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Abstract: We consider the following stochastic fractional differential equation CDα,ρ
0+ ϕ(t) = κϑ(t, ϕ(t))ẇ(t),

0 < t ≤ T, where ϕ(0) = ϕ0 is the initial function, CDα,ρ
0+ is the Caputo–Katugampola fractional

differential operator of orders 0 < α ≤ 1, ρ > 0, the function ϑ : [0, T] × R → R is Lipschitz
continuous on the second variable, ẇ(t) denotes the generalized derivative of the Wiener process
w(t) and κ > 0 represents the noise level. The main result of the paper focuses on the energy growth
bound and the asymptotic behaviour of the random solution. Furthermore, we employ Banach fixed
point theorem to establish the existence and uniqueness result of the mild solution.

Keywords: asymptotic behaviour; Caputo–Katugampola; Caputo–Hadamard; energy-growth bounds;
well-posedness
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1. Introduction

Fractional differential equations over the years have proven to be a powerful tool in
modelling complex dynamics in physical, biological and engineering phenomena, espe-
cially anomalous systems with memory. In recent years, many different fractional differ-
ential operators have been studied by many researchers, and also applied to solve some
real world problems, see [1–10]. Amongst the other fractional derivatives, this new frac-
tional differential operator (Caputo–Katugampola fractional derivative) is advantageous
because it combines and unites the Caputo and Caputo–Hadamard fractional differen-
tial operators, and preserves some basic and fundamental properties of the Caputo and
Caputo–Hadamard fractional derivatives, see [11].

Katugampola in [12,13] developed generalized fractional integrals and fractional deriva-
tives. See also [14,15] for the Caputo modification of the generalized fractional derivatives.

In 2016, Katugampola [16] used the derivative to study the existence and uniqueness
for a class of generalized fractional differential equations of the form:{

(
ρ
cDα

0+φ)(t) = f (t, φ(t)),
Dkφ(0)) = φ

(k)
0 , k = 0, 1, . . ., m− 1,

where m = [α] and α ∈ R.
Later in 2019, Basti et al. in [17] applied the Katugampola generalized fractional deriva-

tive to investigate the existence and uniqueness of solutions to the following boundary
value problem (BVP) of nonlinear fractional differential equations,{

ρDα
0+φ(t) + β f (t, φ(t)) = 0, 0 < t < T,

φ(0) = 0, φ(T) = 0,
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where β ∈ R, and ρDα
0+ for ρ > 0 is the Katugampola fractional derivative of order

1 < α ≤ 2, f : [0, T]× [0, ∞)→ [h, ∞) is a continuous function with finite positive constants
h, T.

As an application, Basti et al. [18] recently in 2021 used the Caputo–Katugampola
derivative operator to formulate a modified fractional-order SIRD (susceptible, infected,
recovered, and dead) mathematical model of the deadly COVID-19 epidemic, where the
authors studied the existence, stability and control of the infectious (COVID-19) disease.
The model is as follows: For 0 < t ≤ T < ∞, ρ > 0 and 0 < α < 1,

CDα,ρ
0+ S(t) = −νS(t)− β

I(t)S(t)
N0

,
CDα,ρ

0+ I(t) = β
I(t)S(t)
N0

− (γ + k)I(t),
CDα,ρ

0+ R(t) = νS(t) + γI(t),
CDα,ρ

0+ D(t) = kI(t),

with positive initial conditions:

S(0) = S0, I(0) = I0,R(0) = R0,D(0) = D0,

where the initial total population N0 has the following epidemiological classes:

• S: susceptible class,
• I: infected class,
• R recovered class,
• D: death class,

and the positive parameters could be described as follows:

• β is the average number of contacts per person per time t,
• γ is the recovery rate,
• k is the death rate,
• ν is the vaccine of suspected population.

