factor
LLI line loading index
MAO modified Aquila optimizer
MODGA multi-objective optimal distributed generation allocation
MO multi-objective
MOF multi-objective function
MOPI multi-objective performance index
MOSB multi-objective shuffled bat
MOCDE MO opposition-based chaotic differential evolution
MOPSO MO particle swarm optimization
MOHSA MO harmony search algorithm
OBL oppositional-based learning
ODGA optimal distributed generation allocation
ODGP optimal distributed generation problem
ORESP optimal renewable energy source placement
PLRI power loss reduction index
PQ power quality
PSO particle swarm optimization
QOCSOS quasi-oppositional chaotic symbiotic organisms search
QOBL quasi-oppositional-based learning
RES renewable energy source
SCA sine-cosine algorithm
SFLA shuffled frog-leaping algorithm
TSA tunicate swarm algorithm
TIA trader-inspired algorithm
UPSO unified particle swarm optimization
TVD total voltage deviation
VDI voltage deviation index
VPI voltage profile index
VSI voltage stability index
VSM voltage stability margin
WOA whale optimization algorithm
Symbols
B mutual susceptance
D dimension size
G mutual conductance
G1 prey tracking motion pattern
G2 flight slope
GK line conductance
Levy(D) levy flight distribution
lb lower bound
n total system buses
N population size
P real power
PD real power demand
PG real power generated
PL real power loss
Q reactive power
QD reactive power demand
QG reactive power generated
QF quality function
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T maximum iteration
t current iteration
ub upper bound
Vi voltage at bus i
Vmax

i maximum voltage at bus i
Vmin

i minimum voltage at bus i
x0 opposite number
xq0 quasi-opposite number
α AO adjustment parameter 1
δ AO adjustment parameter 2
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