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Abstract: The ultimate goal of semantic web (SW) is to implement mutual collaborations among
ontology-based intelligent systems. To this end, it is necessary to integrate those domain-independent
and cross-domain ontologies by finding the correspondences between their entities, which is the
so-called ontology matching. To improve the quality of ontology alignment, in this work, the ontology
matching problem is first defined as a sparse multi-objective optimization problem (SMOOP), and
then, a multi-objective evolutionary algorithm with a relevance matrix (MOEA-RM) is proposed to
address it. In particular, a relevance matrix (RM) is presented to adaptively measure the relevance of
each individual’s genes to the objectives, which is applied in MOEA’s initialization, crossover and
mutation to ensure the population’s sparsity and to speed up the the algorithm’s convergence. The
experiment verifies the performance of MOEA-RM by comparing it with the state-of-the-art ontology
matching techniques, and the experimental results show that MOEA-RM is able to effectively address
the ontology matching problem with different heterogeneity characteristics.

Keywords: ontology matching; sparse multi-objective optimization problem; multi-objective
evolutionary algorithm; relevance matrix

MSC: 68T30, 68W50

1. Introduction

Ontology provides a standard and shared representation on domain knowledge,
which is regarded as the solution for the data heterogeneity problem [1]. With the devel-
opment of semantic web (SW) [2,3], more and more ontology-based intelligent systems
for E-learning [4], personalized search and browsing [5], and collaborative molecular bi-
ology [6] have been developed, which require mutual collaborations to enhance their
intelligent behaviors. To this end, it is necessary to find the entity mappings between their
ontologies, which is the so-called ontology matching [7]. Essentially, matching two ontolo-
gies aims to find a mapping matrix (MM), which describes an alignment through setting
rows and columns as two ontologies’ entities, respectively, and elements as 1 denotes that
two corresponding entities are mapped, otherwise not. Table 1 shows an example of MM,
where O1 and O2 are two ontologies, and O1.Article and O2.Paper respectively denote the
concepts “Article” and “Paper” in O1 and O2. Since the entities’ scale could be very large,
most of the MM elements are zero (i.e., it is a sparse matrix), and to determine an optimal
MM is essentially a sparse optimization problem [8].
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Table 1. An example of mapping matrix.

O2.Article O2.Person O2.Evaluation O2.Neutral O2.Positive O2.Negative

O1.Author 0 1 0 0 0 0

O1.Paper 1 0 0 0 0 0

O1.Accept 0 0 0 0 1 0

O1.Reject 0 0 0 0 0 1

O1.Topic 0 0 0 0 0 0

O1.Organization 0 0 0 0 0 0

Recently, the evolutionary algorithm (EA) has become a popular method of address-
ing ontology matching problem [9], but the existing single-objective EA makes use of
f-measure [10] to evaluate the MM quality, which yields the bias improvement on the
solutions, i.e., the solution might sacrifice one of the objectives to improve the other one.
To ensure the unanimous improvements on these two metrics, in this work, the ontology
matching problem is defined as a sparse multi-objective optimization problem (SMOOP),
and a multi-objective evolutionary algorithm with relevance matrix (MOEA-RM) is pro-
posed to address it. The traditional MOEA performance usually degenerates when address-
ing SMOOP since the searching space grows exponentially with the increasing number of
decision variables [11,12]. To face this challenge, various strategies have been proposed in
the past decades, such as decision variable grouping [13], decision variable analysis [14]
and special initialization and evolutionary operators [15–17]. However, it is still difficult
to maintain the sparsity of the population, and the algorithm always converges slowly.
To overcome these drawbacks, MOEA-RM first introduces a relevance matrix (RM) to
adaptively measure each gene or correspondence’s relevance to the objective, which is
then used to initialize the population to ensure the population’s sparsity, and improve
the algorithm’s converging speed as well as the sparsity of generated individuals when
executing the crossover and mutation operators. In particular, this work’s contributions are
as follows:

• The multi-objective ontology matching problem is formally defined;
• A MOEA-RM is presented to address the ontology matching problem, which uses

RM-based initialization, crossover and mutation to adaptively maintain population’s
diversity and improve the algorithm’s converging speed;

• The proposed MOEA-RM is employed on 39 different ontology matching tasks, and the
experimental results show its effectiveness.

