
Citation: Zhdanok, A.; Khuruma, A.

Decomposition of Finitely Additive

Markov Chains in Discrete Space.

Mathematics 2022, 10, 2083.

https://doi.org/10.3390/math

10122083

Academic Editors: Alexandru

Agapie, Denis Enachescu, Vlad

Stefan Barbu, Bogdan Iftimie and

Andreas C. Georgiou

Received: 3 April 2022

Accepted: 13 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Decomposition of Finitely Additive Markov Chains
in Discrete Space
Alexander Zhdanok 1,* and Anna Khuruma 2

1 Institute for Information Transmission Problems of the Russian Academy of Sciences, 19, build.1,
Bolshoy Karetny Per., 127051 Moscow, Russia

2 Department of Physics and Mathematics, Tuvan State University, 36 Lenina Street, 667000 Kyzyl, Russia;
huruma@list.ru

* Correspondence: zhdanok@iitp.ru

Abstract: In this study, we consider general Markov chains (MC) defined by a transition probabil-
ity (kernel) that is finitely additive. These Markov chains were constructed by S. Ramakrishnan
within the concepts and symbolism of game theory. Here, we study these MCs by using the operator
approach. In our work, the state space (phase space) of the MC has any cardinality and the sigma-
algebra is discrete. The construction of a phase space allows us to decompose the Markov kernel
(and the Markov operators that it generates) into the sum of two components: countably additive
and purely finitely additive kernels. We show that the countably additive kernel is atomic. Some
properties of Markov operators with a purely finitely additive kernel and their invariant measures
are also studied. A class of combined finitely additive MC and two of its subclasses are introduced,
and the properties of their invariant measures are proven. Some asymptotic regularities of such MCs
were revealed.
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1. Introduction

In this study, classical Markov chains (MC) are interpreted as random Markov pro-
cesses with discrete time (in the usual sense) in the phase space (X, Σ), where X is some set
(space) and Σ is some sigma-algebra of subsets in X. We also consider time-homogeneous
MCs. If X is an arbitrary infinite set that does not highlight any structure other than
sigma-algebra Σ, then these MCs are called general.

In 1937, Kryloff and Bogoliouboff [1,2] proposed an operator-theoretical treatment of
the general MC study that was then explicitly developed then by Yosida and Kakutani [3].
The essence of the treatment is that the MC is given by a transition function (probability)
P(x, E), x ∈ X, E ∈ Σ, which as a kernel defines two dual integral Markov operators T and
A in spaces of measurable functions and in spaces of measures, respectively.

A Markov chain is identified with an iterative sequence of probability measures {µn}.
Such sequence is generated by the second Markov operator µn = Aµn−1 = Anµ1 with
an arbitrary initial probability measure µ1. We use this treatment in this work.

In the classical theory of MC, the transition function (probability) P(x, ·) is assumed
by the second argument to be a countably additive measure. At the same time, in eco-
nomic game theory, developed in the 1960s by Dubbins and Savage [4], and their numerous
students and followers, to also involve finitely additive probability measures in the construc-
tion of specific random processes became necessary. In particular, in [5], some constructions
and investigations of finitely additive measures similar to Markov chains were presented.
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Based on the work of [5], in 1981, Ramakrishnan [6] developed a new object construc-
tion in the language of strategies, thus named finitely additive Markov chains. These chains
are generated by a transition function (strategy) that is finitely additive by the second
argument. The phase space (X, Σ) in [6] is a discrete set with the sigma-algebra of all its
subsets. In the framework of this construction, the study in [6] contains proof of a number
of non-trivial theorems, including ergodic ones, based on these specific chains properties
within game theory terms. Some additional questions on this topic were also discussed
in further publications by Ramakrishnan (see, e.g., [7]).

Other authors also continued to study some problems of the finitely additive Markov
chains theory based on Ramakrishnan findings (see, e.g., [8]). The authors of such works actively
used the special apparatus of random variables defined by finitely additive probabilities.

Zhdanok also used finitely additive measures in the study of general classical Markov
chains in the works [9,10].

In this paper, we study general Markov chains generated by a transition function
that is finitely additive by its second argument, as mentioned above. We consider Markov
chains defined on a discrete space. However, it does not use any specific features of game
theory, and a different range of problems is solved. We also do not use the apparatus of
random variables.

In Section 2, we provide an operator approach for studying general Markov chains
with a countably additive transition function on an arbitrary measurable space. We use
and develop this construction for finitely additive transition functions.

In Section 3, a discrete topology and a discrete sigma-algebra containing all subsets
of the set X are introduced into the phase space (of any cardinality) of finitely additive
MCs. We study the properties of countably additive and purely finitely additive transition
functions and the Markov operators generated by them in such spaces. We then prove that
countably additive transition functions are atomic measures with a finitely or countable
support and prove that the Markov operators of MCs with a purely finitely additive
transition functions transform all finitely additive measures (including countably additive
ones) into purely finitely additive measures.

The transition function of an arbitrary finitely additive MC and the Markov operators
generated by it are decomposed into a countably additive component and a purely finitely
additive component. Their general properties are studied.

In Section 4, we prove that, for any purely finitely additive MC, all its invariant finitely
additive measures are purely finitely additive. The class of combined finitely additive MCs
is also introduced here. We then prove that such MCs do not have invariant countably
additive measures.

In Section 5, we consider the decomposition of a Markov sequence of measures of com-
bined MCs into a countably additive component and a purely finitely additive component.
Combined MCs have two subclasses. The first subclass is when the countably additive
component of the Markov operator transforms all purely finitely additive measures into
countably additive ones (condition (H1)). The second subclass is when the same compo-
nent transforms all purely finitely additive measures into the same ones (condition (H2)).
Under condition (H1), the norms of countably additive and purely finitely additive compo-
nents of a Markov sequence of measures were proven to be time-stationary. Additionally,
under condition (H2), the norms of countably additive components of a Markov sequence
of measures were proven to converge exponentially to zero. The simple conditions (G1)
and (G2) on the transition function of the MC are given, under which the “qualitative”
conditions (H1) and (H2) are also satisfied. The corresponding theorems are then proven.

Examples of finitely additive MCs on a segment are considered in detail in Sections 4 and 5
and their phase portraits are shown.



Mathematics 2022, 10, 2083 3 of 21

2. Definitions, Notation and Some Information

Let X be an arbitrary infinite set and Σ be a sigma-algebra of its subsets containing all
one-point subsets from X. Let B(X, Σ) denote the Banach space of bounded Σ-measurable
functions f : X → R with sup-norm.

We also consider Banach spaces of bounded measures µ : Σ→ R, with the norm equal to
the total variation of the measure µ (but one can also use the topologically equivalent sup-norm):

ba(X, Σ) is the space of finitely additive measures, and
ca(X, Σ) is the space of countably additive measures.

If µ ≥ 0, then norm ||µ|| = µ(X).

Definition 1 ([11]). A finitely additive measure µ, µ ≥ 0, is called purely finitely additive (pure
charge, pure mean) if any countably additive measure λ satisfying the condition 0 ≤ λ ≤ µ is
identically zero. An alternating measure µ is called purely finitely additive if both components of its
Jordan decomposition µ = µ+ − µ− are purely finitely additive.

Lemma 1. If the measure µ is purely finitely additive, then it is equal to zero on every one-point
set: µ({x}) = 0, ∀x ∈ X.

Proof of Lemma 1. Take a purely finitely additive measure µ ≥ 0. Suppose that there is
a point x0 ∈ X such that µ({x0}) = α > 0. We take the Dirac measure δx0 at the point x0.
Then, δx0(X \ x0) = 0 and α · δx0(E) ≤ µ(E) for all E ∈ Σ, i.e., α · δx0 ≤ µ. All Dirac measures
are countably additive, and this measure α · δx0 is also countably additive. Therefore,
the statement in Lemma 1 is true for µ ≥ 0. This statement is also true for any sign-
alternating purely finitely additive measure.

