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Abstract: We introduce a novel spatial model based on the distribution of generalized extreme values
(GEVs) and tree ensemble models to analyze the maximum concentrations levels of particulate
matter with a diameter of less than 2.5 microns (PM2.5) in the Mexico City metropolitan area during
the period 2003–2021. Spatial trends were modeled through a decision tree in the context of a
non-stationary GEV model. We used a tree ensemble model as a predictor of GEV parameters to
approximate nonlinear trends. The decision tree was built by using a greedy stagewise approach, the
objective function of which was the log-likelihood. We verified the validity of our model by means of
the likelihood and Akaike’s information criterion (AIC). The maps of the generalized extreme value
parameters on the spatial plane show the existence of differentiated local trends in the extreme values
of PM2.5 in the study area. The results indicated strong evidence of an increase in the west–east
direction of the study area. A spatial map of risk with maximum concentration levels of PM2.5 in a
period of 25 years was built.

Keywords: tree ensemble; extreme value theory; greedy stagewise; nonstationary; PM2.5; CDMX

MSC: 62P12

1. Introduction

Particulate matter with a diameter of less than 2.5 microns is an air pollutant with
potentially negative effects on humans. Called particle pollution also, particulate matter is
mainly composed by sulfates, nitrates, and carbon. Sulfates constitute 25% to 55% of the
total composition of PM2.5, and together with nitrates, are the result of the transformation
of sulfur dioxide emissions from power plants and industrial facilities and nitrogen oxide
missions from cars, trucks, and power plants. Carbon is released from emissions from cars,
trucks, industrial facilities, forest fires, etc. Both ammonium sulfate and ammonium nitrate
present in the atmosphere are formed from sources such as fertilizers and animal feeding
operations. Particulate matter can be in solid or liquid form in particles such as dust, dirt,
soot, or smoke, and even some of these can change from one form to other [1].

The negative impact of PM2.5 on human health has been established in a growing
number of studies [2,3]. In the human respiratory system, scientists have found a signifi-
cant correlation between PM2.5 and respiratory morbidity and mortality [4]. This negative
effect on health on humans varies depending on the concentration of PM in the air and
the susceptibility of the population, those who are elderly, pregnant women, adolescents,
infants, and patients with cardiopulmonary problems being the most vulnerable [5–7]. Re-
garding the effect of PM2.5 concentration, the results vary slightly; in the case of lung

Mathematics 2022, 10, 2056. https://doi.org/10.3390/math10122056 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10122056
https://doi.org/10.3390/math10122056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3422-7193
https://doi.org/10.3390/math10122056
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10122056?type=check_update&version=2


Mathematics 2022, 10, 2056 2 of 15

cancer, a study of the American Cancer Society based on a population of 500,000 adults
reported an 8% increase in mortality per 10 µg/m3 increase in PM2.5 [8], while another
study tracked 1.2 million American adults and found that the mortality of lung cancer
increased by 15–27% [9]. Overall mortality and mortality of cardiopulmonary diseases are
increased by 4% and 6%, respectively, for every 10 µg/m3 of PM2.5 increase, after ruling out
occupation, smoking, diet, and other risk factors [8]. According to Zanobetti et al. [10], the
increased rate in emergency hospital admissions for a 10 µg/m3 increase in 2-day averaged
PM2.5 concentration is 1.89% for cardiac causes, 2.25% for myocardial infarction, 1.85% for
congestive heart failure, 2.74% for diabetes, and 2.07% for respiratory admissions.

