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Abstract: We construct the Stancu-type generalization of q-Bernstein operators involving the idea of
Bézier bases depending on the shape parameter −1 ≤ ζ ≤ 1 and obtain auxiliary lemmas. We discuss
the local approximation results in term of a Lipschitz-type function based on two parameters and a
Lipschitz-type maximal function, as well as other related results for our newly constructed operators.
Moreover, we determine the rate of convergence of our operators by means of Peetre’s K-functional
and corresponding modulus of continuity.
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1. Introduction and Preliminaries

The shortest (and an elegant) proof of the most famous Weierstrass approximation
theorem was given by the mathematician S. N. Bernstein, who invented the sequence of
positive linear operators {Bm}m≥1 (see [1]). Bernstein, in his investigation, showed that
for any continuous function Ψ on [0, 1], written in symbols as Ψ ∈ C[0, 1], is uniformly
approximated by Bm. Thus, for w ∈ [0, 1], the famous Bernstein operators are given by

Bm(Ψ; w) =
m

∑
`=0

Ψ
(

`

m

)
bm,`(w),

where m ∈ N (the set of positive integers) and the Bernstein polynomials bm,`(u) of the
degree of the most m are defined by

bm,`(w) =

(
m
`

)
w`(1− w)m−` (` = 0, 1, · · · , m; w ∈ [0, 1])

and
bm,`(w) = 0 (` < 0 or ` > m).

It is very easy to verify the recursive relation for the Bernstein polynomials bm,`(w),
given by

bm,`(w) = (1− w)bm−1,`(w) + wbm−1,`−1(w).

First, the operators Bm(h; u) in the sense of q-calculus were introduced by Lupaş [2],
in which the approximation and shape-preserving properties were investigated, while one
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more form of the q-analogue of Bm(h; u) was given by Phillips [3]. The rate of convergence
was discussed by Heping and Meng [4] and Dogrŭ et al. [5] for the q-Bernstein and q-Lupaş–
Stancu operators, respectively. Nowak [6] and Mahmudov and Sabancigil [7] defined and
studied the q-Bernstein operators with the view of q-differences and in the Kantorovich
sense, respectively.

Mathematicians developed q-calculus as a novel and productive link between mathe-
matics and physics. Here, we use some basic tools of q-calculus (see [8]).

Consider q ∈ (0, 1] and an integer τ > 0. The q-integer “denoted as [τ]q” is defined as

[τ]q =
1− qτ

1− q
for the value of q 6= 1 and [τ]q = τ for q = 1. The formula for the q-factorial

“[τ]q!” is defined as [τ]q! = 1 for τ = 0 and [τ]q! = [τ]q[τ − 1]q · · · [1]q for the value of

τ = 1, 2, · · · . For 0 ≤ s ≤ r, the q-binomial coefficient
[

r
s

]
q
=

[r]q!
[r− s]q! [s]q!

, and

(1 + τ)r
q =

{
(1 + τ)(1 + qτ) · · · (1 + qr−1τ) (r = 1, 2, · · · )
1 (r = 0).

The formula for the q-Jackson of the improper integral is given by

∫ ∞/K

0
f (w)dqw = (1− q) ∑

m∈N
f
(

qm

K

)
qm

K
, K ∈ R− {0}.

The classical q-Jackson integral formula ([8,9]) for 0 where U ∈ R is given by

∫ U

0
f (w)dqw = U(1− q)

∞

∑
s=0

f (Uqs)qs,

while the more general form of the above for [U, V] is∫ V

U
f (w)dqw =

∫ V

0
f (w)dqw−

∫ U

0
f (w)dqw.

In recent times, there have been many authors who constructed the Bernstein-type
operators by use of various parameters, such as α-Bernstein operators [10], which were
linear and positive for α ∈ [0, 1] and their modifications in the sense of Kantorovich [11],
Schurer [12], Kantorovich-Stancu [13], Durrmeyer [14], Lupaş–Durrmeyer [15], q-Bernstein–
Stancu[16], and Kantorovich-type q-Bernstein operators [17,18] and the references therein.
Recently, α-Baskakov operators and their Kantorovich and Kantorovich–Stancu variants
were discussed in [19–21], respectively.

