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1. Introduction

In 1695, fractional calculus was presented as a major field of mathematics. It happened
approximately simultaneously with the development of classical calculus. Researchers have
discovered that fractional calculus may accurately portray a range of nonlocal phenomena
in the fields of natural science and technology, and the notion of fractional calculus has
recently been successfully applied to a variety of sectors. The most common fields of
fractional calculus are rheology, dynamical cycles in identity and heterogeneous structures,
diffusive transport equivalent to dispersion, liquid stream, optics, viscoelasticity, and others.
As diagnostic arrangements can be tough to come by in many fields, the successful use
of fractional systems has prompted many investigators to reconsider their mathematical
estimation methods. In [1-13], readers can find some interesting conclusions related to
fractional dynamical systems and research articles related to fractional differential systems
theory. In particular, partial neutral structures with or without delays serve as a summary
affiliation of a large number of partial neutral structures that emerge in problems involving
heat flow in ingredients, viscoelasticity, and a range of natural phenomena. Furthermore,
the most successful neutral structures have received much interest in the present population,
with readers able to review books [8,10-12,14,15] and research papers [16-18].

Throughout the past decade, fractional calculus has been one of the most important
frameworks for analysing brief operations. Such models pique the interests of architects,
scientists, and pure mathematicians alike. The most essential of these models are fractional
equations with fractional-order derivatives. Furthermore, in [15,19-21] there is focus on
qualitative behaviours such as fractional dynamical systems, stability, existence, and con-
trollability. In practical use, since stochastic fluctuation is unavoidable, we must investigate
deterministic problems for stochastic differential equations [22,23]. Due to their applica-
bility in several disciplines of science and engineering, stochastic differential equations
have piqued people’s curiosity. Furthermore, it should be noted that in nature, even in
artificial systems, noise or stochastic discomfort cannot be prohibited. Stochastic differential
systems have sparked interest as a result of their wide application in presenting a variety of
sophisticated dynamical systems in scientific, physical, and pharmaceutical domains; one
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can check [24-26]. Differential inclusion tools make it easier to study numerical solutions
that have kinematics that are not even solely governed by the system’s state.

Other fractional-order derivatives, such as the R-L derivatives and Caputo fractional
derivatives, were started by Hilfer [27-33]. Furthermore, theoretical simulations of ther-
moelastic in crystal compounds, chemical processing, rheological constitutive modelling,
engineering, and other domains have uncovered the usefulness and applicability of the
Hilfer fractional derivative. Gu and Trujillo [34] recently employed a noncompact measure
approach and a fixed point technique to show that there is an integral solution to the
Hilfer fractional derivative evolution problem. To designate the derivative’s order, they
developed the latest variable, u € [0,1], as well as a fractional variable, A, so that 1 = 0
provides the R-L derivative and A = 1 yields the Caputo derivative. Hilfer fractional
calculus [7,25,34-36] has been the subject of several articles. In [37-40], researchers revealed
the existence of a mild solution for HF differential systems via almost sectorial operators
applying a fixed point approach. In [41-43], the authors explored the solvability and
controllability of differential systems using a fixed point technique.

A growing number of researchers are advancing fractional existence for fractional
calculus using almost sectorial operators. For the system under examination, the inves-
tigators established a new technique for identifying mild solutions. Furthermore, the
investigators developed a theory to derive various properties of related semigroups created
by almost sectorial operators using fractional calculus, semigroups, multivalued analysis, a
measure of noncompactness, the Laplace transform, Wright-type function, and fixed point
theorem. We refer to [44-49]. Furthermore, in [4] researchers studied fractional differential
inclusion papers using Bohnenblust-Karlin’s fixed point theorem for multivalued maps.
As a result of these findings, we extend the literature’s earlier findings to a class of HF
stochastic Volterra—Fredholm integro-differential inclusions in which the closed operator is
almost sectorial.

In this paper, we will look at the following topic: HF neutral stochastic Volterra
integro-differential inclusions containing almost sectorial operators

HDgf [u(&) — G(& ()] € Au(E) + H(C,u(ff),/ocf(@'/ s,u(s))ds) dVZég)'

¢eI' = (04, )

I 04(0) = g, b)

where A is an almost sectorial operator of the analytic derivative {T(¢),¢ > 0} on Y.
H Dgf denotes the HFD of order € (0,1) and type { € [0,1], with the condition u(-)
taking the value in a Hilbert space Y with norm || - ||. Let Z = [0,d] be the interval,
H:IxYxY — 2Y\{®} be a nonempty, bounded, closed convex multivalued map,
G:IxY—=Y,f:ZxTIxY — Y betheappropriate functions and the function W(¢) be a
one-dimensional standard Brownian motion in Y defined on the filtered probability space
(Q, &, P). For brevity, we take

(Fu)(¢) = /ng(é, s,u(s))ds.

