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Abstract: Inferring the diffusion mechanisms in complex networks is of outstanding interest since
it enables better prediction and control over information dissemination, rumors, innovation, and
even infectious outbreaks. Designing strategies for influence maximization in real-world networks
is an ongoing scientific challenge. Current approaches commonly imply an optimal selection of
spreaders used to diffuse and indoctrinate neighboring peers, often overlooking realistic limitations
of time, space, and budget. Thus, finding trade-offs between a minimal number of influential
nodes and maximizing opinion coverage is a relevant scientific problem. Therefore, we study the
relationship between specific parameters that influence the effectiveness of opinion diffusion, such as
the underlying topology, the number of active spreaders, the periodicity of spreader activity, and
the injection strategy. We introduce an original benchmarking methodology by integrating time
and cost into an augmented linear threshold model and measure indoctrination expense as a trade-off
between the cost of maintaining spreaders’ active and real-time opinion coverage. Simulations show
that indoctrination expense increases polynomially with the number of spreaders and linearly with
the activity periodicity. In addition, keeping spreaders continuously active instead of periodically
activating them can increase expenses by 69–84% in our simulation scenarios. Lastly, we outline a set
of general rules for cost-effective opinion injection strategies.

Keywords: network science; opinion dynamics; influence maximization; cost-effectiveness; opinion
injection strategies; networked control
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1. Introduction

Understanding the dynamics of influence, which shape many aspects of our social life,
is one of the main driving forces in network science [1,2]. A widely adopted approach to
exploring temporal dynamics in networks—such as the way intricate relationships between
individuals evolve over time—consists of identifying the most powerful or influential
spreaders corroborated with centrality analysis and community detection [3–6]. However,
pinpointing influential nodes in real-world networks is a considerable ongoing challenge
relevant in interdisciplinary applications, such as information propagation, controlling
rumors and disease outbreaks, designing recommender systems, and understanding the
organization of social and ecological networks [1,3,7–10].

The idea of maximizing influence in networks is not new [5,11–14], but research
on combining the maximization of influence coverage with the minimization of the cost of
operation is limited. To address this issue, we propose investigating the trade-off between
the cost of maintaining active spreaders and the spreading coverage to minimize what we
call the indoctrination expense over a given complex network. Thus, our research aims to
answer the following questions:

1. How does the number of spreader agents scale with the indoctrination expense?
2. How does the network topology influence the spreading effectiveness?
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3. How does the duration of spreader activity influence the trade-off between cost per
agent and diffusion coverage?

4. How does periodicity in spreader activity (i.e, periods of activity, followed by periods
of inactivity) scale with costs and long-term indoctrination?

Answering these questions should lead us toward developing a set of “rules of thumb”
for cost-effective spreading of opinion, information, or influence in social networks with a
direct impact in interdisciplinary applications, such as viral marketing, sociology, and busi-
ness applications.

We start from the premise that targeted diffusion of opinion in real-world contexts
regularly incurs a cost for keeping spreader agents active, e.g., financial support toward
marketing agents, political activists, or technological evangelists. However, studies on
influence maximization (IM) originating from complex network theory typically ignore the
underlying financial aspects [5,11,12]. Similarly, studies in the social sciences generally omit
the network modeling paradigm [15,16]. Moreover, the impact of timing in the estimation
of cost of operation is evident and has yet to be well explored in network science.

We find few temporal aspects corroborated to the opinion diffusion cost discussed
in the state of the art. For example, in [17], Aral et al. introduce a distinction between the
concepts of contagion (fast short-term influence) and homophily (slow long-term influence),
and the authors show that homophily can explain more than 50% of contagion (influence).
Furthermore, we find two studies on the temporal dynamics of diffusion [18,19] in which
time is taken into account in the equation of opinion transmission and opinion survival
that focus more on reproducing opinion cascades as they occurred in time.

Therefore, the driving motivation of this paper is to study the impact of key network
parameters—such as the number of spreaders, nature of topology, number of opinions,
spreader activity periodicity, and spreader activity duration—on diffusion effectiveness
from the point of view of cost of operation. To the best of our knowledge, the described
methodology and the insights obtained are a scientific novelty.

Taken together, our main contribution represents the original benchmarking method-
ology of adapting a classic linear threshold model [20,21] with time and cost characteristics,
which is further used to measure opinion diffusion cost-effectiveness on a variety of syn-
thetic and real-world complex network topologies via discrete event simulation. As a result,
we highlight the common and distinct patterns that stimulate higher indoctrination expense
based on key network characteristics.

The rest of the paper is structured in the following order: the Materials and Methods sec-
tion presents the opinion diffusion model used for simulation, the temporal characteristics
and the used network datasets; the Results section summarizes the simulation output and
details the analysis over each experiment; the Discussion section presents a meta-analysis to
understand the impact of each network parameter in isolation and draws conclusions from
the experiments; the Conclusions outline the main results and enumerate the contributions
of this work as well as possible future directions for research.