The exponential growth of cities has been followed by an increase in carbon emissions
and, in general, an increase in air pollution by particulate matter. Such growth has occurred
in a non-uniform way mainly in the large cities of the world, generating areas with different
population densities within the same city. This unequal distribution of the population
within the same region is reflected in a similar distribution of particulate matter (PM),
derived from the positive correlation between pollution and different anthropomorphic
activities. An example of this case is observed in the metropolitan area of Mexico City,
which is one of the largest urban areas in the world and also a region frequently affected by
air pollution. In order to monitor atmospheric concentrations of polluting gases, several
monitoring stations have been established. All of these stations gather observations every
hour of the day on various types of contaminants. However, despite the fact that this region
is one of the most developed in the country, the number of monitoring stations is still small
compared to the extensive area it covers, so extrapolating to regions without monitoring is
a constant challenge. Hinojosa-Baliño [11] carried out a spatial analysis of the distribution
of PM2.5 air pollution in Mexico city using a land-use regression model, in which two
regions with high concentrations and two with low concentrations were found. Although
the analysis allowed visualizing the distribution of PM2.5 concentrations, their results did
not allow making inferences about future risks. Moreover, an analysis of extreme values
to determine future risks of extreme concentrations of particulate matter was performed
by Aguirre-Salado et al. [12]. This study was carried out for particles of 10 µm or less in
diameter, modeling the parameters of a distribution of extreme values by smoothing with
radial base functions.

A wide variety of methods have been used to analyze the spatial distribution of
concentrations of PM2.5. Short-term forecasting has been evaluated using regression
models [11], time series models [13], random forest [14], support vector machines [15],
and neural networks [16], among others. The theory of extreme values has been used to
assess long-term risks. In particular, the analysis of extreme values with non-stationary
trends has adjusted approximately well the nonlinear behavior observed at the extremes.
Although the theory of extreme values is based on the limit distribution of the maximum
of a random sample, known as the extreme value distribution or GEV distribution, several
approaches have been proposed to obtain adjustments that adapt adequately to particular
cases of observed phenomena. Most of these focus their efforts on approximating the trend
by modeling the location parameter of the GEV distribution. Aguirre-Salado et al. [12]
carried out a study on the spatial distribution of PM10 in which the effect of the trend was
modeled through the location parameter by means of a radial basis smoothing function.
Other studies have proposed simultaneously modeling the shape parameter by a sine
function [17], linear functions [18], splines [19], etc. In the case of the scale parameter,
ref. [20] proposed additive models to approximate the logarithm of the scale parameter.

Regression and classification trees are popular and efficient machine learning algo-
rithms introduced by [21]. The algorithm classifies the space of independent variables
in a tree and leaf structure by optimizing some objective function, such as a likelihood
function or a loss function. The strategy of building trees can be performed in many ways,
some of which are based on entropy and information theory; however, in small samples, a
greedy algorithm can sequentially review all possible trees to determine the optimal one.
The model can be regularized by adding a penalty term in the target function [22] and
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adjusted in a general gradient descent “boosting” framework [23]. This feature enables the
algorithm to be highly parallelizable and suitable for big data analysis [22].

The study aims to extend the use of regression trees to the case of extreme value
analysis. In extreme value regression, the use of regression trees in the optimization of the
likelihood of the generalized extreme value distribution is slightly more complex, because
this distribution has three parameters, instead of one, as with regression with normal and
binomial distributions. This last feature creates the possibility of using different approaches
for its implementation. Therefore, in order to build a parsimonious model, we used the
same tree structure for the three parameters with their respective weights.

2. Materials and Methods
2.1. Study Area

The Mexico City metropolitan area (MCMA) is located in the central region of Mexico
and is formed by 59 municipalities of the state of Mexico and one municipality of the
state of Hidalgo. The basin extends over 9560 km2 and is inhabited by approximately
25.4 million people. The average elevation is 2240 m, and it is surrounded by mountains
to the east, south, and west. The study area and the primary sampling sites located in
Acolman (ACO), Ajusco (AJU), Ajusco Medio (AJM), Benito Juárez (BJU), Camarones
(CAM), Centro de Ciencias de la Atmósfera (CCA), Coyoacán (COY), Gustavo A. Madero
(GAM), Hospital General de México (HGM), Investigaciones Nucleares (INN), Merced
(MER), Miguel Hidalgo (MGH), Montecillo (MON), Milpa Alta (MPA), Nezahualcóyotl
(NEZ), Pedregal (PED), La Perla (PER), San Agustín (SAG), Santa FE (SFE), San Juan Aragón
(SJA), Tlalnepantla (TLA), UAM Xochimilco (UAX), UAM Iztapalapa (UIZ), Xalostoc (XAL),
FES Aragón (FAR), and Santiago Acahualtepec (SAC) are shown in Figure 1.