The structure of the article is broken down as follows. The principles of fractional
calculus, semigroup theory, sectorial operators, stochastic analysis theory, and the fixed
point theorem for multivalued maps are covered in Section 2. The required hypotheses and
the existence of the mild solution are established in Section 3. We provide an illustration in
Section 4 to demonstrate our main ideas. Lastly, some recommendations are made.

2. Preliminaries

This section introduces the required principles and facts that will be needed to obtain
the new results throughout the paper.
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Two real separable Hilbert spaces are denoted by (Y, || - ||) and (U, || - ||). Assume
(Q), &, P) is a complete probability space connected with a proper set of right continuous
increasing sub-c-algebras {&; : { € Z} satisfying & C &. Let W = (Wg)z>0 be a Q-Wiener
process defined on (Q, &, &) with the correlation operator Q such that Tr(Q) < co. We
suppose that there exists a proper orthonormal system e;;, m > 1in U, a limited sequence
of nonnegative real numbers d,, such that Qe,, = dpem, m =1,2,--- and { ﬂm} of isolated
Brownian motions such that

(W(2), ey = il 5o €)Bn(E), € € U, € > 0.

Assume that L = L, (Q% U,Y) stands for the space of all Q-Hilbert-Schmidt operators

¢ Q2U — Y with the inner product |93 = (¢,¢) = Tr(¢pQ¢) being a Hilbert space.
Let us consider 0 € p(A), the resolvent set of A, where S(-) is uniformly bounded, i.e.,
S(@)|| € M, M > 1and & > 0. The fractional power operator A* on its domain D(A%)
may then be determined for A € (0, 1]. In addition, D(A*) is dense in Y.

The following are the fundamental properties of A*.

Theorem 1 ([11]).

1. Suppose0 < A < 1, corresponding Yy = D(A") is a Banach space with ||u|, = [|A*ul|, u € Y).

2. Suppose 0 < 7 < A < 1, corresponding D(A") — D(A?) and the embedding is compact
every time that A is compact.

3. Forall A € (0,1], there exists Cy > 0 such that

rg Ca
1A%SE)I < =% R

,0< ¢ <d
The set of all strongly measurable, square-integrable, Y-valued random variables, indi-

1
cated by Lp(Q,Y), is a Banach space connected with [[u(-)[|1,(q,v) = (E|lu(, W)||?)? where
E is classified as E(u) = [ u(W)dZ?. An essential subspace of LZ(Q Y) is provided by

LI(Q,Y) = {u € [L(Q,Y), uis & — measurable}.

Ford > 0,letZ = [0,d], and Z' = (0,d]. Denote C(Z,Y) = C as the Banach space of
all continuous functions from 7 — Y that satisfies the condition sup;.7 E||u(¢) % < oo.

Let A = {u € C(T',Y) : limg_, ¢ ~¢76~"%(¢) exists and finite } be a Banach space with
I Ila and [[u]ls = (supgeq EIIE4+7E10u(&)[2)2. Set B,(T) = {x & Csuch that |x|| < r}
and B2(Z) = {u € A such that |ju|q < r}.

Definition 1 ([46]). For 0 < 8 < 1, 0 < w < %, we define ®° as the set of closed linear
operators, the sector S, = {v € C\{0} with |argv| < w}and A: D(A) CY — Y that satisfy
(a) U(A) C Sw;

() ||(v] —A)7Y| < Ms|o|~?, offered for all w < § < 7 and there exists M as a constant,

then A € @ is known as an almost sectorial operator on Y.

Define the power of A as

A? = L/ ZJGR(ZJ;A)dU, 0>1-19,
2mti Jr,

where T, = {R"e/*} J{RTe~#} is an appropriate path oriented counter-clockwise and
w < p < &. Then, the linear power space Yy := D(A%) can be defined and Yj is a Banach
space with the graph norm ||ul|g = |A%u|, u € D(a%).
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Next, let us introduce the semigroup associated with A. We denote the semigroup
associated with A by {T(¢) }#>o. For & € s
- 2

w

T(&) = e %°(a) = ZLm/r e %“R(v; A)do,
"

where the integral contour Iy = {RT¢'*} J{R"e "} is oriented counter-clockwise and
w < p <<% —|arg |, it forms an analytic semigroup of growth order 1 — 9.

