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Abstract: This paper investigates the finite-time contractively bounded control issue for positive
linear systems under H∞ performance. The notion of H∞ finite-time contractive boundedness is
first extended to positive systems. Finite-time contractively bounded control is considered to ensure
the H∞ finite-time contractive boundedness of the considered positive systems. A state feedback
finite-time contractively bounded controller design method is proposed. The corresponding sufficient
condition for the existence of the desired controller is derived by using the Lyapunov function method
and the matrix inequality technique. Moreover, a computable scheme for solving the controller gain
is established by employing the cone complementary linearization approach. Finally, a numerical
example and an application example about pest management are used to validate the effectiveness of
proposed conditions.

Keywords: finite-time contractive boundedness; positive linear systems; H∞ performance; cone
complementary linearization
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1. Introduction

Positive systems are a particular class of systems whose states and outputs always
have to be nonnegative for any nonnegative inputs and nonnegative initial conditions.
The nonnegative characteristic of positive systems is common in nature and that is exactly
the reason why such kind of systems is widely applied in numerous fields, including
biomedicine [1], industrial engineering [2], and ecology [3]. Moreover, the analyses for
positive systems may not be addressed by the well-established approach developed for
general systems, since the states of positive systems are not defined on linear spaces but
cones [4]. In this case, a large number of innovative investigations of positive systems have
been reported in the past decades [5–11]. Here, to just name a few, robust stability analysis
problems were discussed for uncertain positive linear systems under L1-gain and L∞-gain
performance in [7]. In addition, the stability and Lp-gain characterization of positive
linear time-varying systems on general time scale were analyzed in [9]. Also, a new delay-
dependent stability criterion was developed in [10] for impulsive positive delayed systems
by employing the impulse-time-dependent discretized copositive Lyapunov-Krasovskii
function. Moreover, an analytical method that can solve the exact value of the `1-norm of
discrete-time positive linear systems was introduced in [11].

The issue of stability plays an important role in system performance analysis. The
stability in the Lyapunov sense describes the steady performance of systems over an infinite-
time interval, while the transient behavior of systems in a fixed finite-time interval can’t
be characterized well by it. In this case, notions like finite-time stability (FTS) [12], finite-
time annular domain stability (FTADS) [13,14] as well as finite-time contractive stability
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(FTCS) [15] could be considered to characterize the transient performance of systems in a
prescribed time interval. In fact, it has to be noted that the three kinds of stability notions
are different from each other. More specifically, a system is finite-time stable if, given the
fixed time interval as well as the bound on the initial state, the trajectories of the states
will lie in a fixed bound [16]. While, if the bound on the initial condition is given, the
system states of an FTAD-stable system cannot exceed an upper bound and they will not
be less than a lower bound [17]. Besides, for a finite-time contractively stable system, if the
bound on the initial condition is given, not only do the system states not escape from a
prescribed bound, but they will also contract in a lower bound than the initial one before
reaching the ending time of the fixed time interval [18]. Hence, compared with the FTS
as well as the FTADS, it is more practical to consider the FTCS of systems when both the
“boundedness” and the “contraction” of system states are required. For example, in pest
management, the number of pests on a farm where the crops are growing is generally
desired to be controlled at a lower enough bound in a fixed time interval. In this case, the
FTCS control which can specifically constrain the system states in a smaller bound than
the initial bound before arriving at the ending time of the time interval can be considered.
In addition, it has to be pointed out that the notion of FTCS can be extended to finite time
contractive boundedness (FTCB) for the concerned systems when exogenous disturbances
are taken into account. In this aspect, the attenuation ability to exogenous disturbances is
generally considered, and several input-output properties can be adopted to evaluate it,
such as L1-gain performance [7], H∞ performance [19], etc.

In recent years, the issues about the FTS and FTADS of positive systems have gradually
become a greater concern of researchers. For instance, the finite-time boundedness of
positive switched systems with delays under the L1-gain performance was discussed
in [20]. The FTS criterion for positive impulsive systems was established in [21] based
on the time-varying copositive Lyapunov function and the average impulsive interval
approach. In addition, the finite-time annular domain stability and stabilization problems
for T-S fuzzy positive interval systems were investigated in [22]. However, to the best
of the author’s knowledge, although the FTS and FTADS of positive systems have been
discussed before, there are few investigations about the FTCS issue of positive systems in
the existing literature.