Motivated by the above applications of the derivative operator CDα,ρ
0+ and the work

of [16], we study the effect of Gaussian white noise-perturbation on a class of generalized
Caputo–Katugampola fractional differential equation as follows

CDα,ρ
0+ ϕ(t) = κϑ(t, ϕ(t))ẇ(t), 0 < t ≤ T, (1)

with a non–negative and bounded initial condition ϕ(0) = ϕ0; CDα,ρ
0+ is the generalized

Caputo–Katugampola fractional differential operator of orders 0 < α ≤ 1, ρ > 0, the
function ϑ : [0, T]×R→ R is Lipschitz continuous, ẇ(t) denotes the generalized derivative
of the Wiener process w(t) and κ > 0 represents the level of noise. Our main results involve
the use of Banach fixed point theorem to prove the existence and uniqueness of solution
and Gronwall inequality for the growth estimate. Fixed point techniques have physical
application in the study of system of BVPs on the Methylpropane Graph [19], in the solution
of time-fractional biological population model [20] and in the time-fractional (extended
SEIR) SEIHR (susceptible, exposed, infected, hospitalized and recovered) model of COVID-
19 [21].

Remark 1. The above equation can be applied to model infectious diseases where some external
factors such as government policies, people’s attitude to health policies and vaccines can affect the
control of the diseases.

Here and thereafter, a generalized derivative of a deterministic function w is given below:
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Definition 1. Given that Ψ(t) is a smooth and compactly supported function, then the generalized
derivative ẇ(t) of w(t) (not necessarily a differentiable function) is∫ ∞

0
Ψ(t)ẇ(t)dt = −

∫ ∞

0
Ψ̇(t)w(t)dt.

Consequently, ∫ t

0
Ψ(s)ẇ(s)ds = Ψ(t)w(t)−

∫ t

0
Ψ̇(s)w(s)ds.

1.1. Preliminaries

We give the definitions of the fractional derivatives and integrals we will make use of.

Definition 2 ([16]). The left-sided Hadamard fractional integral and derivative are given by

Iα
a+ζ(t) =

1
Γ(α)

∫ t

a

(
ln

t
s

)α−1

ζ(s)
ds
s

,

and

Dα
a+ζ(t) =

1
Γ(n− α)

(
t

d
dt

)n ∫ t

a

(
ln

t
s

)n−α−1

ζ(s)
ds
s

,

for t > a ≥ 0, Re (α) > 0 and n = dRe (α)e, where d.e is a ceiling function.

The Caputo modification of the Hadamard fractional derivative is given as follows,
see [22,23].

Definition 3. For n = 1, the Caputo–Hadamard fractional derivative of ζ is given by

CDα
a+ζ(t) =

1
Γ(1− α)

∫ t

a

(
ln

t
s

)−α

ζ ′(s)ds.

Let c ∈ R, p ∈ [1, ∞) and consider Xp
c (a, b) to be a space of complex–valued Lebesgue

measurable functions ζ on [a, b] with the norm

‖ζ‖Xp
c
=

( ∫ b

a
|tcζ(t)|p dt

t

)1/p

< ∞,

and for p = ∞, ‖ζ‖X∞
c = ess sup

a≤t≤b
[tc|ζ(t)|].

Definition 4. We define the generalized left-sided fractional integral Iα,ρ
a+ ζ of orders 0 < α < 1,

ρ > 0 of ζ ∈ Xp
c (a, b) to be

Iα,ρ
a+ ζ(t) =

ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
ζ(s)ds,

for t ∈ (a, ∞), provided the integral exists.
The generalized left-sided fractional derivative, equivalent to the above generalized fractional

integral is
CDα,ρ

a+ ζ(t) = I1−α,ρ
a+ (s1−ρζ ′)(t) =

ρα

Γ(1− α)

∫ t

a

ζ ′(s)
(tρ − sρ)α

ds,

where 0 < α < 1, ρ > 0, and provided the integral exists.
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Definition 5. The generalized right-sided fractional integral Iα,ρ
b− ζ of orders 0 < α < 1, ρ > 0 of

ζ ∈ Xp
c (a, b) is

Iα,ρ
b− ζ(t) =

ρ1−α

Γ(α)

∫ b

t

sρ−1

(sρ − tρ)1−α
ζ(s)ds,

for t ∈ (a, ∞), provided the integral exists.
The generalized right-sided fractional derivative, corresponding to the above generalized

fractional integral is

CDα,ρ
b− ζ(t) = I1−α,ρ

b− (−s1−ρζ ′)(t) = − ρα

Γ(1− α)

∫ b

t

ζ ′(s)
(sρ − tρ)α

ds,

where 0 < α < 1, ρ > 0, and provided the integral exists.