Figure 1. (Left): Mexico at the national level. (Right): Mexico city with Alcaldías. 002: Azcapotzalco,
003: Coyoacán, 004: Cuajimalpa de Morelos, 005: Gustavo A. Madero, 006: Iztacalco, 007: Izta-
palapa, 008: La Magdalena Contreras, 009: Milpa Alta, 010: Álvaro Obregón, 011: Tláhuac, 012:
Tlalpan, 013: Xochimilco, 014: Benito Juárez, 015: Cuauhtémoc, 016: Miguel Hidalgo, and 017:
Venustiano Carranza.

2.2. Methodology
The GEV Distribution

Let Y1, . . . , Yn be a random sample and Mn = max(Y1, . . . , Yn), according to the order
statistics results, the probability density function of Mn degenerates its mass of probabilities
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into a point as the sample size increases. We can still use the density function of Mn through
Gn = (Mn − an)/bn, by using a sequence of constants {bn > 0} and {an}, which allow
stabilizing the distribution of Mn. Important results about the asymptotic distribution
of Gn have been developed and combined to achieve the limit distribution known as the
generalized extreme value (GEV) distribution, shown in (1). Moreover, similar to the
generalized linear models, we can associate covariates with the population parameters of
the GEV distribution by means of a link function, to make predictions when having useful
additional information [24].

G(y) =

exp
{
−
(

1 + κ
(y−µ)

σ

)− 1
κ

}
, κ 6= 0; 1 + κ

(y−µ)
σ > 0

exp
{
− exp

(
− (y−µ)

σ

)}
, κ = 0

(1)

where −∞ ≤ y ≤ +∞,−∞ ≤ µ ≤ +∞,−∞ ≤ κ ≤ +∞, σ > 0; see [25,26].

2.3. Proposed Approach

In a wide variety of cases, where extreme values are analyzed, complex patterns in
the behavior of the data are observed. Consequently, adjusting the parameters of the GEV
distribution as if they were from a single identically distributed sample is not consistent
with the information observed in the sample, because the GEV distribution is built on the
assumption of independence. One possible way to solve this problem is to assume that
the sample is not identically distributed in all regions of a spatial area of study and to
adjust the parameters similarly to the case of generalized linear models. The novelty of
our proposal is in the way of associating the covariates with the parameters of the GEV
distribution. Traditionally, a linear predictor of covariates is assigned to the parameters of
the distribution. However, in this case, we proposed a decision tree based on the satisfactory
results obtained in several applications of machine learning. In addition, we proposed one
of the first implementations where decision trees were simultaneously adjusted to more
than one parameter. We assumed that observations in the same spatial locality s have an
equal shape and scale parameters in the GEV distribution. However, we also assumed that
the location parameter spatially varies according to a trend that is modeled by its respective
decision tree. The proposed model is as follows:

µt =
K

∑
k=1

uk(xt) (2)

κt =
K

∑
k=1

vs,k(xt) (3)

log σt =
K

∑
k=1

ws,k(xt) (4)

where us,k, vs,k, ws,k ∈ F and F is the class of functions of all possible regression trees.
The proposed model ensures that, locally, the sample comes from the same population,

where the trend is also allowed to be estimated jointly throughout the entire region. This
approach allowed obtaining a regularized model, without the need to include an additional
term in the likelihood to regularize the model. An alternative was to leave σt and κt free,
as well as the location parameter µt; however, Yee and Stephenson [20] observed that,
allowing the shape parameter to be free causes the estimate to be numerically unstable in
parameterized models.
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Likelihood Function

Let y = (y1, . . . , yn) be a sample of n extremes; the likelihood for the non-stationary
GEV is defined to be the joint density as a function of the parameters as follows:

L(µt, σt, κt | y) =
n

∏
t=1

1
σt

exp

{
−
[

1 + κt

(
yt − µt

σt

)]− 1
κt

}
×
[

1 + κt

(
yt − µt

σt

)]−(1+ 1
κt

)
.