Cai et al. [22] defined and systematically studied the Bernstein kind operators by tak-
ing into their consideration Bézier bases associated with the shape parameter −1 ≤ ζ ≤ 1,
which were introduced by Ye et al. [23] and called ζ-Bernstein operators, in addition to their
Kantorovic and Schurer variants (see [24,25]). In 2019, Srivastava et al. [26] defined the
Stancu-type modification of the aforementioned operators and the studied direct approxi-
mation, uniform convergence, Voronovskaja-type theorems, rate of convergence and some
other approximation results. Inspired by these studies, Cai again, together with Zhou and
Li [27] (see also [28]), presented a modification of ζ-Bernstein operators by taking q-calculus
into account by simply writing the (ζ, q)-Bernstein operators as follows. Let w ∈ [0, 1],
q ∈ (0, 1], −1 ≤ ζ ≤ 1, and m ≥ 2. Then, for any function Ψ ∈ C[0, 1], the (ζ, q)-Bernstein
operators are defined by

Bm,q,ζ(Ψ; w) =
m

∑
`=0

ξm,`(w; q, ζ)Ψ
(

[`]q
[m]q

)
. (1)
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In this case, the Bézier bases associated with the ζ- and q-integers are given by

ξm,0(w; q, ζ) = χm,0(w; q)− ζ

[m]q + 1
χ1+m,1(w; q),

ξm,`(w; q, ζ) = χm,`(w; q) + ζ

(
[m]q − 2[`]q + 1

[m]2q − 1
χ1+m,`(w; q)

−
[m]q − 2[`]q + 1

[m]2q − 1
χ1+m,`+1(w; q)

)
, (1 ≤ ` ≤ m− 1)

ξm,m(w; q, ζ) = χm,m(w; q)− ζ

[m]q + 1
χ1+m,m(w; q),

where

χm,`(w; q) =
[

m
`

]
q
w`

m−`−1

∏
s=0

(1− qsw).

The authors of [29] presented another generalization of Bm,q,ζ(Ψ; w) (i.e., the Chlodowsky-
type (ζ, q)-Bernstein–Stancu operators) and investigated their approximation properties.
The Kantorovich variant of Bm,q,ζ(Ψ; w) [30] has been recently defined as

Km,q,ζ(Ψ; w) = [1 + m]q
m

∑
`=0

ξm,`(w; q, ζ)q−`
∫ [`+1]q

[1+m]q
[`]q

[1+m]q

Ψ(t)dqt. (2)

Lemma 1 ([27]). Let ei(w) = wi, i = 0, 1, 2. Then, the operators Bm,q,ζ are defined by Equation
(1) and satisfy Bm,q,ζ(1; w) = 1 and the following equalities:

Bm,q,ζ(t; w) = w +
[1 + m]qζw(1− wm)

[m]q([m]q − 1)
−

2[1 + m]qζw
[m]2q − 1

(
1− wm

[m]q
+ qw(1− wm−1)

)
+

ζ

q[m]q(1 + [m]q)

(
1−

m

∏
s=0

(1− qsw)− wm+1 − [1 + m]qw(1− wm)

)
+

ζ

[m]2q − 1

{
2[1 + m]qw2(1− wm−1)−

2[1 + m]qζw(1− wm)

q[m]q

+
2

q[m]q

(
1−

m

∏
s=0

(1− qsw)− wm+1
)}

;

Bm,q,ζ(t2; w) = w2 +
w(1− w)

[m]q
+

[1 + m]qζw
[m]q([m]q − 1)

(
qw(1− wm−1) +

1− wm

[m]q

)
−

2[1 + m]qζ

[m]q([m]2q − 1)

(
w(1− wm)

[m]q
+ q(2 + q)w2(1− wm−1)

+q3[m− 1]qw3(1− wm−2)

)
− ζ

q[m]q(1 + [m]q)

(
[1 + m]qw2(1− wm−1)−

[1 + m]qw(1− wm)

q[m]q

+
1−∏m

s=0(1− qsw)− wm+1

q[m]q

)
+

2ζ

[m]q([m]2q − 1)

{
q[m− 1]q[1 + m]qw3(1− wm−2)

−
(1− q)[1 + m]qw2(1− wm−1)

q
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+
[1 + m]qw(1− wm)

q2[m]q
− 1−∏m

s=0(1− qsw)− wm+1

q2[m]q

}
.

2. Construction of Operators and Basic Estimations

We introduce the following linear positive operators, determine their moments and
central moments, and study the uniform convergence of our operators.

Suppose µ and ν are non-negative parameters such that 0 ≤ µ ≤ ν, and suppose
that q ∈ (0, 1] where −1 ≤ ζ ≤ 1. Then, for Ψ ∈ C[0, 1], we define the Stancu variant of
Km,q,ζ(Ψ; w) (or, for example, by the Stancu-type (ζ, q)-Bernstein–Kantorovich operator) by

Sµ,ν
m,q,ζ(Ψ; w) = ([1 + m]q + ν)

m

∑
`=0

ξm,`(w; q, ζ)q−`
∫ [`+1]q+µ

[1+m]q+ν

[`]q+µ

[1+m]q+ν

Ψ(t)dqt (w ∈ [0, 1]). (3)

Lemma 2. For ei(w) = wi, i = 0, 1, 2, the operators Sµ,ν
m,q,ζ defined by Equation (3) satisfy

Sµ,ν
m,q,ζ(1; w) = 1 and the following equalities:

Sµ,ν
m,q,ζ(t; w) =

[m]q
([1 + m]q + ν)