Proposition 1 ([46]). Let A € OL% for 0 < ¢ < 1and 0 < w < %. Then, the following
are satisfied:

(@ T(E+v)=T(E)T(v), foralv,ge Sz

®) Ty < %081 ¢ > 0; where kg > 0 is the constant;

(c) therange R(T(¢)) of T(E), € € Sz is contained in D(A%). Particularly, R(T(¢)) C
D(A%) for all 6 € C with Re(8) > 0,

1
AMT(Eu=— / 0e SR (v; A)udv, forallu €'Y,
27t I,

and hence there exists a constant C' = C'(+y,0) > 0 such that
||A9T(§)||L(y) < Clgmr RO forall & > 0;

d) ifEr={ueY :limg o+ T(S)u = u}, then DA% c Zrif >1-09;
(€) (vl—a)"' = [Te ™ T(v)dv, v € Cand Re(v) > 0.

Definition 2 ([14]). The left-sided R-L fractional integral of order 1 with the lower limit d for the
function H : [d, 00) — R is presented by

7 _ 1 & H)
ILH(E) = r(ﬂ)/d o £ 00> 0

provided the right side is point-wise determined on [d, 4+00), I'(-) is the gamma function.

Definition 3 ([14]). The left-sided R-L fractional derivative of ordery > 0, m —1 < 5 < m,
m € N, for a function H : [d, +00) — R, is presented by

RLyT _ 1 ﬂ ¢ H(v)
DYLHE) = iy s Gyt £ 4

where T (+) is the gamma function.

Definition 4 ([14]). The left-sided Caputo derivative of type of order n > 0, m —1 < 5 < m,
m € N, for a function H : [d, +00) — R, is defined as

o _ 1 ¢ H™(v) T
DZJ—[(C)—T(m_U)/d (Civ)ﬁl_mdu_[“’?% @), &> d,

where T'(+) is the gamma function.

Definition 5 ([29]). The left-sided HFD of order 0 < n < 1 and type { € [0,1], of function
H : [d, +00) — R, is classified as

e d (1-m)(1—
IO (@) = L LT (@),
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Remark 1.

1. IfC =0,0 <y < 1, and d = 0, then the HFD denotes to the classical R-L
fractional derivative:

IDEIH(E) = galoy"M(E) =1 DLH(E).

2 If =10 <y < 1landd = 0, then the HFD equals the classical Caputo
fractional derivative:

MDYIHE) = 15, 35 H(E) = DY H(E).

Definition 6 ([49]). Define the Wright function ¢, (B) by

_ (—p)"!

meN

with the following property

OOB‘gDU(G)dH: I(1+1)

| T fori>0

Definition 7 ([33]). A multivalued map H is called u.s.c. on Y if for all ug € Y the set H(up) is a
nonempty, closed subset of Y, and if for each open set U of Y containing H(ug), there exists an open
neighbourhood V of ug such that H(V) C U.

Definition 8 ([33]). # is completely continuous if H(C) is relatively compact for each bounded
subset C of Y. If a multivalued map H is completely continuous with nonempty compact values,
then H is upper semicontinuous if H has a closed graph, i.e., wy — Uy, Zm — 20, Zm € H(Um)
implying zo € H(up).

Lemma 1 ([34]). Systems (1) and (2) are equivalent to an integral inclusion given by

g =08 4 Gz, u(@)) + 1"(117) /Og(g — )17 AG (v, u(v))dv

+ H (v, u(v), (Fu)(v))dW(v)].

uo — G(0,u(0))

ue) € T(¢(1—mn)+n)

Lemma 2 ([34]). Let u({) be a solution of the integral inclusions provide in Lemma 1, then

u(¢) satisfes
(€) =8,2(0) w0~ GO,0))] + G(EU(E) + [ Ky (€~ VG u(0) e
+ /O Ky (& — V)M (v, u(v), (Fu)(v))dW (), EeT),
where

Spe(@) = VK (@), Ky (8) = §1710,(@), and Q@) = [ nop(6)T(16)de.
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Definition 9. An &z-adapted stochastic process w(g) € C(I',Y) is said to be a mild solution of

the Cauchy problem, (1) and (2), given Iélfﬂ)(lfé)u(O) = up; up € LY(Q,Y) and there exists
h € L>(Q,Y) such that h(&) € H(& u(¢), (Fu)(¢)) on & € T’ and that satisfies

(€) =8,2(0) [0~ G0,0))] + G(Eu(E) + [ Ky (€~ VIAG (v u(v) e
+ /O Ky (& — V)M (v, u(v), (Fu)(v))dW(v), EeT),
where (Fu)(v) = [ f(v,s,u(s))ds.

Lemma 3 ([49]). If {T (&) }z>o is a compact operator, then {Sy ¢ (&) }e>0 and {Qy () fe>o are
also compact operators.

