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Abstract: This paper addresses an analytic solution of the particles in a charged dilaton black hole
based on the two-timing scale method from the perspective of dynamics. The constructed solution is
surprisingly consistent with the “exact solution” in the numerical sense of the system. It can clearly
reflect how the physical characteristics of the particle flow, such as the viscosity, absolute temperature,
and thermodynamic pressure, affect the characteristics of the black hole. Additionally, we also discuss
the geometric structure relationship between the critical temperature and the charge as well as the
dilaton parameter when a charged dilaton black hole undergoes a phase transition. It is found that
the critical temperature decreases with the increase of the charge for a given dilaton value. When
the charge value is small, the critical temperature value will first decrease and then increase as the
dilaton value increases. Conversely, the critical temperature value will always increase with the
dilaton parameter.

Keywords: dynamic analytical solution; charged dilaton black hole; two-timing scale method; critical
temperature
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1. Introduction

The invisible black hole is an important part of the physical reality of our galaxy and
the entire universe [1]. On studying the evolution of black holes satisfying the Starobinsky
model under f (R) gravity, Pati et al. [2] found that the model can explain the universe’s
accelerating expansion based on power-law cosmology. Many studies have proved that the
Anti-de Sitter (AdS) black hole exhibits similar thermodynamic behavior to the van-der
Waals fluid system. Furthermore, the profound relationship between the charged AdS
black hole and van-der Waals fluid system is stated by proving that the mass of the former
is a function of the charge [3]. This fact was supported in Ref. [4], and the extended
method of studying the critical behavior of charged AdS black holes can be used in all
high-dimensional cases. Moreover, the Gauss–Bonnet black hole was also studied by
giving its equation of state, Gibbs free energy, and the critical behavior of the black hole
system [4]. There are also many studies about the thermodynamics of various black holes
as follows. The thermodynamics of the higher-dimensional Reissner–Nordström–de Sitter
black hole, Jordan frame scalar-tensor black hole, rotating black branes, and the regular and
the Bardeen–AdS black hole in Einstein–Gauss–Bonnet theory were studied respectively
in Refs. [5–9]. For the Born–Infeld (BI) black hole in a cavity, Wang et al. [10] studied its
thermodynamic behavior and phase diagrams different from typical BI black holes. They
also studied the critical behavior and the phase structure of the BI–AdS black holes and
the thermodynamics of nonlinear electrodynamics AdS black holes [11]. The study of
the (2 + 1)-dimensional regular black holes with nonlinear electrodynamics sources and
topological dilatonic Lifshitz-like black holes can be found in Refs. [12,13].

In recent years, the study of black hole thermodynamics in the extended phase space
also attracted many researchers [14–25]. In addition, various black holes may admit dif-
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ferent solutions. The methods to obtain these solutions, including the exact techniques
and approximate methods, were summarized in Ref. [26], which helps us know the black
hole solutions comparatively. By considering the Einstein–Maxwell-dilaton theory and
the Einstein-dilaton gravity theory coupled to the BI nonlinear electrodynamics, the static
and dynamic charged black holes were set up [27,28]. For the rotating regular black
hole and the charged AdS black hole in different dimensions, their solutions were pro-
posed by considering the Newman–Janis algorithm and the massive gravity theory [29–31].
Based on the (2 + 1)-dimensional Reissner–Nordström black hole, three black hole solu-
tions were derived by considering diverse nonlinear electromagnetic fields [32]. While
in (1 + 1)-dimensional non-projectable Hořava–Lifshitz gravity, the ordinary black hole
has related solutions [33]. The solutions to the dilatonic dyon black hole, the anyon black
hole, charged rotating dilaton, other various dilaton black holes, and the black holes with
nonlinear electrodynamic field and a Kalb–Ramond field can be found in Refs. [34–44].
A new study gave the exact solutions of static spherical symmetry in the interaction of
aether and Einstein-aether scalar field, which describe hairy black hole solutions [45]. These
solutions are helpful for researchers to understand the properties of black holes further.

