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Abstract: In this paper, the attitude-orbit coupled control problem for multi-spacecraft formation with
limited communication capability and actuator failure is investigated. For the purpose of solving this
problem, an event-triggered attitude-orbit coupled fault-tolerant control strategy is proposed. First,
an integrated nonlinear dynamic model including the coupling characteristics of the attitude and
orbit is established based on the Kane equation. Second, the nonlinear dynamic model is linearized at
the reference state to facilitate the controller design. Third, a dynamic event-triggered mechanism is
designed and an event-triggered fault-tolerant control law is developed. The stability of closed-loop
control systems can be ensured under the designed control law and a sufficient condition that Zeno’s
behavior can be avoided is presented. Finally, simulation results are given to show the effectiveness
of the proposed control method.

Keywords: attitude-orbit control; fault-tolerant control; spacecraft formation; dynamic event-triggered
mechanism; actuator failure
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1. Introduction

When a serious failure of the actuator occurs in a spacecraft’s attitude and orbit control
systems, the spacecraft will lose control, which may lead to the task not being able to be
completed. To continue to complete the established on-orbit tasks or implement on-orbit
maintenance, it is required that another spacecraft and the failed spacecraft form a stable
formation configuration to achieve stable control of relative attitude and orbit to ensure
measurement, communication, and on-orbit maintenance. To ensure the on-orbit reliability,
reconfigure ability, and maintainability of the satellite formation, formation control has
drawn more and more attention from engineers, experts, and scholars of actuator failure.

Gao et al. investigated the leader-following attitude-consensus problem for a class of
nonlinear multi-spacecraft formation flying systems with actuator failure and saturation.
Based on a directed communication topology rooted in the lead spacecraft, a new fault
estimation and fault-tolerant control scheme wee proposed, which can ensure the attitude
synchronization [1]. Zou et al. studied the robust attitude-cooperative control of a spacecraft
formation flying with actuator failure and proposed a distributed adaptive fault-tolerant
attitude cooperative control law, which did not require online fault identification and
could ensure that a group of spacecrafts simultaneously track the same time-varying
reference attitude [2]. In reference [3], a reconfigurable fault-tolerant control method
for spacecraft formation based on an iterative learning algorithm was proposed, which
achieved the accurate maintenance of the spacecraft formation configuration in the case
of space disturbance and thruster failure. Zhang et al. designed a fast, non-singular
terminal sliding-mode finite-time fault-tolerant controller for a spacecraft formation with
some actuators that completely failed and realized the synchronous tracking control of
the spacecraft formation attitude [4]. Li et al. proposed a centralized adaptive fuzzy
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approximation design to solve the multi-satellite attitude-synchronization control problem
in the case of actuator failure through a non-singular fast terminal sliding mode controller
and information topology [5]. Reference [6] researched the problem of anti-jamming
and fault-tolerant control for a double-satellite formation configuration and designed an
observer-based anti-jamming and fault-tolerant linear quadratic regulator-control strategy
to achieve a high-precision and stable orbit of a double-satellite formation in the case of
actuator failure.

Although many related results have been reported in the literature, most of them have
been carried out on the orbit control and attitude control of a spacecraft formation indepen-
dently, and there are few types of research on attitude-orbit coupling control in the case of
the simultaneous failure of the attitude and orbital actuators. According to the constraints
of spacecraft rendezvous and docking, unknown actuator faults, and unknown external
disturbances, Sun proposed a relative pose adaptive fault-tolerant control method based on
nonlinear feedback technology, with which the attitude-orbit coupling control of the space-
craft formation was realized [7]. Gui et al. proposed a new hybrid dual-quaternion integral
sliding-mode control method, which solved the problem of simultaneous position and
attitude tracking under the condition of actuator failures, and mass and inertia uncertainty.
Then, the effectiveness of the method was verified through simulations [8]. In recent years,
many scholars have carried out research on the attitude-orbit coupling control of spacecraft
formations without considering actuator failure. Wang et al. proposed a state-feedback
tracking-control law for relative position and attitude, which realized the attitude- and orbit-
coordinated control of rigid microsatellite formations [9,10]. Successively, many scholars
have proposed different control methods, such as the sliding-mode control method based
on the master–slave control strategy [11–13], robust-control method based on a virtual
structure [14,15], non-linear robust-control methods [16], and behavior-based finite-time
control methods [17–19]. In recent years, dual quaternions have been widely used in the
modeling of spacecraft formation dynamics [20]. At the same time, some scholars have
adopted other modeling methods in view of the attitude-orbit coupling cooperative-control
characteristics of multi-spacecraft formations. Huang et al. [21,22] established a generalized
6DOF dynamic model of non-contact internal forces using Kane equations and studied the
relative balance of the electromagnetic formation of three spacecrafts.

