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Abstract: Homomorphic encryption with the ability to compute over encrypted data without access
to the secret key provides benefits for the secure and powerful computation, storage, and commu-
nication of resources in the cloud. One of its important applications is fast-growing robot control
systems for building lightweight, low-cost, smarter robots with intelligent brains consisting of data
centers, knowledge bases, task planners, deep learning, information processing, environment models,
communication support, synchronous map construction and positioning, etc. It enables robots to be
endowed with secure, powerful capabilities while reducing sizes and costs. Processing encrypted
information using homomorphic ciphers uses the sign function polynomial approximation, which is
a widely studied research field with many practical results. State-of-the-art works are mainly focused
on finding the polynomial of best approximation of the sign function (PBAS) with the improved
errors on the union of the intervals [−1,−ε]∪ [ε, 1]. However, even though the existence of the single
PBAS with the minimum deviation is well known, its construction method on the complete interval
[−1, 1] is still an open problem. In this paper, we provide the PBAS construction method on the
interval [−1, 1], using as a norm the area between the sign function and the polynomial and showing
that for a polynomial degree n ≥ 1, there is (1) unique PBAS of the odd sign function, (2) no PBAS of
the general form sign function if n is odd, and (3) an uncountable set of PBAS, if n is even.

Keywords: minimax approximate polynomial; Chebyshev polynomials of the second kind; Bernstein
polynomial; sign function

MSC: 90C23; 12-08

1. Introduction

Comparing numbers in a homomorphic cipher causes the problem of finding the
polynomial of best approximation of the sign function (PBAS). To approximate it, vari-
ous approaches are used: rational functions [1], Bernstein polynomials [2], Chebyshev
polynomials of the first kind [3,4], Fourier series expansions, artificial neural networks [5],
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least-squares [6–9], Newton–Raphson [10], etc. In these approaches, the noncontinuous
sign function is replaced by a continuous function s(x) equal to:

s(x) =


1 i f x > ε,

x
ε , i f x ∈ [−ε, ε].
−1 otherwise

The main issue is that the approximation is considered on the union of two intervals
[−1,−ε] ∪ [ε, 1]. The smallest deviation of a polynomial from the sign function is used as a
measure of quality. However, this measure has a maximum error close to 0.5 in the zero
neighborhood regardless of the degree of the polynomial, which makes it inapplicable for
approximating a polynomial on the complete interval [−1, 1].

According to Chebyshev theory, there exists a single polynomial f (x) for continuous
function s(x) with the minimum deviation min max

x∈[−1,1]
|s(x)− f (x)| [11], also known as

minimax approximate polynomial or polynomial of best approximation.
The form of the minimax polynomial for the sign function approximation depends

on ε. Various strategies for choosing ε for polynomial approximate s(x) are proposed.
However, the problem of constructing PBAS remains open.

In this paper, we consider the classical definition of the sign function:

sign(x) =


1 i f x > 0,
0 i f x = 0,
−1 i f x < 0.

To construct the PBAS, we use the norm as the area between the sign function and the
polynomial f (x), determined by the following formula.

‖ f (x)‖ =
∫ 0

−1
|−1− f (x)|dx +

∫ 1

0
|1− f (x)|dx =

∫ 0

−1
|1 + f (x)|dx +

∫ 1

0
|1− f (x)|dx

This norm allows us to avoid dramatically increasing the least deviation of the polyno-
mial from the sign function as a result in the zero neighborhood.

Let us formulate the problem of the PBAS construction.

It is required to find the polynomial Qn(x) =
n
∑

i=0
aixi, where ∀ i = 0, n: aixi is the i-th

term, ai ∈ R is a coefficient, x is a variable, and degQn(x) ≤ n.
It is formally defined as follows:

‖
n

∑
i=0

a(0)i xi‖ = ∆ = inf
a0,a1,...,an

‖
n

∑
i=0

aixi‖

If Qn(x) exists, it is called the PBAS. In [11], p. 160, the theorem is proved that the
PBAS exists. However, the number of PBAS and their form remains open. In this paper, we
study these two problems.

The rest of the paper is organized as follows: Section 2 discusses the properties of
the norm, which are then used in the proof. Section 3 discusses approximation of the sign
function by Bernstein polynomials. It is shown that if n ≥ 1 and Qn(x) is the PBAS, then
‖Qn(x)‖ ≤ 1. Section 4 discusses the PBAS properties. Section 5 discusses the number of
the PBAS odd functions. Section 6 investigates the problem of the existence of the PBAS of
general form. Section 7 contains a conclusion.

2. Norm and Its Properties

The section discusses the main properties of the norm used for the proof.

Property 1. If f (x) is an even function, then ‖ f (x)‖ ≥ 2.
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Proof. Since f (x) is an even function, then
∫ 0
−1|1 + f (x)|dx =

∫ 1
0 |1 + f (x)|dx; therefore:

‖ f (x)‖ =
∫ 1

0 |1 + f (x)|dx +
∫ 1

0 |1− f (x)|dx
=
∫ 1

0 |1 + f (x)|+ |1− f (x)|dx

considering that ∀x ∈ R : |1 + f (x)|+ |1− f (x)| ≥ 2, then

‖ f (x)‖ ≥
∫ 1

0
2dx = 2

The property is proven. �

Let us consider an example of calculating the norm for n = 0.

Example 1.

(a) Calculate ‖a0‖; if |a0| ≤ 1, then
∫ 1

0 |1 + a0|+ |1− a0|dx = 2.

(b) Calculate ‖a0‖; if |a0| > 1, then
∫ 1

0 |1 + a0|+ |1− a0|dx = 2|a0| > 2.

From the data presented in Example 1, we can conclude that for n = 0, there is an uncountable
number of PBAS, and they are given by f (x) = a0, where |a0| ≤ 1.

Property 2. If f (x) is an odd function, then ‖ f (x)‖ = 2
∫ 1

0 |1− f (x)|dx.

Proof. Since f (x) is an odd function, then
∫ 0
−1|1 + f (x)|dx =

∫ 1
0 |1− f (x)|dx; therefore:

‖ f (x)‖ = 2
∫ 1

0
|1− f (x)|dx

The property is proven. �

Property 3. If f (x) = e(x) + o(x) is a general function, then ‖ f (x)‖ ≥ ‖o(x)‖, where e(x) is
an even function and o(x) is an odd function.

Proof.

‖ f (x)‖ =
∫ 0

−1
|1 + e(x) + o(x)|dx +

∫ 1

0
|1− e(x)− o(x)|dx

Let x = −t, then:∫ 0
−1|1 + e(x) + o(x)|dx = −

∫ 0
1 |1 + e(−t) + o(−t)|dt

=
∫ 1

0 |1 + e(t)− o(t)|dt

Therefore,

‖ f (x)‖ =
∫ 1

0
|1− e(x)− o(x)|+ |1 + e(x)− o(x)|dx≥

∫ 1

0
|2− 2 · o(x)|dx = 2

∫ 1

0
|1− o(x)|dx

According to Property 2 ‖o(x)‖ = 2
∫ 1

0 |1− o(x)|dx, we find:

‖ f (x)‖ ≥ ‖o(x)‖

The property is proven. �

Property 4. ∀ φ ∈
(
0, π

2
)

:

‖ f (x) + g(x)‖ ≤ sin2 φ‖ 1
sin2 φ

· f (x)‖+ cos2 φ‖ 1
cos2 φ

· g(x)‖.
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Proof. By the definition,

‖ f (x) + g(x)‖ =
∫ 0

−1
|1 + f (x) + g(x)|dx +

∫ 1

0
|1− f (x)− g(x)|dx

According to the basic trigonometric identity sin2 φ + cos2 φ = 1, then

|1 + f (x) + g(x)| =
∣∣sin2 φ + f (x) + cos2 φ + g(x)

∣∣ ≤ ∣∣sin2 φ + f (x)
∣∣+ ∣∣cos2 φ + g(x)

∣∣
= sin2 φ

∣∣∣1 + 1
sin2 φ

· f (x)
∣∣∣+ cos2 φ

∣∣∣1 + 1
cos2 φ

· g(x)
∣∣∣

|1− f (x)− g(x)| =
∣∣sin2 φ− f (x) + cos2 φ− g(x)

∣∣ ≤ ∣∣sin2 φ− f (x)
∣∣+ ∣∣cos2 φ− g(x)

∣∣
= sin2 φ

∣∣∣1− 1
sin2 φ

· f (x)
∣∣∣+ cos2 φ

∣∣∣1− 1
cos2 φ

· g(x)
∣∣∣.

Therefore:

‖ f (x) + g(x)‖ ≤ sin2 φ‖ 1
sin2 φ

· f (x)‖+ cos2 φ‖ 1
cos2 φ

· g(x)‖

The property is proven. �

Corollary 1. ∀ φ ∈
[
0, π

2
]

:

‖ sin2 φ · f (x) + cos2 φ · g(x)‖ ≤ sin2 φ‖ f (x)‖+ cos2 φ‖g(x)‖.