Obviously, a purely finitely additive measure is equal to zero on any finite set as
well. The converse, generally speaking, is not true, for example, for the Lebesgue measure
on the segment [0, 1].

Remark 1. If the measure µ is identically zero, then it can formally be considered both countably
additive and purely finitely additive.

Theorem 1 (Yosida-Hewitt decomposition, see [11]). Any finitely additive measure µ can be
uniquely decomposed into the sum µ = µca + µp f a, where µca is countably additive and µp f a is
a purely finitely additive measure.

Bounded purely finitely additive measures also form a Banach space p f a(X, Σ) with
the same norm and ba(X, Σ) = ca(X, Σ)⊕ p f a(X, Σ).

We denote the sets of non-negative measures:

Vba = {µ ∈ ba(X, Σ) : µ(X) ≤ 1},
Vca = {µ ∈ ca(X, Σ) : µ(X) ≤ 1},
Vp f a = {µ ∈ p f a(X, Σ) : µ(X) ≤ 1}.
Measures from these sets are called probabilistic if µ(X) = 1.
We also denote by Sba, Sca, and Sp f a the sets of all probability measures in Vba, Vca,

and Vp f a, respectively.

Definition 2. The classical Markov chains (MCs) on a measurable space (X, Σ) are given by their
transition function (probability kernel) P(x, E), x ∈ X, E ∈ Σ, under the usual conditions:

1. 0 ≤ P(x, E) ≤ 1, ∀x ∈ X, ∀E ∈ Σ;
2. P(·, E) ∈ B(X, Σ), ∀E ∈ Σ;
3. P(x, ·) ∈ ca(X, Σ), ∀x ∈ X;
4. P(x, X) = 1, ∀x ∈ X.
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The numerical value of the function P(x, E) is the probability that the system moves
from the point x ∈ X to the set E ∈ Σ in one step (per unit of time).

We emphasize that the transition function of the classical Markov chain is a countably
additive measure in the second argument.

We also call such transition functions countably additive kernels.
The transition function generates two Markov linear bounded positive integral operators:

T : B(X, Σ)→ B(X, Σ), (T f )(x) = T f (x) =
∫
X

f (y)P(x, dy),

∀ f ∈ B(X, Σ), ∀x ∈ X;
A : ca(X, Σ)→ ca(X, Σ), (Aµ)(E) = Aµ(E) =

∫
X

P(x, E)µ(dx),

∀µ ∈ ca(X, Σ), ∀E ∈ Σ.

The operator A is isometric in the cone of non-negative measures, in particular, ASca ⊂ Sca.
Let the initial measure be µ1 ∈ Sca. Then, the iterative sequence of countably additive

probability measures µn+1 = Aµn ∈ Sca, n ∈ N is usually identified with the Markov chain.
We call {µn} a Markov sequence of measures.

Topologically conjugated to the space B(X, Σ) is (isomorphically) the space of finitely
additive measures: B∗(X, Σ) = ba(X, Σ) (see, for example, [12]). In this case, the operator
T∗ : ba(X, Σ) → ba(X, Σ) serves as a topological conjugate to the operator T, which is
uniquely determined by the well-known rule of integral “scalar products”:

〈T∗µ, f 〉 = 〈µ, T f 〉, ∀ f ∈ B(X, Σ), ∀µ ∈ ba(X, Σ).

The operator T∗ is the only bounded continuation of the operator A to the space
ba(X, Σ), preserving its analytic form

T∗µ(E) =
∫

X
P(x, E)µ(dx), ∀µ ∈ ba(X, Σ), ∀E ∈ Σ.

The operator T∗ has its own invariant subspace ca(X, Σ), i.e., T∗[ca(X, Σ)] ⊂ ca(X, Σ),
on which it coincides with the original operator A. The operator T∗ is also isometric,
and T∗Sba ⊂ Sba. The construction of the Markov operators T and T∗ is now functionally
closed. We continue to denote the operator T∗ as A.

In such a setting, considering the Markov sequences of probabilistic finitely additive measures

µ1 ∈ Sba, µn+1 = Aµn ∈ Sba, n ∈ N,

and retaining the countable additivity of the transition function P(x, ·) by the second
argument are natural.

Despite this circumstance, image Aµ of a purely finitely additive measure µ can remain
purely finitely additive, i.e., generally speaking,

A[ba(X, Σ)] 6⊂ ca(X, Σ).

The integral over a finitely additive measure, usually called the Radon integral, is
constructed according to the same scheme as the Lebesgue integral over the Lebesgue measure.
Its construction was developed in [12] and, in a more modern form, in [13]. Note that, if the
original space X is countable and the measure µ is not countably additive, then the integral
on X cannot be replaced by a sum (series). Such integrals have other features as well.

Definition 3. If Aµ = µ holds for some positive finitely additive measure µ, then we call such
a measure invariant for the operator A (and for the Markov chain).

An invariant probability countably additive measure is often called the stationary distribution
of a Markov chain.
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The question of the existence of invariant measures and their properties is one of
the main questions in the theory of Markov chains.

We denote the sets of all non-zero invariant measures for the operator A as follows:

∆ba = {µ ∈ Vba : µ = Aµ},

∆ca = {µ ∈ Vca : µ = Aµ},

and
∆p f a = {µ ∈ Vp f a : µ = Aµ}.

The classical Markov chain with a countably additive transition probability may or
may not have invariant countably additive probability measures, i.e., possibly ∆ca = ∅ (for
example, for a symmetric walk on Z).

In ([14], Theorem 2.2), Šidak proved that any countably additive MC on an arbi-
trary measurable space (X, Σ) with an operator extended to the space of finitely additive
measures has at least one invariant finitely additive measure, i.e., always ∆ba 6= ∅.

In ([14], Theorem 2.5), for such MC (in the general case), Šidak established that, if a
finitely additive measure µ is invariant, Aµ = µ, and µ = µca + µp f a is its decomposition
into countably additive and purely finitely additive components, then each of them is also
invariant: Aµca = µca and Aµp f a = µp f a.

We now give our key definition of finitely additive MCs.

Definition 4. A transition function of a finitely additive MC on an arbitrary (phase) measurable
space (X, Σ) is a function P(x, E), x ∈ X, E ∈ Σ, for which the conditions (1), (2), and (4) from
Definition 2 and, instead of condition (3), condition (3′) are satisfied: P(x, ·) ∈ ba(X, Σ), ∀x ∈ X.
We will also call such transition functions finitely additive.

We consider specific finitely additive MCs that are not countably additive
in Examples 2–5 below.

The finitely additive transition function P(x, E) also generates two integral operators: T :
B(X, Σ)→ B(X, Σ) and A : ba(X, Σ)→ ba(X, Σ) in the same analytical form, with T∗ = A.

The Markov operators T and T∗ = A are linear, bounded, and positive. In addi-
tion, the operator A is isometric in the cone of non-negative finitely additive measures,
and ASba ⊂ Sba. However, in this case, generally speaking, the operator A does not
transform countably additive measures into the same ones, that is, Aca(X, Σ) 6⊂ ca(X, Σ).
Finitely additive MCs are also associated with their Markov sequences of finitely additive
measures {µn}.

Remark 2. As already noted in the Introduction, in [6], Ramakrishnan introduced the concept of
finitely additive Markov chains. This definition uses a number of concepts and constructions used
only in game theory. The transition function of such MCs (in our terms) in [6] was interpreted
as some conditional strategy, which, as a function of sets, is finitely additive. In Definition 4 and
in the following comments about Markov operators, the usual language of functional analysis
(measure theory and linear operator theory) is used. Strictly comparing these completely different
approaches to constructing the theory of finitely additive Markov chains is very difficult (most likely
impossible). However, some analogies for individual results are easy to see.

It is natural to consider the decomposition of such transition functions (kernels) into
two components: countably additive and purely finitely additive.

To define such kernels, we take as a basis Definition 2 and some information from
Revuse’s book ([15], Chapter 1, §1) and transfer them to the finitely additive case.