Lemma 4 ([49]). For each fixed & > 0, Qy(&), Ky(¢) and S, ¢ () are linear operators, and for
anyucy,

19y (@)l <rep @@V [u], (1ICy (E)ull < xp&"*|us|, and
1S,,¢ (Eul| Sreel™ MHETIEHND |y,
where
O G B 0 N )
PTTe) T T ) +19)

Lemma 5 ([49]). Assume that {T (&)} is equicontinuous. Then, {Qy (&) }eso0, {Ky(E) Fe>o
and {Sy ¢ Yo are strongly continuous, that is, for any u € Y and " > &' >0,

Q48" — Q") = 0, [Ky(&)u—Ky(&")u| =0,
1Sy, (&)u— Sy (@" | =0, asg” — &

Theorem 2 ([14]). S;(¢) and Q; () are continuous in the uniform operator topology, for ¢ > 0,
forall d > 0, the continuity is uniform on [d, c0).

Proposition 2 ([50]). Let 7 € (0,1), u € (0,1] and for all w € D(A), then there exists a
k>0 >

Kl (2 — )

T +7(1—p)
Lemma 6 ([51]). Let Z be a compact real interval, and Py o, 1 (Y) be the family of all nonempty,

bounded, convex and closed subsets of Y. Let H be the L'-Caratheodory multivalued map, measur-
able to & forallu € Y, u.s.c. touforall € C(Z,Y), the set

Suu = {h € LY(Z,Y) + h(Z) € H(E,u(E), (Fu)(Z)), ¢ €T} )

[47Qy (©)ull < = lull, 0 < & < d.

is nonempty. Let Y be the linear continuous function from LY(Z,Y) to C, then
YoSy :0— BCC(), u— (YoSy)(u)=Y(Syu) (5)
is a closed graph operator in C x C.

Lemma 7 ([4]). [Bohnenblust—Karlin's fixed point theorem] Suppose that Y is a closed, bounded
and convex subset Y of u. Assume D : Y — 2Y\{@} is upper semicontinuous with closed, convex
values such that D(Y) C Y and D(Y) are compact, then D has a fixed point.
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3. Existence of Mild Solution
We require the following hypotheses:

(H1) Ais the almost sectorial operator, which generates an analytic semigroup T(¢), ¢ > 0
in Y such that ||T(&)|| < M, forall M > 0.

(Hz) The multivalued map H : Z x Y x Y — BCC(Y) is measurable to ¢ for any fixed
u €Y, us.c touforall & € T and for all u € C, the set

Spu = {h € LN(T,Y) : () € H(&,u(E), (Fu)(§)), &eT}

is nonempty.
(H3) For¢ € Z, H(E,-,-) : Y XY = Y, f(E,s,-) : Y — Y are continuous functions and for
allu e C, H(-,u,(Fu)) : T — Zand f(-,-,u) : Z x T — Y are strongly measurable.
(Hy) Forr > 0,u € L along with |Julp < rand Ly, (&) € LY(Z',R") such that

. — — 4
glgél+ gl G '7191(1)7+ Ly, (¢) =0,

sup{E||n|* : h(¢) € H (¢, u(Z), (Fu)(§)) } < Ly, (),

forae. ¢ € 1.
(Hs) The function v — (& —v)21=D Ly, (v) € LY(Z,R") and there exists a constant 4 > 0
such that
S(E_)20-1) d
lim inf Jo (€ =) - (V) =17 <,

for almost everywhere ¢ € 7.
(Hg) The function G : Z X Y — Y is a continuous function and there exists y € (0,1) and
Mg, Mg > 0such that A*G satisfies the following condition:

E[[AG(&,w)]|* < M2 (1+ g2=ErEm®) |[y)12) and |[A7F| < Mo, (§u) €T XY,
E[[4*[G(&,u1) — G(&mw)]|* < M (14 210 |y —w||?), w,m €Y, § € L.

Theorem 3. Assume that (Hy)—(Hg) hold. Then, the HF systems (1) and (2) have a mild solution
on I provided

ATr(Q)3d* I —EHmemnd)n > 1,
Proof. We define the multivalued operator ¥ : L — 20 by
¥(0(E)) = {2 € C2(0) = 518 5,4(0) [~ G(0,4(0))] + (¢, u(2)
4 [(E 0@ - v rG (v uw)ar
= [fe- 0o - Hinat), B )W), ¢ € 0.

To prove that ¥ has a fixed point:
Step 1: ¥ (u) is convex for all u € C.
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Let z1,z2 € Cand hy, hy € Sy, such that ¢ € Z, and we have
2 =E I 8,00) w0 - G(0,4(0))] + G u(0)
4 (e Qe - VG (uw)an
v ‘/f(g —)1lQ, (¢ - v)hi(v)dW(v)] Ci=1,2.
Consider A € [0, 1], then for all € Z, we obtain
Mar (1= 0)z2) (€) =851 (,4(0) o - 6(0,u(0)] +G(Eu(c))
+f é‘<c—v>’7-1Q,7<f;—v)Ag(v,u@))dv)
g [ 1106 ) [ (v)

+ (1= D)l (v)]dW(v).