Proof. According to Property 4 ∀ φ ∈
(
0, π

2
)

: ‖ sin2 φ · f (x)+ cos2 φ · g(x)‖ ≤ sin2 φ‖ f (x)‖
+ cos2 φ‖g(x)‖. Let us show that the inequality holds in the case φ = 0, then ‖g(x)‖ ≤
‖g(x)‖ in the case φ = π

2 , then ‖ f (x)‖ ≤ ‖ f (x)‖.
The corollary is proven. �

Corollary 2. If ‖ f (x)‖ = ‖g(x)‖ = a, then ∀ φ ∈
[
0, π

2
]

:

‖ sin2 φ · f (x) + cos2 φ · g(x)‖ ≤ a

Proof. According to Corollary 1, we get:

‖ sin2 φ · f (x) + cos2 φ · g(x)‖ ≤ sin2 φ‖ f (x)‖+ cos2 φ‖g(x)‖= a · sin2 φ + a · cos2 φ = a

The corollary is proven. �

From Example 1, it follows that if n = 0, then there are infinitely many PBAS of the
zero degree. If f (x) = −1 and g(x) = 1, then Q0(x) = sin2 φ · f (x) + cos2 φ · g(x) = cos 2φ
defines every PBAS of degree zero.

Let us investigate the problem of the number of PBAS of degrees greater than or equal
to one.

3. Approximation of the Sign Function by Bernstein Polynomials

Let us apply the Bernstein polynomials for an approximation of the sign function
fn(x).

fn(x) =
2n + 1

4n

(
2n
n

) n

∑
i=0

(−1)i · 1
2i + 1

·
(

n
i

)
· x2i+1 (1)

Since the function fn(x) is odd, using Property 2, we can calculate ‖ fn(x)‖ using
‖ fn(x)‖ = 2

∫ 1
0 |1− fn(x)|dx. Let us calculate the value

∫ 1
0 |1− fn(x)|dx, proving the fol-

lowing statement.
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Statement 1. ∀ n ∈ Z+ :
∫ 1

0 |1− fn(x)|dx = 2n+1
(2n+2)4n

(
2n
n

)
Proof. Since the Bernstein polynomials on the interval [−1, 1] have the property that
∀ n ∈ Z+, x ∈ [−1, 1] : | fn(x)| ≤ 1,∫ 1

0
|1− fn(x)|dx =

∫ 1

0
1− fn(x)dx

Substituting—instead of fn(x)—expression (1), we find

∫ 1
0 |1− fn(x)|dx =

∫ 1
0 1− 2n+1

4n

(
2n
n

)
n
∑

i=0
(−1)i · 1

2i+1 ·
(

n
i

)
· x2i+1dx

=

(
x− 2n+1

4n

(
2n
n

)
n
∑

i=0
(−1)i · 1

(2i+1)(2i+2) ·
(

n
i

)
· x2i+2

)∣∣∣∣1
0

= 1− 2n+1
4n

(
2n
n

)
n
∑

i=0
(−1)i · 1

(2i+1)(2i+2) ·
(

n
i

)
We represent 1

(2i+1)(2i+2) in the form 1
(2i+1)(2i+2) =

1
2 i+1 −

1
2i+2 , and we find:∫ 1

0
|1− fn(x)|dx = 1− 2n + 1

4n

(
2n
n

) n

∑
i=0

(−1)i · 1
2i + 1

·
(

n
i

)
+

2n + 1
4n

(
2n
n

) n

∑
i=0

(−1)i · 1
2i + 2

·
(

n
i

)
Substitute

n

∑
i=0

(−1)i · 1
2i + 1

·
(

n
i

)
=

4n

(2n + 1)
(

2n
n

) n

∑
i=0

(−1)i · 1
2i + 2

·
(

n
i

)
=

1
2n + 2

Hence, ∫ 1

0
|1− fn(x)|dx =

2n + 1
(2n + 2)4n

(
2n
n

)
The statement is proven. �

Corollary 3. ∀ n ∈ Z+ : ‖ fn(x)‖ ≤ min
(

1, 2√
3n+1

)
Proof. Since fn(x) is an odd function, according to Property 2:

‖ f (x)‖ = 2
∫ 1

0
|1− f (x)|dx

Let n ≥ 1 :

‖ fn(x)‖ = 2 · 2n + 1
(2n + 2)4n

(
2n
n

)
<

2
4n

(
2n
n

)
≤ 2√

3n + 1
≤ 1

if n = 0, then ‖x‖ = 1; therefore ∀ n ∈ Z+: ‖ fn(x)‖ ≤ 1.
The corollary is proven. �

From Property 1 and Corollary 3, we can conclude that if n ≥ 1, the PBAS is not an
even function.

4. Properties of the PBAS

Since the polynomial Qn(x) is a continuous function on the interval [−1, 1], accord-
ing to the Weierstrass theorem, it is bounded by this in interval and reaches the mini-
mum and maximum values—that is, there are xm, xM ∈ [−1, 1] such that ∀ x ∈ [−1, 1] :
Qn(xm) ≤ Qn(x) ≤ Qn(xM). Let us denote mQ = Qn(xm) and MQ = Qn(xM), and
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mQ ≤ MQ. Let us investigate the values of mQ and MQ for the PBAS Qn(x). The result is
presented in the form of the following lemma.

Lemma 1. If n ≥ 1 and Qn(x) is the PBAS, then mQ ≤ −1 and MQ ≥ 1.

Proof. We split the two-dimensional space R2 into subspaces using the curves mQ = ±1
and MQ = ±1 (see Figure 1).
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In the following, we consider each subspace separately.
Subspace 1. Let us assume that PBAS Qn(x) satisfies the condition: mQ ≤ MQ ≤ −1

(see Figure 1, Subspace 1), then ∀x ∈ [−1, 1] : Qn(x) ≤ −1, 1 + Qn(x) ≤ 0, 1−Qn(x) ≥ 0;
therefore:

‖Qn(x)‖ =
∫ 0
−1|1 + Qn(x)|dx +

∫ 1
0 |1−Qn(x)|dx

=
∫ 0
−1−1−Qn(x)dx +

∫ 1
0 1−Qn(x)dx = −

∫ 1
−1 Qn(x)dx ≥ −

∫ 1
−1−1dx = 2

From Corollary 3, it follows that for n ≥ 1 the PBAS has the property ‖Qn(x)‖ ≤ 1.
Therefore, we came to a contradiction and our assumption is not correct.

Subspace 2. Let us assume that the PBAS Qn(x) satisfies the condition: mQ < −1
and −1 < MQ < 1 (see Figure 1, Subspace 2), then ∀x ∈ [−1, 1] : 1− Qn(x) ≥ 0 and
1−Qn(x) ≥ 0:

‖Qn(x)‖ =
∫ 0

−1
|1 + Qn(x)|dx +

∫ 1

0
1−Qn(x)dx

We calculate ‖Qn(x) + 1−MQ‖ and find

‖Qn(x) + 1−MQ‖ =
∫ 0

−1

∣∣2 + Qn(x)−MQ
∣∣dx +

∫ 1

0
MQ −Qn(x)dx

We subtract from ‖Qn(x)‖ the value ‖Qn(x) + 1−MQ‖ and find:

‖Qn(x)‖ − ‖Qn(x) + 1−MQ‖ =
∫ 0
−1|1 + Qn(x)| −

∣∣2 + Qn(x)−MQ
∣∣dx + 1−MQ

=
∫ 0
−1|1 + Qn(x)| −

∣∣2 + Qn(x)−MQ
∣∣+ 1−MQdx
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Considering that

∀x ∈ [−1, 0] :
∣∣2 + Qn(x)−MQ

∣∣ ≤ |1 + Qn(x)|+
∣∣1−MQ

∣∣ = |1 + Qn(x)|+ 1−MQ,

then
|1 + Qn(x)| −

∣∣2 + Qn(x)−MQ
∣∣+ 1−MQ ≥ 0

Therefore, ‖Qn(x)‖ − ‖Qn(x) + 1−MQ‖ ≥ 0. If ‖Qn(x)‖ − ‖Qn(x) + 1−MQ‖ > 0,
then Qn(x) is not a PBAS, so ‖Qn(x)‖ − ‖Qn(x) + 1 − MQ‖ = 0; then, ∀x ∈ [−1, 0] :
1 + Qn(x) ≥ 0 and

‖Qn(x)‖ =
∫ 0

−1
|1 + Qn(x)|dx +

∫ 1

0
1−Qn(x)dx = 2 +

∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Let λ = 2
1+MQ

> 1, then

∀ x ∈ [−1, 0] : λQn(x) + 1−MQ
1+MQ

+ 1 = λQn(x) + λ = λ(Qn(x) + 1) ≥ 0

∀ x ∈ [−1, 0] : 1− λQn(x)− 1−MQ
1+MQ

= λMQ − λQn(x) = λ
(

MQ −Qn(x)
)
≥ 0

Therefore,

‖λQn(x) + 1−MQ
1+MQ

‖ = λ
∫ 0
−1 1 + Qn(x)dx + λ

∫ 1
0 MQ −Qn(x)dx

= λ ·
(
1 + MQ

)
+ λ

(∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx

)
= 2 + λ

(∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx

)
since λ > 1 и

∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx ≤ −1, then

λ

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
<
∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Therefore,