Definition 5. A numerical function P(x, E) of two variables x ∈ X and E ∈ Σ is called a sub-
Markov countably additive kernel if conditions (1), (2), and (3) from Definition 2 are satisfied.
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Similarly, we introduce the terms sub-Markov and Markov kernels for the cases when
the kernel P(x, ·) is finitely additive or purely finitely additive in the second argument for
each x ∈ X.

We can say that, in this case, we replace condition (3) in Definitions 2 and 4 with
the following conditions:

(3′) P(x, ·) ∈ ba(X, Σ), ∀x ∈ X, and
(3′′) P(x, ·) ∈ p f a(X, Σ), ∀x ∈ X, respectively.

The integral operators T and A in spaces of functions and measures generated by
a sub-Markov (Markov) kernel are also called sub-Markov (Markov).

The already cited Yosida–Hewitt Theorem 1 [11] on the decomposition of a finitely
additive measure implies the following statement.

Proposition 1. Let X be an infinite set and an arbitrary sigma-algebra of its subsets Σ contains
all one-point sets. Any Markov finitely additive kernel P(x, E) on (X, Σ) is uniquely presented as
the sum of its countably additive and purely finitely additive components: P(x, E) = Pca(x, E) +
Pp f a(x, E), where Pca(x, ·) ∈ ca(X, Σ), Pp f a(x, ·) ∈ p f a(X, Σ), for all x ∈ X, E ∈ Σ.

Proof of Proposition 1. The transition function of a finitely additive MC is a probability
finitely additive measure P(x, ·) on the second argument P(x, E), E ∈ Σ for each fixed
x ∈ X, i.e., P(x, ·) ∈ ba(X, Σ), by Definition 1. Therefore, for each x ∈ X, the transition
function P(x, ·) has a unique decomposition P(x, ·) = Pca(x, ·)+ Pp f a(x, ·) into its countably
additive and finitely additive, according to Theorem 1.

We cannot yet call the components Pca(x, ·) and Pp f a(x, ·) sub-Markov kernels, because
the Σ -measurability of the functions Pca(·, E) and Pp f a(·, E) for different E ∈ Σ and for
an arbitrary sigma-algebra Σ is not guaranteed. Moreover, the original Markov kernel
P(·, E) is Σ -measurable for any E ∈ Σ by definition.

If the components Pca(·, E) or Pp f a(·, E) are immeasurable, then no sub-Markov opera-
tors T and A are integrally expressed in terms of them.

The question of measurability with respect to the first argument of two components
in the decompositions of the Markov kernel in Proposition 1 was pointed out by one of the au-
thors of this article in their paper [9]. It was hypothesized that immeasurable decompositions
exist. This problem was solved by Gutman and Sotnikov in their work [16].

They proved a number of theorems on the singularities of the decompositions of
transition functions (kernels) into the sum of their countably additive and purely finitely
additive components in different cases and proved that non-measurable decompositions
exist, in particular, on the segment [0, 1] with Lebesgue sigma-algebra.

Later, Sotnikov [17] constructed a class of strongly additive transition functions
in which both of their decomposition components are measurable.

In this paper, we use another possibility of ensuring the measurability of the com-
ponents in the decompositions of the finitely additive Markov kernel, which serves as
an introduction to the next subsection in which discrete topologies in an arbitrary MC
phase space are discussed.

3. Finitely Additive Markov Kernels in Discrete Space

In the theory of Markov chains, the term “discrete” is used in different senses, and is
applied to both the time parameter and the state space of the MC. We use the classical
definition from functional analysis (see, for example, [18]), which is also used in some
papers on the theory of MCs.

Definition 6. A topological space (X, τ) is called discrete if all its subsets are simultaneously open
and closed (clopen), that is, the topology τ = 2X is the set of all subsets of the set X.
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Such a topology in X is generated by the discrete metric d(x, y) equal to 1 for x 6= y
and equal to 0 for x = y. In discrete space, all points are metrically isolated. Discrete
metric (and topology) can be introduced in any set X. In particular, the discrete topology
can be introduced in all “principal” number sets: N, Z, Q, [0, 1], and R = R1, as well as
in Rm(m ∈ N), transforming them into discrete spaces.

If a topological space is discrete, then, obviously, its Borel sigma-algebra B = τ = 2X .
This sigma-algebra contains all subsets of the set X. Such a sigma-algebra in X is also called
discrete. We will denote it by Σd.

Ramakrishnan [6] uses a similar definition of the discrete phase space of an MC.
If the space X is discrete, then, obviously, any bounded numerical function f : X →

R is measurable with respect to the discrete sigma-algebra Σd, that is, f ∈ B(X, Σd).
In particular, Σd is measurable in the first argument and the components Pca(·, E) and
Pp f a(·, E) of the CM transition function in Proposition 1 for all E ∈ Σ.

Note that all numeric functions f : X → R on any discrete space (X, Σd) are continuous
in the discrete topology τ = 2X .

Let us introduce the concept of a measure atom, known in different versions (we just
need to use a simplified version of its definition).

Definition 7. Let (X, Σ) be an arbitrary measurable space and µ : Σ → R be some countably
additive measure. An element x ∈ X is called an atom of the measure µ if µ({x}) 6= 0. If a bounded
measure µ, µ ≥ 0, has a support (set of full measure) D ∈ Σ, consisting of a finite or countable
family of its atoms, then such a measure is called atomic (discrete). Moreover, D = {x1, x2, . . . }
and µ(D) = ∑n µ({xn}) = µ(X).

The atomic measure µ ≥ 0 can be represented as follows

µ(E) = ∑
n

αnδxn(E),

where E ∈ Σ, δxn are Dirac measures concentrated at the points xn, and ∑n αn = µ(D) = µ(X).
Note that a countably additive measure on a nondiscrete measurable space (X, Σ)

may not have atoms, for example, the Lebesgue measure on ([0, 1],B). Additionally, from
Definition 7 and Lemma 1, any purely finitely additive measure on any measurable space
has no atoms.

If the set X is countable and Σ = Σd, then, obviously, any bounded countably additive
measure µ on (X, Σd) is atomic.

Now, we want to find out how countably additive measures are arranged on an arbi-
trary discrete space (X, Σd). In a wider formulation, this question is considered, for example,
in Bourbaki ([19], Chapter III, paragraphs 1 and 2). A locally compact topological space is
taken as the initial space X. Countably additive measures are defined as linear continuous
functionals on the space of continuous functions. Definitions of a discrete space, a dis-
crete (atomic) measure, and its support are given, which differ from those given above.
After proving a number of propositions (theorems), in ([19], Chapter III, paragraph 2,
item 5), the following statement is formulated: “on a discrete space, any measure is discrete”
(here, countably additive measures).

To apply this statement in this work, we need to give precise definitions of the above
and other concepts and translate them into our language. Therefore, in Theorem 2 below,
we give our proof of the above statement from [19] in our definitions and refine it.

However, for this, we need one well-known and nontrivial theorem of Ulam, stated,
for example, in ([20], Chapter 5, Theorems 5.6 and 5.7) and, in more detail, in ([21], Volume
1, Theorem 1.12.40, and Corollary 1.12.41). We present this theorem under the condition
that the continuum hypothesis is accepted, i.e., we assume that ℵ1 = c (continuum).

Theorem 2. A finite countably additive measure µ defined on all subsets of the set X of cardinality
ℵ1 (c, continuum) is identically zero if it is zero for each one-point subset.
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Obviously, Ulam’s theorem holds trivially for sets X with countable cardinality ℵ0.
We continue to assume that the continuum hypothesis is true.

Remark 3. In the books [20,21], the (extended) Ulam Theorem 2 is noted to be true and, for higher,
so-called “immeasurable” cardinalities of the set X are found. Immeasurable cardinality includes all
cardinalities from an ordered cardinality scale: ℵ0, ℵ1 = c, ℵ2, etc. There is still no example of a set
with “measurable” power.