Motivated by the aforementioned discussions, the FTCB issue for positive linear sys-
tems is investigated in this paper. Besides, the H∞ performance of such systems is analyzed
to evaluate the attenuation ability to exogenous disturbances. The main contributions of
this paper are highlighted in the three aspects below. (1) The definition of H∞ FTCB is first
extended to positive systems. Compared with the H∞ FTCB control problem for general sys-
tems in the existing literature, the positivity constraints of positive systems are fully taken
into account in this paper. (2) Unlike the FTS and FTADS issues of positive systems, the
investigated FTCB issues in this paper not only consider the “boundedness” but also care
about the “contraction” of system states. (3) A sufficient condition for the existence of state
feedback controllers is established by using the Lyapunov function method. Furthermore,
a cone complementary linearization algorithm is designed to solve the obtained conditions.

The rest of the paper is organized as follows. In Section 2, some preliminaries are
showed. Furthermore, a state feedback controller is designed in Section 3. A numerical ex-
ample and an application example are studied in Section 4. Finally, we give the conclusions
in Section 5.

Notations. Matrix or vector G � 0 (� 0) denotes that the elements in G are all positive
(nonnegative). Matrix H > 0(≥ 0) represents that matrix H is a positive definite matrix
(positive semi-definite matrix). Matrix G ∈ Mmeans matrix G is one of the matrices whose
all entries are nonnegative. tr(G) represents the sum of diagonal elements of matrix G.
Moreover, it is assumed that matrices have compatible dimensions, if their dimensions are
not explicitly stated in advance. “w.r.t” represents the phrase “with regard to”.
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2. Problem Formulation

Consider the following linear system{
ẋ(t) = Ax(t) + Bu(t) + Cω(t),
z(t) = Dx(t) + Eu(t) + Fω(t),

(1)

where x(t), u(t), ω(t), and z(t) denote the system state, system input, disturbance input as
well as controlled output, respectively. A, B, C, D, E and F are known system matrices.

Assumption 1. The disturbance input ω(t) satisfies∫ Te

0
ωT(t)ω(t)dt ≤ $, (2)

where scalar $ > 0 and t ∈ [0, Te], Te is the terminal time of the concerned time-interval.

Lemma 1 ([23]). For matrices L, M and N > 0, the following relationship holds.

LTM + MTL ≤ LTNL + MTN−1M. (3)

Definition 1 ([24]). System (1) is positive, if x(t) � 0 and z(t) � 0 always hold for any u(t) � 0,
x(0) � 0, and ω(t) � 0, for t ≥ 0.

Lemma 2 ([25]). Matrix A ∈ M, if there is a constant ι satisfying

A + ιI � 0. (4)

Lemma 3 ([24]). System (1) is positive, if and only if A ∈ M, B � 0, C � 0, D � 0, E � 0 as
well as F � 0.

Lemma 4 ([26]). For Matrices P > 0 and M > 0, if and only if the following conditions hold

tr(PM) = n, (5)[
P I
I M

]
≥ 0, (6)

PM = I holds, where n is the dimension of matrix P.

Definition 2. Positive linear system (PLS) (1) is finite-time contractively bounded w.r.t (φ1, φ2, φ3,
R, $, ts, Te), if xT(0)Rx(0) < φ1 implies that xT(t)Rx(t) < φ2, ∀t ∈ [0, Te], furthermore,
xT(t)Rx(t) < φ3, ∀t ∈ [ts, Te], where φ3 < φ1 < φ2, 0 < ts < Te, $ > 0, and R > 0.

Definition 3 ([27,28]). PLS (1) is finite-time bounded w.r.t (φ1, φ2, R, $, Te), if xT(0)Rx(0) < φ1
implies that xT(t)Rx(t) < φ2, ∀t ∈ [0, Te], where φ1 < φ2, $ > 0, and R > 0.

Remark 1. Compared with the traditional finite-time boundedness described in Definition 3,
not only does the FTCB shown in Definition 2 consider the boundedness of states in the time
interval [0, Te], but also it cares about the contractive dynamic of states in the time interval [ts, Te].
Moreover, if letting ts = 0 and c3 ≥ c2, Definition 2 can reduce to the style of the traditional FTS
in Definition 3.

Remark 2. The illustration of Definition 2 is shown in Figure 1. Moreover, according to Definition 1,
state x(t) of positive systems has to be nonnegative. Hence, the trajectory of xT(t)Rx(t) of the
finite-time contractive bounded positive systems always lie in the first orthant which is different
from that of the finite-time contractive bounded general systems.
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Figure 1. Illustration of Definition 2.

