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Abstract: RGB-D cameras produce depth and color information commonly used in the 3D recon-
struction and vision computer areas. Different cameras with the same model usually produce images
with different calibration errors. The color and depth layer usually requires calibration to minimize
alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols
for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth
pair images as an input for calibration frameworks making the calibration protocol challenging to
implement without ideal conditions and the operator experience. In this work, we proposed a novel
strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our
strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during
the calibration. Our experiments show comparable results requiring fewer images and non-ideal
scene conditions than a reference method to align color and depth image layers.

Keywords: RGB-D camera; RGB-D camera calibration; spherical object; 3D reconstruction; sphere detection

MSC: 65D19; 53C38

1. Introduction

RGB-D cameras are becoming popular due to their availability, size, and accessible
cost; there are different choices in the market from different brands. Microsoft popularized
this type of camera with the Kinect [1] camera used initially for gaming (Figure 1a) in 2010,
and its 3D depth technology used structured light [2]. It had a visual range from 0.8 to
4 m, producing 640 × 480 depth images. However, scientific research was later possible
thanks to a personal computer’s Kinect software development kit allowing this camera to
be connected directly to a personal computer. Data produced by the Kinect could finally be
processed for scientific purposes [3]. Two years later, Kinect V2 replaced Kinect V1 for the
Xbox One gaming console with a range from 0.5 to 4.5 meters, a resolution of 512 × 424,
and a 1080p RGB camera [3,4].

After Kinect, other RGB-D alternatives appeared. Intel released its Realsense camera
line [3,5] reducing camera size and power requirements [4], but providing a software
development kit to work with the data directly from a personal computer, allowing pro-
duction of 3D cloud points quickly (Figure 1b). Intel Realsense D415 RGB-D camera has a
visual range from 0.16 to 10 m and produces depth images with a resolution of 1280 × 720.
Realsense D435 has a visual range from 0.2 to 4.5 m. In these cameras, depth computation
is performed by an integrated ASIC (Application-Specific Integrated Circuit) [4].

Conversely, Occipital offered its structure camera [6,7] (Figure 1c), Structure core
camera from Occipital has a visual range from 0.3 to 5 m, and it produces depth images
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with a resolution of 1280 × 960 [6], following the same philosophy as Intel, but available
mainly in Apple´s ecosystem.

(a) Kinect V2
249 mm wide x 66 mm large x 67 mm high

(b) Intel Realsense D435
90 mm wide x 25 mm large x 25 mm high

(c) Structure Core
109 mm wide x 18 mm large x 24 mm high

(d) Zed Camera
175 mm wide x 33 mm large x 30 mm high

(e) TrueDepth Camera
~34.5 mm wide  x ~4.5 mm high

Figure 1. RBB-D cameras, (a) Kinect, (b) Realsense D435, (c) StructureCore, (d) Zed Camera,
(e) TrueDepth Camera.

Stereolab offered ZED RGBD cameras using a different approach, generating its depth
layer from the pixels disparities from two RGB images (Figure 1d). Stereolab’s original ZED
camera has a visual range from 0.5 to 20 m, and it produces depth images of a resolution of
4416 × 1242. In the figure, a ZED 2i camera is shown, it has an accelerometer, gyroscope,
barometer, magnetometer, and temperature sensors included [8].

In 2018, Apple equipped one of its mobile phones with the TrueDepth (Figure 1e)
camera, the main purpose of this camera was for authentication from the 3D geometry and
textures data [9].

RGB-D cameras produce two different layers of information, a color layer (one or
two RGB images) and a depth layer (generally represented as one image containing depth
information) (Figure 2).

Depth image RGB image

Figure 2. In the figure at the left, there is an example of a depth image representation in red tones,
closer objects appear in light red, and farther objects are in darker red. The RGB camera component
takes the corresponding color image of the same scene shown on the right side.

