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Abstract: In this article, we solve fractional Integro differential equations (FIDEs) through a well-
known technique known as the Chebyshev Pseudospectral method. In the Caputo manner, the
fractional derivative is taken. The main advantage of the proposed technique is that it reduces such
types of equations to linear or nonlinear algebraic equations. The acquired results demonstrate the
accuracy and reliability of the current approach. The results are compared to those obtained by other
approaches and the exact solution. Three test problems were used to demonstrate the effectiveness
of the proposed technique. For different fractional orders, the results of the proposed technique are
plotted. Plotting absolute error figures and comparing results to some existing solutions reveals
the accuracy of the proposed technique. The comparison with the exact solution, hybrid Legendre
polynomials, and block-pulse functions approach, Reproducing Kernel Hilbert Space method, Haar
wavelet method, and Pseudo-operational matrix method confirm that Chebyshev Pseudospectral
method is more accurate and straightforward as compared to other methods.

Keywords: Chebyshev Pseudospectral method (CPM); fractional integro-differential equations;
caputo operator

MSC: 26A33; 47G20; 37N30

1. Introduction

Fractional calculus (FC) deals with derivatives and integrals of an arbitrary order
(real or complex order). The history of FC started from 30 September 1695, when Leibnitz
described a derivative of order α = 1

2 (see [1]). In the 19th century, Riemann and Liouville
defined the concept of differentiation to an arbitrary order (fractional differentiation).
However, there were few specific models based on this type of derivative at that time
due to which the study of fractional order systems attracted little interest. Nowadays, a
growing number of researchers are focusing their attention on FC, and they have shown that
fractional systems can retain information that is missing in integral order systems. Scientists
pay more attention to FC due to its numerous applications in many areas such as solid
mechanics [2], oscillation of earthquakes [3], signal processing [4], economics [5], electrode-
electrolyte polarization [6], control theory [7], visco-elastic materials [8], and continuum
and statistical mechanics [9]. Fractional derivatives can be described in different ways, e.g.,
Grünwald Letnikow, Caputo, and Generalized Functions Approach. In the present article,
we focus on Caputo’s derivative, which is more useful in real-life applications [10–12].
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In recent years, much attention has been given to the solutions of fractional differential
and integro-differential equations. FIDEs have many applications in mechanical, nuclear
engineering, chemistry, astronomy, biology, economics, potential theory, and electrostatics.
In particular cases, the exact solution of such FIDEs may be found only. In many cases,
analytical solutions of integro-differential equations are an unwieldy task, so it is required
to obtain an efficient approximate solution. Recently, many effective techniques have
been presented to solve integro-differential equations having fractional-order. such as
Homotopy perturbation transform method [12], Reproducing Kernal Hilbert Space Method
(RKHSM) [13,14], Haar Wavelet Method (HWM) [15], Taylor Expansion Method (TEM) [16],
Homotopy Analysis Method (HAM) [17], Euler Wavelet Method (EWM) [18], Spline Col-
location Method (SCM) [19], Variational Iteration Method (VIM) [20], Laplace Adomian
Decomposition Method (LADM) [21], Homotopy Perturbation Method (HPM) [22] and
much more [23–26].

As Chebyshev polynomials [27] are considered to be a known family of orthogonal
polynomials with many applications on the interval [−1, 1], they are commonly used in
function approximation because of their good properties. S. Nemati et al. [28] implement
a spectral method based on operational matrices of the second kind of Chebyshev poly-
nomials to solve FIDEs having weakly singular kernels. M.S. Mahdy et al. [29] used the
least squares method aid of third kind shifted Chebyshev polynomials to solve a linear
system of fractional integro-differential equations. However, to the best of our knowledge,
the solution of FIDEs has done little to adapt these polynomials. In the present study, we
solve FIDEs by implementing CPM. By implementing the proposed method, we compared
our results with other techniques. We solve FIDEs of the form