Definition 4. PLS (1) is H∞ finite-time contractive bounded, if the following two conditions hold

(1) PLS (1) is finite-time contractively bounded w.r.t (φ1, φ2, φ3, R, $, ts, Te);
(2) Under the zero initial condition, the following relationship is satisfied

∫ Te

0
z(t)Tz(t)dt < γ2

∫ Te

0
ω(t)Tω(t)dt. (7)

3. State Feedback Finite-Time Contractively Bounded Controller Synthesis

Consider the following state feedback control law for PLS (1)

u = Kx(t), (8)

where K is the controller gain to be designed. The corresponding closed-loop system can
be obtained as below {

ẋ(t) = (A + BK)x(t) + Cω(t),
z(t) = (D + EK)x(t) + Fω(t).

(9)

A state feedback finite-time contractively bounded controller design method for
system (1) is given in the following theorem.

Theorem 1. For given scalars α > 0, $ > 0, φ3 < φ1 < φ2, 0 < ts < Te, and a matrix R > 0,
system (9) is positive and H∞ finite-time contractively bounded w.r.t (φ1, φ2, φ3, R, $, ts, Te), if
there exist diagonal matrices M > 0, P > 0, and a matrix W as well as scalars η > 0, ς, and γ
such that Λ + ΛT + αM C (DM + EW)T

∗ −γ2 I FT

∗ ∗ −I

 < 0, (10)

R < P < ηR, (11)

ηφ1 + γ2$ < φ2, (12)

e−αts ηφ1 + γ2$ < φ3, (13)

AM + BW + ςI � 0, (14)
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DM + EW � 0, (15)

with the equation restriction
PM = I, (16)

where Λ = AM + BW, M = P−1. Furthermore, the controller gain is formulated as K = WM−1

in this case.

Remark 3. In general, the states of positive systems are always nonnegative, while that of general
systems are not required to be nonnegative. Hence, different from the H∞ finite-time contractively
bounded control issue of general systems [19], the positivity characteristic needs to be especially
considered when the H∞ finite-time contractively bounded control issue of the positive systems is
discussed. By Lemma 3, if system (9) is positive, the conditions “A+ BK ∈ M” and “D+ EK � 0”
which contain the controller gain K have to be satisfied. Thus, (15) is derived. Moreover, (14) is
developed by Lemma 2.

Proof. The positivity and H∞ FTCB of system (9) are proved by the two steps below.
Step 1. Let us prove that system (9) is positive. Post-multiplying both sides of (14) by

M−1, and then one has
A + BWM−1 + ςM−1 I � 0. (17)

Let ς
′
= ςm′. In view of ςm

′
I � ςM−1, we have

A + BWM−1 + ς
′
I � A + BWM−1 + ςM−1 I � 0. (18)

Then, substituting WM−1 for K yields

A + BK + ς
′
I � A + BK + ςM−1 I � 0, (19)

where m′ is the maximal element of M−1.
According to Lemma 2, (19) indicates that the matrix A + BK ∈ M. Similarly, post-

multiplying both sides of (15) by M−1, it can be derived that D + EWM−1 � 0. Letting
K = WM−1, then D + EK � 0 holds. Hence, we can conclude that system (9) is positive by
Lemma 3.

Step 2. According to the properties of negative definite matrix, the following inequality
can be obtained from (10) [

Λ + ΛT + αM C
∗ −γ2 I

]
< 0. (20)

Pre- and post-multiplying (20) by diag {P, I} , then it can be obtained that[
Λ′T + Λ′ + αP PC

∗ −γ2 I

]
< 0, (21)

where Λ′ = PA + PBK.
Choose a Lyapunov function V(x(t)) = xT(t)Px(t). Taking the time derivative of

V(x(t)) along the trajectory of system (9), it follows that

V̇(x(t)) = xT(t)
(

Λ′T + Λ′
)

x(t) + ω(t)TΓ + ΓTω(t), (22)

where Γ = CTPx(t). By using the schur complement lemma, (21) equals

Λ′ + Λ′T < −αP− PC
(

γ2 I
)−1

CTP, (23)

from which we have

V̇(x(t)) < −αV(x(t))− xT(t)Ψx + ω(t)TΓ + ΓTω(t), (24)
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where Ψ = PC
(
γ2 I
)−1CTP. Moreover, according to Lemma 1, for matrices ω(t), Γ and

γ2 I > 0, the following inequality holds

ω(t)TΓ + ΓTω(t) < ω(t)T(γ2 I
)
ω(t) + xT(t)Ψx(t).