Both layers, color, and depth correspond in an overlapping area given rotation and
translation matrices parameters. A factory camera calibration process generally provides
these parameters as default values with brand new cameras. However, in some appli-
cations, factory parameters are not good enough. Furthermore, having different RGB-D
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cameras of the exact brand and models show different calibration errors of the same scene
captured in their images with different precision and exactitude values. Agriculture [10], 3D
reconstruction [11–16], 3D navigation [17–20], robotics [21], augmented reality (AR) [22–24],
autonomous driving [25,26], object recognition [27–29], computer vision [30], are some
research areas using data from these cameras. Considering the RGB-D camera’s avail-
able features and limitations, minimizing calibration error is an essential step for more
delicate applications.

In the RGB color layer, a geometric error is produced by lens manufacturing imperfec-
tions causing the barrel or pincushion distortion showing curves instead of perfect lines.
This kind of distortion affects the geometry of the objects in the scene [31] (Figure 3).

(a)
barrel distorsion

Lines appears as curves

(b)
undistorted image

Lines appears as lines

Figure 3. Barrel distortion appears at the left of the image. The main characteristic of this type of
distortion is straight lines appearing as curves with the outer side from the center to the edges of the
image (a). On the right side (b), the same scene image after an undistortion correction [31].

When aligning both layers to correspond to textures from the color layer with 3D
objects in the depth layer, some areas and/or objects do not show only their textures,
but appear misaligned, mixing other texture regions from other objects in the scene [31]
(Figure 4).

Alignment between color and depth images.

Figure 4. An alignment error example is visible in the above figure. At the left, there is a chessboard
which perimeter corresponds to the red square at the right when overlapping textures in the depth
image. In the right, in the depth data, chessboard corners do not correspond to the chessboard [31].

A simplified calibration protocol should provide a way to keep the RGB-D cameras
inside the precision and exactitude desired for specific applications in non-controlled
scenes. In state-of-the-art, there are multiple calibration protocols with novel methods
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that can adjust parameter values to finer precisions and exactitudes other than the factory
values. Nevertheless, all of them require a controlled scene, more delicate instruments,
a calibration protocol operator expert, and a considerable amount of samples during the
calibration protocol [32]; consequently, the calibration process is not easy to follow for a
non-expert operator.

The RGB-D camera calibration method proposed by [33] requires between twenty and
sixty color-depth pairs. The proposed methodology uses a checkerboard as a ground-truth
pattern in the color and depth layers. The strategy created by [34] uses more than one
hundred color-depth pairs, and their calibration protocol requires sampling images with
distance differences from the camera in a progressive way.

Recently, some RGB-D camera calibration methods are innovating using a sphere as
geometry to be detected in the color and depth layers, but still requiring a considerable
amount of pair samples during the calibration protocol, ref. [35] Figure 5 requires 130 color-
depth pairs. Furthermore, some posterior phases require images to be manually selected
and masked so the calibration toolboxes can process the data accordingly.

(a)
Geometry area
 selection RGB

(b)
CannyEdge 
Detection

(c)
Best ellipse fit

selection

Geometry area
 selection depth

(d)

Sphere fit
(e)

Figure 5. Staranowicz’s method detects a basketball as a geometry object in both layers, color,
and depth, but it requires one hundred and thirty image pairs during the calibration protocol. This
requirement increases the calibration protocol complexity [35,36].

Different proposals in state of the art as [37] estimate relative poses of multiple RGB-D
cameras nevertheless, it uses 2D keypoints, descriptor-based patterns, and locates 3D depth
matches solving an optimization model comparing images from a group of different RGB-D
cameras, aligning information between them. The calibration method of [38] calibrates an
RGB-D constellation using static markers to align data produced by each camera in the
constellation using a homography and an ICP variant. The work by [39] improves depth
quality using a novel method to match infrared images and [40] focuses on calibrating
depth layer utilizing a checkerboard in the infrared images to improve depth precision.

This paper follows a similar approach to [35,36] using a sphere to find a scene’s
geometry pattern in information layers, depth, and color. We use a basketball of known
size as a sphere geometry, QUEsT method [41] has been adapted in a novel way to use
a combination of pair images with depth and color information as an input, combining
novel methods in the calibration process to correspond a minimum number of ellipse’s
centers in the color layer to sphere’s centers in both layers, simplifying the calibration
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protocol to get the rotation and translation matrices. We compare our method with another
sphere calibration algorithm showing advantages in the calibration protocol steps in a
non-controlled scene.