Whether the parameters involved in different black holes affect the system is also a
significant problem. In the extended phase space, the influence of the perturbation of the
cosmological constant, the charge, and the massive gravity was analyzed for the black holes
with the background of charged Hořava–Lifshitz and massive gravity [46,47]. For the black
hole in de Rham, Gabadadze, and Tolley’s massive gravity in new extended phase space,
the influence of distinct values of the spacetime parameters on the thermodynamic stability
was also presented [48]. In the Schwarzschild black hole, the cosmological constant has a
significant influence on the dynamics of the neutral and charged particles, and it is also
a necessary condition for accelerating the expansion of the universe [49]. Furthermore,
the spin parameter and dimensionless parameter in the modified theory of gravity can affect
the motion of particles near a rotating black hole [50]. In addition, some other researchers
have also discussed the freedom in specifying the physical parameters of multiple black hole
configurations [51] and the influence of external sources on the behavior of the perturbed
black holes [52–54].

At present, there are many references on the periodic orbits around various black
holes, which are helpful to the study of the particle’s motion of the charged dilaton black
hole [55,56]. In the background of the four-dimensional Einstein–Gauss–Bonnet black
holes, Zhang et al. [57] analyzed the motion of a spinning test particle and found that a
discrete gravitational radiation spectrum will appear when the particle is inhaled in these
black holes. By focusing on the periodic motion of a timelike particle around the Dadhich,
Maartens, Papadopoulos, and Rezania brane-world black holes, Deng [58] found that for
different values of the tidal charge parameter, the periodic orbits have different energy.
For the Schwarzschild black hole and the high-dimensional black hole, the dynamical
behavior of the particles was studied, including the escape velocity and retrograde trajectory
of particles [55,59,60]. For Kehagias–Sfetsos black holes in deformed Hořava–Lifshitz
gravity, their periodic orbits were studied based on the marginally bound and innermost
stable circular orbits. The energy of these periodic orbits, which is lower than that of a
Schwarzschild black hole, is related to the parameter in Hořava–Lifshitz gravity [61–63].
The zoom-whirl periodic orbits around the Kerr–Sen black hole were considered, and the
effect of the charge parameter on these orbits was also discussed. The energy of these
periodic orbits is found lower than those of the Kerr black hole [64]. In addition, some
physicists pay attention to the quasi-periodic oscillations in the stellar-mass black hole
binaries [65,66].

Inspired by the above studies on black hole solutions and black hole thermodynamics
in extended phase space, this paper will study the physical phase transitions in the space-
time background of charged dilaton black holes and the dynamic behavior of black holes in
extended phase space from the perspective of nonlinear dynamics. The dynamic analytical
solution of the charged dilaton black hole is studied by adopting the two-timing scale
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method (see [67] for more details). This method is an effective method for quantitative
analysis of nonlinear dynamics. It can not only describe periodic motion but also show
the attenuated vibration of the dissipative system. In addition, we will also study the
thermodynamic properties of the charged dilaton black hole and the time-dependent
behavior of this black hole system in an unstable state. The layout of the paper is as follows.
Section 2 will introduce the nonlinear dynamical equation of the charged dilaton black hole
in the extended phase space. In Section 3, the two-timing scale method will be used to
solve the system, and the numerical comparison will be carried out in Section 4. Finally,
the paper draws a conclusion.

2. Dynamical Equation in Extended Phase Space
2.1. Thermodynamic Equation

In the extended phase space, we will briefly review the thermodynamics of a charged
dilaton black hole. The action of Einstein–Maxwell theory with a dilation field in four-
dimensional spacetime is as follows

I =
1

16π

∫
d4x
√
−g
[

R− 2(∇φ)2 − 2Λe2αφ − 2α2

b2(α2 − 1)
e2φ/α − e−2αφFµνFµν

]
, (1)

where φ is the scalar field of dilaton, Λ is the cosmological constant, Fµν = ∂
[

µ Aν

]
is the

electromagnetic tensor related to vector potential Aν, µ is a small positive constant viscosity,
α is the coupling parameter between the Maxwell and dilaton fields, and b is an arbitrary
positive constant (see [68–72] for more details).