In practice, we estimated the parameters using the log-likelihood function, because the
likelihood and log-likelihood have the same critical points; however, the log-likelihood is a
numerically simpler function to optimize. The log-likelihood function for the non-stationary
GEV is as follows:

`(µt, σt, κt | y) = −n log σt −
n

∑
t=1

[
1 + κt

(
yt − µt

σt

)]− 1
κt
−

n

∑
t=1

(
1 +

1
κt

)
log
[

1 + κt

(
yt − µt

σt

)]
.

(5)

To simplify the notation we define `t(µt, σt, κt | y) = − log σt −
[
1 + κt

(
yt−µt

σt

)] 1
κt −(

1 + 1
κt

)
log
[
1 + κt

(
yt−µt

σt

)]
and `n(µt, σt, κt | y) =

n
∑

t=1
`t(µt, σt, κt | y), and consequently

we can rewrite Equation (5) as:

`n(µt, σt, κt | y) =
n

∑
t=1

`t(µt, σt, κt | y)

Therefore, the gradient of the likelihood is given by:

∂`n(µt, σt, κt | y)
∂µt

=
n

∑
t=1

`t(µt, σt, κt | y)
∂µt

.

∂`n(µt, σt, κt | y)
∂ log σt

=
n

∑
t=1

`t(µt, σt, κt | y)
∂ log σt

.

∂`n(µt, σt, κt | y)
∂κt

=
n

∑
t=1

`t(µt, σt, κt | y)
∂κt

.

where

`t(µt, σt, κt | y)
∂µt

= − 1

σt[1 + κt((y− µt)/σt)]
((1/κt)+1)

+
κt(1 + (1/κt))

σt((1 + κt((y− µt)/σt)))

`t(µt, σt, κt | y)
∂ log σt

= −1− ((y− µ)/σ)

(1 + κ((y− µ)/σ))(1/κ)+1
+

(1 + (1/κ))(κ((y− µ)/σ))

1 + κ((y− µ)/σ)

`t(µt, σt, κt | y)
∂κt

=
−((1/κt) + 1)((y− µt)/σt)

1 + κt(y− µt)/σt
+

log((1 + κt(y− µt)/σt))

κ2
t

+
((y− µt)/σt)

κt(1 + (κt(y− µt))/(σt))
((1/κt)+1)

+
log(1 + (κt(y− µt))/(σt))

κ2
t (1 + (κt(y− µt))/(σt))

(1/κt)

The optimization strategy within each tree is by gradient descent. According to
Equations (3) and (4), both the parameters of the shape and scale in all observations are
equal at the same monitoring station. However, Equation (2) shows that we have an
equal value of the location parameter for all observations that are on the same leaf of
a tree. We used these assumptions based on the fact that the observations obtained at
the same monitoring stations come from a GEV distribution with the same shape and
scale parameter.
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Without loss of generality, we wrote `n(µt, σt, κt | y) = φ(F(x)) =
n
∑

t=1
`(yt, F(xt)), and

following the numerical optimization procedure, we took the solution to be

F(xt) =
K

∑
k=1

fk(xt)

where

f (xt) =

 uk(xt)
vs,k(xt)
ws,k(xt)


u0(xt), vs,0(xt); ws,0(xt) is an initial guess, and {uk(xt)}K

1 ,
{

vs,k(xt)
}K

1 and
{

ws,k(xt)
}K

1 are
incremental functions (“steps” or “boosts”) defined by the optimization method.

For the steepest descent,
fk(xt) = −ρkgk(xt)

with

gk(xt) =

[
∂`(yt, F(xt))

∂F(xt)

]
F(x)=Fk−1(x)

Each of the K-simpler functions fk(xt) can be alternatively obtained by using a “greedy
stagewise” approach, for m = 1, 2, . . . , M:

fk(xt) = arg max
fk

n

∑
t=1

`(yt, Fk−1(xt) + fk(xt))