Then, we can further obtain

V̇(x(t)) + αV(x(t)) < γ2ω(t)Tω(t). (25)

Multiplying both sides of (25) by eαt, and then integrating both sides of it from 0 to t
for t ∈ [0, Te] yields

eαtV(x(t))−V(x(0)) < γ2
∫ t

0
eατωT(τ)ω(τ)dτ, (26)

from which one has

V(x(t)) < e−αtV(x(0)) + γ2
∫ t

0
e−α(t−τ)ωT(τ)ω(τ)dτ. (27)

Moreover, (11) yeilds that V(x(0)) = xT(0)Px(0) < ηxT(0)Rx(0) < ηφ1. Hence, in
view of e−(t−τ) < 1, e−αt < 1 and (2), the following inequality is obtained for t ∈ [0, Te]

V(x(t)) < V(x(0)) + γ2
∫ t

0
ωT(τ)ω(τ)dτ

< ηφ1 + γ2$.
(28)

Considering (12) and V(x(t)) = xT(t)Px(t) > xT(t)Rx(t), (28) implies that xT(t)Rx(t)
< φ2, ∀t ∈ [0, Te].

Similarly, for t ∈ [ts, Te], we have

V(x(t)) < e−αts ηφ1 + γ2$. (29)

Then, by using (13), (29) implies that xT(t)Rx(t) < φ3, for t ∈ [ts, Te].
Next, we verify that the system (9) satisfies the H∞ performance defined in (7).
Pre and post-multiplying (10) by diag{P, I, I} yields thatΛ′ + Λ′T + αP PC (D + EK)T

∗ −γ2 I FT

∗ ∗ −I

 < 0, (30)

from which the following relationship can be developed by using the schur complement
lemma

V̇(x(t)) + αV(x(t)) + zT(t)z(t)− γ2ωT(t)ω(t) < 0. (31)

Integrating both sides of (31) from 0 to t, then one has∫ Te

0
V̇(x(t))dt + α

∫ Te

0
V(x(t))dt +

∫ Te

0
zT(t)z(t)dt− γ2

∫ Te

0
ωT(t)ω(t)dt < 0. (32)

Since V(x(t)) > 0, for t ∈ (0, Te], we can verify that (7) is satisfied from (32) under
the zero initial condition. Hence, the proof is completed.

Remark 4. Actually, on one hand, the nonlinear term PBK in the condition (30) makes it difficult
to solve the constraint conditions in Theorem 1. Hence, separating P from K in this term is certainly
a feasible and computable scheme. On this basis, the condition (10) in Theorem 1 is derived from (30)
by employing the variable substitution method. The matrix M represents P−1, matrix W donates
KM in (10).
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On the other hand, we can not obtain a qualified control gain K yet by solving the constraints
(10)–(15) directly, since the existence of the equality restriction (16). More specifially, although a
set of feasible solution (M, P, W, η, ς, γ) can be found by solving the matrix inequality conditions
(10)–(15), the obtained P and M may not satisfy the potential condition “PM = I”. Then, the
calculated K = WM−1 is not appropriate. In order to solve such a non-convex problem, the
cone complementary linearization approach can be adopted to turn it into an equivalent nonlinear
minimization problem with linear matrix inequality constraints shown in Problem 1.

Problem 1.
min tr(PM)

s.t. (10)–(15) and (6)

Remark 5. (6) holds yields that tr(PM) ≥ n, then, if and only if tr(PM) = n, we can obtain that
tr(PM) is minimum, moreover, it can be concluded that “PM = I′′ holds by Lemma 4. Hence, the
conditions (10)–(15) with the equation restriction (16) is feasible when the solution of Problem 1 is
n. Furthermore, a qualified controller gain K = WM−1 can be obtained according to the obtained
feasible set.

Inspired by the work in [29], the corresponding linearization Algorithm 1 is designed
to solve Problem 1 as follows.

Algorithm 1 Cone complementary linearization algorithm
Step 1. Given α, $, R, c1, c2, c3, ts, and Te. Moreover, Given a small enough scalar ε and let
i = 1 and N = 100, N is the maximum number of iterations.
Step 2. Solve the conditions (10)–(15) and (6). If they are feasible, go to Step 3; else, exit.
Step 3. Let (Mi, Pi, Wi, ηi, ςi, γi) = (M, P, W, η, ς, γ), where (M, P, W, η, ς, γ) is the feasible
set obtained in Step 2. Solve the optimization problem as follows

min tr(Pi M + PMi)
s.t. (6) and (10)–(15)

Step 4. Compare tr(Pi M + PMi) with 2n, where n is the rank of matrix P. If |tr(Pi M +
PMi)−2n| < ε, output the value of K = WM−1 and then exit; else, i = i + 1, compare i
with N, if i ≤ 100, go to Step3; else, exit.