Dβ
µ ϕ(µ) = G

(
µ, ϕ(µ),

∫ µ

0
H(τ, ϕ(τ))dτ

)
, 0 < µ ≤ 1, β > 0, (1)

having initial and boundary sources;

ϕ(0) = α0, ϕ′′(0) = α2,

ϕ(1) = γ0, ϕ′′(1) = γ2,
(2)

where α0, α2, γ0 and γ2 are real constants, Dβ
µ ϕ(µ) represents the fractional derivative in

Caputo manner for ϕ(µ), G and H are well-defined functions.
The paper is structured as follows. In Section 2, we provide some basic definitions

which are further used in current work. In Section 3, the concept of approximation Cheby-
shev series expansion by means of Caputo derivative is given. The implementation of the
Chebyshev collocation approach to solve Equation (1) is presented in Section 4. In Section 5,
we solve some problems to clarify the technique’s effectiveness.

2. Preliminaries Concept

Definition 1. A function ϕ(µ), µ > 0, is said to be in space Cν, ν ∈ R if there exists a real number
p > ν, with ϕ(µ) = µp ϕ1(µ), where ϕ1(µ) ∈ [0, ∞), and it is said to be in space Cn

ν if and only if
ϕ(n) ∈ Cν, n ∈ N.

Definition 2. The derivative having fractional-order Dγ ϕ(µ) in Caputo manner is given as:

Dβ
µ ϕ(µ) =

1
Γ(κ − β)

∫ µ

0
(µ− τ)κ−β−1 ϕ(n)(τ)dτ, µ > 0, κ − 1 < β < κ. (3)

where β > 0 represents the derivative order, and κ ∈ N represents the lowest integer greater than β
with ϕ ∈ Cn

−1.
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For the derivative in Caputo sense we have [30]

Dβ
µC = 0, C is a constant (4)

Dβ
µµγ =

{
0 f or γ ∈ N0 and γ < dβe,

Γ(γ+1)
Γ(γ+1−β)

µγ−β f or γ ∈ N0 and γ ≥ dβe,
(5)

Here we utilize ceiling function dβe to represent the lowest integer equal to or greater than β,
with N0 = 1, 2, · · ·. In addition, for β ∈ N the Caputo operator becomes similar to integer-order
differential operator. Both operation of integer-order and fractional-order differentiation are similar:

Dβ
µ(φϕ(µ) + νh(µ)) = φDβ ϕ(µ) + νDβψ(µ), (6)

where φ and ν are constants.

3. Approximation of Chebyshev Series Expansion by Means of Caputo Derivative

The Chebyshev polynomials are explained on the [−1, 1] interval, and can be calculated
by means of recurrence formulae as [31,32]

Tκ+1(µ) = 2µTκ(µ)− Tκ−1(µ), κ = 1, 2, . . . , (7)

where T0(µ) = 1 and T1(µ) = µ. The Chebyshev polynomial having degree κ analytical
form is defined by [32]

Tκ(µ) =
κ

2

bκ/2c

∑
r=0

(−1)r (κ − r− 1)!
r!(κ − 2r)!

(2µ)κ−2r. (8)

To define Chebyshev shifted polynomials T̂κ(µ), we take the Chebyshev polynomials over
the interval [0, 1]. The Chebyshev shifted polynomials are determined by means of the
following relation as [32]

T̂κ(µ) = Tκ(2µ− 1). (9)

also by means of the below recurrence formula:

T̂κ+1(µ) = 2(2µ− 1)T̂κ(µ)− T̂κ−1(µ), κ = 1, 2, . . . , (10)

where T̂0(µ) = 1 and T̂1(µ) = 2µ− 1. The orthogonality condition is (see [33])

∫ 1

0

T̂κ(µ)T̂n(µ)√
µ− µ2

dµ =


0 n 6= κ,
π
2 n = κ 6= 0,
π n = κ = 0.

(11)

Now, by using the relation,
T̂κ(µ) = T2κ(

√
µ), (12)

and Equation (8) to obtain Chebyshev shifted polynomials analytical form for order κ as:

T̂κ(µ) =
κ

∑
r=0

(−1)r22κ−2r κ(2κ − r− 1)!
r!(2κ − 2r)!