The above algorithm may be numerically efficient; this may not be optimal, because
the addition of functions is sequential. To understand this, consider the multiple linear
regression model. In these models, we cannot obtain an optimal global solution by adding
the variables one by one, but by optimizing the entire set of variables simultaneously, the
optimal can be obtained. Similar to this situation, the optimal solution, although in some
situations infeasible, is one that satisfies the following condition:

fk(xt) = arg max
fk

n

∑
t=1

`

(
yt,

K

∑
k=1

fk(xt)

)

The structure proposed by the model allowed improving the adjustment as the num-
ber of leaves increases without incurring over-fitting. A model with few leaves has the
advantage of including the spatial relationships of nearby monitoring stations in a parsimo-
nious model; however, it may not be optimal when using a “greedy stagewise” approach.
Increasing the number of “boost” steps, improves the model without incurring an over-fit;
therefore, a simulation study was not required for the proposed model.

2.4. Data Analysis

The extreme values were obtained using the block maxima approach [27]. The extreme
values were obtained from a large block with 720 observations, with hourly measured data.
Therefore, we have a random sample of monthly block maxima that is roughly independent.
We assumed that the value of the location parameter was spatially homogeneous between
nearby stations, while the scale and shape parameters are specific to each monitoring station.
Weight estimation for leaves of the estimated decision trees was carried out sequentially,
taking the coordinates of each station and calculating the resulting log-likelihood using
a greedy algorithm that reviewed all monitoring stations. The graphical overview of the
global procedure is shown in Figure 2. Although this approach was considered numerically
efficient, an optimal search scheme would consist of forming all possible combinations of
trees. Therefore, we performed the optimization by using the gradient descent method,
with step sizes of 0.05, 0.001, and 0.0001 for the parameters of location, scale, and shape,
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respectively. We verified that, when using these configurations, the algorithm always
converged to a critical point. The homogeneity of maxima in each monitoring station
justified that each of these had its own parameter of scale and shape, leading to a simple
and parsimonious model. This feature allowed the model to remain regularized without
the need to add extra terms in the likelihood function. For simplicity, we adjusted the
parameters on each leaf of a tree, instead of using additive functions on each leaf. We
observed that, although this approach was slower, it also was equivalent to the other.

Figure 2. Graphical overview of the study structure.

2.5. Data Collection

The data used corresponded to 2683 observations of monthly block maxima of PM2.5,
between 2 August 2003 and 11 September 2021, obtained at 26 fixed monitoring stations of
the Sistema de Monitoreo Atmosférico (SIMAT) through the Red Automática de Monitoreo
Atmosférico (RAMA), a network established by the Mexico City Ministry of Environment
(Secretaría del Medio Ambiente (SEDEMA)), responsible for data gathering and reporting
air quality levels. SIMAT has a total of 69 stations, of which only 26 stations measure PM2.5.

3. Results and Discussion

We present a descriptive summary of the data in Table 1 in which we observe that
each monitoring station has different parametric characteristics. We highlight the “PER”
monitoring station with high concentrations of PM2.5 measured, in contrast with the
“AJM” station, which has a lower average concentration, as well as the “SAC”, “SFE”,
and “PED” stations. We can also observe the existence of highly atypical values in most
monitoring stations. The “SAC” station has an atypical value greater than 600 µg/m3,
which is more than double the magnitude of the next highest value in the same monitoring
station. However, the largest atypical value is at the “XAL” station, with a concentration
of 988 µg/m3. We ordered the stations in the box-plot according to their geographical
proximity and observed that the next stations share similar distributional characteristics.
This justifies the choice of the proposed model, in which the location parameter is shared
between nearby stations.
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Table 1. Descriptive summary information on the PM2.5 maxima in the Mexico City metropoli-
tan area.

Block ID Key Long(W) Lat(N) Min. 1st Qu. Median Mean 3rd Qu. Max.