We know that H has convex values, then Sy, ,, is convex. Therefore, Ahy + (1 — A)hy € Sy .
Therefore,

Azy + (1 - M)za € Yu(f),

hence ¥ is convex.
Step 2: On the space C, consider B, = {u € [ : ||u||% < r}, for r > 0. Clearly, B, are
bounded, closed and convex sets of C. Now, we prove that there exists » > 0 such that

¥(B,) C B,.
If not, then for all ¥ > 0, there exists u” € B,, but ¥(u") ¢ B,, i.e.,
¥ (w)lg =sup{|z'llg: 2" € (Fu')} >r
and
z =g, (&) [up — G(0,u(0))] + G (&,u(2))
¢
+ /O (& = v)171Q, (& — v)AG (v, u(v))dv

+ [0y~ H (), (B )W),
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for some " € Sy .
r < E[[(¥u)(@)]?

<E cl-“'ﬂ-m’{sﬂg(@) [0 — G(0,u(0))] + G (& u(2))

4 {62y~ vrG wu(w)as
2

+ /0 = V)171Qy (& —v)H (v,u(v), <Pu><v>>dW<v>}
< 4E||g =T8S, (&) [up — G(0,u(0)]||* + 4E[| g ETEG (8, u(@) ||

+4E|jgtErie | (& - 1)171Qy(E — V)G (v, u(w)) v

A1 [ (e 110, €~ ) H (), (B (0)aW ()

< 462(1—€+17€—m9) sup EHSW,C(@ [uo _ g(O,u(O))] H2 + 4‘:2(1—§+17§—m9) sup EHQ(Q‘,U@)) ”2
¢eT ceT
+4g20-Entn®) sup / (= 02N, (€ — v) PE (4G (v,u(0)) [P

FATHQUET ) sup 16 <) Qy(¢ ) PE[H(0), (B )

< 4sup g2(1-CHni=nd) [K?Cz THHEEEn0) (|[ug |2 — MIM2)
cel
T+ )

2(1—-C+nl—nd 2 A 12 2
+ 4sup 2(1-CHnen )[MOMg(l—i—P)—H{l_” T )

cel

+ Tr(Q)r; /0 é(g — v)zwl“)LH,r(v)du} .

(M§(1 +P))

Dividing both sides by r and taking r — co, we obtain that

4Tr(Q)K§d2(1—C+vC—W)7 > 1,
which is a contradiction to our assumption. Thus, for § > 0, there exists r > 0 and some
he Sy Y(Br) C B

Step 3: ¥ mapping bounded sets into equicontinuous sets of C.
Forall z € ¥(u) and u € By, there exists H € Sy, ,,, and we define

2(8) = g CHEne (sﬂ,g@) [0 — G(0,u(0))] + G(&u())
4 [(E 2y~ vrG (v uw)ar
+ [1E =710y E - (), (R ()W () )
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Consider 0 < &1 < & < d.

2

z(82) — z(%1)

<E

3 © (8006 fi0 — G0,u(0)] +6(E2u(e)
b [ 00 - G )
+ / & — )10y (e 2—V)H(v,u(v),(Fu)(v))dW(v))
= eI (8,080 [0 — G0,u(0)] + G & ue)
+ /'61 (&1 = )71 Qy (@1 — v)AG (v, u(v))dv

2

s [ @07 Q6 - R ), () )W) )

2

< 48] 68,46 €14 S,4060) [ - 60,0000

2

+ 4|8 TG (8, w(E)) — & TG (6, u(E))

+ 4 |[ghernen? /Og (G2 — )77 Qy (&2 — v)AG (v, u(v))dv

Jr(:1 GHng—nd /; (&2 —v)T71Qy (& — v)AG (v, u(v))dv

_gheeentene /0él (& —v)T71Qy (& — v)AG (v, u(v))dv

+4E| g, cTene /Og (& —v)171Qy (& — v)H (v, u(v), (Fu)(v))dW(v)

[ 6 - 017106 R, (RO )W)
2

_glgrnee /0§1 (61 = 1)1y (61 — v)H (v, u(v), (Fu)(v))dW(v)

2

51, E) — 2118, )] o — 60,400

2

§4E‘

+ 4|8 TG (6, u(E) — & TG (6, u(E))

2
+12E

gl 7719/ (& —v)171Q, (8 — v)AG (v, u(v))dv

+12E| gy e / H(& —v)171Qy (&2 — v)AG (v, u(v))dv

2

e [ 00, (@ - VAG (v

+12E| g S /0 (6 1)1, (6 — v)AG (v, u(v))dv
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¢1 2