Recently, with the rapid development in communication technology, networked con-
trol systems have been widely applied to spacecraft control systems. It should be pointed
out that the traditional time-driven control strategy usually selects a smaller control period
in order to ensure control performance under extreme conditions. However, a smaller
control period will lead to a faster communication frequency, and a large amount of data
is transmitted through the network. This will cause network congestion and some other
unexpected phenomena, such as data transmission delay and packet loss. This leads to new
parameter uncertainties and system performance will degrade. The event-triggered control
scheme is an effective method that can reduce the communication rate and guarantee the
performance of control systems simultaneously. Thus, based on the event-triggered control
approach, networked control systems have been widely applied to spacecraft control sys-
tems. Combined with event triggering, research on the optimal control, adaptive control
and other methods have been carried out [23,24]. Some of them have applied related
methods to spacecraft attitude and orbit control systems [25–29], and demonstrated the
effectiveness of the proposed control algorithm through theoretical analysis and simulation.
However, most studies only consider the attitude control system or the orbit control system
separately. There are relatively few studies on the attitude-orbit coupled 6DOF control
system. Based on the above description, it is clear that the problem of event-triggered
control for orbit-attitude coupling control systems has not been fully addressed, which
motivated this study.

In this paper, the problem of attitude-orbit coupled control for multi-spacecraft forma-
tion with a limited communication capability and actuator failure are taken into account.
An event-triggered attitude-orbit coupled fault-tolerant control strategy is proposed to
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solve this problem. First, an integrated nonlinear dynamic model including the coupling
characteristics of the attitude and the orbit is established based on the Kane equation.
Second, the nonlinear dynamic model is linearized at the reference state to facilitate the
controller design. In order to reduce the communication rate, the dynamic event-triggered
mechanism is introduced. Finally, an event-triggered fault-tolerant control law is devel-
oped to overcome the influence of actuator failure and the event-triggered mechanism. The
stability of closed-loop control systems is analyzed. A sufficient condition that guarantees
that Zeno’s behavior can be avoided is given. Simulation results are given to show the
effectiveness of the proposed method. The advantages of the proposed method in this
paper are twofold:

(1) In [16] and [22], the attitude controller and orbit controller were designed, respec-
tively; while, in this paper, the integrated attitude and orbit controller are given since the
motion of attitude and orbit is coupling. Thus, the proposed controller will have a better
performance than the results of [16] and [22].

(2) In [25] and [28], the event-triggered mechanism is static, while in this paper,
a dynamic event-triggered mechanism is proposed. Since some external variables are
introduced in our dynamic event-triggered mechanism, the proposed dynamic event-
triggered mechanism can be adaptively adjusted.

2. Attitude-Orbit Coupling Dynamics Modeling of Multi-Spacecraft Formations
2.1. Coordinate-System Definition

Define a formation system consisting of two controllable spacecrafts and one uncon-
trollable spacecraft, as shown in Figure 1. Of is the mass center of the formation; ρ1 and
ρ2 are the vector radii from Of to the mass center of the controllable spacecraft 1 and 2,
respectively; ρ3 is the vector radii from Of to the center of mass of the uncontrollable
spacecraft; mi is the mass of satellite i.

Mathematics 2022, 10, 1984 3 of 21 
 

 

In this paper, the problem of attitude-orbit coupled control for multi-spacecraft 

formation with a limited communication capability and actuator failure are taken into 

account. An event-triggered attitude-orbit coupled fault-tolerant control strategy is 

proposed to solve this problem. First, an integrated nonlinear dynamic model including 

the coupling characteristics of the attitude and the orbit is established based on the Kane 

equation. Second, the nonlinear dynamic model is linearized at the reference state to 

facilitate the controller design. In order to reduce the communication rate, the dynamic 

event-triggered mechanism is introduced. Finally, an event-triggered fault-tolerant 

control law is developed to overcome the influence of actuator failure and the event-

triggered mechanism. The stability of closed-loop control systems is analyzed. A sufficient 

condition that guarantees that Zeno’s behavior can be avoided is given. Simulation results 

are given to show the effectiveness of the proposed method. The advantages of the 

proposed method in this paper are twofold: 

(1) In [16] and [22], the attitude controller and orbit controller were designed, 

respectively; while, in this paper, the integrated attitude and orbit controller are given 

since the motion of attitude and orbit is coupling. Thus, the proposed controller will have 

a better performance than the results of [16] and [22]. 