Remark 2.

• When ρ = 1, one obtains the left and right Caputo fractional derivatives.
• When ρ→ 0+, applying L’Hospital’s rule as follows

lim
ρ→0+

ρ

(tρ − sρ)
= lim

ρ→0+

1
(tρ ln t− sρ ln s)

=
1

ln t− ln s
,

and thus,

lim
ρ→0+

CDα,ρ
a+ ζ(t) = lim

ρ→0+

1
Γ(1− α)

∫ t

a

ρα

(tρ − sρ)α
ζ ′(s)ds

=
1

Γ(1− α)

∫ t

a

ζ ′(s)
(ln t− ln s)α

ds,

which is the Caputo–Hadamard fractional derivative.

Theorem 1 ([11]). Let ζ ∈ C([a, b]). Then,

CDα,ρ
a+ I

α,ρ
a+ ζ(t) = ζ(t).

Theorem 2 ([11]). Let ζ ∈ C′([a, b]). Then,

Iα,ρ
a+

CDα,ρ
a+ ζ(t) = ζ(t)− ζ(0).

Definition 6. We give the following definitions.

• A complete normed space is called a Banach space.
• Let X be a norm space andA : X → X. Then,A is called a contraction mapping if there exists

a positive real number k < 1 such that for all x, y ∈ X,

‖A(x)−A(y)‖ ≤ k‖x− y‖.

• A fixed point of a mapping A : X → X is a point x? ∈ X such that A(x?) = x?.

Theorem 3 (Banach Fixed Point Theorem). Let X be a complete metric space, and A be a
contraction on X. Then, there exists a unique x? such that A(x?) = x?.

1.2. Formulation of the Solution

Using the decomposition formula for the Caputo–Katugampola derivative of Theorem 2
by applying the generalized fractional integral Iα,ρ

0+ on both sides of Equation (1) as follows

Iα,ρ
0+ [CDα,ρ

0+ ϕ(t)] = Iα,ρ
0+ [κϑ(t, ϕ(t))ẇ(t)], ϕ ∈ L2(P)
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and consequently,

ϕ(t)− ϕ(0) =
κρ1−α

Γ(α)

∫ t

0
sρ−1(tρ − sρ)α−1ϑ(s, ϕ(s))ẇ(s)ds.

Therefore, we define the mild solution to Equation (1) as follows:

Definition 7. For 0 ≤ t ≤ T, the function ϕ(t) is said to be a mild solution to Equation (1) if
almost surely, ϕ satisfies

ϕ(t) = ϕ0 +
κρ1−α

Γ(α)

∫ t

0
sρ−1(tρ − sρ)α−1ϑ(s, ϕ(s))dw(s). (2)

If {ϕ(t), t ∈ [0, T]} satisfies the additional condition

sup
0≤t≤T

E|ϕ(t)|2 < ∞, (3)

then one says that {ϕ(t), t ∈ [0, T]} is a random field solution to Equation (1).

For this paper, we let ϕ ∈ L2(P) and define the norm of the random solution ϕ by

‖ϕ‖2
2 := sup

0≤t≤T
E|ϕ(t)|2.

Remark 3.

1. Let (Ω,F , P) be a probability space with Ω := C([0, T],R), F := B(Ω)-Borel σ-algebra
and a probability measure P. We define Lp(P) to be a class of random variables on (Ω,F , P)
with finite pth moments.

2. The symbol dw(t) =
( dw(t)

dt
)
dt is known as stochastic differential. It has a representation in

terms of Itô integral given by w(t) =
∫ t

0
dw(s), with the following property: Take second

moment on the integral and use Itô isometry to obtain

E[w(t)]2 = E
[ ∫ t

0
dw(s)

]2

=
∫ t

0
ds = t.

From the left hand side, E[w(t)]2 = min{t, t} = t.
3. The space L2(P) is a complete inner product space (Hilbert space).

The paper is organized as follows. In Section 2, we present the proofs of the main
results of the paper which include the existence and uniqueness, the energy growth bound
and the asymptotic behaviour of the solution. Section 4 contains a concise summary of
the paper.