4. Examples
4.1. Example 1

Consider system (1) with

A =

[
−0.4 0.6
0.35 −0.5

]
, B =

[
0.3
0.2

]
, C =

[
0.5
0.7

]
,

D =

[
0.7 0.6
0.4 0.8

]
, E =

[
0.3
0.1

]
, F =

[
0.9
0.8

]
.

(33)

The system (33) can be deduced to be a positive system by Lemma 3. Moreover, for
simulation purpose, the following disturbance input ω(t) is considered here.

ω(t) =
{

2| sin(t)|e−2t, t ∈ [0, 3],
0, else.

The evolution of ω(t) is shown in Figure 2. In addition, according to Assumption 1, a
qualified value of $ = 0.1001 >

∫ 6
0 ωT(t)ω(t)dt is chosen.
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Figure 2. Disturbance ω(t).

Let x(0) =
[
2 2.1

]
, R = I, φ1 = 10, φ2 = 20, φ3 = 4, ts = 4, Te = 10. Then, the

plot of xT(t)Rx(t) of system (33) shown in Figure 3 is obtained. It shows that for initial
xT(0)Rx(0) = 8.41 < 10, the value of xT(t)Rx(t) < 20 holds, ∀t ∈ [0, 10]. However,
for t ∈ [4, 10], xT(t)Rx(t) < 4 is not satisfied in this case. It suggests that system (33) is
finite-time bounded w.r.t (10, 20, I, 0.1001, 10) not finite-time contractively bounded for the
given parameters above. Next, the finite-time contractively bounded control is taken into
account to ensure the H∞ FTCB of system (33).

0 2 4 6 8 10
0

5

10

15

20

25

Time

x
 T

(t
)R

x
(t

)

 

 

φ1

φ2

φ3

x
T(t)Rx(t)

4

Figure 3. Illustration of xT(t)Rx(t) of system (33).

Run Algorithm 1 to solve Problem 1 by using the Yalmip toolbox in MATLAB [30].
The running results suggest that Problem 1 is feasible only if the value of α is taken from
the interval [0.2321 1.5232]. Then, a feasible solution can be obtained as follows when α = 1

M =

[
0.7116 0

0 0.6721

]
, P =

[
1.4053 0

0 1.4879

]
,

W =
[
−1.0957 −1.1812

]
, η = 1.8379, γ = 2.4437.
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Furthermore, the control gain K can be attained as

K = WM−1 = [−1.5398 − 1.7575],

from which one has

A + BK =

[
−0.8619 0.0727
0.0420 −0.8515

]
∈M, D + EK =

[
0.2381 0.0727
0.2460 0.6242

]
� 0.

Thus, the positivity of the corresponding closed-loop system can be verified by
Lemma 3. Furthermore, the evolution of xT(t)Rx(t) of the closed-loop system is illus-
trated in Figure 4. It demonstrates that if xT(0)Rx(0) < 10, the value of xT(t)Rx(t) < 20,
∀t ∈ [0, 10], moreover, xT(t)Rx(t) < 4, ∀t ∈ [4, 10] for the closed-loop system. In addi-
tion, the calculated γ = 2.4437 satisfies the relationship shown in (7). By Definition 4,
it can be concluded that the closed-loop system is H∞ finite-time contractively bounded
w.r.t.(10, 20, 4, I, 0.1001, 4, 10).

0 2 4 6 8 10
0

5

10

15

20

25

Time

x
 T

(t
)R

x
(t

)

 

 

φ1

φ2

φ3

x
T(t)Rx(t)

4

Figure 4. Evolution of xT(t)Rx(t) of the corresponding closed-loop system.

4.2. Example 2

In this subsection, we consider the population control problem of the number of pests
between two groups in an area to verify the effectiveness of the proposed method. It is
described by the following Lotka–Volterra population model [31].

ẋ(t) =
[
−0.5905 0.505

0.505 −0.39

]
x(t) +

[
0.105 0.025

0.3 0.505

]
u(t) +

[
0.205
0.11

]
ω(t),

z(t) =
[

0.1105
0.11

]
x(t) +

[
0.11
0.11

]
u(t),

(34)

where x(t) = [x1, x2]
T, x1, x2 represent the population density of corresponding groups,

ω(t) is regarded as the measure of the number of the pests from other areas and a set of
appropriate system matrices is given.