2. Materials and Methods

It is challenging to predict dynamic behavior at the meta-level of a network, even if we
know how individual nodes respond to stimuli and how they are linked. Network science
offers several notable graph-based predictive diffusion models [22], such as the classic
linear threshold LT [20,21], the independent cascade IC [23], the classic voter model [24],
the Axelrod model [25] and the Sznajd model [26]. These models use fixed thresholds to trig-
ger opinion changes or thresholds that evolve according to simple probabilistic processes
that are not driven by the internal state of social agents [22]. Other approaches may involve
evolutionary game theory [27,28] to better model some aspects of social unpredictability.
Also, it should be noted that we observe that the tolerance model [29,30] uses a dynamic
threshold so that the states of the nodes evolve according to their interaction patterns.

Given the multitude of simulation parameters that we set out to analyze in this study,
we consider incorporating a simple and proven diffusion model. Specifically, to achieve
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our research goals, we augment a classical linear threshold (LT) model [20,21] with cost
constraints and implement discrete event computer simulation on several network models.
Discrete event simulation is a recognized option in the network science literature for
modeling high complexity and detail, where complexity is specifically the result of multiple
random processes and the inherent structure of the system [31].

2.1. The Opinion Diffusion Model

In this paper, we employ discrete event simulation to assess the temporal dynamics and
the cost of spreading influence over arbitrary complex networks. Our methodology is robust
and intuitive. Given a network topology G = {N, E} with nodes N and undirected edges
E, we designate a subset of spreader nodes Ns ⊂ N so that each spreader si ∈ Ns will hold
a constant opinion ωi(t) = 1 for the entire simulation time 0 ≤ t < ∞. According to this
approach, spreaders act as perpetual sources of opinion, similar to stubborn agents [29,32].
All other nodes are called regular agents ni ∈ {N \ Ns} that start unbiased toward the
induced opinion, namely ωi(t = 0) = 0.

We augment the LT model to use continuous agent opinion instead of discrete opinion
to achieve higher realism. As such, each regular agent ni has an opinion 0 ≤ ωi(t) ≤ 1
at every time step t of the simulation period. An agent with an opinion ωi(t) ≥ 0.5 is
considered to be indoctrinated or biased. The value 0.5 was chosen because it represents the
mean between the two extremes 0 (no opinion) and 1 (fully indoctrinated). In other words,
if a node was to vote and choose between options ‘0’ and ‘1’, any opinion ωi(t) ≥ 0.5 would
imply a vote for ‘1’ and vice versa. In time, we represent the bias bi(t) of an agent ni at
moment t having opinion ωi(t) ∈ [0, 1]. Since we use a continuous opinion representation,
bi(t) is given by Equation (1).

bi(t) =

{
0 i f 0 ≤ ωi(t) < 0.5
1 i f 0.5 ≤ ωi(t) ≤ 1

(1)

To express the bias in the entire network G, we compute the network bias as the
average b(t) = 1/|N| ·∑ bi(t) for all nodes ni ∈ N. In general, agent–agent interactions can
be modeled in two distinct ways: either a node will periodically interact with one random
neighbor (simple diffusion), or with all its neighbors at the same time (complex diffusion),
followed by averaging the neighboring opinion ω̄Ni (t) (where Ni is the node neighborhood
of ni). Here, we adopt the complex diffusion so that a node will update its opinion ωi(t)
using a weighted combination of its past opinion (at t− 1) and the current opinion (at t) of
its neighbors, as follows:

ωi(t) = θi · ω̄Ni (t) + (1− θi) ·ωi(t− 1) (2)

The parameter 0 < θi < 1 is a random number uniquely generated for each node
ni. An emergent property of the LT model is the resilience of the nodes toward being
indoctrinated. Namely, in the absence of a spreader’s influence, the opinion of a regular
agent will slowly drop back to ω(t) = 0. According to Equation (2), if the vicinity of a node
is less indoctrinated ω̄Ni (t) < ωi(t), then the opinion of node ni will decrease.

2.2. Cost-Temporal Awareness of the Diffusion Model

According to the LT model, each spreader si will diffuse opinion in its direct neighbor-
hood. However, we consider that keeping si active implies a uniform cost of m monetary
units per agent per time unit; for simplicity, we consider that one spreader consumes USD
1/day (m = 1), as a day is one iteration in our discrete event simulation. If a spreader is not
active, it will not imply any cost, but it will also not diffuse opinion. In contrast, each regu-
lar agent ni is modeled to accept influence from its neighborhood Ni = { nj | (eij) ∈ E}
through Equation (2) but will always tend to converge back to a state of no opinion (e.g.,
like a non-powered capacitor) if it is not linked to any other indoctrinated nodes. According
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to Equation (1), a node ni is considered indoctrinated/biased at time t if ωi(t) ≥ 0.5, where
0 ≤ ωi(t) ≤ 1, for any i, t.