(2) In [25] and [28], the event-triggered mechanism is static, while in this paper, a 

dynamic event-triggered mechanism is proposed. Since some external variables are 

introduced in our dynamic event-triggered mechanism, the proposed dynamic event-

triggered mechanism can be adaptively adjusted. 

2. Attitude-Orbit Coupling Dynamics Modeling of Multi-Spacecraft Formations 

2.1. Coordinate-System Definition 

Define a formation system consisting of two controllable spacecrafts and one 

uncontrollable spacecraft, as shown in Figure 1. Of is the mass center of the formation; ρ1 

and ρ2 are the vector radii from Of to the mass center of the controllable spacecraft 1 and 

2, respectively; ρ3 is the vector radii from Of to the center of mass of the uncontrollable 

spacecraft; mi is the mass of satellite i. 

Ix

Iy

Iz

Earth

Controllable 

spacecraft 1Uncontrollable 

spacecraft

IO

f
r

f
O

 

1b
O

2b
z

2b
x

2b
y

2
ρ3

ρ

1
ρ

2b
O

3b
O

1b
x

1b
y

1b
z

3b
x

3b
y

3b
z f

x

f
y

f
z

BxBy

Bz

1
r

3
r

2
r



Controllable 

spacecraft 2

 

Figure 1. Formation system and reference coordinate system. 
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Figure 1. Formation system and reference coordinate system.

To facilitate the control-system design, the following coordinate systems are introduced:

(1) Inertial coordinate system I: OI is the mass center of the earth, the xI axis points to
the equinox, the zI axis points to the north celestial pole, and the yI axis satisfies the
right-hand rule.

(2) Orbital coordinate system H: Of is the mass center of the formation, the xf axis is along
the radial vector direction of the formation center of mass in the coordinate system I,
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the yf axis points to the motion direction in the orbital plane, and the zf axis points to
the normal direction of the orbital plane, which satisfies the right-hand rule.

(3) Formation fixed coordinate system B: Of is set as the origin, and the xB axis points
from the Of to the mass center of spacecraft 1 Ob1. The yB is in the plane defined by
the mass centers of three spacecrafts and perpendicular to the xB axis. The zB axis is
perpendicular to the plane determined by the mass centers of the three spacecrafts
and satisfies the right-hand rule. The coordinate system B is obtained by rotating the
coordinate system H by the ϕ, θ, and ψ angles in the order of 2-3-1.

(4) Satellite body coordinate system Bi: Obi is the mass center of spacecraft i. Three
coordinate axes are fixed to the spacecraft, and each axis is along the main axis of
the inertia of the spacecraft. The coordinate system Bi is obtained by rotating the
coordinate system B by the angles αi, βi, and γi in the order of 3-2-1.

2.2. System Dynamics Model

Assuming that the mass of the uncontrollable spacecraft is known while the inertia is
unknown, sensors such as high-precision gyroscopes are working normally and the relative
position (orbit/attitude) can be measured. However, the actuators are completely disabled
and cannot generate the control force/torque. At the same time, controllable spacecraft 1,
controllable spacecraft 2 and the uncontrollable spacecraft form a tight triangular formation
(the distance between them is tens of meters). The mass center of the formation system
runs in an approximately circular orbit, where the orbit radius is rf. Here, ρ1, ρ2 and Ω are
used to characterize the formation configuration. For the formation system, the system
centroid satisfies ∑3

i=1 miρi = 0. As ρ1 and ρ2 are given, ρ3 can be determined as follows:
ρ1 = ρ1xB
ρ2 = ρ2 cos ΩxB − ρ2 sin ΩyB
ρ3 = (−m1ρ1/m3 −m2ρ2 cos Ω/m3)xB + m2ρ2 sin ΩyB/m3

(1)

The generalized coordinate q that defines the relationship between the formation
configuration and the attitude can be expressed as:

q =
[

q1 q2 q3 q4 q5 q6 q7,10,13 q8,11,14 q9,12,15
]T

=
[

ρ1 ρ2 φ ϕ θ ψ α1,2,3 β1,2,3 γ1,2,3
]T (2)

Here, ϕ, θ, and ψ are the orientations of the formation relative to the orbital coordinate
system H. In addition, αi, βi, and γi are the relative attitudes between the spacecrafts.

As the formation system runs in a circular orbit, the angular velocity of the coordinate

system H relative to the coordinate system I is ωH,I = nz f , n =
√

µ/r3
cm.

The angular velocity of coordinate system B relative to coordinate system H, in coordi-
nate system B, can be expressed as:

ωB,H =
.