Definition 8. A measurable space (X, Σd) is called an arbitrary discrete space if Σd = 2X , and the
set X has an arbitrary immeasurable cardinality (including from the ordered cardinality scale).
In other words, we consider only discrete spaces for which the (extended) Ulam theorem is valid.

Now, let us prove the following promised theorem.

Theorem 3. Any non-zero non-negative bounded countably additive measure µ : Σd → R,
on an arbitrary discrete space (X, Σd) is atomic (discrete) and has a finite or countable support
D = {x1, x2, . . . } ⊂ X, for which µ({xn}) = αn > 0, n ∈ N, ∑n αn = µ(D) = µ(X),
µ(X \ D) = 0.

Proof. For a countable set X, the assertions of the theorem are trivially fulfilled.
Now, let the set X have uncountable cardinality. Consider an arbitrary bounded non-

negative countably additive measure µ : Σd → R for which 0 < µ(X) = γ < ∞. Because
the measure µ is not identically zero, then by Theorem 2, the measure µ has at least one
one-point atom x0 ∈ X such that µ({x0}) = α0 > 0. We denote by D the set of all atoms of
measure µ. As we have shown above, x0 ∈ D and D 6= ∅. Let us prove that the set D is
finite or countable.

We split the interval (0, γ] of possible non-zero values of the measure µ into a countable
family of disjoint intervals

(0, γ] = ∪∞
n=1(

γ

n + 1
,

γ

n
].

We denote the inverse images of these intervals as

Dn = {x ∈ X : µ({x}) ∈ (
γ

n + 1
,

γ

n
]}, Dn ∈ Σd, n = 1, 2, . . . .

Then, the sets Dn are also pairwise disjoint and D = ∪∞
n=1Dn. Therefore, since

the measure µ is countably additive, then µ(D) = ∑∞
n=1 µ(Dn).

By construction, for any point x ∈ Dn performed, γ
n+1 < µ({x}) ≤ γ

n , n = 1, 2, . . . .
In addition, µ(Dn) ≤ γ < ∞ for all n = 1, 2, . . . .

If any of the sets Dn was infinite, then, by virtue of the inequalities for µ({x}) for x ∈ Dn,
it would be µ(Dn) = ∞. This contradiction implies that each set Dn is finite or empty.

Therefore, the set D, as a union of a countable (or finite) family of finite sets, is
countable (or finite).

By construction, D ⊂ X and µ(D) ≤ µ(X). Let us prove that µ(D) = µ(X). Because
X has uncountable cardinality and the set D is finite or countable, the set X \ D 6= ∅ and is
also uncountable.

Suppose that µ(D) < µ(X), i.e., µ(X \ D) > 0. By the hypothesis of the theorem,
the set X is discrete. Consequently, the set X \ D is also discrete.

The restriction µD of the measure µ from the set X to the set X \ D also satisfies
all of the requirements for the measure µ under the conditions of the theorem. Because
µ(X \ D) > 0, then, again applying Ulam’s Theorem 2, we obtain that a point y0 ∈ X \ D
exists such that µD({y0}) > 0. However, then, µ({y0}) > 0. Therefore, y0 ∈ D and y0 6= x
for any x ∈ D. However, the set D was defined as the set of all points x ∈ X for which
µ({x}) > 0 is satisfied. Thus, we obtain a contradiction. Therefore, µ(D) = µ(X) and
µ(X \ D) = 0.
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Because D is finite or countable, we re-number all its points and obtain the last
statement of the theorem.

Surprisingly, all countably additive measures on the discrete segment [0, 1] are only
atomic. Additionally, the Lebesgue measure does not exist on the discrete segment [0, 1].
In 1923, Stefan Banach proved that the Lebesgue measure defined on the Borel (generated by
the Euclidean topology) sigma-algebra of the segment [0, 1] cannot be countably additively
extended to the sigma-algebra of all subsets of the segment [0, 1]. However, it can be
extended to a finitely additive measure on a discrete sigma-algebra, and infinitely many
such extensions exist. This issue is discussed in many sources; see, for example, ([21],
Volume 1, items 1.12.29 and 2.12.91).

Theorem 4. A finitely additive nonnegative measure µ defined on an arbitrary discrete space
(X, Σd) is purely finitely additive if and only if the condition µ({x}) = 0 for all x ∈ X is fulfilled.

Proof. The necessity of the condition is obvious. Let us show its sufficiency. Let the condi-
tion be satisfied but the measure µ be not purely finitely additive. Then, in its decomposition
µ = µca + µp f a the countably additive component µca 6= 0. In this case, by Theorem 3,
a point x1 ∈ X exists such that µca({x1}) > 0. From this contradiction, we can see that µ is
purely finitely additive.

Let us now return to Markov chains. Theorem 3 automatically implies the follow-
ing statement.

Theorem 5. Let a countably additive sub-Markov kernel P(x, E) be given on an arbitrary discrete
space (X, Σd), and P(x, X) > 0 for all x ∈ X . Then, for any x ∈ X, the measure P(x, ·) is atomic
and has a finite or countable support D(x) = {x1(x), x2(x), . . . }, for which

P(x, {xn(x)}) = αn(x) > 0, n ∈ N,
and ∑n αn(x) = P(x, D(x)) = P(x, X), P(x, X \ D(x)) = 0.

Corollary 1. (From Theorem 4). Let a finitely additive sub-Markov kernel P(x, E) be given on
an arbitrary discrete space (X, Σd). For any fixed x0 ∈ X the measure P(x0, ·) is purely finitely
additive if and only if P(x0, {y}) = 0 for all y ∈ X (including the case y = x0).

Example 1. Let X = [0, 1] with Euclidean topology, Σ = B, be the Borel sigma-algebra and
a countably additive MC given by the kernel P(x, E) = λ(E) for all x ∈ X and E ∈ B, where λ is
the Lebesgue measure. Such a MC corresponds to a sequence of independent uniformly distributed
random variables on the segment [0, 1]. Obviously, P(x, {y}) = 0 holds for all x, y ∈ X. However,
the phase space X = [0, 1], Σ = B is not discrete, and Theorem 4 is not applicable.

Example 2. Let us now take the same X = [0, 1] with the discrete sigma-algebra Σd. Consider
a finitely additive MC defined by the kernel P(x, E) = η(E) for all x ∈ X and E ∈ Σd, where η is
some purely finitely additive measure satisfying the following conditions: η ≥ 0, η(X) = 1 and
η((0, ε)) = 1 for all ε > 0. Then, obviously, the condition P(x, {y}) = 0 is also satisfied for all
x, y ∈ X, and Theorem 4 is applicable.

The measure η in this example can be informally characterized as follows. It specifies
a certain “random variable” that takes a value with probability 1 as close to point 0 as
desired but not at point 0.

We then denote by Pn(x, E) the integral convolution of the kernel P1(x, E) = P(x, E),
n = 1, 2, 3, . . ..

The following statement is easily proven by induction.
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Corollary 2. Let a sub-Markov purely finitely additive kernel P(x, E) be given on an arbitrary
discrete space (X, Σd). Then, for all x, y ∈ X and n = 1, 2, 3, . . . , Pn(x, {y}) = 0 (including
the case x = y).

In general, the converse is not true. Here is a counter-example.

Example 3. Let some purely finitely additive probability measure η be given on the discrete space
(X, Σd), where X = [0, 1]. Consider on ([0, 1], Σd) a finitely additive MC with the following rules
for passing in one step: P(0, {1}) = 1, P(x, E) = η(E) for all x ∈ (0, 1] and E ∈ Σd. In particular,
P(x, {y}) = η({y} = 0 for all x ∈ (0, 1] and y ∈ [0, 1].

Performing the integral convolution of two kernels P(x, E), we obtain that P2(x, {y}) = 0
for all x ∈ [0, 1] and y ∈ [0, 1]. Moreover, P(0, {1}) = 1 > 0.