We address the cost-time constraints by modeling spreader activity as dependent on
time and introduce two temporal characteristics in this sense: activity ratio ρ (i.e., filling factor
of active time) and activity period P (i.e., repetition duration). Consequently, spreaders will
be active periodically for ρP iterations then inactive for (1− ρ)P iterations. These considered
additions to the simulation methodology are important since timeouts in spreader activity
lengthen the total opinion induction period while halting costs. Of course, if the timeout
(1− ρ)P is too long, then the induced opinion may be completely depleted from the network.

Consequently, we implement cost-time awareness in LT by introducing two mutually
exclusive temporal opinion injection strategies:

• Continuous injection: all Ns spreader nodes are active throughout the simulation. Here,
ρ = 1, such that (1− ρ)P = 0, so there are no iterations of inactivity.

• Periodic injection: all spreader nodes are activated periodically, remain active continu-
ously, and then become inactive for a proportion of iterations determined by the fill
factor ρ.

The continuous injection strategy implies a maximum cost of indoctrination given
by the number of spreaders |Ns| multiplied by the number of simulation iterations K:
cost = |Ns| · K, since all spreaders incur the same cost per iteration. On the contrary,
the periodic injection strategy implies a lower cost given by the number of spreaders |Ns|
multiplied by the number of active iterations Ks ≤ K: cost = |Ns| · Ks, where Ks = K · ρ.
For example, for a filling factor of ρ = 0.5, we obtain a periodic strategy cost that is half the
continuous cost.

The indoctrination expense ε(t) is intuitively defined as the ratio between the cost of
diffusion and amount of successful diffusion at any moment t in time. Specifically, the instant
cost of indoctrination cost(t) at moment t is deterministic and equals the cost of each spreader
multiplied by the number of active spreaders m|Ns(t)| = |Ns(t)| (since we use m = 1 for all
spreaders as a simplification). In contrast, the opinion of each node is nondeterministic and
measured through simulation at every moment t. Since the purpose of activating spreaders
in the network is to bias nodes toward the induced opinion (i.e., ωi(t) → 1), and a node is
biased only if its opinion is ωi(t) ≥ 0.5, we then consider as a measure of interest the coverage
as the sum of opinions of all biased-only nodes Nω above the bias threshold of 0.5. As such,
we obtain the following expression for ε(t) in time:

ε(t) =
cost(t)

coverage(t)
=

|Ns(t)|
1

Nω
∑N

i=1{ωi(t)− 0.5 | bi(t) = 1}
(3)

where only the opinion above 0.5 (ωi(t) − 0.5) of the biased nodes Nω is summed up
and averaged.

Furthermore, we note that the instant cost depends solely on the number of active
spreaders at time t, but while the spreaders are temporarily inactive during the periodic
injection strategy (|Ns(t)| = 0), the expression in Equation (3) becomes 0. In turn, we will
notice fluctuations of ε(t) between 0 and an arbitrary value ε(t) while |Ns(t)| > 0 spreaders
are active. To eliminate the fluctuation of ε(t) and obtain a convergent value in time, we
calculate the convergent expense ε̃(t) as the average over all instant indoctrination expenses
ε(t) from the beginning of the simulation up to t and obtain the following expression:

ε̃(t) =
1
t

t

∑
k=0

ε(k) (4)

where the initial convergent expense is ε̃(0) = ε(0), and Equation (4) is applied starting
with the second iteration of the simulation.

Lastly, the convergent indoctrination expense ε̃(t) is observed to converge monotonously
toward a stable value as the number of simulations increases (experimentally, this occurs



Mathematics 2022, 10, 2067 5 of 16

roughly as K > 1000). As such, we express the final indoctrination expense E as the average
of ε̃(t) over the last P simulation iterations (implying that K ≥ P) as follows:

E =
1
P

K

∑
t=K−P+1

ε̃(t) (5)

For example, if we run K = 5000 simulation iterations, with the activity period
P = 100, E is calculated as the average between {ε̃(t = 4901), ε̃(t = 4902) . . . , ε̃(t = 5000)}.
The final indoctrination expense E is the single numerical value used to summarize the
time-cost efficiency in each experimental setting throughout the paper.