According to the action Equation (1), one can obtain the following metric element
describing the spherical symmetric black hole solution

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2R(r)2(dθ2 + sin2 θdφ2), (2)

with

f (r) =− α2 + 1
α2 − 1

(
b
r

)−2γ

− m
r1−2γ

−
3
(
α2 + 1

)2r2

l2(α2 − 3)

(
b
r

)2γ

+
q2(α2 + 1

)
r2

(
b
r

)−2γ

,

φ(r) =
α

α2 + 1
ln
(

b
r

)
, R(r) =

(
b
r

)γ

,

where γ = α2/(α2 + 1), q is the black hole charge, and m = 2(α2 + 1)b−2γ M is related to
the ADM mass M of Equation (2) (see [68,69]). This metric depicts the geometry of the
Reissner–Nordström black hole when there is no dilaton field (i.e., α = 0).

Considering the thermodynamic pressure P and the volume V, which are conjugated
quantities, have the following form

P = − (3 + α2)b2γΛ

8π(3− α2)r2γ
+

, (3)

V =
4π(1 + α2)b2γ

3 + α2 r
3+α2

1+α2
+ , (4)

where r+ is the largest root of the equation f (r) = 0, which is the event horizon radius.
Note that the cosmological constant Λ is integrated into the pressure P (refer to [73,74] for
more details). According to the Smarr formula and the first law of thermodynamics, then P
and V in Equations (3) and (4) can be simplified as
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P = − Λ
8π

, V =
4πr3

+

3
.

which are in agreement with the Reissner–Nordström black hole. For a given specific volume

v =
2(1 + α2)(3− α2)

(3 + α2)
r+,

then the pressure P becomes

P(v, T) =
T
v
+

b−2γ

22γπv2(1−γ)(α2 + 1)2(γ−2)

×
[ (

3− α2)1−2γ

2(α2 − 1)(α2 + 1)2
(3 + α2)

1−2γ
+

2q2(3 + α2)2γ−3

v2(3− α2)
2γ−3

]
.

Moreover, the second-order phase transition of the black hole (2) occurs at the critical
temperature

Tc =

(
α2 + 1

)(
3 + α2) 2γ−3

2

πb2γq1−2γ(1− α2)(α2 + 2)
1−2γ

2

.

The relationships among the parameter b, the charge q, the dilaton parameter α and
the critical temperature Tc are shown in Figures 1–4. For a given value of α, the critical
temperature Tc decreases with the increasing of the charge q for each parameter b. Similarly,
the value of Tc also decreases with the increasing of parameter b for each value of q (see
Figure 1). Additionally, when q value is small, the Tc-α curve declines visibly, after that it
rises with the increasing of α, which presents parabolic type (see Figure 2). Additionally, we
find that with the increasing of q, the Tc and α corresponding to the lowest point of Tc-α
curve are decreasing. While when the value of q becomes large, for instance q = 1,
the value of Tc increases with the increasing of α (see Figures 2 and 3). Then take the
critical temperature Tc = 0.3, the relationship between q, α and b is given in Figure 4, which
illustrates that there is a complex relationship between these three parameters.
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Figure 1. Cont.
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Figure 1. The relationship between the critical temperature Tc, the charge q and the parameter b:
(a) Tc-q-b relationship diagram, (b) Tc-q and Tc-b relationship diagrams.
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Figure 2. The relationship between the critical temperature Tc, the charge q and the dilaton parameter α:
(a) Tc-q-α relationship diagram, (b) Tc-q and Tc-α relationship diagrams.



Mathematics 2022, 10, 2113 6 of 14

0

10

1

1

2

5

3

0.5

0 0

(a)

0 5 10

0

0.5

1

1.5

2

2.5

3

0 0.5 1

0

0.5

1

1.5

2

2.5

3

(b)

Figure 3. The relationship between the critical temperature Tc, the dilaton parameter α and the
parameter b: (a) Tc-b-α relationship diagram, (b) Tc-b and Tc-α relationship diagrams.
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Figure 4. The relationship between the charge q, the dilaton parameter α and the parameter b when the
critical temperature Tc = 0.3: (a) α-q-b relationship diagram, (b) α-q, α-b and q-b relationship diagrams.