As noted above in Section 2, the operator A generated by the countably additive
sub-Markov kernel transforms countably additive measures into the same ones, that is,
A[ca(X, Σ)] ⊂ ca(X, Σ). This property is preserved for the particular discrete case Σ = 2X .
However, if the measure µ ∈ Vp f a is purely finitely additive, then both cases are possible:
Aµ ∈ Vca and Aµ ∈ Vp f a. However, the situation is different with a purely finitely
additive kernel.

Theorem 6. Let a purely finitely additive sub-Markov kernel P(x, E) be given on an arbitrary
discrete space (X, Σd). Then, the sub-Markov operator A generated by this kernel transforms
all finitely additive measures into purely finitely additive measures, that is, A[ba(X, Σd)] ⊂
p f a(X, Σd), in particular, A[ca(X, Σd)] ⊂ p f a(X, Σd) and A[p f a(X, Σd)] ⊂ p f a(X, Σd).

Proof. Let the finitely additive measure µ ∈ Vba and µ(X) > 0. We denote the measure by
η = Aµ. Clearly, that the measure η is also finitely additive.

If η(X) = 0, that is, η ≡ 0 (which is possible), then it can be considered purely finitely
additive (see Remark 1) and the theorem is true.

Let η(X) > 0. Take its decomposition η = ηca + ηp f a into a countably additive
component ηca and a purely finitely additive component ηp f a.

If ηca(X) = 0, then the measure is η = ηp f a ∈ Vp f a and the theorem is proved.
Suppose that the countably additive measure ηca(X) > 0. Then, by Theorem 3,

the measure ηca has at least one atom a ∈ X, ηca({a}) = γ > 0. Because the measure ηp f a
is purely finitely additive, then ηp f a({a}) = 0.

By the hypothesis of the theorem, all kernels P(x, ·) are purely finitely additive for all x ∈ X.
Such measures vanish on any one-point set. Therefore, P(x, {a}) = 0 for all x ∈ X. Hence,

γ = ηca({a}) = ηca({a}) + 0 = ηca({a}) + ηp f a({a}) = η({a}) = Aµ({a})

=
∫

X
P(x, {a})µ(dx) =

∫
X

0 · µ(dx) = 0.

Thus, we obtain a contradiction. Therefore, ηca(X) = 0, and the measure η = ηp f a =
Aµ is purely finitely additive.

Now, by using the discrete topology in X, we can complete Proposition 1.

Proposition 2. Let an arbitrary discrete space (X, Σd) be given. Any Markov finitely additive
kernel P(x, E) on (X, Σd) is uniquely presented as the sum of a sub-Markov countably additive
kernel Pca(x, E) and a sub-Markov purely finitely additive kernel Pp f a(x, E):

P(x, E) = Pca(x, E) + Pp f a(x, E),

where Pca(x, ·) ∈ ca(X, Σd), Pp f a(x, ·) ∈ p f a(X, Σd), and Pca(·, E) ∈ B(X, Σd), Pp f a(·, E) ∈
B(X, Σd) for all x ∈ X and E ∈ Σd.
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The last inclusions, Pca(·, E) ∈ B(X, Σd) and Pp f a(·, E) ∈ B(X, Σd), mean that the ker-
nels Pca(·, E) and Pp f a(·, E) are Σd-measurable in the first argument for all E ∈ Σd.

Proposition 2 makes it possible to introduce integral sub-Markov operators Aca
and Ap f a generated by the corresponding measurable subkernels. These operators act
in the space of measures Aca and Ap f a : ba(X, Σd) → ba(X, Σd). They have the same
analytical form as the operator A. For any µ ∈ ba(X, Σd) and E ∈ Σ,

Acaµ(E) =
∫

X
Pca(x, E)µ(dx)

and
Ap f aµ(E) =

∫
X

Pp f a(x, E)µ(dx).

In this case, A = Aca + Ap f a.
Because integral kernels of operators are non-negative, the operators Aca and Ap f a

transform non-negative measures into the same ones, i.e., operators Aca and Ap f a are
positive. Because 0 ≤ Pca(x, E) ≤ P(x, E) and 0 ≤ Pp f a(x, E) ≤ P(x, E) for all x ∈ X
and E ∈ Σ, the norms ‖Aca‖ ≤ ‖A‖ = 1 and ‖Ap f a‖ ≤ ‖A‖ = 1, i.e., operators are
bounded. Thus, both sub-Markov operators Aca and Ap f a are linear, bounded (continuous),
and positive, and ‖Aca‖ ≤ 1 and ‖Ap f a‖ ≤ 1.

As we have already found out,

Aca[ca(X, Σd)] ⊂ ca(X, Σd), Ap f a[ba(X, Σd)] ⊂ p f a(X, Σd).

Corollary 3. The following inclusions are true for superpositions of operators Aca and Ap f a:

1. Aca · Aca[ca(X, Σd)] ⊂ ca(X, Σd);
2. Ap f a · Ap f a[ba(X, Σd)] ⊂ p f a(X, Σd);
3. Ap f a · Aca[ba(X, Σd)] ⊂ p f a(X, Σd).

Remark 4. The operators Aca and Ap f a, generally speaking, are non-commutative, i.e., Aca · Ap f a
6= Ap f a · Aca.

4. Invariant Measures of Markov Operators

In the paper by Zhdanok ([9], Chapter I, §5, Theorem 5.3), the following statement
was proven.

Theorem 7. For any Markov chain with a Markov finitely additive kernel P(x, E) on an arbitrary
measurable space (X, Σ), an invariant probability finitely additive measure µ = Aµ ∈ Sba exists,
that is, ∆ba 6= ∅.

Earlier, a similar theorem (in the language of strategies) was proven by Ramakrish-
nan ([6], p. 8, Theorem 2) but in the special case of a discrete phase space. In our Theorem 7
given above, no restrictions on the phase space are assumed.

Now let on an arbitrary discrete space (X, Σd), Σd = 2X , a Markov chain with a Markov
finitely additive kernel P(x, E) be given. We previously identified two special “extreme”
cases. The first is when the kernel P(x, ·) is a countably additive measure for every x ∈ X.
The second is when the kernel P(x, ·) is a purely finitely additive measure for all x ∈ X.

The first case has already been considered in the previous paragraphs of this article
and studied in a number of studies by various authors.

Consider now the second special case.

Theorem 8. Let a Markov chain with a purely finitely additive kernel P(x, E) be given on an ar-
bitrary discrete space (X, Σd). Then, for the Markov operator A generated by it, an invariant
probabilistic finitely additive measure µ = Aµ ∈ Vba exists and all its invariant measures are
purely finitely additive, that is, ∆ba = ∆p f a 6= ∅ and ∆ca = ∅.
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Proof. Theorem 7 is proven for any sigma-algebra Σ subsets of X and for any Markov
finitely additive kernel. Hence, it is also true for the discrete sigma-algebra Σd = 2X and
for a purely finitely additive kernel.

Therefore, under the conditions of the present theorem, for the operator A, an invariant
probabilistic finitely additive measure µ = Aµ exists, defined on the discrete space (X, Σd).

From Theorem 6, the measure µ and all other invariant measures of the operator A are
purely finitely additive.

Definition 9. We call a finitely additive MC on an arbitrary discrete space (X, Σd) combined if its
transition function in the decomposition

P(x, E) = Pca(x, E) + Pp f a(x, E),

satisfies the conditions:

Pca(x, X) = q1, Pp f a(x, X) = q2 for all x ∈ X,

where 0 ≤ q1, q2 ≤ 1, q1 + q2 = 1.

Let the finitely additive MC be combined. Then, as shown in the comments to
Proposition 2, its Markov operator A can also be represented as the sum A = Aca + Ap f a of
its two components generated by the sub-Markov kernels Pca(x, E) and Pp f a(x, E), wherein
‖Aca‖ = q1, ‖Ap f a‖ = q2.

Definition 10. A combined MC is called non-degenerate if its decomposition from Definition 9
holds for 0 < q1, q2 < 1 and degenerate if q1 = 0 or q2 = 0.