‖λQn(x) +
1−MQ

1 + MQ
‖ < ‖Qn(x)‖

it means that Qn(x) is not a PBAS. We came to a contradiction.
Subspace 3. Let us assume that the PBAS Qn(x) satisfies the condition:

−1 < mQ < MQ < 1 (see Figure 1, Subspace 3), then ∀x ∈ [−1, 1] : −1 < Qn(x) < 1,
1 + Qn(x) > 0, 1−Qn(x) > 0. Let M = max

(∣∣mQ
∣∣, ∣∣MQ

∣∣) < 1. If M = 0, then Qn(x) = 0
and ‖Qn(x)‖ = 2; from the other side, ∀n ≥ 1 : ‖Qn(x)‖ ≤ 1. Therefore, we came to
a contradiction and M 6= 0. Let λ = 1

M > 1 and ∀x ∈ [−1, 1] : −1 ≤ λQn(x) ≤ 1,
1 + λQn(x) > 0, 1− λQn(x) > 0. We calculate the value ‖Qn(x)‖ and find:

‖Qn(x)‖ =
∫ 0

−1
1 + Qn(x)dx +

∫ 1

0
1−Qn(x)dx = 2 +

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
Since, according to the conditions of Theorem 1 and Corollary 3, n ≥ 1 and ‖Qn(x)‖ ≤ 1.

Hence, ∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx ≤ −1.

We calculate ‖λ ·Qn(x)‖ and find

‖λ ·Qn(x)‖ =
∫ 0

−1
1 + λ ·Qn(x)dx +

∫ 1

0
1− λ ·Qn(x)dx= 2 + λ

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
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Since λ > 1 и
∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx ≤ −1,

λ

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
<
∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Therefore,

2 + λ

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
< 2 +

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
and

‖λ ·Qn(x)‖ < ‖Qn(x)‖

Therefore, we came to a contradiction and our assumption is not correct.
Subspace 4. Let us assume that the PBAS Qn(x) satisfies the condition: MQ > 1 and

−1 < mQ < 1 (see Figure 1, Subspace 4).

‖Qn(x)‖ =
∫ 0

−1
1 + Qn(x)dx +

∫ 1

0
|1−Qn(x)|dx

we calculate ‖Qn(x)− 1−mQ‖ and get

‖Qn(x)− 1−mQ‖ =
∫ 0

−1
Qn(x)−mQdx +

∫ 1

0

∣∣2−Qn(x) + mQ
∣∣dx

we subtract from ‖Qn(x)‖ the value ‖Qn(x)− 1−mQ‖ and get:

‖Qn(x)‖ − ‖Qn(x)− 1−mQ‖ = 1 + mQ +
∫ 1

0 |1−Qn(x)| −
∣∣2−Qn(x) + mQ

∣∣dx
=
∫ 1

0 |1−Qn(x)| −
∣∣2−Qn(x) + mQ

∣∣+ 1 + mQdx

Consideringthat∀x ∈ [0, 1] :
∣∣2−Qn(x) + mQ

∣∣ ≤ |1−Qn(x)|+
∣∣1 + mQ

∣∣ = |1−Qn(x)|
+ 1 + mQ, then ∀x ∈ [0, 1] : |1−Qn(x)| −

∣∣2−Qn(x) + mQ
∣∣ + 1 + mQ ≥ 0; therefore,

‖Qn(x)‖ − ‖Qn(x)− 1−mQ‖ ≥ 0. If ‖Qn(x)‖ − ‖Qn(x)− 1−mQ‖ > 0, then Qn(x) is not
a PBAS, so ‖Qn(x)‖ − ‖Qn(x)− 1−mQ‖ = 0 and ∀x ∈ [0, 1] : 1−Qn(x) ≥ 0 and

‖Qn(x)‖ = 2 +
∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

let λ = 2
1−mQ

> 1, then

∀ x ∈ [−1, 0] : λQn(x)− 1+mQ
1−mQ

+ 1 = λQn(x)− λmQ = λ
(
Qn(x)−mQ

)
≥ 0

∀ x ∈ [0, 1] : 1− λQn(x) + 1+mQ
1−mQ

= λ− λQn(x) = λ(1−Qn(x)) ≥ 0

Therefore,

‖λQn(x)− 1+mQ
1−mQ

‖ = λ
∫ 0
−1 Qn(x)−mQdx + λ

∫ 1
0 1−Qn(x)dx

= 2 + λ
(∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx

)
since λ > 1 and

∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx ≤ −1, then(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
<
∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Therefore,

‖λQn(x)−
1 + mQ

1−mQ
‖ < Qn(x)
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it means that Qn(x) is not a PBAS. We came to a contradiction.
Subspace 5. Let us assume that the PBAS Qn(x) satisfies the condition: MQ ≥ mQ ≥ 1

(see Figure 1, Subspace 5); therefore, ∀x ∈ [−1, 1] : Qn(x) ≥ 1,
1 + Qn(x) ≥ 0, 1 − Qn(x) ≤ 0 means

‖Qn(x)‖ =
∫ 0
−1|1 + Qn(x)|dx +

∫ 1
0 |1−Qn(x)|dx

=
∫ 0
−1 1 + Qn(x)dx +

∫ 1
0 Qn(x)− 1dx =

∫ 1
−1 Qn(x)dx ≥

∫ 1
−1 1dx = 2

From Corollary 3, it follows that for n ≥ 1, the PBAS has the property ‖Qn(x)‖ ≤ 1.
This means that we have come to a contradiction and our assumption is not correct.

Subspace 6. Let us assume that the PBAS Qn(x) satisfies the condition: mQ = −1 and
−1 < MQ < 1 (see Figure 1, Subspace 6), then

‖Qn(x)‖ =
∫ 0

−1
1 + Qn(x)dx +

∫ 1

0
1−Qn(x)dx= 2 +

∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Let λ = 2
1+MQ

> 1, then

∀ x ∈ [−1, 0] : λQn(x) + 1−MQ
1+MQ

+ 1 = λ + λQn(x) = λ(1 + Qn(x)) ≥ 0

∀ x ∈ [0, 1] : 1− λQn(x)− 1−MQ
1+MQ

= λMQ − λQn(x) = λ
(

MQ −Qn(x)
)
≥ 0

Therefore,

‖λQn(x) + 1−MQ
1+MQ

‖ =
∫ 0
−1 λ + λQn(x)dx +

∫ 1
0 λMQ − λQn(x)dx

= 2 + λ
(∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx

)
Since λ > 1 и

∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx ≤ −1,

λ

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
<
∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Therefore,

‖λQn(x) +
1−MQ

1 + MQ
‖ < Qn(x)

This means that Qn(x) is not a PBAS.
Subspace 7. Let us assume that Qn(x) satisfies the condition: MQ = 1 and−1 < mQ < 1

(see Figure 1, Subspace 7). Then,

‖Qn(x)‖ =
∫ 0

−1
1 + Qn(x)dx +

∫ 1

0
1−Qn(x)dx= 2 +

∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Let λ = 2
1−mQ

> 1, then

∀ x ∈ [−1, 0] : λQn(x)− 1+mQ
1−mQ

+ 1 = λQn(x)− λmQ = λ
(
Qn(x)−mQ

)
≥ 0

∀ x ∈ [0, 1] : 1− λQn(x) + 1+mQ
1−mQ

= λ− λQn(x) = λ(1−Qn(x)) ≥ 0

Therefore,

‖λQn(x)− 1+mQ
1−mQ

‖ = λ
∫ 0
−1 Qn(x)−mQdx + λ

∫ 1
0 1−Qn(x)dx

= 2 + λ
(∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx

)
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Since λ > 1 and
∫ 0
−1 Qn(x)dx−

∫ 1
0 Qn(x)dx ≤ −1,

λ

(∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

)
<
∫ 0

−1
Qn(x)dx−

∫ 1

0
Qn(x)dx

Therefore,

‖λQn(x)−
1 + mQ

1−mQ
‖ < Qn(x)

This means that Qn(x) is not a PBAS.
Subspace 8. Since in all seven cases we have come to a contradiction, if Qn(x) is a

PBAS, it satisfies the boundary conditions defining Subspace 8 (See, Figure 1).
Lemma 1 is proven. �

Lemma 2. For n ≥ 1, there exists the PBAS odd function Q1
n(x).

Proof. The existence of the PBAS Qn(x) follows from Theorem [11] p. 160. Since for
n ≥ 1, the PBAS Qn(x) is not an even function, so Qn(x) is either a general function or an
odd function.

Let us assume that Qn(x) is a general function; it can be represented in the form
Qn(x) = Q0

n(x) + Q1
n(x), where Q0

n(x) is an even function and Q1
n(x) is an odd function.

It follows from Property 3 that ‖Qn(x)‖ ≥ ‖Q1
n(x)‖. Considering that Qn(x) is the PBAS,

‖Qn(x)‖ = ‖Q1
n(x)‖, so the odd function Q1

n(x) is the PBAS. Therefore, for any n ≥ 1,
there is the PBAS Qn(x), which is an odd function.