Our strategy simplifies calibration as follows:

• It requires a minimal amount of images.
• An ordinary object is used as a pattern (a basketball of known size).
• A sphere can be positioned in the scene easily as the geometry because it is equally

seen from any angle.
• It allows non-ideal conditions in the scene as natural illumination and non-uniform textures.

2. Materials and Methods
2.1. Hardware and Software

This work used a personal computer with Ubuntu 18 LTS, an AMD Ryzen 5600x CPU,
6 Cores, 12 threads, 3.7GHz 32MB L3 Cache 3MB L2 Cache, 16 GB RAM, NVIDIA GeForce
RTX 3060 TI, 8GB GDDR6. 4864 CUDA Cores, Ubuntu 20.04.2 LTS OS, Docker 19.03.8,
Python 3.9, furthermore a Macbook air laptop (Retina 13-inch, 2020) with a CPU 1.1 GHz
Quad-Core Intel Core i5 and 8GB of RAM and Integrated graphics Intel Iris Plus Graphics
1536 MB, Mac OS Big Sur 10.13 Beta OS, Python 2.9 and Matlab 2018a and C++. A raspberry
pi 4 with raspbian and realsense viewer to capture frames from the scene.

2.2. Rgb-D Camera and Scene

During all experiments, we use an Intel Realsense D435 with the specifications in
Table 1:

Table 1. Intel Realsense specs [5].

Feature Description

System interface type USB C type C
Dimensions 90 mm × 25 mm × 25 mm

Depth resolution 1280 × 720
Visual Range (min–max) ∼0.11 m–10 m

Factory intrinsic parameters are in the camera configuration; distortion parameters are
0 by default, and images can vary in size depending on the type of USB connection used.
Images created using the raspberry pi 4 have the following sizes: RGB 640 × 480, depth
images: 424 × 240.

The camera calibration protocol requires setting up a tripod and an aluminum bar to
stabilize and level the camera. Connect the USB C cable to the camera and adjust it to the
correct position with a couple of nuts. Moreover, to settle the camera correctly, with the
help of a bubble level, align horizontally using the aluminum bar, align vertically with the
front of the camera. USB C cable connects the camera to the raspberry pi to see the scene
and capture depth and color frame through realsense viewer GUI.

It is essential to note camera’s setup must be performed in the final position before
taking images samples from the scene, avoiding moving the camera as in Figure 6.

A basketball of a standard size of seven (circumference of 29.5 in) needs to be placed
in the scene in different positions, and the basketball must be utterly present in each
sample’s images, color, and depth. Our comparison considers non-ideal conditions in
the location, indirect solar illumination, non-uniform background textures, changes in
global illumination due to natural weather and time differences between each sample, and
a minimum amount of pair images has been a goal of the proposed method. Seventy pairs
of depth and color images were taken from the scene, considering different basketball
positions to compare our proposed method with [35,36], their Matlab toolbox has been
used to process our own images and can be found in [42].
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Tripod Horizontal left leveling

Vertical leveling

Horizontal right leveling

fixed camera
USB-C cabling

Horizontal camera 
leveling

Figure 6. An example of adjusting and leveling the RGB-D camera.

2.3. Proposed Method

The proposed methodology requires undistorting the RGB image layer using the
Zhang calibration strategy [43]. For this purpose, a set of at least 10 color images where
a chessboard is visible needs to be sampled using RGB-D camera, as shown in Figure 7,
we use a public toolbox available from [44] based in [45] to get a intrinsic matrix and
undistortion coefficients.

The first phase of the proposed method in Figure 8 uses a well-established method [43]
to de-distort color images and get an intrinsic matrix, in this step, ten different images
showing a chessboard are enough.

1 2 3 4 5

6 7 8 9 10

Figure 7. A set of ten different images with a chessboard in the scene are needed to use [43] in order
to find the intrinsics and undistort RGB layer, implementation details is based in [45] and a toolkit is
available by [44].