(µ)κ−r. (13)

A function ϕ(µ) ∈ L2[0, 1], described in Chebyshev shifted polynomials form as

ϕ(µ) =
∞

∑
κ=1

cκ T̂κ(µ), (14)
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where the factors cκ , for κ = 1, 2, ... are determined by

c0 =
1
π

∫ 1

0

g(µ)T̂0(µ)√
µ− µ2

dµ and cn =
2
π

∫ 1

0

g(µ)T̂κ(µ)√
µ− µ2

dµ. (15)

Thus, in practice first (n+ 1)-terms are taken and for few n, ϕn(µ) is calculated as

ϕn(µ) =
n

∑
κ=0

cκ T̂κ(µ). (16)

Theorem 1. The sum of the absolute values of all the omitted coefficients constrains the inaccuracy
in approximating ϕ(µ) by the sum of its first n terms. If, however [34]

ϕn(µ) =
n

∑
ı=0

cıTı(µ). (17)

Thus, for all ϕ(µ), m and µ ∈ [−1, 1], we get

ET (n) = |ϕ(µ)− ϕn(µ)| ≤
∞

∑
k=n+1

|cı|. (18)

Theorem 2. Assume that β > 0 and ϕ(µ) is calculated by the Chebyshev shifted polynomials as
in Equation (16). Then [35]

Dβ(ϕn(µ)) =
n

∑
κ=dβe

n−dβe

∑
r=0

cκbβ
κ,rµκ−r−β, (19)

where bβ
κ,r is defined by

bβ
κ,r = (−1)r22κ−2r κ(2κ − r− 1)!(κ − r)!

r!(2κ − 2r)!Γ(κ − r + 1− β)
. (20)

4. Chebyshev Collocation Method

In this part, we implement Chebyshev’s collocation method to solve FIDE (1) having
initial and boundary conditions (2) to achieve this goal, we calculated ϕn(µ) as

ϕn(µ) =
n

∑
κ=0

cκ T̂κ(µ). (21)

By means of Equations (1) and (21) and Theorem 2 we get

n

∑
κ=dβe

n−dβe

∑
r=0

cκbβ
κ,rµκ−r−β = G

(
µ,

n

∑
κ=0

cκ T̂κ(µ),
∫ µ

0
H

(
τ,

n

∑
κ=0

cκ T̂κ(h(τ))

)
dτ

)
. (22)

Now we collocate (22) at points up, p = 0, 1, 2, ..., n− dβe :

n

∑
κ=dβe

n−dβe

∑
r=0

cκbβ
κ,rµ

κ−r−β
p = G

(
µp,

n

∑
κ=0

cκ T̂κ(µp),
∫ up

0
H

(
τ,

n

∑
κ=0

cκ T̂κ(τ)

)
dτ

)
. (23)

The roots of the shifted Chebyshev polynomial are used to find suitable collocation points
T̂n+1−dβe(µ). To apply the Gaussian integration formula for (23), we use the transformation
to convert the τ − interval [0, µp] to t-interval [−1, 1]

t =
µp

2
τ − 1.
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Equation (23), for p = 0, 1, 2, ..., n− dβe, may be rewritten as

n

∑
κ=dβe

n−dβe

∑
r=0

cκbβ
κ,ruκ−r−β

p = G

(
up,

n

∑
κ=0

cκ T̂κ(up),
up

2

∫ 1

−1
H

(
up

2
(t + 1),

n

∑
κ=0

cκ T̂κ

(
up

2
(t + 1)

))
dt

)
, (24)

On applying the Gaussian integration formula, for p = 0, 1, 2, ..., n− dβe, we have

n

∑
κ=dβe

n−dβe

∑
r=0

cκbβ
κ,ruκ−r−β

p = G

(
up,

n

∑
κ=0

cκ T̂κ(up),
up

2

n

∑
q=0

ωqH

(
up

2
(tq + 1),

n

∑
κ=0

cκ T̂κ

(
up

2
(tq + 1)

)))
, (25)

where tq represents the n+ 1 zeros of the Chebyshev polynomial Tn+1(τ) and ωq are the
appropriate weights as in [36]. For polynomials with a degree of less than 2n+ 1, the
correctness of the Gaussian integration formula provides the basis for the above approxi-
mation.