The rest of this paper is organized as follows: Section 2 overviews the existing MOEAs
for addressing the ontology matching problem; Section 3 provides the preliminary back-
ground knowledge and defines the problem investigated; Section 4 presents the RM-based
MOEA, and Section 5 shows the experimental results; finally, Section 6 concludes this work
and points out the future work.

2. Related Work

Comparing with the popular artificial intelligence techniques, such as neural net-
work [18–21], data mining [22,23], etc., the evolutionary improvement on alignment’s
quality is able to better refine their quality. In recent years, various MOEA-based ontology
matching techniques have been proposed. To trade off the alignment’s completeness and
correctness, Xue et al. propose a NSGA-II [24] and MOEA/D [25] to tune the matching
systems’ parameters. These MOEA based matching techniques are able to provide different
Pareto solutions for decision makers. Acampora et al. also use NSGA-II to optimize the
alignment’s quality [26], and they further make comparisons among different MOEA-based
matching techniques’ searching performance results [27]. To face the challenge of a large-
scale ontology matching problem, Xue et al. present a general framework of MOEA-based
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large-scale matching technique, which first divides two ontologies into several similar
segments, and then use MOEA to match them separately. After that, to ensure the diversity
of population, they use an adatively strategy to guide the algorithm’s search direction [28].
They also try to reduce the MOEA’s computational complexity by using the compact en-
coding mechanism, which is able to address the ternary compound ontology matching
problem [29], where an entity correspondence might consist of more than two entities.
To enhance the converging speed, Lv et al. [30] get an expert involved in MOEA’s evolving
process, and make use of his knowledge to improve the alignment’s quality. The interactive
MOEA is also used to match the sensor ontology on the internet of things [31].

The existing MOEA-based ontology matching techniques model the ontology match-
ing process as a continuous optimization problem. However, they need to construct
several similarity matrices to maintain the candidate entity mappings’ similarity values,
which requires huge computational complexity. To overcome this drawback, in this work,
the ontology matching is defined as a 0–1 integer optimization problem, and considering
its characteristics of sparsity, a RM is proposed to adaptively maintain the population’s
sparsity and guide the algorithm’s searching direction.

3. Ontology Matching Problem

An ontology consists of the classes that define the domain concepts, the datatype
properties that describe the class’s feature, and the object properties that present the rela-
tionships between classes [32,33]. Different ontologies might define an entity in different
ways, yielding the heterogeneity problem. To address this issue, it is necessary to find the
heterogeneous entity correspondences in automatic or semi-automatic ways. The found
correspondences between the entities are called ontology alignment, where each corre-
spondence mainly consists of two entities, the relationships (typically equivalence ≡) and
their similarity value. The similarity value of two entities is an important metric that mea-
sures whether they are similar or not, which is typically calculated through the similarity
measure [34].

To measure the quality of an alignment, the classic metrics are recall, precision and
f-measure [10]. However, these metrics require using the reference alignment, which is not
always available in practical matching tasks. To this end, this work uses the approximate
metrics, i.e., MatchCoverage and Frequency [35], which respectively estimate an align-
ment’s recall and precision. To be specific, given two ontologies O1 and O2, their alignment
A’s MatchCoverage and Frequency are respectively defined as follows:

MatchCoverage(A) =
|MatchedEntityO1 |+ |MatchedEntityO2 |

|O1|+ |O2|
(1)

Frequency(A) =
2×∑ simi

|MatchedEntityO1 |+ |MatchedEntityO2 |
(2)

where |MatchedEntityO1 |, |MatchedEntityO2 | are respectively the cardinality of the matched
entity sets in O1 and O2, |A| is the number of correspondences in A, and simi is the i-th
correspondence’s similarity value.