[
w +

[1 + m]qζw(1− wm)

[m]q([m]q − 1)

−
2[1 + m]qζw
[m]2q − 1

(
1− wm

[m]q
+ qw(1− wm−1)

)
+

ζ

q[m]q(1 + [m]q)

(
1−

m

∏
s=0

(1− qsw)− wm+1 − [1 + m]qw(1− wm)

)
+

ζ

[m]2q − 1

{
2[1 + m]qw2(1− wm−1)−

2[1 + m]qζw(1− wm)

q[m]q

+
2

q[m]q

(
1−

m

∏
s=0

(1− qsw)− wm+1
)}]

+
1

[2]q([1 + m]q + ν)
;

Sµ,ν
m,q,ζ(t

2; w) =
[m]2q

([1 + m]q + ν)2

[
w2 +

w(1− w)

[m]q

+
[1 + m]qζw

[m]q([m]q − 1)

(
qw(1− wm−1) +

1− wm

[m]q

)
−

2[1 + m]qζ

[m]q([m]2q − 1)

(
w(1− wm)

[m]q
+ q(2 + q)w2(1− wm−1)

+q3[m− 1]qw3(1− wm−2)

)
− ζ

q[m]q(1 + [m]q)

(
[1 + m]qw2(1− wm−1)−

[1 + m]qw(1− wm)

q[m]q

+
1−∏m

s=0(1− qsw)− wm+1

q[m]q

)
+

2ζ

[m]q([m]2q − 1)

{
q[m− 1]q[1 + m]qw3(1− wm−2)

−
(1− q)[1 + m]qw2(1− wm−1)

q

+
[1 + m]qw(1− wm)

q2[m]q
− 1−∏m

s=0(1− qsw)− wm+1

q2[m]q

}]
+

(
2q + 1
[3]q

+
3µ[2]q
[3]q

)
[m]q

([1 + m]q + ν)2

[
w +

[1 + m]qζw(1− wm)

[m]q([m]q − 1)
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−
2[1 + m]qζw
[m]2q − 1

(
1− wm

[m]q
+ qw(1− wm−1)

)
+

ζ

q[m]q(1 + [m]q)

(
1−

m

∏
s=0

(1− qsw)− wm+1 − [1 + m]qw(1− wm)

)
+

ζ

[m]2q − 1

{
2[1 + m]qw2(1− wm−1)−

2[1 + m]qζw(1− wm)

q[m]q

+
2

q[m]q

(
1−

m

∏
s=0

(1− qsw)− wm+1
)}]

+

(
3µ2 + 3µ + 1

[3]q

)
1

([1 + m]q + ν)2 .

Proof. Here, we will use Lemma 1 and the equalities [`+ 1]q = q` + [`]q, and [`+ 1]q =
1 + q[`]q. Then, from the q-Jackson integral, we have

∫ [`+1]q+µ

[1+m]q+ν

[`]q+µ

[1+m]q+ν

tβdqt =
∫ [`+1]q+µ

[1+m]q+ν

0
tβdqt−

∫ [`]q+µ

[1+m]q+ν

0
tβdqt

=
(1− q)

([1 + m]q + ν)β+1

(
([`+ 1]q + µ)β+1 − ([`]q + µ)β+1

) ∞

∑
m=0

qm(1+β).

Therefore, the following is true:

∫ [`+1]q+µ

[1+m]q+ν

[`]q+µ

[1+m]q+ν

tβdqt =



q`

[m+1]q+ν
for β = 0;

q`

([m+1]q+ν)
2

(
[`]q +

2µ+1
[2]q

)
for β = 1;

q`

([m+1]q+ν)
3

(
[`]2q +

(
2q+1
[3]q

+
3µ[2]q
[3]q

)
[`]q +

3µ2+3µ+1
[3]q

)
for β = 2.

(4)

Thus, in the light of Equation (4), the operators in Equation (3) give us

Sµ,ν
m,q,ζ(1; w) = ([1 + m]q + ν)

m

∑
`=0

ξm,`(w; q, ζ)q−`
∫ [`+1]q+µ

[1+m]q+ν

[`]q+µ

[1+m]q+ν

dqt,

= ([1 + m]q + ν)
m

∑
`=0

ξm,`(w; q, ζ)q−`
q`

[1 + m]q + ν

= Bm,q,ζ(1; w)

= 1.