We can generate more dβe equations by substituting (19) into initial or boundary
conditions. By putting (19) into the boundary conditions (2), we obtain

n

∑
i=0

(−1)ici = α0,
n

∑
κ=2

cκb2
κ,κ = α2.

n

∑
i=0

ci = γ1,
n

∑
κ=2

κ

∑
ı=2

cκb2
κ,ı = γ2.

(26)

Equation (25), when combined with (dβe) equations of initial sources or boundary sources,
yields (n+ 1) nonlinear algebraic equations that may be solved using Newton’s iterative
approach for cκ , κ = 0, 1, 2, · · · , n, applying Newton’s iterative method. As a result, the
function ϕ(µ) from (1) can be computed.

5. Applications

In this part, we solved three integro-differential problems having fractional-order
and compared the obtained results with other methods. All the computational work was
undertaken through MAPLE.

5.1. Problem 1

Let us consider the FIDE of the form [37]

dβ ϕ(µ)

dµ
+ ϕ(µ)− cos µ− (1− µ) sin µ− cos µ sin2 µ = 2

∫ µ

0
sin µϕ2(τ)dτ, 0 < β ≤ 1, (27)

subject to the initial conditions ϕ(0) = 0, having accurate solution ϕ(µ) = sin µ at β = 1.
The behavior of the exact and proposed method results are illustrated in Table 1.

Table 2 illustrates the error comparison among CPM, HWM and HLBF which verify that
CPM approaches fast as compared to HWM and HLBF. The solution at different fractional-
orders for problem 1 is given in Table 3 which shows that the solution gets closer towards
an accurate result as the value of β goes from fractional-order towards integer-order. The
graphical view for the exact and proposed method solution are given in Figure 1, whereas
Figure 2 illustrates the comparison of given techniques on the basis of error. Figure 3 shows
the graphical representation of problem 1 at different fractional-orders. It is observed from
the results that CPM solutions are in good agreement with the exact solution as compared
to HWM and HLBF.



Mathematics 2022, 10, 2071 6 of 13

Figure 1. Analysis of the exact and our method result for problem 1.

Figure 2. Comparison of proposed method solution with other methods on error base for problem 1.

Figure 3. Analysis of the proposed method solution at various fractional-orders for problem 1.
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Table 1. Comparison of the exact and proposed method results with the aid of absolute error for
problem 1.

µ Exact CPM CPM Error

0 0.0000000000000 0.0000000000000 3.0000000 × 10−11

0.10 0.0998334166500 0.0998334166900 4.0000000 × 10−11

0.20 0.1986693308000 0.1986693309000 1.0000000 × 10−10

0.30 0.2955202067000 0.2955202066000 1.0000000 × 10−10

0.40 0.3894183423000 0.3894183423000 3.0000000 × 10−11

0.50 0.4794255386000 0.4794255386000 2.0000000 × 10−10

0.60 0.5646424734000 0.5646424733000 1.0000000 × 10−10

0.70 0.6442176872000 0.6442176872000 1.0000000 × 10−10

0.80 0.7173560909000 0.7173560911000 2.0000000 × 10−10

0.90 0.7833269096000 0.7833269097000 1.0000000 × 10−10

1.0 0.8414709848000 0.8414709849000 1.0000000 × 10−10

Table 2. Comparison of the proposed method with other techniques on the basis of absolute error
(A.E) for problem 1.