2.2. Dynamical Balance Equation

It is assumed that the charged dilaton black hole flow moves in a tube with a fixed
volume and unit cross-section. The position of particles can be characterized by Eulerian
coordinate x = x(M, t), where M is the mass of the column of fluid of unit cross-section
between a fluid particle and the reference fluid particle, and t is time. Then the specific
volume and the velocity of the particle can be obtained by v(M, t) = ∂x(M, t)/∂M and
u(M, t) = ∂x(M, t)/∂t, respectively. Assuming that the fluid here is thermoelastic, slightly
viscous, and isotropic, then it can be described by the following equation

xtt = −P(v, T)M + εµ0suMM − As2vMMM, (5)

where xtt = ∂2x/∂t2, P(v, T)M = ∂P(v, T)/∂M, uMM = ∂2u/∂M2, vMMM = ∂3v/∂M3,
ε(0 < ε� 1) is a thermal perturbation parameter, µ0 is a positive parameter related to the
viscosity, s is a positive parameter, and A is a positive constant (see Ref. [68] for more detail).

Assume that the total mass of the black hole fluid tube with a volume of 2πv0/s and
a unit cross-section is 2π/s, where v0 is the inflection point determined by ∂2P/∂2v = 0.
Consider that the absolute temperature T has a slight periodic fluctuation (see [75–77] for
details) in the form of

T = T0 + εδ cos(ωt) cos M,

where δ is the perturbation amplitude relative to the small viscosity, ω is frequency of T,
and T0 < Tc.

Note that the functions v(M, t) and u(M, t) can be respectively expanded into Fourier
series

v(M, t) = v0 + x1(t) cos M + x2(t) cos 2M + x3(t) cos 3M + . . . ,

u(x, t) = u1(t) sin M + u2(t) sin 2M + u3(t) sin 3M + . . . ,

with respect to M ∈ [0, 2π] near the inflection point v0, where xi(t) and ui(t), which
are regarded as hydrodynamical modes, can be described as the deviation of the initial
equilibrium state. Consider the first mode (x1(t), u1(t)). For convenience, we omit the
subscript 1 below. In this way, the dynamical Equation (5) can be reduced to (omit (v0, T0))

ẋ = u,

u̇ =
(

Pv − As2
)

x + ε

(
PT +

3PvvT
8

x2
)

δ cos ωt +
Pvvv

8
x3 − εµ0su,
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where

P(v, T) =P(v0, T0) + Pv(v0, T0)(v− v0) + PT(v0, T0)(T − T0)

+ PvT(v0, T0)(v− v0)(T − T0) +
Pvvv(v0, T0)

3!
(v− v0)

3

+
PvvT(v0, T0)

2
(v− v0)

2(T − T0) + · · · ,

with

PT(v0, T0) =
1
v0

, PvT(v0, T0) = −
1
v2

0
, PvvT(v0, T0) =

2
v3

0
,

Pv(v0, T0) =−
T0

v2
0
+

[(
3− α2)(α2 + 1

)] 1−α2

α2+1

π(1− α2)4
α2

α2+1 b
2α2

α2+1 (α2 + 3)
α2+3
α2+1 v

3α2+5
α2+1

0

×
[

4
(

α4 + α2 − 2
)(

α4 − 2α2 − 3
)2

q2 +
(

α2 + 3
)2

v2
0

]
,

Pvvv(v0, T0) =−
6T0

v4
0
+

2
(
3− α2) 1−α2

1+α2
(
α2 + 2

)
π(1− α2)4

α2
α2+1 b

2α2
α2+1 (α2 + 1)

3α2+1
α2+1 (α2 + 3)

α2+3
α2+1 v

5α2+7
α2+1

0

×
[(

α2 + 3
)3

v2
0 + 4

(
α2 − 1

)(
2α2 + 3

)(
3α2 + 5

)(
α4 − 2α2 − 3

)2
q2
]

.

Note that we have found that the expression for Pvvv(v0, T0) here is different from that
derived in Ref. [68] after repeated verification.