Lemma 2 is proven. �

Corollary 4. Let n ≥ 1, Q1
n(x) be a PBAS odd function, MQ > 1, and mQ < −1.

Proof. We assume that PBAS is the odd function Q1
n(x) and MQ = −mQ = 1.

Let us consider the function R(x) = λQ1
n(x), where λ ∈ R. Since Q1

n(x) is an odd
function, R(x) is also an odd function. We calculate ‖Q1

n(x)‖ and ‖R(x)‖ using Property 2
and find:

‖Q1
n(x)‖ = 2

∫ 1

0
1−Q1

n(x)dx‖R(x)‖ = 2
∫ 1

0

∣∣∣1− λQ1
n(x)

∣∣∣dx

Let us show that there exists λ > 1, for which the inequality ‖Q1
n(x)‖ > ‖R(x)‖

is satisfied.∫ 1

0
1−Q1

n(x)dx >
∫ 1

0

∣∣∣1− λQ1
n(x)

∣∣∣dx
∫ 1

0
1−Q1

n(x)−
∣∣∣1− λQ1

n(x)
∣∣∣dx > 0

We denote as G+ a set of all x ∈ [0, 1] for which the inequality 1− λQ1
n(x) ≥ 0 holds

and G− for which the inequality 1− λQ1
n(x) ≤ 0 holds. We then find:
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∫ 1
0 1−Q1

n(x)−
∣∣1− λQ1

n(x)
∣∣dx =

∫
G+

λQ1
n(x)−Q1

n(x)dx +
∫

G−
2−Q1

n(x)− λQ1
n(x)dx

= (λ− 1)
∫

G+

Q1
n(x)dx +

∫
G−

2−Q1
n(x)− λQ1

n(x)dx

= (λ− 1)
∫

G+

Q1
n(x)dx +

∫
G−

2dx−
∫

G−
Q1

n(x) + λQ1
n(x)dx

= (λ− 1)
∫

G+

Q1
n(x)dx + 2|G−| − (1 + λ)

∫
G−

Q1
n(x)dx

= λ

( ∫
G+

Q1
n(x)dx−

∫
G−

Q1
n(x)dx

)
+ 2|G−| −

∫ 1
0 Q1

n(x)dx

= λ

(∫ 1
0 Q1

n(x)dx− 2
∫

G−
Q1

n(x)dx

)
+ 2|G−| −

∫ 1
0 Q1

n(x)dx

≥ λ
∫ 1

0 Q1
n(x)dx− 2λ|G−|+ 2|G−| −

∫ 1
0 Q1

n(x)dx = (λ− 1)
(∫ 1

0 Q1
n(x)dx− 2|G−|

)
where |G−| is the length of the set G−.

We denote g(λ) =
{
|G−|

∣∣G− =
{

x
∣∣1− λQ1

n(x) ≤ 0& 0 ≤ x ≤ 1
}}

.
Since n ≥ 1 and ∀x ∈ [0, 1] : Q1

n(x) ≤ 1, then g(1) = 0 and ∀λ > 1 : g(λ) < 1.
Let us consider two cases.
Case 1: If ∀x ∈ [0, 1] : Q1

n(x) < 1, then there is such a number xa ∈ [0, 1] for
which ∀x ∈ [0, 1] : Q1

n(x) ≤ Q1
n(xa) = Ma

Q holds. If Ma
Q ≤ 0, then

∫ 1
0 1− Q1

n(x)dx ≥ 1;
therefore, ‖Q1

n(x)‖ ≥ 2 > 1 so Q1
n(x) is not the PBAS. If Ma

Q > 0, we choose as λ the value
λ = 1

Ma
Q
> 1, for which the inequality ‖Q1

n(x)‖ > ‖R(x)‖ holds, and Q1
n(x) is not a PBAS.

Therefore, we came to a contradiction.
Case 2: If Ma

Q = 1, then g(λ) is an increasing function; that is, ξ > 1, for which the

inequality
∫ 1

0 Q1
n(x)dx − 2|G−| = 0 holds. Therefore, for any λ ∈ (1, ξ), the following

inequality holds: ∫ 1

0
1−Q1

n(x)−
∣∣∣1− λQ1

n(x)
∣∣∣dx > 0

Therefore, we came to a contradiction. If MQ = 1 and mQ = −1, then ∀n ≥ 1 : Q1
n(x),

which is not the PBAS.
The corollary is proven. �

5. The Number of PBAS Odd Functions

In Lemma 2, it is proved that for n ≥ 1, the PBAS is an odd function, but the question
of their number remains open. The following theorem will answer this question.

Theorem 1. If n ≥ 1, then there is only one odd function Q1
n(x) that is the PBAS. Depending on

the n, the function Q1
n(x) is determined as follows:

If n is odd, then

Q1
n(x) = x

n+1
2

∑
i=1

1
sin i·π

n+3

n+1
2

∏
j=1, j 6=i

x2 − sin2 j·π
n+3

sin2 i·π
n+3 − sin2 j·π

n+3

and
‖Q1

n(x)‖ = 2 tan
π

2n + 6
;

If n is even, then

Q1
n(x) = x

n
2

∑
i=1

1
sin i·π

n+2

n
2

∏
j=1, j 6=i

x2 − sin2 j·π
n+2

sin2 i·π
n+2 − sin2 j·π

n+2
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and
‖Q1

n(x)‖ = 2 tan
π

2n + 4
.

Proof. Let us consider two cases.
Case 1. n is an odd number.
We consider the points 0 < x1 < x2 < . . . < xu ≤ 1 such that ∀i = 1, u : Q1

n(xi) = 1.
According to Corollary, 4 the value Ma

Q satisfies the condition Ma
Q > 1. Considering that

the function Q1
n(x) is an odd continuous function, then at least one point x1 ∈ [0, 1] is such

that Q1
n(x) = 1 exists.

Let us consider the question of the number of zeroes of the function F(x) = dQ1
n(xi)
dx .

Since the function Q1
n(x) is an odd continuous function, then F(x) is an even function. The

number of zeroes of F(x) is less or equal to n − 1, of which non-negative numbers are
less than or equal to n−1

2 . Therefore, the number of solutions to the equation Q1
n(x) = 1

satisfying the question x ∈ (0, 1] is less than or equal to n−1
2 + 1 = n+1

2 . That is, u ≤ n+1
2 .

Let us consider the points 0 = y0 < y1 < y2 < . . . < yv < yv+1 = 1. In each of the

points y1, y2, . . . , yv the value of the function f (x) = 1− Q1
2v−1(x) = 1−

v−1
∑

i=0
a2i+1x2i+1

changes its sign.

Iv =
‖Q1

2v−1(x)‖
2 =

∫ 1
0

∣∣1−Q1
n(x)

∣∣dx =
v
∑

i=0
(−1)i ∫ yi+1

yi
f (x)dx

= 2
v
∑

i=1
(−1)i+1F(yi) + (−1)vF(yv+1)

where F(x) = x−∑v−1
i=0

a2i+1
2i+2 x2i+2.

We calculate the values of the partial derivatives ∀i = 1, v:

∂F(yi)

∂yi
= 1−

v−1

∑
i=0

a2i+1y2i+1
i −

v−1

∑
i=0

∂a2i+1

∂yi
·

y2i+2
i

2i + 2

Since 1−∑v−1
i=0 a2i+1y2i+1

i = 0 by the definition, then:

∂F(yi)

∂yi
= −

v−1

∑
i=0

∂a2i+1

∂yi
·

y2i+2
i

2i + 2

We calculate the values of the partial derivatives ∀i 6= j:

∂F(yi)

∂yj
= −

v−1

∑
i=0

∂a2i+1

∂yj
·

y2i+2
i

2i + 2

The necessary condition for the value ‖Q1
2v+1(x)‖ to be minimal is: ∀i = 1, v : ∂Iv

∂yi
= 0;

therefore,

∂Iv
∂yi

= −2
v
∑

j=1
(−1)j+1 v−1

∑
k=0

∂a2k+1
∂yi
·

y2k+2
j

2k+2 − (−1)v v−1
∑

k=0

∂a2k+1
∂yi
· 1

2k+2

= −
v−1
∑

k=0

∂a2k+1
∂yi
· 1

2k+2

(
2

v
∑

j=1
(−1)j+1y2k+2

j + (−1)v

)

Solving the system ∂Iv
∂yi

= 0 [12], we find that ∀k = 0, v− 1 :

2
v

∑
j=1

(−1)j+1y2k+2
j + (−1)v = 0
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Considering that ∀ i = 1, v : yi > 0; therefore, ∀ i = 1, v : yi = sin i·π
2v+2 [12].