µ CPM A.E HWM A.E HLBF A.E

0 3.0000000 × 10−11 0.0000 × 100 7.7000 × 10−5

0.10 4.0000000 × 10−11 3.7171 × 10−6 3.2417 × 10−5

0.20 1.0000000 × 10−10 1.3100 × 10−5 7.0699 × 10−5

0.30 1.0000000 × 10−10 1.6507 × 10−5 1.4379 × 10−4

0.40 3.0000000 × 10−11 2.8408 × 10−6 5.9766 × 10−4

0.50 2.0000000 × 10−10 3.8089 × 10−5 1.1115 × 10−3

0.60 1.0000000 × 10−10 6.0150 × 10−6 2.0875 × 10−3

0.70 1.0000000 × 10−10 1.1697 × 10−5 3.2213 × 10−3

0.80 2.0000000 × 10−10 6.0064 × 10−6 4.6119 × 10−3

0.90 1.0000000 × 10−10 3.0721 × 10−5 6.8891 × 10−3

1.0 1.0000000 × 10−10 1.04407 × 10−5 7.5720 × 10−3

Table 3. Comparison of the proposed technique solution at various fractional-orders of β for
problem 1.

µ Error (β = 0.97) Error (β = 0.98) Error (β = 0.99) Error (β = 1)

0 3.2000000 × 10−11 3.2000000 × 10−11 3.1000000 × 10−11 3.000000 × 10−11

0.1 1.135152 × 10−5 8.919750 × 10−6 4.3009500 × 10−6 4.000000 × 10−11

0.2 1.8666930 × 10−4 1.4671060 × 10−4 7.0767400 × 10−5 1.000000 × 10−10

0.3 6.6282070 × 10−4 5.2095370 × 10−4 2.5128190 × 10−4 1.000000 × 10−10

0.4 1.1508209 × 10−3 9.0395280 × 10−4 4.3540760 × 10−4 3.000000 × 10−11

0.5 1.1921572 × 10−3 9.3353540 × 10−4 4.4664560 × 10−4 2.000000 × 10−10

0.6 6.3285470 × 10−4 4.8636960 × 10−4 2.2323920 × 10−4 1.000000 × 10−10

0.7 3.8548800 × 10−4 3.2733470 × 10−4 1.8270010 × 10−4 1.000000 × 10−10

0.8 1.7628395 × 10−3 1.4284069 × 10−3 7.3245480 × 10−4 2.000000 × 10−10

0.9 3.4219219 × 10−3 2.7559102 × 10−3 1.3964212 × 10−3 1.000000 × 10−10

1 5.5153604 × 10−3 4.4269605 × 10−3 2.2284125 × 10−3 1.000000 × 10−10

5.2. Problem 2

Let us consider the FIDE of the form [38]

dβ ϕ(µ)

dµ
= − sin µ + cos 1− sin 1 +

∫ 1

0
τϕ(τ)dτ, 0 ≤ µ ≤ 1, 1 < β ≤ 2, (28)

subject to the initial sources ϕ(0) = 1, ϕ′(0) = 1.
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At β = 2 the accurate solution of the problem is ϕ(µ) = sin(µ). The behavior of the
exact and proposed method results are demonstrated in Table 4. Table 5 demonstrates
the proposed method and RKHSM error comparison verify that CPM approaches fast as
compared to RKHSM, whereas Table 6 shows the behavior of the proposed method at
different fractional-orders of problem 2. The graphical view for the exact and proposed
method solution are given in Figure 4, while Figure 5 illustrates the comparison of the
given techniques on the basis of error. In addition, Figure 6 provides the graphical layout
for problem 2 at various fractional-orders. The results we obtained by implementing the
proposed technique are better than those of RKHSM.

Figure 4. Analysis of the exact and our method solution for problem 2.

Figure 5. Comparison of proposed method solution with other method on error base for problem 2.

Table 4. Comparison of the exact and proposed method results with the aid of absolute error for
problem 2.