2. Main Results

Assume that ϑ is Lipschitz continuous on the second variable:

Condition 1. Let 0 < Lipϑ < ∞, then for all x, y ∈ R, one has

|ϑ(., x)− ϑ(., y)| ≤ Lipϑ|x− y|,

with ϑ(., 0) = 0 for convenience.
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2.1. Some Auxilliary Results

Define the operator A : L2(P)→ L2(P) by

Aϕ(t) = ϕ0 +
κρ1−α

Γ(α)

∫ t

0
sρ−1(tρ − sρ)α−1ϑ(s, ϕ(s))dw(s),

and we show that the fixed point of A solves Equation (1).
The following Lemma(s) will be used in proving the existence and uniqueness of

the solution.

Lemma 1. Let ϕ be a random field solution satisfying Equations (2) and (3). Given that Condition 1
holds, then for α ∈ ( 1

2 , 1], ρ > 1,

‖Aϕ‖2
2 ≤ c1 + cα,ρκ2Lip2

ϑ‖ϕ‖2
2,

where c1 > 0 and cα,ρ := ρ1−2α

(2α−1)Γ2(α)
T2ρα−1 > 0.

Proof. Applying Itó isometry, one gets

E|Aϕ(t)|2 ≤ |ϕ0|2 + E
κρ1−α

Γ(α)

∫ t

0
(tρ − sρ)α−1sρ−1ϑ(s, ϕ(s))dw(s)

2

≤ |ϕ0|2 +
(κρ1−α)2

Γ2(α)

∫ t

0
(tρ − sρ)2α−2s2ρ−2E|ϑ(s, ϕ(s))|2ds.

Now, use Condition 1 to get

E|Aϕ(t)|2 ≤ c1 +
(κρ1−αLipϑ)

2

Γ2(α)

∫ t

0
(tρ − sρ)2α−2s2ρ−2E|ϕ(s)|2ds

≤ c1 +
(κρ1−αLipϑ)

2

Γ2(α)
‖ϕ‖2

2

∫ t

0
(tρ − sρ)2α−2s2ρ−2ds

≤ c1

+
(κρ1−αLipϑ)

2

Γ2(α)
‖ϕ‖2

2 sup
0<s≤t

sρ−1
∫ t

0
(tρ − sρ)2α−2sρ−1ds (4)

= c1 +
(κρ1−αLipϑ)

2

Γ2(α)
‖ϕ‖2

2tρ−1.
tρ(2α−1)

ρ(2α− 1)

= c1 +
(κρ1−αLipϑ)

2

Γ2(α)
‖ϕ‖2

2
t2ρα−1

ρ(2α− 1)
.

Take supremum over t ∈ [0, T] of both sides to obtain

‖Aϕ‖2
2 ≤ c1 +

κ2ρ1−2αLip2
ϑ

(2α− 1)Γ2(α)
T2ρα−1‖ϕ‖2

2,

and the result follows.

Remark 4. We compute the integral in Equation (4) by method of integration by substitution: Let
u = tρ − sρ and − du

ρ = sρ−1ds. Additionally, when s = 0, u = tρ and when s = t, u = 0. Thus,

∫ t

0
(tρ − sρ)2α−2sρ−1ds = −1

ρ

∫ 0

tρ
u2α−2du =

1
ρ

∫ tρ

0
u2α−2du =

tρ(2α−1)

ρ(2α− 1)
,

for α > 1
2 .
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Lemma 2. Let ϕ and ψ be some random field solutions satisfying Equations (2) and (3). Suppose
Condition 1 holds, then for α > 1

2 , ρ > 1,

‖Aϕ−Aψ‖2
2 ≤ cα,ρκ2Lip2

ϑ‖ϕ− ψ‖2
2.

Proof. To avoid repetition, we skip the proof since it follows the same steps as the proof of
Lemma 1.

2.2. Existence and Uniqueness Result

The existence and uniqueness of the mild solution will be proved using Banach fixed
point theorem. It suffices to show that the fixed point of A (previously defined) gives the
solution to Equation (1).

Theorem 4. Suppose α ∈ ( 1
2 , 1], ρ > 1 and Condition 1 holds. Given that there exist some

positive contants κ, Lipϑ such that cα,ρ < 1
(κLipϑ)

2 , then Equation (1) has a unique solution, with

cα,ρ := ρ1−2α

(2α−1)Γ2(α)
T2ρα−1 > 0.