Using the Lagrange interpolation formula, we calculate the value Q1
2v−1(x), and we

find Q1
2v−1(x) = ∑v

i=1 li(x)−∑v
i=1 li(x), where

li(x) =
v

∏
j=1

x + yj

yi + yj
·

v

∏
j=1, j 6=i

x− yj

yi − yj
li(x) = −

v

∏
j=1, j 6=i

x + yj

yi − yj
·

v

∏
j=1

x− yj

yi + yj

Then,

Q1
2v−1(x) =

v
∑

i=1

(
v

∏
j=1

x+yj
yi+yj

·
v

∏
j=1, j 6=i

x−yj
yi−yj

+
v

∏
j=1, j 6=i

x+yj
yi−yj

·
v

∏
j=1

x−yj
yi+yj

)
=

v
∑

i=1

v
∏

j=1, j 6=i

x−yj
yi−yj

v
∏

j=1, j 6=i

x+yj
yi+yj

·
(

x+yi
2yi

+
x−yj
2yi

)
= x

v
∑

i=1

1
yi

v
∏

j=1, j 6=i

x−yj
yi−yj

v
∏

j=1, j 6=i

x+yj
yi+yj

= x
v
∑

i=1

1
yi

v
∏

j=1, j 6=i

x2−2
y
j

y2
i −y2

j

Let F(x) = ∑v
i=1

ai
2i x2i and dF(x)

dx = Q1
2v−1(x), so Iv is equal to

Iv =
∫ 1

0

∣∣1−Q1
2v−1(x)

∣∣dx =
v
∑

i=0
(−1)i ∫ sin (i+1)·π

2v+2

sin i·π
2v+2

1−Q1
2v−1(x)dx

= 2
v
∑

i=1
(−1)i+1 sin i·π

2v+2 + (−1)v + 2
v
∑

j=1
(−1)jF

(
sin j·π

2v+2

)
+ (−1)v+1F(1)

We calculate the value 2 ∑v
j=1(−1)jF

(
sin j·π

2v+2

)
+ (−1)v+1F(1), and we obtain:

2
v
∑

j=1
(−1)jF

(
sin j·π

2v+2

)
+ (−1)v+1F(1) = 2

v
∑

j=1
(−1)j v

∑
i=1

ai
2i sin2i j·π

2v+2 + (−1)v+1 v
∑

i=1

ai
2i

=
v
∑

i=1

ai
2i

(
2

v
∑

j=1
(−1)j sin2i j·π

2v+2 + (−1)v+1

)

Considering that (2) holds, ∀ i = 1, v : 2 ∑v
j=1(−1)j sin2i j·π

2v+2 + (−1)v+1

= −
(

2 ∑v
j=1(−1)j+1 sin2i j·π

2v+2 + (−1)v
)
= 0, then

2
v

∑
j=1

(−1)jF
(

sin
j · π

2v + 2

)
+ (−1)v+1F(x) = 0

and

Iv =
∫ 1

0

∣∣∣1−Q1
2v−1(x)

∣∣∣dx = 2
v

∑
i=1

(−1)i+1 sin
i · π

2v + 2
+ (−1)v

If v is even, then

Iv = 2
v/2

∑
i=1

sin
(2i− 1) · π

2v + 2
− 2

v/2

∑
i=1

sin
i · π

v + 1
+ 1
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Using the formula sin(α− β) = sin α cos β− sin β cos α, where α = 2iπ
2v+2 = iπ

v+1 and
β = π

2v+2 , we have

v/2
∑

i=1
sin (2i−1)·π

2v+2 =
v/2
∑

i=1

(
sin iπ

v+1 cos π
2v+2 − sin π

2v+2 cos iπ
v+1

)
= cos π

2v+2

v/2
∑

i=1
sin iπ

v+1 − sin π
2v+2

v/2
∑

i=1
cos iπ

v+1

Since 1
2 + ∑n

i=1 cos ix =
sin(n+ 1

2 )x
2 sin 1

2 x
and ∑n

i=1 sin ix =
cos x

2−cos(n+ 1
2 )x

2 sin 1
2 x

([13] p. 2), where

n = v
2 and x = π

v+1 , we have:

v/2

∑
i=1

cos
iπ

v + 1
=

sin
(

v
2 + 1

2

)
π

v+1

2 sin π
2v+2

− 1
2
=

1
2 sin π

2v+2
− 1

2

v/2

∑
i=1

sin
i · π

v + 1
=

cos π
2v+2 − cos

(
v
2 + 1

2

)
π

v+1

2 sin π
2v+2

=
cos π

2v+2
2 sin π

2v+2

Therefore,

Iv = 2

(
cos

π

2v + 2
·

cos π
2v+2

2 sin π
2v+2

− sin
π

2v + 2

(
1

2 sin π
2v+2

− 1
2

))
−

cos π
2v+2

sin π
2v+2

+ 1=
cos2 π

2v+2 + sin2 π
2v+2

sin π
2v+2

−
cos π

2v+2
sin π

2v+2

Using the basic trigonometric identities cos2 2α + sin2 2α = 1 and 1− cos 2α = 2 sin2 α,
sin 2α = 2 sin α cos α, where α = π

4v+4 we obtain:

Iv =
1− cos π

2v+2
sin π

2v+2
=

2 sin2 π
4v+4

2 sin π
4v+4 cos π

4v+4
= tan

π

4v + 4

If v is odd, then

Iv = 2

v+1
2

∑
i=1

sin
(2i− 1) · π

2v + 2
− 2

v−1
2

∑
i=1

sin
i · π

v + 1
− 1

Using the formula sin(α− β) = sin α cos β− sin β cos α, where α = 2iπ
2v+2 = iπ

v+1 and
β = π

2v+2 , we have

v+1
2
∑

i=1
sin (2i−1)·π

2v+2 =

v+1
2
∑

i=1

(
sin iπ

v+1 cos π
2v+2 − sin π

2v+2 cos iπ
v+1

)
= cos π

2v+2

v+1
2
∑

i=1
sin iπ

v+1 − sin π
2v+2

v+1
2
∑

i=1
cos iπ

v+1

Since ∑n
i=1 sin ix =

cos x
2−cos(n+ 1

2 )x
2 sin 1

2 x
[13] p. 2, where n = v+1

2 and x = π
v+1 we find:

v+1
2

∑
i=1

sin
iπ

v + 1
=

cos π
2v+2 − cos

(
v+1

2 + 1
2

)
π

v+1

2 sin π
2v+2

=
cos π

2v+2 − cos
(

π
2 + π

2v+2
)

2 sin π
2v+2

According to the reduction formula cos
(

π
2 + π

2v+2
)
= − sin π

2v+2 , we have:

v+1
2

∑
i=1

sin
iπ

v + 1
=

cos π
2v+2 + sin π

2v+2
2 sin π

2v+2
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Using the formula 1
2 + ∑n

i=1 cos ix =
sin(n+ 1

2 )x
2 sin 1

2 x
[13] p. 2, where n = v+1

2 and x = π
v+1

we find:
v+1

2

∑
i=1

cos
iπ

v + 1
=

sin
(

v+1
2 + 1

2

)
π

v+1

2 sin π
2v+2

− 1
2
=

sin
(

π
2 + π

2v+2
)

2 sin π
2v+2

− 1
2

According to the reduction formula sin
(

π
2 + π

2v+2
)
= cos π

2v+2 , we obtain:

v+1
2

∑
i=1

cos
iπ

v + 1
=

cos π
2v+2

2 sin π
2v+2

− 1
2

Since ∑n
i=1 sin ix =

cos x
2−cos(n+ 1

2 )x
2 sin 1

2 x
[13] p. 2, where n = v−1

2 and x = π
v+1 we find:

v−1
2

∑
i=1

sin
i · π

v + 1
=

cos π
2v+2 − cos

(
v−1

2 + 1
2

)
π

v+1

2 sin π
2v+2

=
cos π

2v+2 − cos
(

π
2 −

π
2v+2

)
2 sin π

2v+2

According to the reduction formula cos
(

π
2 −

π
2v+2

)
= sin π

2v+2 , we find:

v−1
2

∑
i=1

sin
i · π

v + 1
=

cos π
2v+2 − sin π

2v+2
2 sin π

2v+2

Therefore,

Iv = 2
(

cos π
2v+2 ·

cos π
2v+2+sin π

2v+2
2 sin π

2v+2
− sin π

2v+2

(
cos π

2v+2
2 sin π

2v+2
− 1

2

))
−2

cos π
2v+2−sin π

2v+2
2 sin π

2v+2
− 1 =

1−cos π
2v+2

sin π
2v+2

= tan π
4v+4

Therefore, ∀ v ∈ N : ‖Q1
2v−1(x)‖ = 2Iv = 2 tan π

4v+4 .
Since ∀v ∈ N : Iv−1 > Iv, then the smallest value ‖Q1

2v−1(x)‖ at the maximum v,
considering that v ≤ u ≤ n+1

2 , then v = n+1
2 and 2v + 2 = n + 3.

Case 2. If n is an even number, then the result is obtained similarly to case 1, except
v = n

2 and 2v + 2 = n + 2.
The theorem is proved. �

From Theorem 1, it follows that for n ≥ 1, there is a unique odd function that is the
PBAS, which is constructed using the Lagrange interpolation formula, and the interpolation
nodes are an alternative to Chebyshev for Chebyshev polynomials of the second kind.