For simulation purpose, the following disturbance input ω(t) is chosen, and the
illustration of it is shown in Figure 5.

ω(t) = e−t| cos(2t)|. (35)
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Figure 5. Disturbance ω(t).

Let x(0) =
[
1.8 1.9

]
, R = I, φ1 = 8, φ2 = 10, φ3 = 2, ts = 3, Te = 6. Furthermore,

according to Assumption 1, for ω(t) = e−t| cos(2t)|, an appropriate value of $ = 0.3001 >∫ 6
0 ωT(t)ω(t)dt is chosen. Figure 6 presents the evolution of xT(t)Rx(t) of system (34).

0 1 2 3 4 5 6
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x
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(t
)R

x
(t
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φ2

φ3

x
T(t)Rx(t)

2

8

Figure 6. Illustration of xT(t)Rx(t) of system (34).

It can be found that there does not exist xT(t)Rx(t) < 2, for t ∈ [3 6]. Hence, according
to Definition 2, it obviously illustrates that system (34) is not finite-time contractively
bounded w.r.t (8, 10, 2, I, 0.3001, 3, 6). Furthermore, it indicates that the population of pests
in the area increases sustainedly during the fixed time interval without any governance
measurement. Our goal is to decrease the population of pests in this area into a lower
enough range during a fixed time interval with the existence of the disturbance input
ω(t). Here, this goal is viewed as a H∞ finite-time contractively bounded control issue
for system (34). Finite-time contractively bounded control is considered to guarantee the
positivity and H∞ FTCB of the corresponding closed-loop system.

Running Algorithm 1 to solve Problem 1, it can be found that the Problem 1 is feasible
only if the value of α is taken from the range [0.4621 0.9846]. Then, when α = 0.5, a
corresponding feasible solution is shown as below.



Mathematics 2022, 10, 1997 11 of 13

M =

[
0.9744 0

0 0.9742

]
, P =

[
1.0262 0

0 1.0265

]
,

W =

[
−2.0080 1.1820
1.1820 −2.0147

]
, η = 1.0581, γ = 0.5548.

Furthermore, the controller gain K can be resolved as

K = WM−1 =

[
−2.0606 1.2134
1.2130 −2.0682

]
.

Moreover, it can be attained that A + BK =

[
−0.7765 0.5807
0.4994 −1.0704

]
∈ M. Also, we

can verify that D + EK = [0.0173 0.0160] � 0. Hence, it can be concluded that the
corresponding closed-loop system is positive by Lemma 3. Moreover, trajectories of x1(t)
and x2(t) in Figure 7 illustrate the evolution of the number of the pests in this area in the
time interval [0 6]. It indicates that the number of pests sustainably decreases through
control measures, which corresponds to the desired goal above. The plot of xT(t)Rx(t) of
the closed-loop system is given in Figure 8.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Time

x
(t

)

 

 
x1(t)

x2(t)

Figure 7. Illustration of system state x(t).
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Figure 8. Evolution of xT(t)Rx(t) of the closed-loop system.
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As shown in Figure 8, for xT(0)Rx(0) = 6.85 < 8, the value of xT(t)Rx(t) < 10, for
∀t ∈ [0 6], moreover, xT(t)Rx(t) < 2, for ∀t ∈ [3 6]. In addition, we can also verify that
(7) is satisfied for the obtained γ = 0.5548 in this case. Hence, according to Definition 4, it
can be concluded that the closed-loop system is H∞ finite-time contractively bounded w.r.t
(8, 10, 2, I, 0.3001, 3, 6) under the H∞ performance index γ = 0.5548.

5. Conclusions

The finite-time contractively bounded control issue for PLSs under H∞ performance
have been investigated in this paper. The definition of H∞ FTCB has been extended to
positive systems. Finite-time contractively bounded control has been considered to finite-
time contractively stabilize the PLSs under H∞ performance. The variable substitution
method has been adopted to design the state feedback finite-time contractively bounded
controller. The corresponding sufficient condition for the existence of such controllers
has been derived in the form of matrix inequalities through the use of the Lyapunov
function approach. Furthermore, the cone complementary linearization method has been
used to solve the control gain and a corresponding algorithm has been designed. Finally,
simulation results of the studied numerical example and the application example about pest
management suggested the effectiveness of the finite-time contractively bounded control.
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