Now, the following is true:

Sµ,ν
m,q,ζ(t; w) = ([1 + m]q + ν)

m

∑
`=0

ξm,`(w; q, ζ)q−`
∫ [`+1]q+µ

[1+m]q+ν

[`]q+µ

[1+m]q+ν

tdqt,

=
1

([1 + m]q + ν)

m

∑
`=0

ξm,`(w; q, ζ)

(
[`]q +

2µ + 1
[2]q

)
=

[m]q
([1 + m]q + ν)

m

∑
`=0

ξm,`(w; q, ζ)

(
[`]q
[m]q

)
+

1
[2]q([1 + m]q + ν)

m

∑
`=0

ξm,`(w; q, ζ)

=
[m]q

([1 + m]q + ν)
Bm,q,ζ(t; w) +

1
[2]q([1 + m]q + ν)

Bm,q,ζ(1; w).
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Finally, the following is true:

Sµ,ν
m,q,ζ(t

2; w) = ([1 + m]q + ν)
m

∑
`=0

ξm,`(w; q, ζ)q−`
∫ [`+1]q+µ

[1+m]q+ν

[`]q+µ

[1+m]q+ν

t2dqt,

=
1

([1 + m]q + ν)2

m

∑
`=0

ξm,`(w; q, ζ)

(
[`]2q +

(
2q + 1
[3]q

+
3µ[2]q
[3]q

)
[`]q

+
3µ2 + 3µ + 1

[3]q

)
=

[m]2q
([1 + m]q + ν)2

m

∑
`=0

ξm,`(w; q, ζ)

(
[`]q
[m]q

)2

+

(
2q + 1
[3]q

+
3µ[2]q
[3]q

)
[m]q

([1 + m]q + ν)2

m

∑
`=0

ξm,`(w; q, ζ)

(
[`]q
[m]q

)
+

(
3µ2 + 3µ + 1

[3]q

)
1

([1 + m]q + ν)2

m

∑
`=0

ξm,`(w; q, ζ)

=
[m]2q

([1 + m]q + ν)2 Bm,q,ζ(t2; w) +

(
2q + 1
[3]q

+
3µ[2]q
[3]q

)
[m]q

([1 + m]q + ν)2

×Bm,q,ζ(t; w) +

(
3µ2 + 3µ + 1

[3]q

)
1

([1 + m]q + ν)2 Bm,q,ζ(1; w).

By using Lemma (1), we find the desired results.

By simple calculation, and with the help of Lemma 2, we obtain the following lemma:

Lemma 3. The operators Sµ,ν
m,q,ζ have the following central moments:

Sµ,ν
m,q,ζ(t− w; w) =

[m]q
([1 + m]q + ν)

[
w−

[1 + m]q + ν

[m]q
w +

[1 + m]qζw(1− wm)

[m]q([m]q − 1)

−
2[1 + m]qζw
[m]2q − 1

(
1− wm

[m]q
+ qw(1− wm−1)

)
+

ζ

q[m]q(1 + [m]q)

(
1−

m

∏
s=0

(1− qsw)− wm+1 − [1 + m]qw(1− wm)

)
+

ζ

[m]2q − 1

{
2[1 + m]qw2(1− wm−1)−

2[1 + m]qζw(1− wm)

q[m]q

+
2

q[m]q

(
1−

m

∏
s=0

(1− qsw)− wm+1
)}]

+
1

[2]q([1 + m]q + ν)
;

Sµ,ν
m,q,ζ

(
(t− w)2; w)

)
=

[m]2q
([1 + m]q + ν)2

[
w2 +

w(1− w)

[m]q
+

[1 + m]qζw
[m]q([m]q − 1)

(
qw(1− wm−1) +

1− wm

[m]q

)
−

2[1 + m]qζ

[m]q([m]2q − 1)

(
w(1− wm)

[m]q
+ q(2 + q)w2(1− wm−1)

+q3[m− 1]qw3(1− wm−2)

)
− ζ

q[m]q(1 + [m]q)

(
[1 + m]qw2(1− wm−1)

−
[1 + m]qw(1− wm)

q[m]q
+

1−∏m
s=0(1− qsw)− wm+1

q[m]q

)
+

2ζ

[m]q([m]2q − 1)
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×
{

q[m− 1]q[1 + m]qw3(1− wm−2)−
(1− q)[1 + m]qw2(1− wm−1)

q

+
[1 + m]qw(1− wm)

q2[m]q
− 1−∏m

s=0(1− qsw)− wm+1

q2[m]q

}]
+

(
2q + 1
[3]q

+
3µ[2]q
[3]q

)
[m]q

([1 + m]q + ν)2

[
w +

[1 + m]qζw(1− wm)

[m]q([m]q − 1)

−
2[1 + m]qζw
[m]2q − 1

(
1− wm

[m]q
+ qw(1− wm−1)

)
+

ζ

q[m]q(1 + [m]q)

(
1−

m

∏
s=0

(1− qsw)− wm+1 − [1 + m]qw(1− wm)

)
+

ζ

[m]2q − 1

{
2[1 + m]qw2(1− wm−1)−

2[1 + m]qζw(1− wm)

q[m]q

+
2

q[m]q

(
1−

m

∏
s=0

(1− qsw)− wm+1
)}]

+

(
3µ2 + 3µ + 1

[3]q

)
1

([1 + m]q + ν)2

−
[m]q

([1 + m]q + ν)