Example 2. Construct the PBAS for n = 3 and n = 4, which are odd functions.
Solution
If n = 3, then, according to Theorem 1, the PBAS is given by the following formula:

Q1
3(x) = x

2
∑

i=1

1
sin i·π

6

2
∏

j=1, j 6=i

x2−sin2 j·π
6

sin2 i·π
6 −sin2 j·π

6

= x
(

1
sin π

6
· x2−sin2 π

3
sin2 π

6 −sin2 π
3
+ 1

sin π
3
· x2−sin2 π

6
sin2 π

3 −sin2 π
6

)
= 2x

(
−2x2 + 3

2 + 2
√

3
3 x2 −

√
3

6

)
= 4

√
3−12
3 x3 + 9−

√
3

3 x

If n = 4, then, according to Theorem 1, the PBAS is given by the following formula:

Q1
4(x) = x

2

∑
i=1

1
sin i·π

6

2

∏
j=1, j 6=i

x2 − sin2 j·π
6

sin2 i·π
6 − sin2 j·π

6

=
4
√

3− 12
3

x3 +
9−
√

3
3

x
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Let us pay attention to the fact that Q1
3(x) = Q1

4(x). This fact can be generalized: if n is even
and n ≥ 2, then Q1

n(x) = Q1
n−1(x).

6. The Number of PBAS of the Neither Function

Let us investigate the problem of the existence of PBAS Qn(x).

Theorem 2. If n ≥ 1, then the following statements are true:

1. If n is an odd number, then there is no PBAS Qn(x).
2. If n is an even number, then there is an infinite number of PBAS Qn(x).

Proof. From Theorem 1, it follows that there is a unique odd function Q1
n(x) that is a PBAS.

Let us show that there exists an even function Q0
n(x) 6= 0, such that: ‖Qn(x) = Q1

n(x)‖. For
this, we calculate ‖Qn(x)‖ − ‖Q1

n(x)‖ and find:

‖Qn(x)‖ − ‖Q1
n(x)‖ =

∫ 1

0

∣∣∣1−Q0
n(x)−Q1

n(x)
∣∣∣+ ∣∣∣1 + Q0

n(x)−Q1
n(x)

∣∣∣− 2
∣∣∣1−Q1

n(x)
∣∣∣dx

where Qn(x) = Q0
n(x) + Q1

n(x), Q0
n(x) is an even function, and Q1

n(x) is an odd function.
‖Qn(x)‖ − ‖Q1

n(x)‖ is equal to zero only if the condition
∀x ∈ [0, 1] :

∣∣1−Q0
n(x)−Q1

n(x)
∣∣+ ∣∣1 + Q0

n(x)−Q1
n(x)

∣∣− 2
∣∣1−Q1

n(x)
∣∣ = 0

holds, equivalent to:

∀x ∈ [0, 1] и Q1
n(x) ≤ 1 :

{
1−Q0

n(x)−Q1
n(x) ≥ 0,

1 + Q0
n(x)−Q1

n(x) ≥ 0;
⇔ Q1

n(x)− 1 ≤ Q0
n(x) ≤ 1−Q1

n(x)

and

∀x ∈ [0, 1] и Q1
n(x) ≥ 1 :

{
1−Q0

n(x)−Q1
n(x) ≤ 0,

1 + Q0
n(x)−Q1

n(x) ≤ 0;
⇔ 1−Q1

n(x) ≤ Q0
n(x) ≤ Q1

n(x)− 1

Therefore: ∀x ∈ [0, 1] : −
∣∣1−Q1

n(x)
∣∣ ≤ Q0

n(x) ≤
∣∣1−Q1

n(x)
∣∣.

Since Q1
n(xi) is an odd-function PBAS, it follows from Theorem 1 that there are points

x1, x2, . . . , xu ∈ (0, 1] such that ∀i = 1, u : Q1
n(xi) = 1. Since Q1

n(xi) is an odd-function
PBAS, it follows from the proof of Theorem 1 that if n is an odd number, then u = n+1

2 .
Otherwise, u = n

2 .
Substituting x1, x2, . . . , xu into the inequalities −

∣∣1−Q1
n(x)

∣∣ ≤ Q0
n(x) ≤

∣∣1−Q1
n(x)

∣∣
we find ∀i = 1, u : 0 ≤ Q0

n(xi) ≤ 0; therefore, the necessary condition is ∀i = 1, u :
Q0

n(xi) = 0. Since the function Q0
n(x) is an even function, ∀i = 1, u : Q0

n(−xi) = 0;
therefore, Q0

n(x) is divisible by the polynomial ∏u
i=1
(

x2 − x2
i
)

and degQ0
n(x) ≥ 2u. Let us

consider two cases.
Case 1. If n is an odd number, then degQ0

n(x) ≥ 2u = n + 1. Therefore, there is no
even polynomial satisfying the condition degQ0

n(x) ≤ n. Hence, if n is an odd number,
there is no PBAS that is a function of general form.

Case 2. If n is an even number, then degQ0
n(x) ≥ 2u = n. From the other side,

degQ0
n(x) ≤ n; therefore, degQ0

n(x) = n. To construct the polynomial Q0
n(x) we consider

the polynomial of the form:

Zn(x) =
Q1

n(x)− 1

∏n/2
i=1(x− xi)

where ∀i = 1, n
2 : xi = sin iπ

n+2 .
We consider the equation Q1

n(x)− 1 = 0, ∀i = 1, n
2 : Q1

n(xi)− 1 = 0; therefore, accord-
ing to Rolle’s theorem, in each of the intervals (xi, xi+1), at least one point ξi ∈ ( xi, xi+1 )

exists for which F(ξi) = 0, where F(x) =
d(Q1

n(x)−1)
dx = dQ1

n(x)
dx and i ∈ 1, n

2 − 1. Since
Q1

n(x) is an odd function, F(x) is an even function; therefore, ∀ i ∈ 1, n
2 − 1 : F(−ξi) = 0.
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Considering that degF(x) = n− 2, then, according to the main theorem of algebra, the
equation F(x) = 0 over the field of real numbers can have at most n− 2 roots—considering
their multiplicity—so ±ξi are roots of multiplicity one. Since ±ξi are roots of multiplicity
one, the function F(x) passing through ±ξi changes its sign; therefore,

(
−∞,−ξ n

2−1

)
,(

−ξ n
2−1,−ξ n

2−2

)
, . . . , (−ξ2,−ξ1 ), (−ξ1, ξ1 ), (ξ1, ξ2 ), . . . ,

(
ξ n

2−2, ξ n
2−1

)
,
(

ξ n
2−1,+∞

)
are the intervals of the increase or decrease in the function Q1

n(x). Therefore, the equation
Q1

n(x) − 1 = 0 has at most one solution for each of the intervals. Taking into account
that the intervals (−ξ1, ξ1 ), (ξ1, ξ2 ), . . . ,

(
ξ n

2−2, ξ n
2−1

)
,
(

ξ n
2−1,+∞

)
, solutions of the

equation Q1
n(x)− 1 = 0 are respectively x1, x2, . . . , x n

2
; therefore, ψ ≥ 0 does not exist, and

∀i = 1, n
2 : ψ 6= xi and Q1

n(ψ)− 1 = 0.
Let us show that xi is a root of multiplicity one of the equation Q1

n(x)− 1 = 0. We
suppose that there exists k, for which xk is a root of multiplicity greater than one of
Q1

n(x)− 1 = 0; therefore, xk is also a root of the equation ∀i = 1, n
2 − 1 : ±ξi and xk.

Provided that degF(x) = n − 2, we have come to a contradiction. Therefore xi is
a root of multiplicity one of the equation Q1

n(x) − 1 = 0, so if there exists γ ∈ R for
which the condition Zn(γ) = 0 is satisfied, then γ < 0 and one of the two conditions
∀x ≥ 0 : Zn(x) > 0 or ∀x ≥ 0 : Zn(x) < 0 hold.

Since Zn(0) = Q1
n(0)−1

∏
n
2
i=1(−xi)

= (−1)
n
2 +1

∏
n
2
i=1 xi

, then if n
2 is an even number, then ∀x ≥ 0 :

Zn(x) < 0, otherwise ∀x ≥ 0 : Zn(x) > 0.
Let us consider the function Rn(x), given by the following formula:

Rn(x) =
Zn(x)

n
2

∏
j=1

(
x + xj

)
The function Rn(x) is continuous on the interval [0, 1]. According to the Weier-

strass theorem, it is bounded; that is, there exist xR
m, xR

M ∈ [0, 1] such that ∀x ∈ [0, 1] :

Rn
(

xR
m
)
≤ R(x) ≤ Rn

(
xR

M
)
. Considering that ∀x ∈ [0, 1] : ∏

n
2
j=1

(
x + xj

)
> 0, we find

that if n
2 is even number, then Rn

(
xR

m
)
< Rn

(
xR

M
)
< 0. Otherwise, 0 < Rn

(
xR

m
)
< Rn

(
xR

M
)
.