Furthermore, the process requires five pairs of depth and color images where a bas-
ketball is visible in the scene in each layer. Ellipses are found in the RGB images using
Arc-support Line Segments Revisted [46], and we found spheres on depth images with our
proposal for a known sphere size. Finally, our process uses Quaternion Based Camera Pose
Estimation [41] to get rotation and translation matrices.
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RGB

images

Intrinsic´s
matrix
& RGB 

dedistortion

Elipse
detection

Sphere
detection

Iterate to get 5
RGB-Depth pairs

same scene

Depth

images

RGB

images

Elipse

detection

Sphere

Detection

with

RANSAC

5 
RGB-Dept

Pairs

RGB layer Depth layer

Rotation and 
translation
 matrices

(a)

(b)

(c)

(d)

(e)

Figure 8. Proposed methodology. A minimun of five different pair images color-depth (a–e) are
required to find ellipses and sphere centers.

The camera intrinsic matrix describes the relationship between world coordinates and
image coordinates. The mathematical model uses five parameters focal length in the x
direction as fx and in the y direction as fy, principal point or optical center in the x and y
direction, the skew between the x and y axes. There are two general and equivalent forms
of the intrinsic matrix, where ppx and ppy denote principal point coordinates, sometimes
they can be found as cx and cy. A non-zero skew factor s implies that the x- and y-axis of
the camera are not perpendicular to each other. We assume a skew factor of 0 for simplicity.

The intrinsic matrix denoted by K is an upper-triangular matrix used to transform
world coordinates to homogeneous image coordinates.

K =

 fx s cx
0 fy cy
0 0 1

 (1)

Geometric error as seen on the left side of Figure 3 requires calibration using a distor-
tion model to describe the deviations from a real camera that uses lenses and differs from
the ideal pinhole camera. Undistortion coefficients [47] and intrinsics matrix are used to
undistort an RGB image as show in Figure 3.

Radial distortion models convert between distorted and undistorted points and use a
center of distortion (xc, yc) and a function f (r):

x′ = f (r) · cos(θ) + xc (2)

y′ = f (r) · sin(θ) + yc (3)

The polynomial radial distortion model uses a polynomial:

f (r) = r ·
(

1 + p1 · r + p2 · r2 + · · · pN · rN
)
= r ·

(
1 +

N

∑
n=1

pn · rn

)
(4)

Further details of pin camera model and lens distortion correction can be found in [43,48].
The second phase of the proposed method in Figure 8 uses a novel approach to detect

ellipses in the color images by [46]. Their approach allows detecting ellipses with better
results than similar methods and simplifies the calibration protocol steps in this work.
As shown in Figure 9, arc-support line segments revisited method [46] detect more than one
ellipse in some cases. When more than one ellipse appears, an ellipse is selected considering
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a correctness metric provided by their high-quality ellipse detection method as the best
option, their public toolkit is available from [46].

Additionally, our adapted method to detect spheres in the depth layer uses a basketball
of known size (standard size of seven about 12 cm of radius). It needs to be well inflated
as required in the specifications to meet the legal size accordingly. These specifications
can vary from each ball brand and model. Using the sphere equation with a radius r,
the surface of which passes by three points p1, p2, p3, and the center is described by its
coordinates (a, b, c) = center. Each point is describe by its own coordinates (xi, yi, zi) as
shown in Equation (5).

r2 = (xi − a)2 + (yi − b)2 + (zi − c)2 (5)

With Equation (5), p1 = (x1, y1, z1) , p2 = (x2, y2, z2) and p3 = (x3, y3, z3) as three
different surface points, a known radius r of about 12 cm, we formulate an equation system
to find the sphere center = (a, b, c) as is shown in Equation (9).

r2 = (x1 − a)2 + (y1 − b)2 + (z1 − c)2

r2 = (x2 − a)2 + (y2 − b)2 + (z2 − c)2

r2 = (x3 − a)2 + (y2 − b)2 + (z3 − c)2

(6)

Five pairs of RGB (color) and depth raw images are showed at the left of the Figure 9, then
these are processed to get ellipses from the color layer and spheres from the depth layer. As a
final result of this phase, we get five correspondences from ellipse centers to spheres centers.