1 ACO −98.9◦ 19.6◦ 35 62.8 87 100.5 117.8 281
14 AJU −99.2◦ 19.2◦ 34 47 62 80.9 100 302
19 CCA −99.2◦ 19.3◦ 30 48 56 65.3 72 302
16 INN −99.4◦ 19.3◦ 20 42.2 51 58.8 59.5 246
18 AJM −99.2◦ 19.3◦ 44 57 66 69.9 77.8 127
24 MGH −99.2◦ 19.4◦ 51 64.5 71 86.1 90 267
25 BJU −99.2◦ 19.4◦ 41 59 67 83.4 83 690
23 MER −99.1◦ 19.4◦ 31 72.8 84.5 94.5 101 428
8 TLA −99.2◦ 19.5◦ 33 73.5 86 93 104 294
9 FAR −99◦ 19.5◦ 34 47.5 59 68.1 72.5 236

22 HGM −99.2◦ 19.4◦ 36 74 90 97.2 107 346
20 PED −99.2◦ 19.3◦ 41 59 69 73.8 78.5 179
26 COY −99.2◦ 19.4◦ 21 72 85 95.6 105 544
3 SAC −99◦ 19.3◦ 50 67 77 84.4 98 211

15 MPA −99◦ 19.2◦ 46 57 65.5 84.8 103.5 211
11 SJA −99.1◦ 19.5◦ 34 65.2 81.5 95.7 110 333
21 CAM −99.2◦ 19.5◦ 43 71 83 95.7 99.2 777
2 MON −98.9◦ 19.5◦ 29 50 65 73.3 83 227
6 UAX −99.1◦ 19.3◦ 40 55 66.5 78.5 86.8 209

17 SFE −99.3◦ 19.4◦ 28 56.5 70 72.9 81 179
5 PER −99◦ 19.4◦ 53 87 125 167.2 200 681

10 GAM −99.1◦ 19.5◦ 48 66 75 86.4 89 359
12 SAG −99◦ 19.5◦ 36 65 77 98.4 101.8 698
13 XAL −99.1◦ 19.5◦ 58 84 101 125.3 129 988
4 NEZ −99◦ 19.4◦ 39 63.2 81 100.9 114 393
7 UIZ −99.1◦ 19.4◦ 44 73 88 101.4 110.2 429

The box-plot diagram in Figure 3 shows that nearby monitoring stations share similar
characteristics, especially those related to the upper quantiles of the distribution. Therefore,
these properties in the observations mean that the estimation of the parameters by means of
decision trees can be considered an appropriate choice for the estimation of the parameters.
Moreover, these features, mainly those based on the magnitude of the quantiles, could be
used to propose heuristics in the process of building the decision trees, in order to reach
global solutions.

The greedy stagewise Algorithm 1 was implemented using the statistical software
R 4.1.2. This algorithm was based on the log-likelihood and was used to build both the tree,
as well as all the other algorithms used in this research. We denote by symbol I the initial
set of instances, i.e., the set of all geographical localities where the monitoring stations
were located. Therefore, an element in I is a bivariate vector containing the latitude and
longitude of some monitoring station. We also denote by J the set of unit vectors in R2

and operation · as the usual inner product in R2. We propose to split the tree by taking
an element in I and an element in J and evaluated the log-Likelihood of the resulting tree
after splitting, then we retained the candidate with the highest log-Likelihood. This stage
was the most computationally intense, mainly in the first divisions of the tree where each
branch has relatively many observations. The algorithm was repeated the number of times
defined in the depth variable.
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Figure 3. Box-plots of the PM2.5 maxima at 26 monitoring stations in the Mexico City metropoli-
tan area.

Algorithm 1 Greedy stagewise algorithm for split finding

Input: I, initial instance set
1: for i in I
2: for j in J
3: L← max

F
∑

k∈{k|k·j<i·j}
`(yk, F(xk))

4: R← max
F

∑
k∈{k|k·j>i·j}

`(yk, F(xk))

5: score← L+R
6: end for
7: end for
Output: Split with max score

We verified the validity of our model by means of the log-Likelihood and the Akaike’s
information criterion (AIC). Because the representation of the model in (4) induces a
parametric model on each leaf, we calculated the AIC of the global tree by adding the
contributions of the AIC on each leaf. The log-likelihood of the stationary extreme value
model was −13,061.27, whereas the log-likelihood of the final model obtained by using the
decision tree was −12,844.21, which means that the final model has properly learned the
distribution of the data. Moreover, the AIC for the stationary model is 26,128.54, while the
AIC of the proposed model is 25,844.42. In addition, in Figure 4, we present the quantile–
quantile plot, which demonstrates the goodness of fit of our model. Therefore, the validity
of our model was verified.