If n
2 is even number, τ = −Rn

(
xR

M
)
; otherwise, τ = Rn

(
xR

m
)

and we find the function
Q0

n(x) = τ ∏n/2
i=1

(
x2 − x2

i
)

satisfying ∀x ∈ [0, 1] : −
∣∣1−Q1

n(x)
∣∣ ≤ Q0

n(x) ≤
∣∣1−Q1

n(x)
∣∣.

Since Qn(x) = Q0
n(x) + Q1

n(x), it follows from Corollary 2 that ∀φ ∈
[
0, π

2
]

: sin2 φ ·
Qn(x) + cos2 φ ·Q1

n(x) = Q1
n(x), so Qφ,n(x) = sin2 φ ·Qn(x) + cos2 φ ·Q1

n(x) is the PBAS
and Qφ,n(x) = sin2 φ · Qn(x) + cos2 φ · Q1

n(x) = sin2 φ · Q0
n(x) + Q1

n(x). It is also worth
noting that Qn(x) = −Q0

n(x) + Q1
n(x) is a PBAS, so Qφ,n(x) = sin2 φ · Qn(x) + cos2 φ ·

Q1
n(x) = − sin2 φ ·Q0

n(x) + Q1
n(x) is the PBAS.

The theorem is proven. �

Example 3. Construct the general form PBAS for n = 4.
Solution follows from Example 2 that Q1

4(x) = 4
√

3−12
3 x3 + 9−

√
3

3 x. Calculating Z4(x),
we have

Z4(x) =
Q1

4(x)− 1(
x− 1

2

)(
x−

√
3

2

) =
4
√

3− 12
3

x− 4
√

3
3

We calculate R4(x) and find:

R4(x) =
Z4(x)(

x + 1
2

)(
x +

√
3

2

) =
4
√

3−12
3 x− 4

√
3

3(
x + 1

2

)(
x +

√
3

2

) =

4
√

3
3

(
x + 1

2

)
− 4
(

x +
√

3
2

)
(

x + 1
2

)(
x +

√
3

2

) =
4
√

3
3

x +
√

3
2

− 4
x + 1

2
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We calculate the derivative of the function R4(x) and find:

dR4(x)
dx

= −
4
√

3
3(

x +
√

3
2

)2 +
4(

x + 1
2

)2

Since there are no critical points on the segment [0, 1], the function R4(x) takes the maximum
and minimum values at the ends of the segment. If we calculate R4(0) and R4(1), respectively, we
have: R4(0) = − 16

3 and

R4(1) =
4
√

3−12
3 − 4

√
3

3(
1 + 1

2

)(
1 +

√
3

2

) = − 16
6 + 3

√
3

Therefore, τ = 16
6+3
√

3
and

Q0
4,µ = µ

(
x2 − 1

4

)(
x2 − 3

4

)
= µ

(
x4 − x2 +

3
16

)
= µ · U5(x)

32 · x

where µ is any number satisfying the condition µ ∈ [−τ, τ], and U5(x) is a Chebyshev polynomial of
the second kind. Thus, the PBAS has the form Q4,µ(x) = µx4 + 4

√
3−12
3 x3− µx2 + 9−

√
3

3 x + 3
16 µ.

Lemma 3. If n is an even number, then

∀ i = 1,
n
2

: αi =

n
2

∏
j=1, j 6=i

(
sin2 i · π

n + 2
− sin2 j · π

n + 2

)
=

(−1)
n
2−i

n+2
2n · sin2 2i·π

n+2

Proof. As ∀x, y ∈ R : sin2 x− sin2 y = sin(x− y) · sin(x + y), then

αi =
n/2

∏
j=1,i 6=j

sin
(i + j)π

n + 2
sin

(i− j)π
n + 2

Consider two cases.
Case 1: If i = n

2 then

α n
2
=

n
2−1

∏
j=1

sin

( n
2 + j

)
π

n + 2
sin

( n
2 − j

)
π

n + 2
=

n−1
∏
j=1

sin j·π
n+2

sin n·π
2n+4

Because ∏n+1
j=1 sin j·π

n+2 = n+2
2n+1 , we have

α n
2
=

n + 2
2n sin2 2π

n+2

Case 2. If i 6= n
2 then

αi =
1

sin 2iπ
n+2 sin iπ

n+2

−1

∏
j=i− n

2

sin
jπ

n + 2

i+ n
2

∏
j=1

sin
jπ

n + 2
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Because sin jπ
n+2 = − sin (n+2+j)π

n+2 , we obtain

αi =
(−1)

n
2 −i

sin 2i·π
n+2 sin i·π

n+2

−1
∏

j=i− n
2

sin (n+2+j)π
n+2

i+ n
2

∏
j=1

sin j·π
n+2

= (−1)
n
2 −i

sin 2i·π
n+2 sin i·π

n+2

n+1
∏

j= n
2 +i+2

sin j·π
n+2

i+ n
2

∏
j=1

sin j·π
n+2

= (−1)
n
2 −i

sin 2i·π
n+2 sin i·π

n+2 sin
( n

2 +i+1)π

n+2

n+1
∏
j=1

sin j·π
n+2

As ∏n+1
j=1 sin j·π

n+2 = n+2
2n+1 , sin ( n

2 +i+1)π

n+2 = cos i·π
n+2 , and 2 · cos i·π

n+2 · sin i·π
n+2 = sin 2i·π

n+2 ,

αi =
(−1)

n
2−i

sin2 2i·π
n+2

· 2n

n + 2

Lemma 3 is proven. �

Theorem 3. If n is an even number, then PBAS is defined as

Qµ,n(x) = µ
n/2

∏
i=1

(
x2 − x2

i

)
+ Q1

n(x),

where µ ∈ [−τ, τ], xi = sin i·π
n+2 , and τ = 2n+1

n+2 tan π
2n+4 .

Proof. Using the theorem on the expansion of rational functions in the case of different
roots [14], we represent Rn(x) as partial fraction decomposition:

Rn(x) =
Zn(x)

n/2
∏
j=1

(
x + xj

) =
n/2

∑
j=1

bj

x + xj
,

where ∀j = 1, n
2 : bj ∈ R. Therefore, we have

Zn(x) =
n/2

∑
j=1

bj

n/2

∏
i=1,i 6=j

(x + xi)

Calculating the values of Zn(x) at the point x = −xj, we obtain:

Zn
(
−xj

)
= bj

n/2

∏
i=1,i 6=j

(
xi − xj

)
On the other hand, Zn(x) = Q1

n(x)−1
∏n/2

i=1 (x−xi)
, hence

Zn
(
−xj

)
=

−2

∏n/2
i=1

(
−xj − xi

) = (−1)
n
2 +1 · 2

∏n/2
i=1

(
xj + xi

)
Since Zn

(
−xj

)
= bj ∏n/2

i=1,i 6=j
(
xi − xj

)
= (−1)

n
2 +1 · 2

∏n/2
i=1(xj+xi)

, it follows that

bj = (−1)
n
2 +1 · 1

xj ∏
n
2
i=1,i 6=j

(
x2

i − x2
j

) =
1

xj ∏
n
2
i=1,i 6=j

(
x2

j − x2
i

) .
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Using Lemma 3, we find

bj = (−1)
n
2 +j ·

.
2n

n + 2
·

x2
2j

xj
.

Therefore,

Rn(x) = (−1)
n
2 · 2n

n + 2
·

n
2

∑
j=1

(−1)j ·
x2

2j

xj
· 1

x + xj
= (−1)

n
2 · 2n+2

n + 2
·

n
2

∑
j=1

(−1)j ·
xj − x3

j

x + xj
.

Calculating dRn(x)
dx , we have

dRn(x)
dx

= −
n
2

∑
j=1

bj(
x + xj

)2 .

Let us show that ∀x ∈ [0, 1] : dRn(x)
dx 6= 0. Using the corollary of the Cauchy–Schwarz

inequality (∑n
i=1 uivi)

2 ≤ (∑n
i=1 vi)

(
∑n

i=1 u2
i vi
)
, we have ∑

bj>0

bj

x + xj

2

≤

 ∑
bj>0

bj

 ∑
bj>0

bj(
x + xj

)2

 ∑
bj<0

bj

x + xj

2

≤ −

 ∑
bj<0

bj

 ∑
bj<0

bj(
x + xj

)2


Therefore,(

∑bj>0
bj

x+xj

)2

∑bj>0 bj
≤ ∑

bj>0

bj(
x + xj

)2

(
∑bj<0

bj
x+xj

)2

−∑bj<0 bj
≤ ∑

bj<0

bj(
x + xj

)2

Let us add two inequalities:(
∑bj>0

bj
x+xj

)2

∑bj>0 bj
+

(
∑bj<0

bj
x+xj

)2

−∑bj<0 bj
≤

n/2

∑
j=1

bj(
x + xj

)2

As ∀x ∈ [0, 1] :

(
∑bj>0

bj
x+xj

)2

∑bj>0 bj
> 0 and

(
∑bj<0

bj
x+xj

)2

−∑bj<0 bj
> 0 then ∑n/2

j=1
bj

(x+xj)
2 > 0.