Proof. Applying Banach fixed point theorem, we have ϕ(t) = Aϕ(t) and by Lemma 1,

‖ϕ‖2
2 = ‖Aϕ‖2

2 ≤ c1 + cα,ρκ2Lip2
ϑ‖ϕ‖2

2,

to get ‖ϕ‖2
2
[
1− cα,ρκ2Lip2

ϑ

]
≤ c1. Thus, ‖ϕ‖2

2 < ∞ whenever cα,ρ < 1
(κLipϑ)

2 .
Next, we prove the uniqueness of solution to Equation (1) by contraction principle.

Suppose for contradiction that ϕ 6= ψ are two solutions of (1). So, from Lemma 2,

‖ϕ− ψ‖2
2 = ‖Aϕ−Aψ‖2

2 ≤ cα,ρκ2Lip2
ϑ‖ϕ− ψ‖2

2.

This gives ‖ϕ−ψ‖2
2
[
1− cα,ρκ2Lip2

ϑ

]
≤ 0. Since 1− cα,ρκ2Lip2

ϑ > 0, it follows that ‖ϕ−
ψ‖2

2 < 0 and this is a contradiction. Therefore, ‖ϕ− ψ‖2
2 = 0 and the result follows.

2.3. Energy Growth-Bound

The integral inequality below will be used in the proof of the upper growth
moment bound.

Proposition 1 ([24]). Given that φ, g, h ∈ C([t0, T),R+), and the function v ∈ C(R+,R+)
is nondecreasing with v(φ) > 0 for φ > 0, and b ∈ C1([t0, T), [t0, T)) be nondecreasing with
b(t) ≤ t on [t0, T). If

φ(t) ≤ k +
∫ t

t0

g(s)v(φ(s))ds +
∫ b(t)

b(t0)
h(s)v(φ(s))ds, t0 ≤ t < T,

where k is a nonnegative constant, then for t0 ≤ t < t1,

φ(t) ≤ G−1
(

G(k) +
∫ t

t0

g(s)ds +
∫ b(t)

b(t0)
h(s)ds

)
,

with G(r) =
∫ r

1

ds
w(s)

, r > 0 and t1 ∈ (t0, T) chosen so that the right-hand side is well-defined.

The upper growth bound of the random solution was obtained; and given that the
function ϕ0 is bounded above, then we have:

Theorem 5. Let Condition 1 hold, then for all α > 1
2 , ρ > 1 we have

E|ϕ(t)|2 ≤ c1 exp
(
c̃α,ρκ2Lip2

ϑtρ(2α−1)), t ∈ [0, T],
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where c̃α,ρ := ρ1−2α

(2α−1)Γ2(α)
Tρ−1 > 0.

Proof. We proceed by assuming |ϕ0|2 ≤ c1 so that

E|ϕ(t)|2 ≤ c1 +
(κρ1−αLipϑ)

2

Γ2(α)

∫ t

0
(tρ − sρ)2α−2s2ρ−2E|ϕ(s)|2ds

≤ c1 +
(κρ1−αLipϑ)

2

Γ2(α)
Tρ−1

∫ t

0
(tρ − sρ)2α−2sρ−1E|ϕ(s)|2ds.

Let Φ(t) := E|ϕ(t)|2, to obtain

Φ(t) ≤ c1 +
(κρ1−αLipϑ)

2

Γ2(α)
Tρ−1

∫ t

0
(tρ − sρ)2α−2sρ−1Φ(s)ds.

Now, we apply Proposition 1 for v(φ) = φ, and G(r) =
∫ r

1

dφ

φ
= ln r, with the

inverse G−1(r) = er. Thus, for v(φ(s)) = φ(s), g(s) = (κρ1−αLipϑ)
2

Γ2(α)
Tρ−1(tρ − sρ)2α−2sρ−1,

h(z) = 0, k = c1 in Proposition 1, we get

Φ(t) ≤ exp
(

ln(c1) +
(κρ1−αLipϑ)

2

Γ2(α)
Tρ−1

∫ t

0
(tρ − sρ)2α−2sρ−1ds

)
= exp

(
ln(c1) +

(κρ1−αLipϑ)
2

Γ2(α)
Tρ−1 tρ(2α−1)

ρ(2α− 1)

)
= c1 exp

(
c̃α,ρκ2Lip2

ϑtρ(2α−1)),
and the result readily follows.