µ Exact CPM CPM Error

0 0.0000000000000 0.0000000000000 1.302230 × 10−10

0.10 0.0998334166500 0.0998334168200 1.700000 × 10−10

0.20 0.1986693308000 0.1986693309000 1.000000 × 10−10

0.30 0.2955202067000 0.2955202077000 1.000000 × 10−9

0.40 0.3894183423000 0.3894183482000 5.900000 × 10−9

0.50 0.4794255386000 0.4794255649000 2.630000 × 10−8

0.60 0.5646424734000 0.5646425587000 8.530000 × 10−8

0.70 0.6442176872000 0.6442179088000 2.216000 × 10−7

0.80 0.7173560909000 0.7173565688000 4.779000 × 10−7

0.90 0.7833269096000 0.7833277785000 8.689000 × 10−7

1.0 0.8414709848000 0.8414722860000 1.301200 × 10−6
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Figure 6. Analysis of the proposed method solution at various fractional-orders for problem 2.

Table 5. Comparison of the proposed technique with other technique on the basis of absolute error
(A.E) for problem 2.

µ CPM A.E RKHSM A.E

0.10 1.7000000000 × 10−10 1.563021804 × 10−4

0.20 1.0000000000 × 10−10 5.715570458 × 10−4

0.30 1.0000000000 × 10−9 1.155520034 × 10−3

0.40 5.9000000000 × 10−9 1.845986977 × 10−3

0.50 2.6300000000 × 10−8 2.602839165 × 10−3

0.60 8.5300000000 × 10−8 3.402047744 × 10−3

0.70 2.2160000000 × 10−7 4.230597172 × 10−3

0.80 4.7790000000 × 10−7 5.082385022 × 10−3

0.90 8.6890000000 × 10−7 5.95512471 × 10−3

1.0 1.3012000000 × 10−6 6.848236863 × 10−3

Table 6. Comparison of the proposed technique solution at various fractional-orders of β for
problem 2.

µ Error (β = 1.97) Error (β = 1.98) Error (β = 1.99) Error (β = 2)

0.1 3.4570000 × 10−8 3.3670000 × 10−8 3.2580000 × 10−8 1.7000000 × 10−10

0.2 4.4276000 × 10−6 4.3141000 × 10−6 4.2028000 × 10−6 1.0000000 × 10−10

0.3 7.5649000 × 10−5 7.3708900 × 10−5 7.1809700 × 10−5 1.0000000 × 10−9

0.4 5.6672680 × 10−4 5.5219250 × 10−4 5.3796520 × 10−4 5.9000000 × 10−9

0.5 2.7023651 × 10−3 2.6330610 × 10−3 2.5652204 × 10−3 2.6300000 × 10−8

0.6 9.6830708 × 10−3 9.4347414 × 10−3 9.1916573 × 10−3 8.5300000 × 10−8

0.7 2.8486630 × 10−2 2.7756070 × 10−2 2.7040942 × 10−2 2.2160000 × 10−7

0.8 7.2541279 × 10−2 7.0680909 × 10−2 6.8859836 × 10−2 4.7790000 × 10−7

0.9 1.6544492 × 10−1 1.6120198 × 10−1 1.5704866 × 10−1 8.6890000 × 10−7

1 3.4590475 × 10−1 3.3703381 × 10−1 3.2835026 × 10−1 1.3012000 × 10−6

5.3. Problem 3

Let us consider the FIDE of the form [39]

dβ ϕ(µ)

dµ
= ϕ(µ) + eµ + 2− e +

∫ 1

0
τϕ(τ)dτ, 0 ≤ µ ≤ 1, 0 < β ≤ 1, (29)

with initial sources ϕ(0) = ϕ′(0) = 1.
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The exact solution of this equation for β = 1 is ϕ(µ) = µeµ. The behavior of the
accurate and proposed method result are given in Table 7. Table 8 shows the behavior of
the proposed method at different fractional-orders of problem 3. In addition, Table 9 shows
the proposed method and POMM error comparison which verify that CPM approaches fast
as compared to POMM. The graphical view for the exact and proposed method solution are
given in Figure 7, whereas the graphical layout for problem 3 at various fractional-orders is
shown in Figure 8.