Developing Equation (9) as shown in (9), it is formulated in the form Ax = b as shown
in Equation (7) it can be used to find a, b, c.

2a(x2 − x1) + 2b(y2 − y1) + 2c(z2 − z1) +
(
x2

1 − x2
2 + y2

1 − y2
2 + z2

1 − z2
2
)
= 0

2a(x3 − x1) + 2b(y3 − y1) + 2c(z3 − z1) +
(

x2
1 − x2

3 + y2
1 − y2

3 + z2
1 − z2

3
)
= 0

2a(x3 − x2) + 2b(y3 − y2) + 2c(z3 − z2) +
(

x2
2 − x2

3 + y2
2 − y2

3 + z2
2 − z2

3
)
= 0

(7)

 2(x2 − x1) 2(y2 − y1) 2(z2 − z1)

2(x3 − x1) 2(y3 − y1) 2(z3 − z1)

2(x3 − x2) 2(y3 − y2) 2(z3 − z2)


 a

b
c

 =

 x2
2 − x2

1 + y2
2 − y2

1 + z2
2 − z2

1
x2

3 − x2
1 + y2

3 − y2
1 + z2

3 − z2
1

x2
3 − x2

2 + y2
3 − y2

2 + z2
3 − z2

2

 (8)

r2 = (x1 − a)2 + (y1 − b)2 + (z1 − c)2

r2 = (x2 − a)2 + (y2 − b)2 + (z2 − c)2

r2 = (x3 − a)2 + (y2 − b)2 + (z3 − c)2

(9)

Search for the sphere in the depth layer image requires its data to be projected from
2D coordinates to 3D points. Furthermore, a depth parameter depth unit from the camera
settings is required to transform depth units into meters. In the realsense D435 a default
value of 0.001 has been found as the depth unit value. The depth layer is composed of
16-bit integers. The intrinsic matrix found in phase one of the proposed method is used for
projects 2D data to 3D points as follows:

• Convert from integer data in depth image I to depth in meters Z requires multiplying
each integer value in the depth image by the depth unit:

Z(Iij)ij = Iij × 0.001 (10)

• Project from 2D coordinates to 3D world coordinates (Note undistortion has already
been applied in phase one):
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X(Iij)ij = (i− cx)/ fx × 0.001

Y(Iij)ij = (i− cy)/ fy × 0.001
(11)

• 3D cloud point is represented as (X, Y, Z) coordinates.

RGB-1

RGB-depth pairs
raw data

RGB-depth pairs

Detected ellipses Detected spheres

RGB-2

RGB-3

RGB-4

RGB-5

Depth-1

Depth-2

Depth-3

Depth-4

Sphere-1

Sphere-2

Sphere-3

Sphere-4

Ellipse-1

Ellipse-2

Ellipse-3

Ellipse-4

Sphere-5
Ellipse-5Depth-5

1

2

3

4

5

Figure 9. A set of five different images with a basketball visible in the scene is needed, images
from 1 to 5 show the same scene with a basketball in 5 different positions, before (left) and after
(right) detection of ellipse centers and spheres centers.

Searching for the sphere center and their surface 3D points, we propose a method using
RANSAC in Algorithm 1, where the known size of the basketball applies to distinguish it
from similar geometries in the scene.

In phase four in Figure 8, having five pairs of ellipse centers and sphere centers, Quest
method is incorporated into our methodology to find the rotation and translation matrices.
This method has better accuracy in the presence of noise and allows us to use a minimum
number of samples in the calibration protocol [41]. Furthermore, Quest method has been
used to find rotation and translation from a pair of different views of the same scene with an
RGB image and a depth image. Each layer requires its intrinsic matrix, and sphere centers
in the depth layer were de-projected to a euclidean space with the intrinsic matrix of the
depth layer, as the Quest method implementation needs to work with the same camera. A
second alternative is to de-project world coordinate sphere centers, created from the depth
layer in a 3D cloud, to a virtual view with the same RGB intrinsic matrix.