Several algorithms can be proposed in order to obtain the rules that split the tree
in an optimal way. Chen and Guestrin [22], in single-parameter models, proposed an
exact greedy algorithm for split finding and an approximate algorithm for split finding
based on percentiles. We used a similar approach in a multi-parametric model, using each
component of the parameter vector simultaneously as homogeneous candidates for split
finding. This setting decreased the processing time; however, it also decreased the solution
space. Therefore, with this configuration, we obtained a balance between the processing
time and the number of trees visited.

The adjusted decision tree is shown in Figure 5. We observed that the likelihood in the
root node of the tree was equal to the likelihood of the stationary model. At the end of the
10th depth, branching the tree improved the log-likelihood to −12,844.21, which is enough
to ensure that the model has improved statistically. In order to divide the tree and add more
branches, we chose the node that maximized the sum of the log-likelihood of the resulting
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leaves, for each of all possible candidate nodes. Therefore, the independence between
the adjustments made on each node has the advantage of allowing the algorithm to be
implemented in parallel. Additionally, this algorithm does not guarantee being optimal in
a global sense, because the resulting tree can be attracted to a local solution.

Figure 4. Quantile–quantile plot of PM2.5 maxima in the Mexico City metropolitan area.

Figure 5. Branching rules obtained to form the decision tree of the GEV distribution parameters of
the PM2.5 maxima in the Mexico City metropolitan area.

The decision tree adjusted for the location parameter is shown in Figure 6a, in which
we can observe that the monitoring stations have been spatially grouped according to their
likelihood function by using the “greedy stagewise” algorithm. The lowest levels for the
location parameter of the GEV distribution are located in the southwest region. In this
region, the estimated value for the location parameter is approximately 50. In contrast, the
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highest values for the location parameter are located near the meridian−99.2 W and parallel
19.5 N. In Figure 6b, we show a map with the estimates for the scale parameter. We can
observe that the characteristics of the map are similar to the location parameter. Although,
these have notable differences in the northeast region, where the scale parameter tends
to increase rather than decrease, in contrast to the location parameter. A similar situation
occurred between the parallels 19.2 N and 19.4 N and east of the meridian −99.3 W. A
totally different behavior is observed with the shape parameter. The decision tree adjusted
for the shape parameter is shown in Figure 6c. This figure shows that, in general, the
parameter is positive, with an increasing trend in the southwest to northeast direction,
concentrating the highest values in the central and northeastern region of the study area.

(a) (b) (c)

Figure 6. (a) Three-dimensional representation of the adjusted decision tree of the location parameter,
(b) scale parameter, and (c) shape parameter. The X and Y axes are in geographical coordinates
(decimal degrees). Z is the calculated value of the corresponding parameter (location, scale, and
shape), for each geographical position.

The results in Figure 6 also show the existence of geographical zones with distributions
of heavy tails in areas surrounding the coordinates −99 W and 19.4 N. These findings are
similar to those found by Hinojosa-Baliño et al. [11] on daily PM2.5 concentrations in the
same regions of Mexico City. These results show that, in general, in the eastern region of
the study area, the highest values of PM2.5 concentrations were observed. Our results
also coincided with the results obtained by their research in regions of the southern and
southwest part of the study area. The results are similar in both investigations, showing a
positive correlation between the location parameter of the GEV distribution and the daily
PM2.5 observations analyzed by them.

The map of 25-year return levels is shown in Figure 7. Return levels Zp are concentra-
tion levels whose values are expected to be exceeded once every 1/p years. Return level
estimates at monitoring stations were obtained using the model (2), and we extrapolated
these values on the map using the inverse distance weighting algorithm, with the aim of
smoothing the map of return levels. The highest return levels were expected in areas near
the PER station. The lowest return levels were expected in areas near the AJM station. We
observed that return levels tend to increase in the east–west direction and decrease again
after the MON station. The return map also showed the characteristic of the model of
grouping nearby stations according to their location parameter, which leads us to a more
homogeneous map and a model with fewer parameters. An important feature of the map
was the smoothness of the estimates from one monitoring station to another, in addition
to the stability of the estimates. Indeed, the models that associate each observation with a
single distribution tend to over-adjust the data, causing unrealistic estimates.
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Figure 7. Spatial distribution of PM2.5 for a return period of 25 years for the study region.