2.4. Asymptotic Behaviour

Our result above shows that the energy solution exhibits an exponential growth bound
for some time t ∈ [0, T]. We therefore ask the question of “long time behaviour of the
energy solution”, and observe that the rate of growth of the solution has a finite upper
bound as the time becomes very large.

Corollary 1. Let α > 1
2 , ρ > 1 and conditions of Theorem 5 hold. Then,

lim sup
t→∞

log E|u(t)|2

tρ(2α−1)
≤ c̃α,ρκ2Lip2

ϑ.

Proof. Recall from Theorem 5 that

E|ϕ(t)|2 ≤ c1 exp
(
c̃α,ρκ2Lip2

ϑtρ(2α−1)), 0 ≤ t ≤ T.

Take log of both sides of the above equation, we have

log E|ϕ(t)|2 ≤ log(c1) + c̃α,ρκ2Lip2
ϑtρ(2α−1).

Divide through by tρ(2α−1) and take lim sup of both sides to get

log E|ϕ(t)|2

tρ(2α−1)
≤ log(c1)

tρ(2α−1)
+ c̃α,ρκ2Lip2

ϑ,

and lim sup
t→∞

log E|ϕ(t)|2

tρ(2α−1)
≤ lim sup

t→∞

log(c1)

tρ(2α−1)
+ c̃α,ρκ2Lip2

ϑ = c̃α,ρκ2Lip2
ϑ, since α > 1

2 .
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3. Examples

1. To illustrate Theorem 4, we choose α = 4
5 ∈ ( 1

2 , 1], ρ = 3
2 > 1 and define ϑ :

[0, T] × R → R by ϑ(t, ϕ(t)) = sin(ϕ(t)) with Lipschitz constant Lipϑ = 1. Then,
the equation {

CD
4
5 , 3

2
0+ ϕ(t) = κ sin(ϕ(t))ẇ(t), 0 < t ≤ T,

ϕ(0) = ϕ0,

has a unique solution when c < 1
κ2 (κ < 0.98188 T−

7
10 ), where c = c 4

5 , 3
2
= 1.03725 T

7
5 .

2. Additionally, we give examples to illustrate the result in Theorem 5, which represent
plots (graphs) for the upper bound growth of our energy solution. For convenience,
we set the positive constants to be equal to one. That is, c1 = c̃α,ρ = κ2 = Lip2

ϑ = 1
to have

E|ϕ(t)|2 ≤ exp
(
tρ(2α−1)), t ∈ [0, T],

where α ∈ ( 1
2 , 1] and ρ > 1.

• In Figure 1, we consider α = 2
3 and ρ = 3

2 , 2, 3, 5, 10;
• Next, in Figure 2, we consider α = 3

4 and ρ = 3
2 , 2, 3, 5, 10;

• Lastly, in Figure 3, we consider α = 9
10 and ρ = 3

2 , 2, 3, 5, 10:

We observe that the values of α ∈ ( 1
2 , 1) and ρ ∈ (1, ∞) have little or no significant

effect on the growth of the upper bound, however, as time t becomes large, the speed
(rate) of growth becomes very sharp and fast. See the figures below.

Figure 1. Graphical illustration of the energy growth bounds.
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Figure 2. Graphical illustration of the energy growth bounds.

Figure 3. Graphical illustration of the energy growth bounds.
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4. Conclusions

The result suggests that lack of stringent enforcement of government policies, lack of
adherence to public health policies (such as refusal to wear face-masks and non-compliance
with social distancing) and rejection of vaccines administration, help in the spread (growth)
of the infectious (COVID-19) disease. Mathematically put, the result investigated the
properties of a class of Caputo–Katugampola stochastic fractional differential equation.
Consequently, we estimated the upper growth bound of the random solution to the equation
and showed that the energy solution grows exponentially at most at a precise rate. Banach
fixed point theorem was applied to establish the existence and uniqueness result of the
solution. We also noted that the solution exhibits some long time asymptotic behaviours.
In the future, one can research on the lower bound estimate, stability and continuous
dependence of the solution on the initial condition.
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