Table 7. Comparison of the exact and proposed method solution with the aid of absolute error for
problem 3.

µ Exact CPM CPM Error

0 0.0000000000000 0.0000000000000 5.0806752 × 10−11

0.10 0.1105170918000 0.1105170918000 3.0000000 × 10−11

0.20 0.2442805516000 0.2442805516000 2.0000000 × 10−10

0.30 0.4049576424000 0.4049576422000 2.0000000 × 10−10

0.40 0.5967298792000 0.5967298789000 3.0000000 × 10−10

0.50 0.8243606355000 0.8243606358000 3.0000000 × 10−10

0.60 1.0932712800000 1.0932712810000 1.0000000 × 10−9

0.70 1.4096268950000 1.4096268960000 1.0000000 × 10−9

0.80 1.7804327420000 1.7804327440000 2.0000000 × 10−9

0.90 2.2136428000000 2.2136428000000 1.0000000 × 10−9

1.0 2.7182818280000 2.7182818300000 2.0000000 × 10−9

Table 8. Comparison of the proposed technique solution at various fractional-orders of β for
problem 3.

µ Error (β = 0.97) Error (β = 0.98) Error (β = 0.99) Error (β = 1)

0 1.0485000 × 10−10 2.8083000 × 10−10 4.0223000 × 10−10 5.080675 × 10−11

0.1 2.0000000 × 10−10 1.0000000 × 10−10 3.0000000 × 10−10 3.000000 × 10−11

0.2 5.2000000 × 10−8 3.3700000 × 10−8 1.6300000 × 10−8 2.000000 × 10−10

0.3 1.3313000 × 10−6 8.6660000 × 10−7 4.2330000 × 10−7 2.000000 × 10−10

0.4 1.3296200 × 10−5 8.6548000 × 10−6 4.2294000 × 10−6 3.000000 × 10−10

0.5 7.9241500 × 10−5 5.1574900 × 10−5 2.5201000 × 10−5 3.000000 × 10−10

0.6 3.4067700 × 10−4 2.2171800 × 10−4 1.0831300 × 10−4 1.000000 × 10−9

0.7 1.1691110 × 10−3 7.6081300 × 10−4 3.7158300 × 10−4 1.000000 × 10−9

0.8 3.4019540 × 10−3 2.2136880 × 10−3 1.0809210 × 10−3 2.000000 × 10−9

0.9 8.7273840 × 10−3 5.6785490 × 10−3 2.7721080 × 10−3 1.000000 × 10−9

1 2.0271126 × 10−2 1.3188502 × 10−2 6.4366770 × 10−3 2.000000 × 10−9

Table 9. Comparison of the proposed technique with other technique on the basis of absolute error
(A.E) for problem 3.

µ CPM A.E POMM A.E

0.1 3.00000000 × 10−11 3.567040 × 10−9

0.2 2.00000000 × 10−10 2.951000 × 10−9

0.40 3.00000000 × 10−10 3.304000 × 10−9

0.60 1.00000000 × 10−9 3.712000 × 10−9

0.80 2.00000000 × 10−9 4.368000 × 10−9

0.90 1.00000000 × 10−9 3.943000 × 10−9
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Figure 7. Analysis of the exact and our method result for problem 3.

Figure 8. Analysis of the proposed method solution at various fractional-order for problem 3.

6. Conclusions

We used the Chebyshev Pseudospectral approach for solving fractional integro-
differential equations in this article. In the Caputo manner, the fractional derivative is
considered. To reduce fractional integro-differential equations to algebraic equations, the
properties of Chebyshev polynomials were combined with the Gaussian integration method
which is solved using either the conjugate gradient approach or the Newton iteration ap-
proach. Studying the convergence analysis and estimating an upper bound of the error
of the resulting formula receives special emphasis. The results obtained by employing
the suggested technique are in great agreement with the actual solution and show greater
accuracy as compared to other techniques. Furthermore, it is clear from the figures that the
proposed method error converges quickly when compared to other approaches. MAPLE
was used to perform the calculations in this article.
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