Above, in Section 2 and in Theorem 8, we describe the existence of invariant measures
and their types for countably additive and purely finitely additive MCs. By Definition 10,
they are degenerate cases of combined MCs.

Let the MC be non-degenerate. Let us take functions

P̃ca(x, E) =
1
q1

Pca(x, E), P̃p f a(x, E) =
1
q2

Pp f a(x, E).

Then, the functions P̃ca(x, E) and P̃p f a(x, E) satisfy Definition 1 and are transition
functions (Markov kernels) of the corresponding Markov operators

Ãca =
1
q1

Aca, Ãp f a =
1
q2

Ap f a.

Therefore, the Markov operator A of the combined MC is a linear combination

A = q1 Ãca + q2 Ãp f a

for two Markov operators Ãca and Ãp f a (hence, the name of such MCs and operators
in Definition 9 is taken).

Recall that, by Theorem 7, any, including combined, finitely additive MC has an in-
variant finitely additive measure.

Theorem 9. The combined non-degenerate finitely additive MC on an arbitrary discrete space
(X, Σd) has no non-zero invariant countably additive measures, that is, ∆ca = ∅.

Proof. We carry out the proof by contradiction. Suppose that µ = Aµ ∈ Sca, i.e., the
invariant measure µ is countably additive. Then,

µ = Aµ = (Aca + Ap f a)µ = Acaµ + Ap f aµ,
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where Aca is countably additive, and Ap f a are purely finitely additive components of
the operator A. Then, Acaµ is also a countably additive measure, and Acaµ(X) = q1 > 0,
that is, the measure Acaµ is non-zero. By Theorem 6, the measureAp f aµ is purely finitely
additive and non-zero: Ap f aµ(X) = q2 > 0.

Consequently, the measure µ has a non-zero purely finitely additive component Ap f aµ
and is not countably additive. The resulting contradiction proves the theorem.

From Theorem 9, we obtain the following assertion.

Theorem 10. Let a combined non-degenerate finitely additive MC with invariant probability
finitely additive measure µ = Aµ ∈ Sba on an arbitrary discrete space (X, Σd) be given. Let
µ = µca + µp f a be its decomposition into countably additive µca and purely finitely additive µp f a
components, µca 6= 0, and µp f a 6= 0.

Then, the measures µca and µp f a are not invariant for the operator A, that is, µca 6= Aµca and
µp f a 6= Aµp f a.

Recall that by Šidak ([14], Theorem 2.5), for a MC with a countably additive kernel
in a similar decomposition of the invariant measure µ = µca + µp f a, µca = Aµca and
µp f a = Aµp f a. The difference between such MCs and combined ones turned out to be
very significant.

Let us give an example to illustrate the last two theorems.

Example 4. Consider on the segment X = [0, 1] with discrete sigma-algebra Σd a combined finitely
additive MC with kernel

P(x, E) = Pca(x, E) + Pp f a(x, E).

These components are set according to the following rules:

Pca(x, E) = 1
2 δ0(E) for all x ∈ X and E ⊂ X, where δ0 is the Dirac at point 0;

Pp f a(x, E) = 1
2 η(E) for all x ∈ X and E ⊂ X, where η is some fixed purely finitely

additive measure from Sp f a. For clarity, we take the measure η from the family of
purely finitely additive measures satisfying the condition η((0, ε)) = 1 for any ε > 0.

Moreover, Pca(x, X) = 1
2 = q1 and Pp f a(x, X) = 1

2 = q2 for all x ∈ X.
Essentially, all this means that a Markov chain in one step can move from any point

x ∈ X to point 0 with probability 1
2 and to any set E ⊂ X \ {0} with probability 1

2 η(E).
In particular, from any point x ∈ X, the system can move with probability 1

2 to the open
interval (0, ε) for every ε ∈ (0, 1). The phase portrait of such a MC with an arbitrary
ε ∈ (0, 1) is shown in the Figure 1.

Figure 1. Phase portrait of the MC from Example 4.
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Take an arbitrary (initial) finitely additive probability measure µ ∈ Sba. Then, for any
E ⊂ X, the following holds:

Aµ(E) =
∫

X
P(x, E)dµ(x) =

∫
X

Pca(x, E)dµ(x) +
∫

X
Pp f a(x, E)dµ(x)

=
1
2

∫
X

δ0(E)dµ(x) +
1
2

∫
X

η(E)dµ(x)

=
1
2

δ0(E) · µ(X) +
1
2

η(E) · µ(X) =
1
2

δ0(E) +
1
2

η(E).

Hence, Aµ = 1
2 δ0 +

1
2 η for any initial measure µ.

If µ = 1
2 δ0 +

1
2 η, then Aµ = µ.

Obviously, this is the only invariant probabilistic finitely additive measure for a given MC.
The measures µca = 1

2 δ0 and µp f a = 1
2 η are non-zero components of the measure µ,

countably additive and purely finitely additive, respectively, and µ = µca + µp f a. Thus,
Theorem 9 is confirmed. Then, also obvious is that Aµca = µ 6= µca and Aµp f a = µ 6= µp f a.
Therefore, this example also confirms Theorem 10.

In the combined non-degenerate decomposition A = Aca + Ap f a of the finitely ad-
ditive operator A, its countably additive component Aca and the purely finitely additive
component Ap f a are equal. One might suppose that Theorem 9 would also be valid for
a purely finitely additive invariant measure. However, it is not. Let us give a correspond-
ing counterexample.

Example 5. We consider a finitely additive combined MC on a discrete segment X = [0, 1] under
the same conditions as in Example 4, but with a different countably additive component of its kernel:

Pca(x, E) = 1
2 δx(E) for all x ∈ X and E ⊂ X, where δ0 is the Dirac measure at point x.

Meaningfully, this means that, in one step, the Markov system can go from any x ∈ X
to the point x, i.e., go into itself with probability 1

2 and into any set E ⊂ X \ {x} with
probability 1

2 η(E). In particular, the probability Pp f a(x, (0, ε)) = 1
2 for any ε ∈ (0, 1). The

phase portrait of such a MC with an arbitrary ε ∈ (0, 1) is shown in Figure 2.

Figure 2. Phase portrait of the MC from Example 5.

Obviously, this MC is a combined non-degenerate chain.
Let us perform integral transformations for an arbitrary initial probability measure

µ ∈ Sba, similar to the transformations in Example 4. As a result (omitting the calculations),
we have Aµ = 1

2 µ + 1
2 η. Then, we solve the equation µ = Aµ. From the last two equalities,

we obtain the only solution µ = η.
We have shown that this combined non-degenerate MC has a unique invariant finitely

additive measure η, which is purely finitely additive, i.e., has no non-zero countably
additive component.
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5. Norms of Components in the Decomposition of a Markov Sequence of Measures
and Their Asymptotic Behavior

Consider a combined non-degenerate finitely additive MC on an arbitrary discrete
space (X, Σd).

Let an arbitrary initial probability measure µ1 ∈ Sba, µ1 = µ1
ca + µ1

p f a, be given,

and µn+1 = Aµn, n ∈ N is the Markov sequence of measures generated by this initial
measure. Its decomposition is

µn+1 = µn+1
ca + µn+1

p f a .

Remark 5. The notation µn+1
ca can be interpreted in two ways: it can be a countably additive

component of the measure µn+1, i.e., (µn+1)ca, or it can be (n + 1)-th iteration of measure (µ1
ca),

i.e., (µ1
ca)

(n+1). Generally speaking, these two interpretations do not coincide. Hereafter, we mean
that µn+1

ca = (µn+1)ca and µn+1
p f a = (µn+1)p f a, for any n ∈ N.

Because the operator A is isometric in the cone of positive measures, the norms of
‖µn+1‖ = µn+1(X) = ‖µ1(X)‖ = µ1(X) = 1 for each n ∈ N.

In this section, we consider the norms of the components ‖µn+1
ca ‖ and ‖µn+1

p f a ‖
for n→ ∞.