2.4. Calibration Protocol

With the proposed method, the calibration process has been simplified to the following steps:
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1. At least ten valid chessboard color images are sampled to get intrinsics matrix and
undistort RGB images;

2. At least five good pairs of color and depth images are sampled to search for ellipses
in the color layer with [46] and spheres in the depth layer with Algorithm 1;

3. Intrinsic matrix, ellipse centers, and sphere centers feed the QuEst method [41] to get
rotation and translation matrices.

Algorithm 1 Fit sphere with a known size using RANSAC in a 3D cloudpoint.

Initialize variables to search for a basketball of a standard size of 7 (about 24 cm in
diameter and radius of 12 cm). Epsilon is configured as a tolerance for the sphere
geometry to 1.2 cm, and stop criteria as an iteration limit of 100,000. All these variables
were defined using a heuristic to fit a sphere of known size.

Require: ε ≥ 0.012
Ensure: stopcriteria ≥ 100,000
Ensure: radius ≥ 0.12
Ensure: diameter ← 0.024

1: Select three points from the 3D world coordinate space required by the equations
system.
(a).—The first point is selected randomly from the entire 3D cloud space.
(b).—The second and third points are selected reducing the search area within a maxi-
mum distance in meters diameter from the first selected point.
2: Solve for the parameters in Equation (8) in the form Ax = B,
if an sphere center is found then.

3: Determine if the three points and the sphere center fit with a predefined tolerance
ε w.r.t. the radius.

if yes then
The center of the fitted sphere is added to a list of sphere candidates
Iterate to step 1 a defined number of times stopcriteria.

else if no then
Iterate to step 1 a defined number of times stopcriteria.

end if
else if no then

Check if stopcriteria has been reach.
if yes then

continue to step 4.
else if no then

continue iterating step 3.
end if

end if
4.—Iterate all points in the 3D coordinate space and check if each point is an inlier with a
tolerance e in a radius distance within each point in the list of sphere candidates.
if yes then

This point is added to a list attached to the center where it fits.
end if
5: Check if the list of sphere candidates is not empty,
if yes then

No spheres has been found, if there is a sphere in the scene the method needs to be
executed again.

go to step 1
else if no then

Iterate the list of sphere candidates.
Select the center with the more significant amount of points in its attached list of

sphere points as the best sphere candidate to fit the basketball geometry of known size.
end if
6: Sphere center and 3D points in the sphere surface have been found.
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3. Results

The experiments consider our methodology and [36] method using their available
toolbox [42]. In the experiments, our comparison stress the Staranovics method using a
minimum of images where their available toolkit could produce an output. Taking one pair
of depth and RGB images requires sampling each image consecutively, and the basketball
needs to be kept steady with both methods. Furthermore, we use [43] method to undistort
RGB images with [42] and our method as a mandatory prerequisite and undistortion of
the RGB images benefit results in both methods. It is essential to note that Staranovics
ideal number of image pair samples is above 130 to produce much better results than the
reported in this work, at the cost of increasing the calibration protocol complexity. When
comparing calibration operator tasks, each image pair requires manual intervention in
the [42] to ensure correct ellipse and sphere detection. Moreover our methodology uses [46]
and their toolkit [46] to find ellipses in the complete image, and our RANSAC method
to find the basketball sphere does not require a mandatory step to reduce the search area
to fit the sphere geometry in the scene. Furthermore, both methods require valid images
where ellipses and spheres are well detected. Not all pair images are good candidates; we
sample more pair images than needed to select a minimum of valid images in both methods.
Moreover, our proposed method requires fewer steps to choose the correct depth and color
images pair. The proposed calibration protocol experiments use a non-ideal scene with
natural indirect illumination from the sun, with non-regular textures in the background.
Our method shows an emergent resilience behavior as a product of [46], and our RANSAC
method to detect ellipses and spheres.

Default RGB camera intrinsic parameter values are shown in Table 2, our work and
Staravonics method require intrinsic parameter values. Furthermore, Table 2 shows that
default parameters are not close to precision and exactitude than well-established methods
such as [36,43]. Nevertheless, Staranowicz’s method [36] produces, as a result, another in-
trinsic RGB matrix, besides RGB input images are pre-calibrated with [43] as in our method.