Given an alignment A, the ontology matching problem is defined in Equation (3):
max f (M) = (MatchCoverage(M), Frequency(M))

s.t. M|C1|×|C2|
mij ∈ {0, 1}, i = 1, 2, · · · , |C1|, j = 1, 2, · · · , |C2|

(3)

where |C1| and |C2| are the number of concepts in ontologies O1 and O2, the decision vari-
able is the MM M|C1|×|C2|, and the two objectives are to maximize the MM corresponding
alignment’s MatchCoverage and Frequency.
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4. Multi-Objective Evolutionary Algorithm with Relevance Matrix

Before executing the matching process, the entities, such as class, datatype property
and object property, are extracted from two ontologies. Their names are pre-processed
through tokenization and stemming, which are then used to construct the entity similarity
matrix for evaluating the individual’s fitness value. In particular, the similarity matrix’s
rows and columns are respectively two ontologies’ entities, and the elements are the
corresponding entities’ similarity value. After that, the ontology alignment is optimized
through MOEA-RM, whose framework is presented in Algorithm 1.

Algorithm 1 The framework of multi-objective evolutionary algorithm with relevance matrix

Initialization(P);
Non-dominated_Sort(P);
while Terminating condition is not met do

Update(RM);
Generate P′ via RM based operators;
Non-dominated_Sort(P

⋃
P′);

Select_Next_Generation(P
⋃

P′);
Non-dominated_Sort(P);

end while

The MOEA-RM framework is similar to that of NSGA-II, while the novelties lie in the
RM maintenance in each generation and RM-based evolutionary operators. This work uses
MM to encode an individual, which is described in Table 1. A RM is a statistical matrix
with exactly the same number of rows and columns as MM, which reflects the current
generation’s Pareto front (PF) gene distribution. In each generation, we sum all the PF
solution’s corresponding MMs to obtain RM, which is defined as follows:

RMi,j = ∑
k

MMk
i,j (4)

where MMk
i,j is the k-th MM’s i-th row and j-th column element’s value. The higher value

of a RM’s element means more gene bits in the current population’s PF solutions have
chosen corresponding entity pairs, which can be utilized to guide the algorithm in either
speeding up the converging speed or enhancing the population’s diversity. In the following,
we respectively describe RM-based initialization and RM-based evolutionary operators.

4.1. Initialization

Given two ontologies O1 and O2, the population P with size N, a RM RM|O1|×|O2|,
an individual ind is initialized according to Algorithm 2.

Here, we first randomly initialize the population with uniform probability, and then
all MMs are summed up to obtain a RM for initialization. After that, for each individual’s
element, we randomly pick up one other element with the same value in this MM to
compare the corresponding RM values. If the former’s RM value is bigger, i.e., more
individuals have chosen this gene bit as 1, we change the MM value from 1 to 0; otherwise,
the value is changed from 0 to 1.
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Algorithm 2 Initialization

for k = 0; k < N; k++ do
for i = 0; i < |O1|; i++ do

for j = 0; j < |O2|; j++ do
MMk

i,j = rand{0, 1};
end for

end for
end for
update RM with P;
for k = 0; k < N; k++ do

for i = 0; i < |O1|; i++ do
for j = 0; j < |O2|; j++ do

if MMk
i,j == 1 then

Randomly select MMk
i′ ,j′ with value 1;

if RMi,j > RMi′, j′ then
RMi,j = 0;

end if
end if
if MMk

i,j == 0 then

Randomly select MMk
i′ ,j′ with value 0;

if RMi,j < RMi′, j′ then
RMi,j = 1;

end if
end if

end for
end for

end for

4.2. Relevance Matrix Based Evolutionary Operator

We use RM to execute the crossover and mutation to adaptively trade off the algo-
rithm’s convergence and divergence, whose pseudo-codes are shown in Algorithm 3.

During the crossover, the offspring individual z is set the same as one of its parent
solutions, assuming p. Then, for each different gene in p and q, we need to first decide
whether the current evolutionary strategy is focused on convergence or diversity by the
parameter θ. Assuming it is the former, and we compare the RM corresponding element
RMi,j with randomly selected element RMi′ ,j′ . If RMi,j is larger, we set zi,j as 1, otherwise
as 0. When it is the latter, if RMi,j is larger, we set zi,j as 0, otherwise as 1. With respect to
the mutation, we first judge whether this gene bit should execute the mutation according
to the mutation rate pm. If it is so, we need to further judge whether the current evolution-
ary strategy should prefer convergence or diversity by the parameter θ. The rest of the
operations are similar to those in the crossover.