[
w2 +

[1 + m]qζw2(1− wm)

[m]q([m]q − 1)
−

2[1 + m]qζw2

[m]2q − 1

(
1− wm

[m]q

+qw(1− wm−1)

)
+

ζw
q[m]q(1 + [m]q)

(
1−

m

∏
s=0

(1− qsw)− wm+1 − [1 + m]q

×w(1− wm)

)
+

ζw
[m]2q − 1

{
2[1 + m]qw2(1− wm−1)−

2[1 + m]qζw(1− wm)

q[m]q

+
2

q[m]q

(
1−

m

∏
s=0

(1− qsw)− wm+1
)}]

+
w

[2]q([1 + m]q + ν)
+ w2.

Theorem 1. Let q = (qm) be a sequence such that 0 < qm < 1, and let limm→∞ qm = 1. Then,

lim
m→∞

Sµ,ν
m,qm ,ζ(Ψ; w) = Ψ (Ψ ∈ C[0, 1])

uniformly on [0, 1].

Proof. According to the Bohman–Korovkin theorem (see [31]), it is sufficient to show that

lim
m→∞

Sµ,ν
m,qm ,ζ(ei; w) = wi, i = 0, 1, 2, (5)

uniformly on [0, 1]. The assertion in Equation (5) follows by taking Lemma 2 and the limit
m→ ∞ into account.

3. Local Approximation of Sµ,ν
m,q,ζ

Here, we obtain the local approximation of Sµ,ν
m,q,ζ . Suppose Eφ = {φ|φ ∈ C[0, 1]}. For

any δ∗ > 0 and φ ∈ Eφ, the modulus of smoothness ω∗(φ; δ∗) of φ to the order of one is
given by

ω∗(φ; δ∗) = sup
|µ1−µ2|≤δ∗

| φ(µ1)− φ(µ2) |, µ1, µ2 ∈ [0, 1], (6)

| φ(µ1)− φ(µ2) |≤
(

1 +
| µ1 − µ2 |

δ∗

)
ω∗(φ; δ∗). (7)

In addition, the following is true:

lim
δ∗→0+

ω∗(φ; δ∗) = 0.
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Theorem 2 ([32]). For the sequence of positive linear operators {P}m≥1 : C[w1, w2]→ C[y1, y2]
such that [y1, y2] ⊆ [w1, w2], one has the following:

1. For all φ ∈ C[w1, w2] and w ∈ [y1, y2], it follows that

|Pm(φ; w)− φ(w)| ≤ |φ(w)||Pm(1; w)− 1|

+
{

Pm(1; w) +
1
δ∗

√
Pm((t− w)2; w)

√
Pm(1; w)

}
ω∗(φ; δ∗).

2. For all ϕ′ ∈ C[w1, w2] and w ∈ [y1, y2], it follows that

|Pm(ϕ; w)− ϕ(w)| ≤ |ϕ(w)||Pm(1; w)− 1|+ |ϕ′(w)||Pm(t− w; w)|

+Pm((t− w)2; w)
{√

Pm(1; w)

+
1
δ∗

√
Pm((t− w)2; w)

}
ω∗(ϕ′; δ∗).

Theorem 3. Let φ ∈ Eφ and w ∈ [0, 1]. Then, the operators Sµ,ν
m,q,ζ satisfy

|Sµ,ν
m,q,ζ(φ; w)− φ(w)| ≤ 2ω∗

(
φ;
√

δ
µ,ν
m,q,ζ(w)

)
,

where δ
µ,ν
m,q,ζ(w) = Sµ,ν

m,q,ζ

(
(t− w)2; w

)
.

Proof. We prove the inequality by taking into account (1) from Theorem 2 and the use of
Lemmas 2 and 3 such that

|Sµ,ν
m,q,ζ(φ; w)− φ(w)| ≤ |φ(w)||Sµ,ν

m,q,ζ(1; w)− 1|+
{

Sµ,ν
m,q,ζ(1; w)

+
1
δ∗

√
Sµ,ν

m,q,ζ

(
(t− w)2; w

)√
Sµ,ν

m,q,ζ(1; w)

}
ω∗(φ; δ∗).

In this case, δ∗ =

√
Sµ,ν

m,q,ζ

(
(t− w)2; w

)
=
√

δ
µ,ν
m,q,ζ(w), which gives the desired result.

Theorem 4. For all ϕ′ ∈ C[0, 1] and w ∈ [0, 1], we get the inequality

|Sµ,ν
m,q,ζ(ϕ; w)− ϕ(w)| ≤ |ϕ′(w)|µµ,ν

m,q,ζ + 2 δ
µ,ν
m,q,ζ(w) ω∗

(
ϕ′;
√

δ
µ,ν
m,q,ζ(w)

)
,

where µ
µ,ν
m,q,ζ = maxw∈[0,1]

∣∣∣Sµ,ν
m,q,ζ((t− w); w)

∣∣∣, and δ
µ,ν
m,q,ζ is defined in Theorem 3.