Now the dynamical equation of the charged dilaton black hole flow can be written as

d2x
dt2 + εµ0s

dx
dt

+
(

As2 − Pv

)
x− ε

(
PT +

3PvvT
8

x2
)

δ cos ωt− Pvvv

8
x3 = 0. (6)

3. Analytical Solution of Dynamics

In this section, we will construct a uniformly valid expansion of the perturbation
problem of Equation (6) by using the well-known two-timing method in the field of
nonlinear dynamics, to study the periodic thermal behavior of the black hole in the extended
phase space. To this end, we suppose that the asymptotic solution of Equation (6) is
expressed in terms of the thermal perturbation parameter ε as defined by

x(t, ε) = εx1(T1, T2) + ε2x2(T1, T2), (7)

where T1 = t, T2 = εt are fast and slow time scales, respectively.
By the chain rule, define

dxi
dt

=
dxi
dT1
· dT1

dt
+

dxi
dT2
· dT2

dt

=
dxi
dT1

+ ε · dxi
dT2

, ∂T1 xi + ε∂T2 xi, (8)

d2xi
dt2 =

d
dt

(
dxi
dT1

+ ε · dxi
dT2

)
=

d2xi

dT2
1
+ 2ε · d2xi

dT1dT2
+ ε2 · d2xi

dT2
2

, ∂T1T1 xi + 2ε∂T1T2 xi + ε2∂T2T2 xi, (9)
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where i = 1, 2. Then substituting Equations (7)–(9) into Equation (6) and comparing the
coefficients of powers of ε, we have

ε1 : ∂T1T1 x1 +
(

As2 − Pv

)
x1 =PTδ cos(ωT1), (10)

ε2 : ∂T1T1 x2 +
(

As2 − Pv

)
x2 =− 2∂T1T2 x1 − µ0s∂T1 x1, (11)

ε3 : ∂T1T1 x3 +
(

As2 − Pv

)
x3 =− ∂T2T2 x1 − 2∂T1T2 x2 − µ0s

(
∂T2 x1 + ∂T1 x2

)
+

3PvvTδ cos(ωT1)

8
x2

1 +
Pvvv

8
x3

1. (12)

Note that the homoclinic orbits of Equation (6) has been discussed in Ref. [68] for
the case

(
As2 − Pv

)
≤ 0. We now consider the case

(
As2 − Pv

)
> 0 and assume that

ω2 6=
(

As2 − Pv
)

to avoid the resonance, and write the solution of Equation (10) in the
following form

x1(T1, T2) =K(T2)ei
√

As2−PvT1 + K(T2)e−i
√

As2−PvT1

− PTδ

2(ω2 − As2 + Pv)

(
eiωT1 + e−iωT1

)
, (13)

where K donates the conjugate quantity of K. Substituting Equation (13) into Equation (11),
we obtain

∂T1T1 x2 + λ2x2 =− 2iλeiλT1 ∂T2 K + 2iλe−iλT1 ∂T2 K− µ0s
[
KiλeiλT1

−Kiλe−iλT1 − PTδiω
2(ω2 − λ2)

(
eiωT1 − e−iωT1

)]
, (14)

where λ =
√

As2 − Pv > 0.

To eliminate the secular terms of the above equation, we let

−2iλ∂T2 K− µ0siλK = 0,

2iλ∂T2 K + µ0siλK = 0.

Then we can take

K(T2) = K(T2) = e−
µ0s

2 T2 .

Thus a special solution of Equation (10) becomes

x1(T1, T2) = 2e−
µ0s

2 T2 cos λT1 −
PTδ

ω2 − λ2 cos ωT1, (15)

and Equation (14) is reduced to

∂T1T1 x2 + λ2x2 = − µ0sPTδiω
2(ω2 − λ2)

(
eiωT1 − e−iωT2

)
. (16)

Similarly, suppose that the solution of Equation (16) is

x2(T1, T2) =L(T2)eiλT1 + L(T2)e−iλT1 − µ0sPTδiω

2(ω2 − λ2)
2

(
eiωT1 − e−iωT1

)
. (17)
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Substituting Equations (15) and (17) into Equation (12), it follows