In particular, the parameter θ ∈ [0, 1] controls the algorithm’s preference on conver-
gence; we update it in each generation and adaptively trade off the algorithm’s exploration
and exploitation. In the early stage, θ should be small to ensure the population’s diversity,
while in the late stage, it should be large to speed up the algorithm’s convergence. On this
basis, given current generation Gen and the maximum generation MaxGen, θ is updated
as follows:

θGen =
Gen

MaxGen
(5)
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Algorithm 3 Relevance matrix-based crossover and mutation

********** Crossover **********
[p, q] = randomly select two parents from the population;
z = p; //Initialize the offspring individual z;
for i = 0; i < p.|O1|; i++ do

for j = 0; j < p.|O2|; j++ do
if pi,j! = qi,j then

if rand(0,1) < θ then
//Enhance the convergence
if RMi,j > RMi′ ,j′ then

zi,j = 1;
else

zi,j = 0;
end if

else
//Enhance the Diversity
if RMi,j > RMi′ ,j′ then

zi,j = 0;
else

zi,j = 1;
end if

end if
end if

end for
end for
********** Mutation **********
for k = 0; k < N; k++ do

for i = 0; i < |O1|; i++ do
for j = 0; j < |O2|; j++ do

if rand(0,1)<pm then
if rand(0,1)<θ then

//Enhance the convergence
if RMi,j > RMi′ ,j′ then

MMp
i,j = 1;

else
MMp

i,j = 0;
end if

else
//Enhance the diversity
if RMi,j > RMi′ ,j′ then

MMp
i,j = 0;

else
MMp

i,j = 1;
end if

end if
end if

end for
end for

end for

5. Experiment
5.1. Experimental Setup

We use the Ontology Alignment Evaluation Initiative (OAEI) benchmark track (http:
//oaei.ontologymatching.org/2008/benchmark (accessed on 14 June 2022)) and conference
track (http://oaei.ontologymatching.org/2020/conference (accessed on 14 June 2022)) to

http://oaei.ontologymatching.org/2008/benchmark
http://oaei.ontologymatching.org/2008/benchmark
http://oaei.ontologymatching.org/2020/conference
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test the MOEA-RM performance on schema-level matching tasks. The benchmark track
requires matching two bibliographic ontologies, and the target ontology’s entity names
could be random strings or synonyms; the hierarchy could be expanded or flattened; the
properties could be suppressed; and the classes could be refined by several sub-classes or
flattened. The conference track requires matching 16 different ontologies on the conference
organization, which have been used in some actual conference series and the corresponding
conference web sites. Figures 1 and 2 show the examples of testing cases from the OAEI
benchmark track and conference track, respectively.

Figure 1. A segment of testing case from OAEI benchmark track.

Figure 2. A segment of testing case from OAEI conference track.

We compare MOEA-RM with EA [36], NSGA-II [26] and OAEI participants [37].
We use the profile-based similarity measure [38] to distinguish heterogeneous entities,
and MOEA-RM’s parameter setting is as follows: the population size N = 80, the maximum
generation MaxGen = 2000 and the mutation rate pm = 0.02, and the EA and NSGA-II
configurations are referred to in their literature. The EA, NSGA-II and MOEA-RM results
are the average of 30 independent runs, and the OAEI participants’ results are from the
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OAEI official web site (http://oaei.ontologymatching.org (accessed on 14 June 2022)).
In this work, we select the solution with the best f-measure from PF as the algorithm’s
output, and Tables 2 and 3 respectively compare MOEA-RM with EA, NSGA-II and OAEI
participants on the OAEI benchmark and conference tracks in terms of recall, precision
and f-measure.

Table 2. Comparison in terms of recall and precision. The symbols r and p respectively denote recall
and precision.

OAEI’s Benchmark Track

Testing Case
AMLC [39] LogMap [40] LogMapLt [40] XMap [41] EA NSGA-II MOEA-RM

r (p) r (p) r (p) r (p) r (p) r (p) r (p)