Proof. If we consider (2) from Theorem 2 and the use of Lemmas 2 and 3, then

|Sµ,ν
m,q,ζ(ϕ; w)− ϕ(w)| ≤ |ϕ(w)||Sµ,ν

m,q,ζ(1; w)− 1|+ |ϕ′(w)||Sµ,ν
m,q,ζ(t− w; w)|

+Sµ,ν
m,q,ζ((t− w)2; w)

1 +

√
Sµ,ν

m,q,ζ

(
(t− w)2; w

)
δ∗


×ω∗(ϕ′; δ∗)

≤ |ϕ′(w)|µµ,ν
m,q,ζ + 2 δ

µ,ν
m,q,ζ(w) ω∗

(
ϕ′;
√

δ
µ,ν
m,q,ζ(w)

)
,

where µ
µ,ν
m,q,ζ = maxw∈[0,1]

∣∣∣Sµ,ν
m,q,ζ((t− w); w)

∣∣∣.
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Now, we estimate the local approximation for our new operators Sµ,ν
m,q,ζ by use of the

Lipschitz-type function. Thus, for any 0 < χ ≤ 1, the Lipschitz-type function Lipχ
K is

defined in the form of any positive real parameters µ1, µ2 such that (see [33])

Lipw,t
K (χ) =

{
Ψ ∈ C[0, 1] : |Ψ(t)−Ψ(w)| ≤ K |t− w|χ

(µ1w2 + µ2w + t)
χ
2

; w, t ∈ [0, 1]
}

,

where K is a positive constant.

Theorem 5. For any Ψ ∈ Lipw,t
K (χ), operators Sµ,ν

m,q,ζ we have the inequality

|Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)| ≤ K

( δ
µ,ν
m,q,ζ(w)

(µ1w2 + µ2w)

) χ
2

,

where δ
µ,ν
m,q,ζ(w) is given by Theorem 3.

Proof. Suppose Ψ ∈ Lipw,t
K (χ). Now, we first verify that the Theorem 5 holds for χ = 1.

Therefore, for any µ1, µ2 ≥ 0, it is easy to find that (µ1w2 + µ2w + t)−1/2 ≤ (µ1w2 +
µ2w)−1/2. By taking into account the Cauchy–Schwarz inequality, then it is easy to write

|Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)| ≤ |Sµ,ν

m,q,ζ(|Ψ(t)−Ψ(w)|; w)|+ Ψ(w)|Sµ,ν
m,q,ζ(1; w)− 1|

≤ Sµ,ν
m,q,ζ

(
|t− w|

(µ1w2 + µ2w + t)
1
2

; w

)
≤ K(µ1w2 + µ2w)−1/2Sµ,ν

m,q,ζ(|t− w|; w)

≤ K(µ1w2 + µ2w)−1/2Sµ,ν
m,q,ζ((t− w)2; w)

∣∣1/2.

Therefore, we conclude that statement is valid for χ = 1.
Next, we want to verify that the statement is also true whenever χ ∈ (0, 1). We apply

here the monotonicity property to the operators Sµ,ν
m,q,ζ and use Hölder’s inequality. Thus,

we find that∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ Sµ,ν
m,q,ζ

(∣∣Ψ(t)−Ψ(w)
∣∣; w
)

≤
(

Sµ,ν
m,q,ζ

(∣∣Ψ(t)−Ψ(w)
∣∣ 2

χ ; w
)) χ

2
(

Sµ,ν
m,q,ζ(1; w)

) 2−χ
2

≤ K
{Sµ,ν

m,q,ζ

((
t− w

)2; w
)

t + µ1w2 + µ2w

} χ
2

≤ K(µ1w2 + µ2w)−χ/2
{

Sµ,ν
m,q,ζ

((
t− w

)2; w
)} χ

2

= K
( δ

µ,ν
m,q,ζ(w)

(µ1w2 + µ2w)

) χ
2

.

Thus, the statement is true for all 0 < χ < 1. This completes the proof.

We obtain another local approximation result for the operators Sµ,ν
m,q,ζ by use of the

Lipschitz maximal function. Suppose the class of all Lipschitz-type maximal functions
Ψ ∈ C[0, 1] given by

ω∗χ(Ψ; w) = sup
t 6=w, t∈[0,1]

|Ψ(t)−Ψ(w)|
|t− w|χ (t, w ∈ [0, 1]) (8)

where 0 < χ ≤ 1 (see [34]).
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Theorem 6. Let Ψ ∈ C[0, 1] and w ∈ [0, 1]. Then, Sµ,ν
m,q,ζ verifies the property

∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ (δ
µ,ν
m,q,ζ(w)

) χ
2

ω∗χ(Ψ; w),

where ω∗χ(Ψ; w) is defined by Equation (8) and δ
µ,ν
m,q,ζ(w) is same as in Theorem 3.