∂T1T1 x3 + λ2x3 =−
µ2

0s2

4

(
eiλT1 + e−iλT1

)
− 2iλeiλT1 ∂T2 L + 2iλe−iλT1 ∂T2 L

− µ0s
[
−µ0s

2
e−

µ0s
2 T2

(
eiλT1 + e−iλT1

)
+ iλeiλT1 L

−iλe−iλT1 L +
µ0sPTδω2

2(ω2 − λ2)
2

(
eiωT1 + e−iωT1

)]

+
3PvvTδ

16

(
eiωT1 + e−iωT1

)
x2

1 +
Pvvv

8
x3

1, (18)

where the complex expressions of x2
1 and x3

1 are attached in the Appendix A. Similarly,
we take

L(T2) = L(T2) = e−
µ0s

2 T2 .

Thus a particular solution of Equation (17) becomes

x2(T1, T2) = 2e−
µ0s

2 T2 cos λT1 +
µ0sPTδω

(ω2 − λ2)
2 sin ωT1.

Therefore, the second-order approximate solution of Equation (6) is obtained as follows

x =ε

[
2e−

µ0s
2 T2 cos λT1 −

PTδ

ω2 − λ2 cos ωT1

]
+ ε2

[
2e−

µ0s
2 T2 cos λT1 +

µ0sPTδω

(ω2 − λ2)
2 sin ωT1

]
.

4. Numerical Comparison

In order to verify the effectiveness of the two-timing scale method, we take the same
parameter values as in Ref. [68], i.e., the temperature T0 = 0.0315, the charge q = 1,
the dilaton parameter α = 0.01 and the constant b = 1, then the volume v0 = 3.652. For the
initial condition [−0.03226, 0], the numerical solution (which can be regarded as an “exact
solution”) of Equation (6) and its analytical solution are shown in Figure 5. It can be seen
that the solution obtained by using the two-timing scale method is much more effective for
analyzing the dynamic response of the charged dilaton black hole flow. Because the changes
in the blue curve and red curve are very similar, the difference between the two curves
is tiny, and the two curves basically coincide. This result indicates that the asymptotic
solution obtained by using this method is in good agreement with the “exact solution” of
Equation (6), and these two solutions will still maintain good consistency over time.
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Figure 5. Comparison between the two-timing scale method solution and the “exact solution” for
A = 0.2, s = 0.04, µ0 = 0.1, ω = 0.01, δ = 0.004, and ε = 0.001.

5. Conclusions

The periodic thermal behavior of the charged dilaton black hole in the extended phase
space was studied. For the phase transition in the black hole, i.e., the P-V critical behavior,
this paper investigated the relationship between the critical temperature, the charge, and the
dilaton parameter:

1. For a given value of the dilaton parameter, the critical temperature decreases with the
increase of the charge;

2. For the given value of parameter b, the critical temperature value first decreases and
then increases with the increase of the value of the dilaton parameter when the charge
is small. On the contrary, the critical temperature value increases with the increase of
the dilaton parameter value;

3. For a given value of the critical temperature, there is a complicated relationship
between the charge and the dilaton parameter.

Additionally, the main innovation of this paper is that we constructed an approximate
analytical solution of the nonlinear dynamic equation corresponding to the charged dilaton
black hole flow from the dynamic perspective by using the two-timing scale method.
The obtained solution shows surprising consistency with the numerical solution of the
original system. In other words, this indicates that the obtained solution describes the
dynamic behavior of the particles in the black hole flow very effectively, and the physical
parameters such as viscosity, absolute temperature, and thermodynamic pressure contained
in the solution can clearly reflect the dynamics of the particle in the flow. We believe this
will significantly help researchers better to understand the dynamics of the charged dilaton
black hole.
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Appendix A

The complex expressions of x2
1 and x3

1 in Equation (18)

x2
1 =e−

µ0s
2 T2 e2iλT1 + 2e−

µ0sT2
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4 T2 eiλT1 PTδeiωT1
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4 T2 eiλT1 PTδe−iωT1

ω2 − λ2

+
e−
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2 T2
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