101 1.00 (1.00) 0.88 (0.96) 0.78 (0.64) 0.93 (1.00) 0.78 (0.84) 1.00 (1.00) 1.00 (1.00)
202 0.80 (0.92) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.72 (0.87) 0.80 (0.91) 0.95 (0.95)
221 0.49 (0.53) 0.87 (0.98) 0.76 (0.69) 0.95 (1.00) 0.87 (0.87) 0.97 (0.92) 1.00 (1.00)
222 0.71 (0.32) 0.00 (0.00) 0.76 (0.69) 0.80 (0.75) 0.78 (0.85) 0.97 (0.92) 1.00 (1.00)
223 0.40 (0.62) 0.90 (0.98) 0.76 (0.69) 0.98 (0.96) 0.87 (0.87) 0.86 (0.95) 1.00 (1.00)
224 0.58 (0.45) 0.90 (0.98) 0.82 (0.98) 0.98 (0.96) 0.94 (0.85) 0.86 (0.95) 1.00 (1.00)
225 0.51 (0.52) 0.92 (0.97) 0.76 (0.69) 0.98 (0.96) 0.78 (0.85) 0.82 (0.87) 1.00 (1.00)
228 1.00 (1.00) 0.92 (0.97) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
232 0.51 (0.52) 0.87 (0.98) 0.88 (0.93) 0.98 (0.96) 0.81 (0.95) 0.86 (0.95) 1.00 (1.00)
233 1.00 (1.00) 0.92 (0.97) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
236 1.00 (1.00) 0.92 (0.97) 0.72 (0.87) 1.00 (1.00) 0.82 (0.88) 0.92 (0.92) 1.00 (1.00)
237 0.42 (0.58) 0.00 (0.00) 0.88 (0.93) 0.80 (0.75) 0.87 (0.80) 0.82 (0.87) 0.93 (0.98)
238 0.51 (0.52) 0.96 (0.93) 0.88 (0.93) 0.98 (0.96) 0.82 (0.92) 0.86 (0.95) 1.00 (1.00)
239 1.00 (1.00) 0.91 (0.93) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
240 1.00 (1.00) 0.91 (0.93) 0.58 (0.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
241 1.00 (1.00) 0.91 (0.93) 0.72 (0.87) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
246 1.00 (1.00) 0.88 (0.96) 0.72 (0.87) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
247 1.00 (1.00) 0.88 (0.96) 0.72 (0.87) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

average 0.77 (0.77) 0.75 (0.80) 0.69 (0.68) 0.91 (0.90) 0.89 (0.91) 0.93 (0.95) 0.99 (0.99)

OAEI’s Conference Track

Testing Case
AMLC LogMap LogMapLt XMap EA NSGA-II MOEA-RM

r (p) r (p) r (p) r (p) r (p) r (p) r (p)

cmt-conference 0.53 (0.67) 0.53 (0.73) 0.33 (0.56) 0.00 (0.00) 0.68 (0.76) 0.68 (0.76) 0.83 (0.86)
cmt-confOf 0.56 (0.90) 0.31 (0.83) 0.38 (0.67) 0.44 (0.88) 0.65 (0.68) 0.65 (0.68) 0.75 (0.81)

cmt-edas 0.77 (0.91) 0.62 (0.89) 0.62 (0.73) 0.69 (0.75) 0.65 (0.72) 0.68 (0.76) 0.80 (0.86)
cmt-ekaw 0.55 (0.75) 0.55 (0.75) 0.45 (0.56) 0.64 (0.70) 0.65 (0.68) 0.65 (0.68) 0.82 (0.89)
cmt-iasted 1.00 (0.80) 0.84 (0.80) 0.90 (0.89) 0.93 (0.80) 0.75 (0.89) 0.83 (0.87) 0.91 (0.94)
cmt-sigkdd 0.92 (0.92) 0.88 (0.95) 0.67 (0.89) 0.83 (0.91) 0.75 (0.75) 0.87 (0.90) 0.95 (0.95)

conference-confOf 0.87 (0.87) 0.73 (0.85) 0.60 (0.90) 0.80 (0.71) 0.78 (0.67) 0.80 (0.88) 0.88 (0.87)
conference-edas 0.65 (0.73) 0.65 (0.85) 0.53 (0.75) 0.65 (0.79) 0.78 (0.67) 0.68 (0.78) 0.86 (0.85)
conference-ekaw 0.72 (0.78) 0.48 (0.60) 0.32 (0.62) 0.60 (0.58) 0.74 (0.66) 0.70 (0.78) 0.84 (0.85)
conference-iasted 0.36 (0.83) 0.50 (0.88) 0.29 (0.80) 0.36 (0.62) 0.68 (0.52) 0.75 (0.60) 0.75 (0.74)
conference-sigkdd 0.73 (0.85) 0.73 (0.85) 0.53 (0.80) 0.60 (0.58) 0.75 (0.75) 0.75 (0.75) 0.92 (0.85)