_ giféwéfm?/o (&1 —v)171Q, (&1 — v)AG (v,u(v))dv

2
+12E

gy e /;2(52 —v)171Q, (& — v)H (v, u(v), (Fu)(v))dW(v)

1

+12E||gy CHene /051(52 — )19, (& — v)H (v, u(v), (Fu)(v))dW(v)

2

_glerne /051(,;1 = )11 Qy (62 — v)H (v,u(v), (Fu)(v))dW(v)

128 el (M e 00, @ — v (v u(v), (F) ()W ()

2

e [T Q@ ) M), () ()W ()

=) I

8
i=1
By the strong continuity of SW,C@) (up — G(0,u(0))), we obtain

I = 0as ¢y — 1.

The equicontinuity of G ensures that

12—>0as§2—>51.

2
I, = 12E

gh-Cntont /;2@2 —1)171Qy (& — v)AG (v, u(v))dv

1

2
L+ p) )> (&2 — &)™

<12 ) (T

Then, I3 — 0 as (:2 — (:1-

I, = 12E||gycHnen? /0 Cl(gz —v)171Q, (& — v)AG (v,u(v))dv

2

&1
_ E}*CJHIC*W ,/0 (&1 — )11 Qy (& — v)AG (v, u(v))dv

< 12EH /061 <§;C+7zéw(§2 _ V)ryfl _ g}%wé*w(gl _ v)ﬂl)

2

X Qy(& —v)AG (v, u(v))dv

2.2 ag2 T(1+p) >2[ & ( 2(1-C+75—18) (= \2y—2
<12y KwMg(HP)(yr(HW) /0 62 (G2 —v)

R CEN e [CERR
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We obtain Iy — 0 as §, — ;. Additionally,

1— —nd
(;:1 C+ng—n /

0

Is = 12E : ((51 —v)171Qy (& — v)AG (v,u(v))

2

— (& =) Q& — U)Ag(V,u(v)))dU

< 1250 [ 2@y @~ v) — @461 — ) PEIAG (v P
< MIM2(1+ P)gErmn®) /f(cl —0)172[Qy (& — v) — Q& — v)] |

By Theorem 2 and strong continuity of @, (&), Is — 0 as & — 1.

2

ls = 12E||g; ¢ /;2(52 —v)171Q, (& — v)H (v,u(v), (Fu) (v))dW (v)

¢
< 12Tr(Q)g3 " F ) /g (82— )12 Qy (& —v)|PE|H (v, u(v), (Fu) (v)) | 2dv

1

)

< 12Tr(Q)3ga ¢ e n?) /;; (& — )2 DLy (v)dv

1
< 12T7(Q)x [@‘%“‘“”g‘”“ /ng (&2 — V)21V Ly, (v)dv
_ 20-ghine) /0 o — v Ly,r(v)dv]
L 12THQ)R /0 & [ﬁ(l—@rvé—ﬂﬂ)(él _ )21
- (g — v)“”””] Ly (v)dv.
Then, I — 0 as & — {1 by using (Hy) and the Lebesgue dominated convergence theorem.

=126 e [ 6 )10y (@ — (), () (1)) AW ()

e [ 010, (6 — (), () ()W () 2
< 12T(Q) /fl«:z — )OI T g !
— gy a1 Ly e,
consider
(62— vy V|18 gyt ety il )

< _265(1*9%*7]19) (& — V)z(qﬂq)

22 Ene ) (& )20 1) (g, — v)zﬂ(ﬁ_l)} L (v)

< _Zgg(kéﬂléﬂiﬁ) (& — V)Z(m%n T 25%(1%%75*170)(61 . U)Z(m?l)] Ly, (v)

< 42T (g DL (),
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and foél 455(1{“&”@)(@1 — )2V, (v)dv exists (v € (0,&1]), then by Lebesgue’s
dominated convergence theorem, we obtain

2

¢ _ _
/O (62— v)210-D) EHZSW)“ ey — vyt — g 100-0 e 1| 1 yav

—>Oas§2—>§1,

so we conclude limg, ¢ I7 = 0.
For any € > 0, we have

G 4 _
Is —12EH/0 & T, (& —v) — Q) (&1 — V)]

2
% (&1 — V)T H (v, u(v), (Fu) (1) AW (v)

< 12Tr(Q) /Ogl G 9y (& — v) — Q& — ) |F(E1 — v)?1 2
x E||H (v, u(v), (Fu)(v))|2dv

s1mﬂQ)Aéﬁ“**“”“HQﬂ@v)Qﬂatwfwlwh—%%mwwv

<1zng»{4@Egglm%wmugﬂ@—vy—Qﬂa—vw%a—mﬁw*n%m@mv
s [7 B0 - ) - 0y - I @ P DL )