Proof. It follows from the Hölder inequality that∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ Sµ,ν
m,q,ζ(|Ψ(t)−Ψ(w)|; w)

≤ ω∗χ(Ψ; w) | Sµ,ν
m,q,ζ

(
|t− w|χ; w

)
≤ ω∗χ(Ψ; w)

(
Sµ,ν

m,q,ζ(1; w)
) 2−χ

2
(

Sµ,ν
m,q,ζ(|t− w|2; w)

) χ
2

= ω∗χ(Ψ; w)
(

Sµ,ν
m,q,ζ

(
(t− w)2; w

)) χ
2 ,

which gives the desired result.

4. Rate of Convergence of Sµ,ν
m,q,ζ

This section gives the rate of convergence for our new operators Sµ,ν
m,q,ζ defined by

Equation (3) with the help of following definitions.
Suppose C2[0, 1] = {Ψ ∈ C[0, 1] : Ψ′, Ψ′′ ∈ C[0, 1]}. For Ψ ∈ C[0, 1] and any δ∗ > 0,

Peetre’s K-functional is defined as

K2(Ψ; δ∗) = inf
{

δ∗‖Ψ′′‖C[0,1] + ‖Ψ−Θ‖C[0,1] : Θ ∈ C2[0, 1]
}

. (9)

From [35], for any Ψ ∈ C[0, 1], for an absolute constant C > 0, we have

K2(Ψ; δ∗) ≤ Cω2(Ψ;
√

δ∗), (10)

where ω2(Ψ;
√

δ∗) denotes the second-order modulus of smoothness, given by

ω2(Ψ;
√

δ∗) = sup
0<µ<

√
δ∗

sup
w,w+2µ∈[0,1]

|Ψ(w + 2µ)− 2Ψ(w + µ) + Ψ(w)|.

Note that the usual modulus of continuity is

ω(Ψ; δ∗) = sup
0<µ≤δ∗

sup
w,w+µ∈[0,1]

|Ψ(w + µ)−Ψ(w)|.

Theorem 7. By letting Ψ ∈ C[0, 1], then

∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ 4K2

Ψ;
δ

µ,ν
m,q,ζ(w) +

(
Sµ,ν

m,q,ζ(t; w)− w
)2

4


+ω

(
Ψ; Sµ,ν

m,q,ζ(t; w)− w
)

for w ∈ [0, 1], where δ
µ,ν
m,q,ζ(w) = Sµ,ν

m,q,ζ

(
(t− w)2; w

)
.

Proof. For Ψ ∈ C[0, 1] and w ∈ [0, 1], we define the auxiliary operators Tµ,ν
m,q,ζ as

Tµ,ν
m,q,ζ(Ψ; w) = Sµ,ν

m,q,ζ(Ψ; w) + Ψ(w)−Ψ
(

Sµ,ν
m,q,ζ(t; w)

)
. (11)
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Take Ψ = Ψi = ti for i = 0, 1. Then, we can verify that Tµ,ν
m,q,ζ(Ψ0; w) = 1:

Tµ,ν
m,q,ζ(Ψ1; w) = Sµ,ν

m,q,ζ(Ψ1; w) + w− Sµ,ν
m,q,ζ(t; w) = w.

and Tµ,ν
m,q,ζ(t− w; w) = 0. From the Taylor series expression, we know the equality

Θ(t) = Θ(w) + (t− w)Θ′(w) +
∫ t

w
(t− χ)Θ′′(χ)dχ, Θ ∈ C2[0, 1]. (12)

Applying Tµ,ν
m,q,ζ to Equation (12) gives

Tµ,ν
m,q,ζ(Θ; w)−Θ(w) = Θ′(w)Tµ,ν

m,q,ζ(t− w; w) + Tµ,ν
m,q,ζ

( ∫ t

w
(t− χ)Θ′′(χ)dχ; w

)
= Tµ,ν

m,q,ζ

( ∫ t

w
(t− χ)Θ′′(χ)dχ; w

)
= Sµ,ν

m,q,ζ

( ∫ t

w
(t− χ)Θ′′(χ)dχ; w

)
+
∫ w

w
(w− χ)Θ′′(χ)dχ; w

−
∫ Sµ,ν

m,q,ζ (t;w)

w

(
Sµ,ν

m,q,ζ(t; w)− χ

)
Θ′′(χ)dχ

which gives

|Tµ,ν
m,q,ζ(Θ; w)−Θ(w)| ≤

∣∣∣∣Sµ,ν
m,q,ζ

( ∫ t

w
(t− χ)Θ′′(χ)dχ; w

)∣∣∣∣
+

∣∣∣∣∣
∫ Sµ,ν

m,q,ζ (t;w)

w

(
Sµ,ν

m,q,ζ(t; w)− χ
)

Θ′′(χ)dχ

∣∣∣∣∣. (13)

A simple calculation yields∣∣∣∣∫ t

w
(t− χ)Θ′′(χ)dχ

∣∣∣∣ ≤ (t− w)2‖Θ′′‖

and ∣∣∣∣∣
∫ Sµ,ν

m,q,ζ (t;w)

w

(
Sµ,ν

m,q,ζ(t; w)− χ
)

Θ′′(χ)dχ

∣∣∣∣∣ ≤ (Sµ,ν
m,q,ζ(t; w)− w

)2
‖Θ′′‖.