confOf-edas 0.58 (0.92) 0.53 (0.77) 0.58 (0.58) 0.53 (0.91) 0.65 (0.72) 0.65 (0.72) 0.71 (0.76)
confOf-ekaw 0.80 (0.94) 0.70 (0.93) 0.50 (0.77) 0.80 (0.76) 0.88 (0.75) 0.88 (0.75) 0.85 (0.90)
confOf-iasted 0.44 (0.80) 0.54 (0.89) 0.54 (0.90) 0.67 (0.43) 0.62 (0.51) 0.69 (0.51) 0.72 (0.78)
confOf-sigkdd 0.88 (0.95) 0.81 (0.90) 0.68 (0.88) 0.57 (0.80) 0.88 (0.73) 0.89 (0.78) 0.93 (0.95)

edas-ekaw 0.48 (0.79) 0.52 (0.75) 0.43 (0.59) 0.52 (0.75) 0.65 (0.68) 0.65 (0.68) 0.84 (0.75)
edas-iasted 0.47 (0.82) 0.37 (0.88) 0.37 (0.88) 0.42 (0.57) 0.63 (0.57) 0.62 (0.82) 0.70 (0.85)
edas-sigkdd 0.75 (0.84) 0.47 (0.88) 0.47 (0.88) 0.62 (0.81) 0.75 (0.75) 0.68 (0.76) 0.78 (0.82)
ekaw-iasted 0.70 (0.84) 0.70 (0.78) 0.60 (0.60) 0.70 (0.58) 0.68 (0.76) 0.82 (0.74) 0.80 (0.80)
ekaw-sigkdd 0.73 (0.80) 0.70 (0.78) 0.70 (0.78) 0.64 (0.78) 0.78 (0.67) 0.70 (0.81) 0.75 (0.82)
iasted-sigkdd 0.87 (0.81) 0.88 (0.82) 0.73 (0.73) 0.87 (0.68) 0.76 (0.75) 0.80 (0.85) 0.85 (0.86)

average 0.68 (0.83) 0.62 (0.82) 0.53 (0.75) 0.61 (0.68) 0.70 (0.69) 0.73 (0.55) 0.82 (0.84)

http://oaei.ontologymatching.org
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Table 3. Comparison in terms of f-measure.

OAEI’s Benchmark Track

Testing Case AMLC LogMap LogMapLt XMap EA NSGA-II MOEA-RM

101 1.00 0.95 0.71 0.97 0.81 1.00 1.00
202 0.86 0.00 0.00 0.00 0.79 0.85 0.95
221 0.51 0.94 0.72 0.97 0.87 0.95 1.00
222 0.50 0.00 0.72 0.78 0.82 0.95 1.00
223 0.51 0.94 0.72 0.97 0.87 0.90 1.00
224 0.51 0.94 0.90 0.97 0.90 0.90 1.00
225 0.51 0.95 0.72 0.97 0.82 0.85 1.00
228 1.00 0.92 0.48 1.00 1.00 1.00 1.00
232 0.51 0.94 0.90 0.97 0.88 0.90 1.00
233 1.00 0.92 0.48 1.00 1.00 1.00 1.00
236 1.00 0.92 0.80 1.00 0.85 0.92 1.00
237 0.50 0.00 0.91 0.78 0.84 0.85 0.95
238 0.51 0.95 0.90 0.97 0.87 0.90 1.00
239 1.00 0.92 0.48 1.00 1.00 1.00 1.00
240 1.00 0.92 0.48 1.00 1.00 1.00 1.00
241 1.00 0.92 0.80 1.00 1.00 1.00 1.00
246 1.00 0.92 0.80 1.00 1.00 1.00 1.00
247 1.00 0.92 0.80 1.00 1.00 1.00 1.00

average 0.77 0.78 0.68 0.91 0.91 0.94 0.99

OAEI’s Conference Track

Testing Case AMLC LogMap LogMapLt XMap EA NSGA-II MOEA-RM

cmt-conference 0.59 0.62 0.42 0.00 0.72 0.72 0.84
cmt-confOf 0.69 0.45 0.48 0.58 0.66 0.66 0.78