The conceptual difference between the two proposed injection strategies and the
indoctrination expense that we measure is shown in Figure 1. In the illustrated example,
given an arbitrary oscillating network bias 0 ≤ b(t) ≤ 1, we measure the indoctrination
expense ε(t) in time for the two injection strategies. The main difference illustrated in
Figure 1b is that the expense of the periodic strategy (violet) is similar in value to the
expense of the continuous strategy (yellow) while the spreaders are active but drops to
zero otherwise. Based also on the periodicity of spreader activation (here we use P = 100),
the convergent expense ε̃(t) shown in Figure 1c drops in time and converges to the final
indoctrination expense E. As an example, we suggest a final E = 55 for the continuous
injection and E = 29 for the periodic injection. This further leads to an expense ratio of
55/29 = 1.89, suggesting that the continuous strategy is 89% less cost-effective than the
periodic strategy in this example. In the Results section, we will discuss in terms of the
measured E and the expense ratio between the two injection strategies.
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Figure 1. Conceptual representation of the methodology applied to calculate the indoctrination
expense: (a) experimental measurement of the network bias b(t) toward one opinion (green); oscilla-
tions emerge due to the existence of multiple competing opinions (not shown here); (b) measured
indoctrination expense ε(t) for the continuous and periodic injection strategies; (c) from ε(t), we
compute the convergent expense ε̃(t) which begins to stabilize after approximately t > 1000 iterations;
the final indoctrination expense E is calculated as an average of ε̃(t) over the last P iterations.

2.3. Validation Datasets

We include 12 datasets in this study and divide them into three main categories: funda-
mental network topologies, complex synthetic network models, and real-world networks.

The chosen networks include the four fundamental topologies: the mesh Mesh, the
Watts–Strogatz small-world SW [33], the random Erdös–Rényi ER network [34], and the
Barabási–Albert scale-free network SF [35]. Next, we include four complex synthetic
topologies: Holme–Kim HK [36], cellular Cell [37], Watts–Strogatz with degree distribution
WSDD [38], and Genosian Gns [39] networks. Lastly, we choose four real-world networks:
an online social network OSN [40], a combined Facebook egonetwork FB [41], a scien-
tific collaboration network in geometry GeCo [42] and an email communication network
Eml [43].

The motivation behind choosing the synthetic network models is the need for topo-
logical diversity. Therefore, the first four are reference models for network science, which
we can understand and differentiate fundamentally based on differences in average path
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length, clustering coefficient, degree distribution and hub formation [44,45]. The latter four
topologies combine the properties of the first and are able to reproduce more realistic net-
works in terms of communities, clustering, long-range links, etc. A representative network
was generated for each of the eight synthetic networks; the algorithms and parameters
for generating all these networks were selected according to each article cited where the
models were first proposed and were implemented as Java plug-ins in Gephi [46] by the
authors of this article.

The real-world datasets were chosen on the basis of diversity in size and context. Taking
into account the high interest in the spread of influence, we chose four undirected networks con-
sisting of various types of social relationships with sizes ranging from N = 1899 to 12,625 nodes
and from E = 9.4K to 88.2K edges. In addition, we consider all regular spreader nodes as
identical social agents, and only the network’s structural information is used in the simulation
(such as node degree, adjacent edges), without any additional node-specific information (e.g.,
age, gender, professional status). A heterogeneous overview of the nodes in the network is
beyond the goal of this paper but could represent a potential basis for further research..

Since we intend to understand the impact of the underlying topology from the cost-time
perspective, we will often refer to the four fundamental topologies. Practically, all other
networks (synthetic or real-world) can be considered a weighted combination of mesh,
random, small-world, and scale-free networks [47]. In Table 1 we provide measurements
for the characteristic network properties of each dataset. Here, we include the size of the
network N, the number of edges E, the average degree 〈k〉, the maximum degree max(k),
the average path length APL, the average clustering coefficient ACC, the modularity of the
network Mod (with default resolution r = 1 [48]) and the diameter of the network Dmt [45].

Table 1. Network measures for the validation datasets divided into fundamental, complex synthetic
and real-world networks.

Dataset Nodes Edges Average
Degree

Maximum
Degree

Average
Path Length

Average
Clustering
Coefficient

Network
Modularity

Network
Diameter

N E 〈k〉 max(k) APL ACC Mod Dmt

Mesh 5000 25,234 5.047 36 13.942 0.185 0.855 37
SW 5000 19,998 4.000 11 10.607 0.426 0.829 22
ER 5000 20,923 4.185 21 4.253 0.002 0.418 8
SF 5038 19,198 3.811 174 4.275 0.020 0.536 10

HK 1000 3330 3.33 85 3.553 0.506 0.488 7
Cell 1041 6012 5.775 95 4.428 0.258 0.885 10

WSDD 1178 9048 7.681 58 15.419 0.659 0.930 32
Gen 1063 6915 6.505 25 4.765 0.498 0.882 9

OSN 1899 20,296 10.688 339 3.055 0.138 0.338 8
FB 4039 88,234 43.691 1045 3.693 0.617 0.834 8

GeCo 3621 9461 5.226 102 5.316 0.679 0.743 14
Eml 12,625 20,362 3.226 576 3.811 0.577 0.684 9