Take the second iteration in the Markov sequence of measures µ2 = Aµ1. Let us make
the appropriate transformations:

µ2 = µ2
ca + µ2

p f a = Aµ1 = (Aca + Ap f a) (µ1
ca + µ1

p f a)

= Acaµ1
ca + Acaµ1

p f a + Ap f aµ1
ca + Ap f aµ1

p f a.
(1)

In the last four terms of the decomposition (1), the first is a countably additive measure
and the third and fourth are purely finitely additive measures (see Theorem 6).

The second term Acaµ1
p f a can be a measure of any type. Consider two corresponding

main cases: disjoint conditions (H1) and (H2).

(H1) Aca(Vp f a) ⊂ Vca,

that is, the operator Aca transforms all purely finitely additive measures from Vp f a into
countably additive measures. Markov chains satisfying this condition (H1) exist. Let us
show that the Markov chain in Example 4 has this property. In Example 4, the Markov
chain kernel has a countably additive component Pca =

1
2 δ0.

Let µ be an arbitrary purely finitely additive measure: µ ∈ Vp f a. Then, for any E ⊂ X,
the following holds:

Acaµ(E) =
∫

X
Pca(x, E)µ(dx) =

1
2

∫
X

δ0(E)µ(dx) =
1
2

δ0(E)µ(X),

i.e., Acaµ = 1
2 δ0 · µ(X), where the Dirac measure δ0 is countably additive. Therefore,

condition (H1) is satisfied in Example 4.

Theorem 11. Let condition (H1) be satisfied for a combined non-degenerate finitely additive
Markov chain on an arbitrary discrete space (X, Σd). Then, for any initial measure µ1 ∈ Sba and
for any n ∈ N,

‖µn+1
ca ‖ = µn+1

ca (X) = q1

and
‖µn+1

p f a ‖ = µn+1
p f a (X) = q2.
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Proof. Here, we carry out the proof by induction. Let n = 1. Then, by condition (H1),
the second term Acaµ1

p f a in decomposition (1) is a countably additive measure. Therefore,
due to the uniqueness of the decomposition of the Yosida–Hewitt measures, we have

µ2
ca = Acaµ1

ca + Acaµ1
p f a = Aca(µ

1
ca + µ1

p f a) = Acaµ1.

From here,
‖µ2

ca‖ = µ2
ca(X) = Acaµ1(X) = q1 · µ1(X) = q1.

Because
1 = ‖µ2‖ = µ2

ca(X) + µ2
p f a(X) = ‖µ2

ca‖+ ‖µ2
p f a‖,

then
‖µ2

p f a‖ = 1− ‖µ2
ca‖ = 1− q1 = q2.

Thus, the statement of the theorem for n = 1 is proven.
Suppose that the statement of the theorem is also true for some n ∈ N.
Let us make the decomposition similar to the decomposition (1) for µn+1 and ob-

tain the following equalities:

µn+1 = µn+1
ca + Aµn+1

p f a = Aµn = (Aca + Ap f a)(µ
n
ca + µn

p f a)

= Acaµn
ca + Acaµn

p f a + Ap f aµn
ca + Ap f aµn

p f a.
(2)

As in the decomposition (1), here, the first term is a countably additive measure,
and the third and fourth terms are purely finitely additive measures.

By condition (H1) the second term Acaµn
p f a in (2) is a countably additive measure.

Therefore, just as for the measure µ2
ca, we obtain that µn+1

ca = Acaµn. In the same way,
we have that

‖µn+1
ca ‖ = µn+1

ca (X) = Acaµn(X) = q1 · µn(X) = q1

and
‖µn+1

p f a ‖ = µn+1
p f a (X) = Ap f aµn(X) = q2 · µn(X) = q2.

Therefore, the statement of the theorem is true for any n ∈ N.

Remark 6. Norms ‖µn+1
ca ‖ and ‖µn+1

p f a ‖ in Theorem 11 are independent of the norms of the compo-

nents of the initial measure ‖µ1
ca‖ and ‖µ1

p f a‖. Additionally, this is a very interesting fact.

Corollary 4. Let the conditions of Theorem 11 be satisfied. Then, for such a Markov chain there
exist invariant finitely additive measures µ∗ = Aµ∗, µ∗ = µ∗ca + µ∗p f a, and for all such measures
for their components, the equalities are true:

‖µ∗ca‖ = µ∗ca(X) = q1, ‖µ∗p f a‖ = µ∗p f a(X) = q2.

Because Markov chains satisfying the condition (H1) are not degenerate, that is,
0 < q1, q2 < 1, they do not have invariant countably additive and invariant purely finite
additive measures.

Corollary 4 clarifies our Theorem 9 under the additional condition (H1).

Remark 7. Obviously, in Example 4, which satisfies condition (H1), the assertion of Theorem 11 is
satisfied. Added to this fact is that, for any initial measure µ1 ∈ Sba the following Markov measure
µ2 = Aµ1 coincides with the unique invariant measure µ2 = µ∗ = 1

2 δ0 +
1
2 η for the given MC. It is

not strictly possible to say that the MC from Example 4 “strongly converges” uniformly in the initial
measures µ1 to the only invariant measure µ∗, i.e., this MC has the best ergodic properties.
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We now give the second condition (H2) related to the decomposition in (1).

(H2) Aca(Vp f a) ⊂ Vp f a,

that is, the operator Aca transforms all purely finitely additive measures from Vp f a into
purely finitely additive measures. Such Markov chains exist. Let us show that the Markov
chain in Example 5 has this property.

In Example 5, Pca(x, E) = 1
2 δx(E) for all x ∈ X and E ⊂ X. We take an arbitrary

measure µ ∈ Vp f a. Then, for all E ⊂ X, the following holds:

Acaµ(E) =
∫

X
Pca(x, E)µ(dx) =

1
2

∫
X

δx(E)µ(dx) =
1
2

µ(E).

Thus, Acaµ = 1
2 · µ, where µ is a purely finitely additive measure. Thus, condition

(H2) is satisfied.

Theorem 12. Let condition (H2) be satisfied for a combined non-degenerate finitely additive
Markov chain on an arbitrary discrete space (X, Σd). Then, for any initial finitely additive measure
µ1 ∈ Sba, for any n ∈ N

‖µn+1
ca ‖ = µn+1

ca (X) = qn
1 · µ1

ca(X) = qn
1 · ‖µ1

ca‖

and
‖µn+1

p f a ‖ = µn+1
p f a (X) = 1− qn

1 · ‖µ1
ca‖.

Proof. Let us return to the decomposition (1). From condition (H2), the second term
Acaµ1

p f a in expansion (1) is a purely finitely additive measure. Therefore, due to the unique-
ness of the Yosida–Hewitt decomposition,

µ2
ca = Acaµ1

ca,
µ2

p f a = Acaµ1
p f a + Ap f aµ1

ca + Ap f aµ1
p f a = Acaµ1

p f a + Ap f aµ1. (3)

Find the norm of the measure µ2
ca in equalities (3)

‖µ2
ca‖ = µ2

ca(X) = Acaµ1
ca(X) =

∫
X

Pca(x, X)µ1
ca(dx) = q1 · µ1

ca(X) = q1 · ‖µ1
ca‖.

Because 1 = ‖µ2‖ = ‖µ2
ca‖+ ‖µ2

p f a‖, then ‖µ2
p f a‖ = 1− q1 · ‖µ1

ca‖.
From the equalities obtained for n = 1 (n + 1 = 2), making an assumption about

the general form of the norms of the components of Markov measures is still difficult.
Therefore, we now consider another case n = 2 (n + 1 = 3).

Let us make transformations for the measure µ3, similar to transformations (1) for
the measure µ2, relying on the condition (H2). As a result, we obtain equality for the measure

µ3
ca = Acaµ2

ca

and the equality for the norm of this measure

‖µ3
ca‖ = q1 · µ2

ca(X) = q2
1 · µ1

ca(X) = q2
1 · ‖µ1

ca‖.

From here,
‖µ3

p f a‖ = 1− q2
1 · ‖µ1

ca‖.