< 1271(Q) { g20-e+ni=nt) /0 O e = )2 L, (v)dy

x sup [|Qy(E—v) — Q& —v)?

ve [O,C] 76]

¢ -
+ K%/g B (R e R R e (S V)z("l)LH,r(V)dV}
1—€
g
< 12Tr(Q){<ﬁ(1“”“0)2”(“) /0 " — 200D, (v

x sup [ Q& —v) — Q& — )|

ve(0,g—e]

¢ _ _
L 41{%} /‘: 1 C%(l {+ng—nv) (gl _ V)Z(r]ﬂfl)L,H’r (V)dl/}
1—€

From Theorem (2) and limg, .z Is = 0, we obtain I3 — 0 independently of u € Casé& — ¢,
€ — 0. Hence, ||z(&) — z(&)|| — 0 independently of u € C as & — &. This implies that
{Y¥u(¢) : u € C} is equicontinuous on Z.

Step 4: Show that V(&) = {z(¢) : z € ¥(Bp(Z))} is relatively compact for ¢ € Z.
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For a € (0,) and g > 0, consider the operator 2/ (Z) on Bp(Z) by
(€)= 1,20 o — G0,u(0)] + G(Eu(0))

+ /0 ey Q, (€ —v)AG (v,u(v))dv
[ @@ - ), (R )W)

= 5,00 w0~ GO0)] + G (EuE)
[ oMy )T - 00080 (v, u(s) o
v [ [ oMy (0)(§ )T T(E — v ey v, u(v), (P (v))dedwwﬁ

= 5,00 s~ GO0))] + G (EE)
gt [0 (%o, @) - vyt
X T((& = v)18 — aq) [Ag(u,u(v))dedv +H(v,u(), (Pu)(v))deW(v)} .

Hence, Vy,9(¢) = {(z4,4(¢))u(¢) : w € Bp(Z)} is precompact in Y for all « € (0,¢) and
g > 0 due to the compactness of T(a”q). For every u € Bp(Z), we obtain

<E

1 (8,4(0) [~ G(0,4(0))] + G u(2)
+ @010 - G (v u(w)iv

+ /0 f(E—v)T10 (& - v)H(v,u(v), (Fu)(v))dW(v))
= (e 5,40 o - 60,u(0)] + 66,10
gt 7 [ om0 -t

2
X T((&—v)"10 —a'q) [AG (v,u(v))d6dv + H (v,u(v), (Fu) (v))deW(v)])

< ZEHUC”*”“" [ [ omy@c 7 —vyo)

2
[AG (v, u(v))dbdv + H (v, u(v), (Fu)(v))d0dW (v)]

+ 25”,7;;1&;7@;7@ i i /q " (&~ v)10M, (O)T((€ — v)10)

2
[AG (v, u(v))dbdv + H (v, u(v), (Fu)(v))dodW (v)]
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4
< 2,72K3§2(1—C+77§—’719) ( /0 /Oq GZM% 0)(¢ — V)Z(ry—l) = V)21719—2;79219—2

X [MgM3(1 4 P) + Tr(Q) Ly, (v)] dbdv

+ / ix /q (& — v DERMR (0) (¢ — v)P10 219202 [MAMA(1 + P)

+ Tr(Q)LH,,(v)}dev>

< 2321 C i —nd) ( /O C(g — y)8-1) [MGMZ(1+P)

+ Tr(Q) Ly, (v)]dv /O'q 6%° M7 (6)d6 + /;_ (& —v)*r =D [MEMZ(1+ P)

+ Tr(Q) Ly, (v)]dv /0 92"M§(9)d9>
< 2y RE(-TH1E-10) ( /O (v a2 M2(1+P)

q
+ Tr(Q) Ly, (v)] dv /O 62 M2 (6)d6

[(1+29) /¢ B
+ T(1129) /(;L,x({: — v)2(19-1) [MGMZ(1+ P) + Tr(Q)LH’r(y)]dl/)
—0asa — 0, g —0.

Therefore, Viq(8) = {z},4(¢) : ¢ € Z} are arbitrary closed to V(§) = {z(§) : { € Z}. Asa
result of the Arzela-Ascoli theorem, {z(§) : ¢ € Z} is relatively compact. As a result, z(¢)
is a completely continuous operator due to the continuity of z(¢) and relative compactness

of {z(&): ¢ € I}.
Step 5: ¥ has closed graph.