3. Results

The benchmark results consist of repeated simulations that alternate between the
following parameters: network topology, number of spreaders, spreader activity period
and injection strategy. The 12 topologies used here are described in Table 1; the number
of spreaders ranges in |Ns| ∈ {1, 3, 10, 30, 100}; the spreader activity period ranges in
P ∈ {5, 10, 25, 50, 100, 250}; we use the two injection strategies described in Section 2.2.
Furthermore, the duration of the simulation is fixed at K = 2000 iterations, and the fill
factor remains constant at ρ = 0.5. We made several considerations to simplify the analysis
of all simulation results, such as: (i) considering one iteration as one ‘day’, (ii) a limitation
in the maximum number of network datasets, (iii) a reasonable limitation for the number
of spreaders (i.e., where |Ns| = 100 corresponds to about 2% of all nodes in the network),
(iv) a realistic activity period of no less than 5 days and no more than 250 days, (v) a
standard fill factor of ρ = 0.5 (i.e., spreaders may be active 50% of the time) (vi) and a long
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enough simulation duration to allow full convergence of the indoctrination expense. The
motivation behind choosing each parameter is provided as follows:

• We observed that the convergent expense ε̃(t) converges after K > 1000 iterations for
all simulation settings. As such, a fixed value of K = 2000 is sufficient to capture the
stable state of the network.

• The fill factor was given an intuitive fixed value of ρ = 0.5 (50%) rather than any other
intermediary value to reduce the complexity of the presented analysis. In addition,
the goal of analyzing the effect of an alternative or dynamic fill factor may be the topic
of a subsequent study.

• The number of spreaders was limited to |Ns| = 100, as a large enough value relative
to the networks size (≈2%), beyond which it becomes implausible (in terms of cost) to
maintain active agents in a network.

• The activity period P was fixed, considering that a minimum repetition period of less
than 5 days (one work week) is hardly relevant for a commercial campaign, while a
maximum effective period of 1–3 months was suggested in marketing studies [49].
Nevertheless, we chose several intermediary values up to 250 days (over 8 months).

To ensure statistical reliability, all experimental results represent average values mea-
sured over 100 repeated simulations using the same settings. Overall, we conducted a total
of 12 (topologies) × 5 (spreader settings) × 6 (period settings) × 2 (injection strategies) ×
100 (repetitions) = 72,000 experiments that correspond to 720 unique simulation settings.
Hence, we opt for a graphical representation of the results in various settings instead of
providing very long tables. To fully understand the impact of each simulation parameter,
we study the results using the graphical representations in Figures 2–6.
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Figure 5. The impact of the spreader activity period P on the expense ratio between the continuous
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for graphical reasons; the Mesh and SW networks show similar drops in expense ratio; (b) complex
synthetic networks—the HK network offers the highest drop in expense ratio as P increases; (c) real-
world networks—all networks present similar drops in expense ratio.
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Figure 6. The indoctrination expense E is shown scaling with each topology grouped by the number of
spreaders: (a) two distinct subcategories of networks are suggested over the fundamental networks—
regular (Mesh and SW with lower expenses) and irregular (ER and SF with up to×3 higher expenses);
(b) complex synthetic networks—similar scaling of E with |Ns| for all four networks; (c) real-world
networks—higher E for the OSN network, and much higher E for the Eml network (in the order of
E ≈ 400–1600.

We first measure the indoctrination expense incurred by the two proposed opinion
injection strategies, continuous and periodic. Figure 2 shows the increase in E as the number
of spreaders |Ns| increases. To exemplify the role of topologies, we selected a network
from each of the three network categories, namely SW, WSDD, and OSN. The numerical
results on all 12 topologies support the conclusion that the continuous injection strategy
(i.e., keeping spreaders active continuously) is less cost-effective than the periodic injection
strategy. On average, the continuous strategy yields a 1.69–1.98 times higher expense E
(that is, +69–98%) than the periodic strategy.

In addition, we note that both injection strategies incur a polynomial increase in
expense E, while the number of spreaders increases linearly from 1 to 100. An intuitive
real-world explanation is that doubling the number of spreaders does not double the
spreading bandwidth or potential. There are several factors such as the positioning of the
spreaders which have been shown to impact spreading efficiency [50] as well as topological
characteristics such as hub formation, average path length, local clustering, etc. [6]. Con-
sequently, our experiments confirm that higher spreader counts yield increasingly higher
indoctrination expenses.

We measure average expense ratios between the continuous and periodic strategies
of 1.36 for fundamental topologies, 1.67 for complex topologies, and 1.72 for real-world
topologies when using one single spreader. When using 100 spreaders, these expense ratios
increase to 1.93, 1.92 and 2.11, respectively. Therefore, the expense difference between the
two injection strategies increases by 15–42% when the number of spreaders is increased.