cmt-edas 0.83 0.73 0.67 0.72 0.68 0.72 0.83
cmt-ekaw 0.63 0.63 0.50 0.67 0.68 0.72 0.85
cmt-iasted 0.89 0.89 0.89 0.89 0.82 0.85 0.92
cmt-sigkdd 0.92 0.91 0.76 0.87 0.75 0.89 0.95

conference-confOf 0.87 0.79 0.72 0.75 0.78 0.83 0.87
conference-edas 0.69 0.73 0.62 0.71 0.73 0.73 0.82
conference-ekaw 0.75 0.53 0.42 0.59 0.70 0.74 0.86
conference-iasted 0.50 0.64 0.42 0.45 0.59 0.68 0.74
conference-sigkdd 0.79 0.79 0.64 0.69 0.75 0.75 0.83

confOf-edas 0.71 0.62 0.58 0.67 0.68 0.68 0.79
confOf-ekaw 0.86 0.80 0.61 0.78 0.82 0.82 0.88
confOf-iasted 0.57 0.62 0.62 0.52 0.58 0.60 0.75
confOf-sigkdd 0.92 0.83 0.73 0.67 0.80 0.85 0.94

edas-ekaw 0.59 0.62 0.50 0.62 0.66 0.62 0.70
edas-iasted 0.60 0.52 0.52 0.48 0.60 0.66 0.77
edas-sigkdd 0.80 0.61 0.61 0.64 0.75 0.72 0.80
ekaw-iasted 0.78 0.74 0.60 0.64 0.72 0.78 0.80
ekaw-sigkdd 0.76 0.74 0.74 0.70 0.73 0.76 0.78
iasted-sigkdd 0.84 0.85 0.73 0.76 0.76 0.82 0.85

average 0.74 0.70 0.61 0.64 0.71 0.74 0.83

5.2. Experimental Results

As shown in Tables 2 and 3, MOEA-based matching technique’s results are generally
better than single-objective EA since MOEA can overcome the negative impact brought
by the bias improvement on solutions. With the introduction of RM, MOEA-RM is able
to effectively search for more potential feasible regions, which is of help to overcome the
NSGA-II premature convergence. Thus, MOEA-RM outperforms NSGA-II on all testing
cases. Since MOEA-RM takes into consideration more similarity measures to distinguish
the heterogeneous entities, its precision value is generally high, and with the help of its
powerful searching ability, the MOEA-RM recall values are also high on all testing cases.
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Comparing with the state-of-the-art ontology matching systems (AMLC aggregates various
matchers’ alignments through a pre-defined framework, LogMap uses a reasoning-based
matching strategy to improve the alignment’s quality, and XMap utilizes the structural
approach to determine the final alignment), the MOEA-RM average recall, precision and
f-measure values are the highest, which shows that the mechanism of iteratively refining
the alignment is able to determine high-quality ontology alignments. To conclude, the
MOEA-RM-based ontology matching technique is able to effectively match ontologies with
different heterogeneous characteristics.

6. Conclusions and Future Work

Matching ontologies is critical to SW development, and to determine the high-quality
ontology alignment, this work models the ontology matching problem as a SMOOP, and pro-
poses a MOEA-RM to adaptively measure each gene or correspondence’s relevance to the
objectives to effectively address it. To maintain the population’s diversity and overcome
the algorithm’s premature convergence, MOEA-RM uses RM to adaptively measure each
gene or correspondence’s relevance to the objective, which is then used to initialize the
population to ensure the population’s sparsity, and guide the crossover and mutation
operators. The experiment uses the OAEI benchmark and conference tracks to test the
MOEA-RM performance, and the experimental results show that our approach is able to
effectively match the ontologies with various heterogeneous characteristics.

In the future, we are interested in using MOEA-RM to determine m:n correspondences,
which is more challenging in terms of complicate semantics and high computational cost.
Additionally, the similarity measure should be improved to distinguish the complex style
of correspondences, and the corresponding semantic reasoning techniques could be of help
to achieve high precision value. Last but not least, the evolutionary operators could also be
improved to enhance the algorithm’s efficiency.
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