Let uy, — u, asm — 00, zy(&) € ¥(uy) and z,;, — z, as m — oo, and we need to
prove that z, € ¥(uy). Since z,, € ¥ (uy,;) then there exists a function H,; € Sy 4, such that

() = €1 8,000 10— G(0,(0))] + G(E )
+ /f(g —v)171Qy (& — v)AG (v, (v)) dv
+ @ - )]
We have to show that there exists H.. € Sy . such that
2(0) = 818,00 w0 - GO0))] + (6. (2)
+ /f(g —1)171Q, (& — v)AG (v, . (v))dv

+ [[e- e - v waw )]
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Clearly,

[zm(@ —gieree (Sq,g(ff) [uo—G(0,u(0))] =G (& un(?))
- [e- e, - g wunt)av )|
- {z*@) — gloetnemnd (S,,,d@) [0 = G(0,u(0))] = G(&,u(Z))
- /Oé(g — )11, (E - V)Ag(v,u*(v))dvﬂ H — Oas m — oo,
Now, we consider an operator Y : L2(Z,Y) — 0(Z,Y),

Y0)(@) = (€~ 1) Q8 A (v, u(v), (Fa) () aW (o).

We have by (6) that Y o Sy, ,, is closed graph operator. Therefore, by comparing Y, we have
{zm@ - gl (8,7,4@ (10 = G(0,u(0))] = G(&,un(2))

- [e- v e - g unw)ar) | € XS
Since Hy, — ., it follows from (6) that
20 = £ (8,00~ G00))] - 961, (2)
- [e- e - g | € Vs

Hence, ¥ is a closed graph.

As aresult of applying the Arzela—Ascoli theorem on Step 1-5, ¥ is a u.s.c. multivalued
mapping because it is a completely continuous multivalued mapping with compact value.
As a result of Lemma 7, ¥ has a fixed point z(-) on B,(-), and z(-) is the mild solution of (1)
and (2). O

4. Example

As an example of how our findings can be put to use, consider the following: an HF
neutral stochastic Volterra integro-differential inclusion

I)(A)%J,rg [w((:, U) - Q_((f,w(f,‘, U))] € wéé(‘:/ U)+ ﬁ(‘:/w(g/v)/ (PZU) ((:/ U)) dv;ig('g)/
¢e(0,d], vel0,m],

w(C,O) = w(‘:/ ﬂ) =0 C € [Ord]/

I(l—%)(l—@u(w,O) =ug(v), v e |0,

where Déf is the HFD of order % and type ¢, I (1-7)1-0) js the R-L integral of order
2(1-10), 7(¢, w(¢ v), (Fw)(¢v)), (Fw)(& v) and G(& w(E v)) are the required functions.

Let W(¢) be a one-dimensional standard Brownian motion in Y defined on the com-
plete probability space (), &, %) and with the norm || - ||y to write the system (6) in the
abstract form of (1) and (2). Define an almost sectorial operator A : D(A) C Y x Y by
Aw = wgg with the domain

D) ={w e Y :wgwg €Y :w(E,0) =w( m) = 0}.
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Then, A generates a compact semigroup T(¢)z>o that is the analytic and self-adjoint. In
addition, A has a discrete spectrum, and the eigenvalues are m?,m € N, with corresponding

orthogonal eigenvectors ¢, (z) = \/% sin(mz). Then, Az = Yoo m?(z, ¢4y ) ¢y Furthermore,
we know thatforallv e Y, T(§)v =Y, e’m2§<v, ¢m)en. In particular, T(+) is a uniformly
analytic semigroup and ||T(&)|| < e~°.

u(&)(v) = w(&v), & €T =1[0,d],v € [0,7]. Now,any u € Y = L?[0, 7], v € [0, 7],

and we define the function H : Z x Y XY — Y,

H(Zu(@), (Fu)(Z)) = H(¢, w(E,v), (Fw)(Z,0))
< ¢
1 j—e*f sin (w(cf,v) —I—/O cos(&s)w(s, U)ds>,

where

(Fu)(¢)(v) = /ff(f:, s,w(s,v))ds = /0é cos(&s)w(s, v)ds.

Additionally, G : Z x Y — Y is completely continuous mapping, defined as G (&, u(¢)) =
G(¢,w(&, v)), which satisfies the required hypotheses. Therefore, fractional system (6) can
be reformulated as the nonlocal Cauchy problem, (1) and (2). Obviously, 7-_[((;‘, w(E&,v),
(Fw)(¢,v)) is uniformly bounded. Then, by Theorem 3, the problem has a mild solution
onZ.

5. Conclusions

The existence of a mild solution of an abstract HF neutral stochastic Volterra integro-
differential inclusion via almost sectorial operators was investigated using the fixed point
theorem for multivalued maps in this paper. The findings were subjected to a set of
sufficient criteria that were met. In the future, we will use the fixed point approach to
study the approximate controllability of the HF neutral stochastic derivative with almost
sectorial operators.
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