Therefore, dRn(x)
dx does not change sign on the interval [0, 1]. The minimum and maximum

of the function Rn(x) will be reached at the ends of the interval. Let us calculate the value
of the function Rn(x) at the points x = 0 and x = 1:

Rn(0) = (−1)
n
2 · 2n+2

n + 2

n/2

∑
j=1

(−1)j
(

1− x2
j

)
Rn(1) = (−1)

n
2 · 2n+2

n + 2

n/2

∑
j=1

(−1)j
(

xj − x2
j

)
Considering that

n/2

∑
j=1

(−1)j =
−1 + (−1)n/2

2
,
n/2

∑
j=1

(−1)jxj =
(−1)n/2

2
− 1

2
tan

π

2n + 4
,
n/2

∑
j=1

(−1)jx2
j =

(−1)n/2

2
,

we have

Rn(0) = (−1)
n
2 +1 · 2n+1

n + 2
Rn(1) = (−1)

n
2 +1 · 2n+1

n + 2
tan

π

2n + 4
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As ∀n ≥ 2 and |n|2 = 0 : |Rn(0)| > |Rn(1)|, considering Theorem 2, we obtain

τ = |Rn(1)| =
2n+1

n + 2
tan

π

2n + 4
.

The theorem is proven. �

7. Conclusions

Homomorphic encryption enables the computing of encrypted data without access
to the secret key. It has become a promising mechanism for the secure computation, stor-
age, and communication of confidential data in cloud services [15]. Practical scenarios
include robot control systems, machine learning models, image processing, and many
others [6–10,16–18]. A challenge of processing encrypted information is finding a crypto-
graphically compatible sign function approximation.

State-of-the-art works have mainly focused on constructing the polynomial of best
approximation of the sign function (PBAS) on the union of the intervals [−1,−ε] ∪ [ε, 1].
In this paper, we provide a construction of the PBAS on the complete interval [−1, 1] and
prove that:

If n = 0, then PBAS has the form Qn(x) = a0, where |a0|≤ 1 .
If n ≥ 1, then there is a unique PBAS odd function, which can be calculated using the

zeros of the Chebyshev polynomial of the second kind.
If n ≥ 1 and n is an odd number, then there are no PBAS of the general form.
If n ≥ 1 and n is an even number, then there is an uncountable set of PBAS of the

general form.
Future studies include assessing the accuracy and efficiency of PBAS on real systems,

e.g., over privacy-preserving neural networks with homomorphic encryption, where the
non-linear activation function is replaced with a PBAS to operate with encrypted data.

Author Contributions: Conceptualization, M.B., A.T., A.A. and F.G.; Data curation, B.P.-G. and F.G.;
Formal analysis, M.B.; Investigation, M.B., A.T., B.P.-G., A.A., S.N., X.W. and F.G.; Methodology, A.A.,
S.N., X.W. and F.G.; Project administration, A.A.; Resources, S.N., X.W. and F.G.; Software, B.P.-G.
and F.G.; Supervision, A.T. and A.A.; Validation, M.B., B.P.-G., S.N., X.W. and F.G.; Visualization, M.B.
and B.P.-G.; Writing—original draft, M.B. and A.T.; Writing—review & editing, A.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education and Science of the Russian Federa-
tion (Project 075-15-2020-915).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheon, J.H.; Kim, D.; Kim, D.; Lee, H.H.; Lee, K. Numerical Method for Comparison on Homomorphically Encrypted Numbers.

Lect. Notes Comput. Sci. 2019, 11922, 415–445. [CrossRef]
2. Cheon, J.H.; Kim, D.; Kim, D. Efficient Homomorphic Comparison Methods with Optimal Complexity. Lect. Notes Comput. Sci.

2020, 12492, 221–256.
3. Chen, H.; Chillotti, I.; Song, Y. Improved Bootstrapping for Approximate Homomorphic Encryption. Lect. Notes Comput. Sci.

2019, 11477, 34–54.
4. Han, K.; Ki, D. Better bootstrapping for approximate homomorphic encryption. Lect. Notes Comput. Sci. 2020, 12006, 364–390.

[CrossRef]
5. Boura, C.; Gama, N.; Georgieva, M. Chimera: A unified framework for B/FV, TFHE and HEAAN fully homomorphic encryption

and predictions for deep learning. IACR Cryptol. ePrint Arch. 2018, 2018, 758.

http://doi.org/10.1007/978-3-030-34621-8_15
http://doi.org/10.1007/978-3-030-40186-3_16


Mathematics 2022, 10, 2006 22 of 22

6. Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proceedings of the 33rd International Conference on Machine Learning,
New York, NY, USA, 19–24 June 2016; Volume 48, pp. 201–210. Available online: http://proceedings.mlr.press/v48/gilad-
bachrach16.pdf (accessed on 10 April 2022).

7. Kim, M.; Song, Y.; Wang, S.; Xia, Y.; Jiang, X. Secure logistic regression based on homomorphic encryption: Design and evaluation.
JMIR Med. Inform. 2018, 6, e19. [CrossRef] [PubMed]

8. Bonte, C.; Vercauteren, F. Privacy-preserving logistic regression training. BMC Med. Genom. 2018, 11, 86. [CrossRef] [PubMed]
9. Kim, A.; Song, Y.; Kim, M.; Lee, K.; Cheon, J.H. Logistic regression model training based on the approximate homomorphic

encryption. BMC Med. Genom. 2018, 11, 83. [CrossRef] [PubMed]
10. Bajard, J.-C.; Martins, P.; Sousa, L.; Zucca, V. Improving the Efficiency of SVM Classification with FHE. IEEE Trans. Inf. Forensics

Secur. 2019, 15, 1709–1722. [CrossRef]
11. Bakhvalov, N.S.; Zhidkov, N.P.; Kobelkov, G.M. Numerical Methods; Nauka: Moscow, Russia, 1987; p. 600.
12. Korkine, A.; Zolotareff, G. Sur un certain minimum. Nouv. Ann. Mathématiques J. Candidats Écoles Polytech. Norm. 1873, 12,

337–355. Available online: http://www.numdam.org/item/NAM_1873_2_12__337_0/ (accessed on 7 November 2019).
13. Zygmund, A. Trigonometric Series; Cambridge University Press: New York, NY, USA, 2002; Volume 1, p. 375.
14. Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics; Addison-Wesley Publishing Company: Reading, MA, USA, 1994;

p. 625.
15. Tchernykh, A.; Babenko, M.; Chervyakov, N.; Miranda-Lopez, V.; Avetisyan, A.; Drozdov, A.Y.; Rivera-Rodriguez, R.; Radchenko,

G.; Du, Z. Scalable Data Storage Design for Nonstationary IoT Environment with Adaptive Security and Reliability. IEEE Internet
Things J. 2020, 7, 10171–10188. [CrossRef]

16. Pulido-Gaytan, B.; Tchernykh, A.; Cortés-Mendoza, J.M.; Babenko, M.; Radchenko, G.; Avetisyan, A.; Drozdov, A.Y. Privacy-
preserving neural networks with Homomorphic encryption: Challenges and opportunities. Peer-to-Peer Netw. Appl. 2021, 14,
1666–1691. [CrossRef]

17. Babenko, M.; Tchernykh, A.; Chervyakov, N.; Kuchukov, V.; Miranda-López, V.; Rivera-Rodriguez, R.; Du, Z.; Talbi, E.-G.
Positional Characteristics for Efficient Number Comparison over the Homomorphic Encryption. Program. Comput. Softw. 2019,
45, 532–543. [CrossRef]

18. Cortes-Mendoza, J.M.; Radchenko, G.; Tchernykh, A.; Pulido-Gaytan, B.; Babenko, M.; Avetisyan, A.; Bouvry, P.; Zomaya, A.
LR-GD-RNS: Enhanced Privacy-Preserving Logistic Regression Algorithms for Secure Deployment in Untrusted Environments.
In Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid),
Melbourne, Australia, 10–13 May 2021; IEEE: Melbourne, Australia, 2021; pp. 770–775.

http://proceedings.mlr.press/v48/gilad-bachrach16.pdf
http://proceedings.mlr.press/v48/gilad-bachrach16.pdf
http://doi.org/10.2196/medinform.8805
http://www.ncbi.nlm.nih.gov/pubmed/29666041
http://doi.org/10.1186/s12920-018-0398-y
http://www.ncbi.nlm.nih.gov/pubmed/30309364
http://doi.org/10.1186/s12920-018-0401-7
http://www.ncbi.nlm.nih.gov/pubmed/30309349
http://doi.org/10.1109/TIFS.2019.2946097
http://www.numdam.org/item/NAM_1873_2_12__337_0/
http://doi.org/10.1109/JIOT.2020.2981276
http://doi.org/10.1007/s12083-021-01076-8
http://doi.org/10.1134/S0361768819080115

	Introduction 
	Norm and Its Properties 
	Approximation of the Sign Function by Bernstein Polynomials 
	Properties of the PBAS 
	The Number of PBAS Odd Functions 
	The Number of PBAS of the Neither Function 
	Conclusions 
	References