To better understand the difference between the two injection strategies as shown
in Figure 2, we propose an intuitive numerical example. Say that during a continuous
injection strategy with |Ns| = 50 spreaders the network bias is b(t) = 0.75, such that the
indoctrination expense is ε(t) = 50/(0.75− 0.5) = 50/0.25 = 200 according to Equation (3).
During an equivalent periodic injection strategy, where spreaders are active only half of
the time (i.e., similar to having 25 spreaders continuously), we would expect half of the
network bias b(t) over the 0.5 opinion threshold, that is, 0.5 + 0.25/2 = 0.625. In other
words, we confirm that ε(t) = 50/2/(0.625− 0.5) = 25/0.125 = 200, the same as above.
However, if the simulation results suggest, for example, an average 82% decrease in
expense, this translates to an actual ε(t) = 200/(1 + 0.82) = 110 for the periodic injection
strategy in our example. In turn, this results in a higher network bias than expected:
b(t) = 25/110+ 0.5 ≈ 0.23+ 0.5 = 0.73 instead of the theoretically expected 0.625, which is
much closer to the bias measured during the continuous strategy of b(t) = 0.75. This type
of cost-effectiveness is present on all datasets and can be explained through the inherent
memory of the LT opinion interaction model, which continues to diffuse diminishing
amounts of opinion even when the spreader nodes are inactive. A similar kind of residual
diffusion has been found to be specific to human interaction and social networks [6,13].
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Next, in Figure 3, we analyze the impact of the spreader activity period P on the ex-
pense E. Compared to the continuous strategy, where the activity period has no significance,
the periodic strategy suggests a small increase in expense E as P increases. The measured
increases are usually within 0–20% from P = 5 to P = 250; two exceptions are the ER and
HK networks with a more visible increase in expense of up to 39–41%. The average expense
increase, when increasing P from 5 to 250 days, is 19.04% on the fundamental networks,
17.04% on the complex synthetic networks and 10.16% on the real-world networks. Conse-
quently, the activity period has a smaller impact on the overall expense of indoctrination
than the number of spreaders.

Another important observation is the impact of each topology. Figure 4 reveals two
important aspects. First, we represent the expense ratio between the continuous and periodic
injection strategies and notice a correlation between the increase in the expense ratio and
the number of spreaders |Ns|. In other words, the more spreaders introduced in a network,
the less effective the continuous strategy becomes in comparison to the periodic one. In our
experiments on the fundamental topologies, the periodic injection strategy is roughly 36%
more cost-effective than the continuous one for |Ns| = 1 spreader and increases to 51%
(3 spreaders), 75% (10 spreaders), 93% (30 spreaders) and 93% (100 spreaders). On the
complex topologies, the cost-effectiveness is 64%, 67%, 85%, 92% and 93% higher for the
same number of spreaders; on the real-world networks, the cost-effectiveness is 53%, 72%,
76%, 105% and 111% higher.

When comparing the increases in the expense ratio between using one single spreader
in the network up to 100 spreaders, we obtain an expense ratio increase of 33% for P = 5
and 65% for P = 250, respectively, on the fundamental networks. The same expense
ratio increases on the complex topologies are 23% for P = 5 and 73% for p = 250; on
the real-world networks, these are 35% for P = 5 and 105% for P = 250. In conclusion,
the indoctrination expense ratio increases with the number of spreaders by an averaged
24% on the fundamental networks, 41% on the complex networks and 52% on the real-
world networks.

The second observation extracted from Figure 4 is that we notice different patterns
of increases in the expense ratio. Specifically, on the fundamental topologies, we observe
that for the Mesh and SW networks in Figure 4a, the expense ratio follows a linear increase
with the number of spreaders. On the ER network, the same increase is polynomial, and on
the SF network, the expense ratio is higher and slightly logarithmic (convergent). Similar
differences are visible on the other network categories, with higher overall expenses on the
WSDD, GeCo and OSN networks.

In Figure 5, we show the relationship between the expense ratio (between continuous
and periodic injection strategies) and the activity period P for each of the three network
categories. Overall, there is a clear decreasing trend in the expense ratio, meaning that
the longer the activity period, the better the cost-effectiveness of the continuous strategy
becomes compared to the periodic one.

On the fundamental topologies, the ER network has a non-deterministic response
through simulation but yields higher expense ratios (of ≈2.5) than the other topologies.
The SF network is also more expensive, and the expense ratio drops slightly. On the other
hand, the Mesh and SW networks behave similarly, with a pronounced decrease of 19–22%
decrease in the expense ratio as P increases. On the complex and real-world topologies,
we measure significant drops in the expense ratios of 7–28% and 21–34%, respectively.

Finally, Figure 6 highlights the impact of the topology on the indoctrination expense E
in association with an increasing number of spreaders. Figure 6a enables us to observe a
distinctive signature of the Mesh and SW networks compared to the ER and SF networks.
Taking into account the fundamental topological characteristics of each network [45], both
Mesh and SW can be considered primarily as regular networks due to their high local clus-
tering and non-power-law degree distributions. Similarly, the ER and SF networks display
higher expenses E than the previous group. Both networks can be considered primarily
irregular networks due to their low clustering and long-range links, even though SF is
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uniquely characterized by preferential attachment and a power-law degree distribution of
node degrees [35].