Suppose now that, for arbitrary n ∈ N, n ≥ 2 holds for measures µn
ca = Acaµn−1

ca ,
and for the norms of these measures, we have ‖µn

ca‖ = qn−1
1 · ‖µ1

ca‖.
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Then, (omitting transformations) we have

µn+1
ca = Acaµn

ca,

‖µn+1
ca ‖ = qn

1 · ‖µ1
ca‖,

‖µn+1
p f a ‖ = 1− qn

1 · ‖µ1
ca‖.

Remark 8. Unlike Theorem 11, in Theorem 12, the norms of the components ‖µn+1
ca ‖ and ‖µn+1

p f a ‖
of the measure µn+1 depend (linearly) on the norms of the components of the initial measure µ1.

Corollary 5. Let the conditions of Theorem 12 be satisfied. Then for any finitely additive initial
measure µ1 ∈ Sba for the components of the Markov sequence of measures generated by it µn+1 =
Aµn as n→ ∞,

‖µn
ca‖ → 0 and ‖µn

p f a‖ → 1.

Moreover, the convergence is uniform with respect to the initial measures µ1 ∈ Sba and
exponentially fast.

Corollary 6. Let the conditions of Theorem 12 be satisfied. Then, for such a Markov chain, all of its
invariant finitely additive measures (and such ones always exist, see Theorem 7) are purely finitely
additive, i.e., ∆ba = ∆p f a 6= ∅, ∆ca = ∅.

This statement follows from Theorem 12 or from its Corollary 5, if we take as the initial
measure µ1 its invariant measure µ∗ = Aµ∗.

Remark 9. Let us return to the MC from Example 5. The following assertions are obtained from
the properties of the MC obtained above.

Then, verifying by induction that, for any initial measure µ1 ∈ Sba and for all E ⊂ X, n ∈ N,

|µn+1(E)− η(E)| = 1
2n |µ

1(E)− η(E)|

is easy. Therefore, for each E ⊂ X, n ∈ N, for the norm of a measure equal to the total variation of
the measure, the following estimate is true:

‖µn+1 − η‖ = 1
2n ‖µ

1 − η‖ ≤ 2
2n =

1
2n−1 .

This implies that the Markov sequence of measures {µn+1} of a given MC converges strongly
(in the metric topology) to a unique invariant purely finitely additive measure η. This convergence
is uniform in all initial finitely additive (including countably additive) measures µ1 ∈ Sba. In this
case, the convergence is exponentially quickly. Thus, the MC in Example 5 is ergodic.

Remark 10. In the previous Remark 9, we talked about the limiting behavior of Markov sequences
of measures, not their Cesaro means. Such an increase in the type of convergence of measures is due
to the fact that the MC from Example 5 does not have cycles of measures.

The article by Zhdanok [22] was devoted to cycles of finitely additive measures. MCs with
countably additive transition probability were considered with the Markov operator A extended to
the space of finitely additive measures.

The conditions (H1) and (H2) are of an understandable qualitative character, but they
are difficult to verify for specific MCs. Thus, finding simple analogues of these conditions
in terms of the properties of the transition functions considered by the MC is desirable.
We offer two such conditions. Here, we present the first of them: the (G1) condition.
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(G1)

{
There is a finite set D ⊂ X such that for all x ∈ X :
Pca(x, D) = Pca(x, X) = q1, which is equivalent to Pca(x, X \ D) = 0.

We still consider an arbitrary discrete phase space and finitely additive combined
non-degenerate MCs defined on it.

Theorem 13. Let condition (G1) be satisfied for some MC. Then,

1. the condition (H1) is satisfied, and
2. the assertion of Theorem 11 is true.

Proof. Let µ ∈ Vp f a, µ 6= 0, i.e., the measure µ be purely finitely additive, and the measure
η = Acaµ. Let condition (G1) be satisfied. Then,

η(D) = Acaµ(D) =
∫

X
Pca(x, D)µ(dx) =

∫
X

q1µ(dx) = q1µ(X) > 0.

Similarly, we obtain η(X \ D) = 0 and η(X) = η(D).
The finitely additive measure η = Acaµ is concentrated on a finite set D. Therefore, it is

formally countably additive on D and on the whole space X. This means that η = Acaµ ∈ Vca.
Condition (H1) is satisfied, i.e., (G1)⇒ (H1), and the assertion of Theorem 11 is true.

Consider one more condition (G2) on the transition function of the MC. For an arbitrary
y ∈ X, we denote the set Qy = {x ∈ X : P(x, {y}) > 0}.

(G2) For any y ∈ X the set Qy is empty or finite.

Theorem 14. Let condition (G2) be satisfied for some MC. Then,

1. the condition (H2) is satisfied, and
2. the assertion of Theorem 12 is true.

Proof. Let µ ∈ Vp f a, µ 6= 0, i.e., the measure µ be purely finitely additive, and η = Acaµ.
Then, for any y ∈ X, the following holds

η({y}) = Acaµ({y}) =
∫

X Pca(x, {y}) µ(dx) =∫
Qy

Pca(x, {y})µ(dx) +
∫

X\Qy
Pca(x, {y})µ(dx).

Because a purely finitely additive measure is equal to zero on any finite set, then
µ(Qy) = 0, and the first integral in the expansion above is equal to zero.

By condition (G2) the function Pca(x, {y}) is equal to zero for all x ∈ X \Qy. Conse-
quently, the second integral in this expansion is equal to zero. This implies that η({y}) = 0.
Then, the measure η is purely finitely additive by our Theorem 4, Condition (H2) is satisfied,
and the assertion of Theorem 12 is true.

Remark 11. Let us show that the MC in Example 4 satisfies the condition (G1). Recall that
the countably additive component Pca(x, E) of the MC transition function in Example 4 has
the following form:

Pca(x, E) = 1
2 δ0(E) for all x ∈ X and E ⊂ X, where δ0 is the Dirac measure at point 0.

Take a finite set D = {0}. Then,

Pca(x, D) =
1
2

δ0(D) =
1
2
= q1, Pca(x, X \ D) = 0 for all x ∈ X.

Thus, condition (G1) is fulfilled.
We showed above that the MC in Example 4 also satisfies condition (H1).
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Let us now return to Example 5, in which the countably additive component of the transition
function is given by the following rule: Pca(x, E) = 1

2 δx(E) for all x ∈ X and E ⊂ X, where δ0 is
the Dirac measure at point x.

Obviously, any point y ∈ X = [0, 1] can be reached in one step only from itself with probability
1
2 . Hence, Qy = {x ∈ X : P(x, {y}) > 0} = {y}. This set is finite for any y ∈ X. Thus, condition
(G2) is satisfied.

Above, we directly showed (without using Theorem 14) that, in Example 5, condition (H2)
also holds.

6. Conclusions

Work on the theory of finitely additive Markov chains quite naturally appeared
in the general theory of random processes and in the economic game theory. Ramakr-
ishnan’s pioneering work laid the foundations for such a theory. The main condition
in this work is that the transition probability of Markov chains can only be finitely additive.
However, the structures he created or used (strategies) are quite complex. They require
readers to have a broad outlook in several areas of mathematics.

The authors of this article have been working on problems with using finitely additive
measures to study the properties of general Markov chains for a long time. However,
attention was primarily paid to classical Markov chains with countably additive transition
probability. In this case, finitely additive measures appeared as a result of the extension of
Markov operators from the space of countably additive measures to the space of finitely
additive measures. All of these studies were carried out within the framework of the opera-
tor treatment.

We have seen that combining the problems of the theory of finitely additive Markov
chains and the methods we are developing for studying general Markov chains is possible.
The result is the present work. Its feature is the absence of concepts and methods of game
theory and the apparatus of random variables generated by finitely additive measures.
We used the language and methods of classical functional analyses available to a wider
readership, and some of our results have a simple proof. However, they provide a basic
platform for possible future research conducted by other authors in this direction. In
particular, the ergodic properties of finitely additive Markov chains can be considered.
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