Rotation and translation factory values are shown in Table 3 and Table 4, Staranowicz’s
method [36] produces close results to the factory values, and the QUEsT method [41] values
are shown as a scale.

Table 2. Color camera (RGB) intrinsics parameters.

Parameter Fx Fy Cx Cy Skew

Factory RGB 421.46 421.46 461.683 236.524 0.0
Zhang et al. 556.28364 555.65570 325.71797 253.41162 0.0

Staranowicz et al. 549.1128 550.8689 322.2678 248.1722 −2.126733

Table 3. Depth camera (RGB-D) rotation parameters.

Parameter X Y Z W

Factory 0.0005242 0.0002236 0.0044973 −0.9999897
Fathian et al. 0.4188 0.6221 0.5903 −0.2985

Staranowicz et al. −0.0089974 −0.0025626 −0.0029216 0.999952

Table 4. Depth camera (RGB-D) translation parameters.

Parameter X Y Z

Factory 0.0146951 −0.000142742 0.000202387
Fathian et al. −0.0811 0.2968 0.4095

Staranowicz et al. 0.013768 −0.0098439 0.011041
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Our proposed method requires to use of a interpolation factor value to approximate the
projection of 3D cloud points to a 2D image. We use a cubic spline regression in Figure 10
to interpolate depth error with the scale values produced by the QUEsT method [41].

Figure 10. In the figure, the depth values provided by the QUEsT method [41] are fitted with a spline
regression. The fitted line shows a non-uniform displacement of the RGB-D depth values [49].

To compare our methodology qualitatively, we perform a reprojection of the center
of a sphere, in 3D world coordinates, to the RGB image 2d space; and with the sphere’s
radius, draw a red circle as shown in Figure 11b. Our method produces competitive results
with [36] (Figure 11a) with fewer pair images.

(a) (b)

Figure 11. Projection result of the detected sphere using [42] in blue color (a); projection result with
our proposed method (b).

Reprojection error and amount of color-depth samples differences are shown in Table 5.
Calibration methods using checkerboards in their entire pipeline [33,50] require more
samples than our work, as the checkerboard squares are not visible in the depth layer.
These methods rely on detecting corners.
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Table 5. Re-Projection error and amount of samples.

Method Reprojection Error (Pixels) Color-Depth Pair Samples

Herrera et al. [33] 2.388 20–60
Staranowicz et al. [35] 4.8248 25–120

Basso et al. [50] 1.901 above 100
Zhou et al. [40] 0.257039 40

Our method 0.0768 5

4. Discussion

In the final phase of our method (Figure 8), QUEsT method [41] and the available
toolbox [51] consider two views from the same scene with only one intrinsic camera
parameter matrix.

Our proposed methodology uses depth information in a 3D cloud point as 3D world
coordinates. Then, sphere centers are projected to a 2D view using depth layer intrinsic
parameter matrix. Alternatively, the proposed method can project 3D world coordinates to a
virtual view with RGB camera intrinsics. The QUEsT method [41] produces depth, rotation,
and translation (up to a scale factor), * Italics have been removed and accurate 3D world
coordinates are required to translate scale depth values into meters. Our methodology
use depth information to create 3D world coordinates. Moreover, depth data shows a
depth error. As a general rule in RGB-D cameras, depth error increases when the camera’s
distance from the objects in the scene is not uniform in the depth image volume [49]. Future
work will adjust this calibration error separately. In the current work, we use a spline
regression to translate and interpolate scale depth values to meters.

The proposed methodology reduces the complexity of the calibration protocol for
RGB-D cameras by minimizing the number of samples that the calibration protocol operator
needs to take. It allows non-ideal illumination conditions in the scene and complex textures
in the scene. It reduces the effort operator needs to invest in performing the calibration
protocol. Furthermore, the proposed method shows competitive results in a non-ideal
scene, and experiments demonstrate that a straightforward calibration protocol is possible,
requiring a minimum number of samples using a sphere of know size as a geometrical
object in the scene and incorporating state-of-the-art techniques in our methodology.
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