We compared our results with findings from similar research on PM10 carried out
for the same area of study as the present research. Aguirre-Salado et al. [12] developed a
hierarchical model for the spatial analysis of PM10 pollution extremes in the Mexico City
Metropolitan Area. They based their estimates on radial-based smoothing functions and
spatially modeled only the location parameter, allowing the scale and shape parameters
to be constant. Therefore, the non-stationary extreme values were modeled, obtaining a
linear increment pattern in the southeast–northwest direction, as shown schematically in
Figure 8. We found a similar pattern with respect to the extreme values of PM2.5. However,
the trend was slightly modified, resulting in a direction of increase in the west–east. In
addition, the proposed decision tree is parametrically simpler and more stable, which was
reflected in the adequate convergence obtained in each of the adjustment steps.

Figure 8. Spatial comparison of increase trends in the study region. PM10 (red line, Aguirre-Salado
et al. [12]) and PM2.5 (black line).
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The advantage of considering observations from the same monitoring station as ele-
ments of the same distribution is observed in Figure 7. Previous studies on the distribution
of non-stationary extreme values on particulate matter in the metropolitan area of Mexico
City did not restrict the model to prevent observations obtained in the same geographic
location [12]. Although they assumed a model too flexible to represent the conditions
observed in each measurement, this still caused bias when the elements of the distribution
tails was considered and resulted in unreal and unstable estimates. Therefore, such a situa-
tion generated unstable and non-robust models, and when added or removed, observations
produced drastically different estimators.

In contrast, the model proposed in this research allowed considering the observations
of the same monitoring station with an identical distribution, leading to robust estimators,
which in addition did not present the common problems of the non-convergence of the
estimation algorithm.

We observed that the greedy stagewise algorithm and any other greedy algorithm
that add incremental functions, such as“steps” or “boosts”, had a high risk of generating
decision trees that satisfy conditions of local optima. Further work may involve proposing
algorithms, in the context of extreme value theory, using the upper quantiles of the maxima
as distances for the clustering of monitoring stations and increasing the number of nodes
in groups, not sequentially one by one. Additionally, it should be investigated if proposing
the candidate nodes in the leaves of the each candidate decision tree, the gain in the log-
likelihood improves. We believe that in this situation, the respective loss of algorithm
performance will be followed by a gain in the log-likelihood.

4. Conclusions

In this research work, we proposed a study on the extreme non-stationary values of
PM2.5 maxima using a tree ensemble model. The model had the advantage of approxi-
mating complex nonlinear spatial trends of extreme values, using a decision-tree-based
assembly model for the parameters of the GEV distribution that makes use of a simpler
K model. The parameters in each leaf were estimated via gradient descent, which has
the advantage of being easily implemented, which in each leaf almost surely converges
to the optimal solution. Additionally, the estimates were obtained by adjusting to the
non-stationary GEV model using a decision tree approach simultaneously for the three
parameters of the extreme value distribution, which is a novel way to perform estimation
in multivariate parameter models by using decision trees. Our model was validated by
comparing the log-likelihood and the AIC of the stationary model with those obtained
for the fitted model, resulting in the best values being obtained by the proposed model,
showing us the support and validity of our results. We also concluded that an important
change to extend the model should consider the construction of the decision tree using
conglomerates based on the proximity of the monitoring stations and their upper quantiles;
this should help to solve the problem of local minimum solutions that can be obtained by
the greedy stagewise approach. Our findings indicated the existence of areas with increased
risks of high PM2.5 concentrations in the west–east direction of the study area. The results
of our work should help administrative authorities improve the policies of prevention and
contention of extreme events of PM2.5 concentrations.
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