Thus, Equation (13) becomes

|Tµ,ν
m,q,ζ(Θ; w)−Θ(w)| ≤

{
Sµ,ν

m,q,ζ

(
(t− w)2; w

)
+
(

Sµ,ν
m,q,ζ(t; w)− w

)2
}
‖Θ′′‖.

We deduce from Equation (3) that

|Sµ,ν
m,q,ζ(Ψ; w)| ≤ ‖Ψ‖,

Thus, this yields

|Tµ,ν
m,q,ζ(Ψ; w)| ≤ |Sµ,ν

m,q,ζ(Ψ; w)|+ |Ψ(w)|+
∣∣∣Ψ(Sµ,ν

m,q,ζ(t; w)
)∣∣∣ ≤ 3‖Ψ‖. (14)

It follows from Equations (11) and (14) that∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ ∣∣∣Tµ,ν
m,q,ζ(Ψ−Θ; w)− (Ψ−Θ)(w)

∣∣∣
+
∣∣∣Tµ,ν

m,q,ζ(Θ; w)−Θ(w)
∣∣∣+ ∣∣∣Ψ(w)−Ψ

(
Sµ,ν

m,q,ζ(t; w)
)∣∣∣
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≤ 4‖Ψ−Θ‖+ ω
(

Ψ; Sµ,ν
m,q,ζ(t; w)− w

)
+

{
δ

µ,ν
m,q,ζ(w) +

(
Sµ,ν

m,q,ζ(t; w)− w
)2
}
‖Θ′′‖.

By letting infΘ∈C2[0,1] and using Equation (9), then we arrive at

∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ 4K2

Ψ;
δ

µ,ν
m,q,ζ(w) +

(
Sµ,ν

m,q,ζ(t; w)− w
)2

4


+ω

(
Ψ; Sµ,ν

m,q,ζ(t; w)− w
)

.

Thus, we obtain our desired inequality:

Corollary 1. Let Ψ ∈ C[0, 1]. Then, the inequality

∣∣∣Sµ,ν
m,q,ζ(Ψ; w)−Ψ(w)

∣∣∣ ≤ Cω2

Ψ;

√
δ

µ,ν
m,q,ζ(w) +

(
Sµ,ν

m,q,ζ(t; w)− w
)2

2


+ω

(
Ψ; Sµ,ν

m,q,ζ(t; w)− w
)

holds for any w ∈ [0, 1], where C is a positive constant.

Proof. The proof follows from Theorem 7 and the inequality in Equation (10).

5. Conclusions

In our discussion, we defined the Stancu-type modification of q-Bernstein–Kantorovich
positive linear operators involving Bézier bases ξm,`(w; q, ζ) (` := 0, 1, . . . , m). We discussed
certain approximation results for the operators, namely the uniform convergence, local
approximation, rate of convergence, as well as some other related results.

In the case of µ = ν = 0, the operators Sµ,ν
m,q,ζ(Ψ; w) become Km,q,ζ(Ψ; w) ((ζ, q)-

Bernstein–Kantorovich operators) [30]. In addition, if ζ = 0, then Sµ,ν
m,q,ζ(Ψ; w) becomes

a q-Bernstein–Kantorovich operator [36]. If q = 1, together with above assumptions (i.e.,
µ = ν = ζ = 0), then Sµ,ν

m,q,ζ(Ψ; w) becomes a classical Bernstein–Kantorovich operator [37].

Furthermore, the choice of µ = ν = 0 and q = 1 in Sµ,ν
m,q,ζ(Ψ; w) gives S0,0

m,1,ζ(Ψ; w), which

was studied in [24]. Consequently, we conclude that Sµ,ν
m,q,ζ(Ψ; w) is a non-trivial modifica-

tion of certain widely studied operators and therefore our approximation results too.
The detailed description of the application of Bernstein-type operators has been pre-

sented by Occorsio and Russo [38], wherein they constructed a stable and convergent
cubature rule by means of their Bernstein operators and obtained the solutions of Fred-
holm integral equations with the help of the Nyström method, which was based on the
aforementioned cubature rule. Based on the above observation, we suggest the application
of our Stancu-type (ζ, q)-Bernstein–Kantorovich operators in this study to find the solution
of the Fredholm and Volterra integral equations for researchers who are working on linking
these two theories.
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