An important remark is that the indoctrination expense E is approximately ×3 higher
in the irregular group than in the regular group; more precisely, this ratio decreases from
×3.13 (|Ns| = 1 spreader) to×2.30 (|Ns| = 1 spreaders). Regardless of |Ns|, P, and injection
strategy, the SF network always generates the highest indoctrination expense, followed by
the ER network. A possible explanation is that in networks with preferential (or random)
attachment, the selection of seeds is more important than in regular networks; namely,
opinion diffusion becomes far more ineffective if spreaders do not coincide with hubs.
Indeed, in real-world scenarios, choosing highly connected agents (e.g., influencers) as
spreaders further implies much higher expenses; however, this analysis is currently beyond
the scope of this paper. On ER networks, the lack of local clustering makes opinion diffusion
challenging to control, indifferent to the location of spreaders.

In Figure 6b, we observe a relatively uniform scaling of E with the number of spreaders
for every topology. All four networks induce expenses similar to the regular group in
Figure 6a of E ≈ 300. We note that all four complex synthetic networks are a combination
of small-world and scale-free properties; nevertheless, the small-worldness of each seems
to contribute to much smaller expenses than on the purely scale-free network.

The expenses measured on the real-world networks depicted in Figure 6c are quite
insightful. All networks expect Eml yield expenses E smaller than any of the other fun-
damental or complex synthetic networks for a large number of spreaders. Specifically,
for |Ns| = 100, expenses range within E ∈ [150, 250], while expenses in the other two
categories of networks range within E ∈ [300, 400] (expect for SF). The Eml network is a
“predominantly” scale-free collaboration network, therefore reminiscent of SF and a much
higher expense E.

4. Discussion

Network science is a powerful interdisciplinary tool for modeling and better under-
standing real-world processes and is capable of revealing patterns in data that are hidden
in classical statistical or analytical approaches [3,51]. Specifically, by employing network
science, we are able to tackle the process of opinion diffusion, with overarching impact
over topics such as controlling the spread of rumors, the spread of innovation, or even
epidemic spreading, which are all highly impactful social and scientific challenges.

In this study, we augment the classic linear threshold model (LT) [20,21] with an origi-
nal cost-time-aware framework to analyze the emerging trade-off between efficient opinion
diffusion and cost of operation to minimize the indoctrination expense by maintaining active
spreader nodes over a complex network. For this, we defined the bias of an agent node bi(t)
toward an opinion injected into the network (see Equation (1)) and the general bias of the
network b(t) in time (see Equation (2)) as our discrete event simulation progresses. We in-
troduced two mutually exclusive temporal opinion injection strategies—continuous and
periodic—differentiated by the intermittent activity of spreaders in the network. The aim
was to observe whether periodic activation of spreaders, given by a period parameter P, can
reduce the overall indoctrination expense in time compared to a continuous activity, while
ensuring that the network becomes biased toward the injected opinion. The differences
between the two injection strategies are exemplified in Figure 1, and the converging ε̃(t)
and final E indoctrination costs are defined in Equations (4) and (5).

We implemented the simulation methodology based on the cost-time-aware LT model
on three network categories: fundamental, complex synthetic and real-world. By alternating
the topology, the number of spreaders, the spreader activity period and the injection
strategy, we totaled 720 simulation scenarios. From the multitude of these experiments,
we were able to extract relevant conclusions that could be used for cost-effective opinion
injection in complex networks.

Our results show that the use of a periodic opinion injection strategy is preferential to
a continuous one, as the first reaches a higher cost-effectiveness of +69–84% on average.
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Furthermore, periodic injection becomes even more effective as the number of spreaders
relative to the continuous strategy increases from 58% with one spreader active to 99%
with 100 spreaders active in the network. However, increasing the number of spreaders
is proven to be less cost-effective—a higher opinion coverage may be achieved, but at
polynomially increasing expense. By increasing the number of spreaders from 1 to 100,
the expense increases approximately × 10–15 times (see Figure 2).

The underlying topology has a significant impact on the indoctrination expense. More
precisely, in the fundamental topologies, two distinct signatures surface: regular networks
(i.e., the Mesh and SW) and irregular networks (i.e., the ER and SF networks). From the
perspective of our study, the difference is that irregular networks generate indoctrination
expenses E up to ×3 higher than regular networks. As a general rule, scale-free topologies
generate the highest indoctrination expense, higher than random networks that generate
higher expenses than Mesh and SW. The results in the fundamental topologies can be used
to further interpret the results shown in Figure 6b,c. Basically, the other network categories
(including the real-world networks) can be viewed as weighted combinations of the mesh,
random, small-world and scale-free networks [47].

In terms of the activity period, we observe decaying expense ratios (between the
continuous and periodic strategies) as the activity period P increases. This decrease is
shown in Figure 5, where we measure drops in the expense ratio of 18% on fundamental,
14% on complex synthetic and 23% on real-world networks as P increases from 5 to 250.
Networks with regularity in their underlying topology may trigger a higher decrease in
expense ratio as the activity period increases, while irregular topologies will imply higher
expense ratios and are less influenced by the activity period.

The general, patterns validated over all datasets are summarized as the following
rules of thumb:

• The indoctrination expense increases (i.e., opinion diffusion becomes more expensive
relative to its coverage):

1. With the number of spreaders active in the network (polynomial increase) in our
experiments, the expense increase was ×10–15 times from |Ns| = 1 spreader to
|Ns| = 100 spreaders.

2. By using a continuous injection strategy instead of a periodic one in our ex-
periments, a periodic strategy with a 50% fill ratio is between 69–84% more
cost-effective.

3. Even though the impact is less significant, as the spreader activity period P
increases to P = 250 days (out of which spreaders are inactive half of the time),
the expense drops by 0–20%.

• The expense ratio increases (i.e., the continuous strategy becomes less cost-effective
relative to the periodic one):

1. With the number of spreaders active in the network in our experiments, the ex-
pense ratio increases by 24–52% on average as |Ns| increases from 1 to 100. In
addition, irregular topologies (SF, ER) cost ×3 more.

2. With the decrease in spreader activity period P in our experiments, we measure
drops in E of −14 to −23%, on average, as P increases from 5 to 250.

To better emphasize the practical advantage of a periodic injection strategy, we can
imagine an example with two competing sides during an information campaign (e.g., mar-
keting, political), say A and B. Party A has a very high budget, so they can afford to keep
(and pay) a number of NA influencers continuously active in the social network. The second
party has only half the budget, so they could afford to keep either NB = NA/2 influ-
encers active continuously or adopt the same number of influencers NB = NA by activating
them periodically only half the time (i.e., incurring half the costs). In this second scenario,
as supported by our experiments, the periodic strategy would be approximately 80% more
cost-effective, which means that by halving the costs, the amount of indoctrination induced
in the social network would be as much as 90% of the indoctrination induced by the first
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party with a double budget. More precisely, with only half the budget but an efficient
timing strategy, party B achieves 90% of the same effect in the network as party A.

A similar example can be considered in terms of topological irregularity. As such,
online social networks with powerful scale-free characteristics [52] will reduce the amount
of indoctrination in the network to 1/3 compared to a proximity-based social network with
significant small-world characteristics [53]. In other words, each rule of thumb enumerated
above should be carefully considered for the specific context for which it is applied.

In addition to the scientific potential of our benchmarking methodology, our results
find real-world applicability in the context of influence maximization in key areas such as
online marketing, where spreaders are injected into the network (e.g., human agents, influ-
encers) or political campaigns where agents, or bots, act as sources of indoctrination [54].
Furthermore, the enumerated observations can be further generalized in computational
epidemics, such as corroborating our injection strategies with isolation strategies and com-
peting activation mechanisms in epidemics [55,56] or immunization strategies for viral
outbreaks [57,58].

5. Conclusions

The design of cost-effective strategies for influence maximization in real-world net-
works is an ongoing scientific challenge [5,12,50,59] with an overarching impact on un-
derstanding information diffusion, controlling fake news and disease outbreaks and un-
derstanding the function of social networks as a whole [60–64]. In addition, real-world
applications are often affected by the limitations of time, space and budget. Thus, finding
trade-offs between a minimal number of influential nodes and a maximization of opinion
coverage is a relevant scientific problem.

In this paper, we study the relationship between several specific parameters that
influence the effectiveness of opinion diffusion, such as the nature of the underlying
topology, the number of active spreaders, the periodicity of spreader activity, the duration
of spreader activity and the injection strategy. Consequently, we implement an original
benchmarking methodology by integrating time and cost awareness into an augmented
linear threshold model and measuring the indoctrination expense as a trade-off between the
cost to maintain active spreaders and real-time opinion coverage. The results of our discrete
event simulations highlight distinct patterns that stimulate the increase in indoctrination
expense. Specifically, we find that indoctrination expense increases with the number of
spreaders, with the activity periodicity and by keeping spreaders active continuously rather
than activating them periodically.

Taking into account the impressive amount of existing literature on influence maxi-
mization and opinion diffusion, we believe that our study represents a novel direction of
research aimed at better understanding the real-world applicability of influence maximiza-
tion strategies by incorporating realistic cost–time awareness. In general, we consider that
our proposed methodology can trigger the creation of computational intelligence tools to
further enhance strategies of opinion diffusion in complex networks.

Future research directions may include studying variable spreader costs in correlation
with network centralities, implementing a mechanism to allow each spreader to activate
independentl, and tuning of the amount of active spreaders in real-time according to
various events in the network.
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