ϕ+
.
θ+

.
ψ =


.
ψ +

.
ϕ sin θ

.
θ sin ψ +

.
ϕ cos θ cos ψ

.
θ cos ψ− .

ϕ cos θ sin ψ

 (3)

It can be known from the angular velocity superposition theorem that the angular
velocity of coordinate system B relative to coordinate system I can be expressed as the
sum of the angular velocity of coordinate system B relative to coordinate system H and
the angular velocity of coordinate system H relative to coordinate system I, which can be
written as:

ωB,I = ωB,H + CB,H ·ωH,I (4)
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Similarly, the angular velocity of coordinate system Bi relative to coordinate system B
can be written in coordinate system B as:

ωBi ,B =
.
γi +

.
βi +

.
αi =


.
βi sin αi −

.
γi cos αi cos βi

−
.
βi cos αi −

.
γi sin αi cos βi

− .
αi +

.
γi sin βi

 (5)

Thus, the angular velocity of spacecraft i in the inertial system can be expressed as:

ωi = ωBi ,I = ωBi ,B + ωB,I (6)

Based on the definition of angular velocity, the time derivative of the relative radius ρi
of each spacecraft with respect to the inertial coordinate system can be calculated as

vi =
Idρi
dt

=
Bdρi

dt
+ ωB,I × ρi (7)

The generalized rate η can be expressed as

η =
[

η1 η2 η3 η4 η5 η6 η7,10,13 η8,11,14 η9,12,15
]T

=
[

.
ρ1

.
ρ2

.
φ ωB,I

x ωB,I
y ωB,I

z ω
B1,2,3,B
x ω

B1,2,3,B
y ω

B1,2,3,B
z

]T (8)

As Ci = cos qi, Si = sin qi, and Ti = tan qi, the η can be reshaped as

η1
η2
η3
η4
η5
η6
η7
η8
η9
η10
η11
η12
η13
η14
η15



=



.
q1.
q2.
q3.

q6 +
.
q4S5 − nS4C5.

q5S6 +
.
q4C5C6 + n(C4S6 + S4S5C6).

q5C6 −
.
q4C5S6 + n(C4C6 − S4S5S6).

q8S7 −
.
q9C7C8

− .
q8C7 −

.
q9S7C8

− .
q7 +

.
q9S8.

q11S10 −
.
q12C10C11

− .
q11C10 −

.
q12S10C11

− .
q10 +

.
q12S11.

q14S13 −
.
q15C13C14

− .
q14C13 −

.
q15S13C14

− .
q13 +

.
q15S14



(9)

The velocity vi and angular velocity ωi of each spacecraft are expressed in the
form of q and η, and by calculating the partial derivatives of vi and ωi with respect
to ηr(r = 1, · · · , 15), the partial derivatives of the velocity and angular velocity (vi

r and ωi
r)

of spacecraft i can be obtained, respectively.
The generalized inertial force F∗r and the generalized active force Fr can be calculated

as follows: 
F∗r =

3
∑

i=1
−miai · vi

r +
2
∑

i=1
−
(
Ji

.
ωi + ωi × Jiωi

)
·ωi

r

Fr =
3
∑

i=1
Ri · vi

r +
2
∑

i=1
Ti ·ωi

r

(10)

Here, ai is the acceleration of spacecraft i relative to the inertial coordinate system,
and Ji is the rotational inertia of spacecraft i. Ri and Ti are the resultant external force and
moment relative to the mass center of spacecraft i.
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Considering the main inertia assumption, that is, the rotational inertia of each space-
craft satisfies Ji = Ji·E, E is the unit matrix. Therefore, the generalized inertial force can be
expressed as:

F∗1 = m1(a3x − a1x)
F∗2 = m2C3(a3x − a2x)−m2S3

(
a3y − a2y

)
F∗3 = −m2q2C3

(
a3y − a2y

)
−m2q2S3(a3x − a2x)

F∗4 = −m2q2S3(a3z − a2z)−
(
T∗1x + T∗2x + T∗3x

)
F∗5 = −m1q1(a3z − a1z)−m2q2C3(a3z − a2z)−

(
M∗1y + M∗2y + M∗3y

)
F∗6 = m1q1

(
a3y − a1y

)
+ m2q2C3

(
a3y − a2y

)
+ m2q2S3(a3x − a2x)−

(
T∗1z + T∗2z + T∗3z

)
F∗7 = −T∗1x, F∗8 = −T∗1y, F∗9 = −T∗1z, F∗10 = −T∗2x, F∗11 = −T∗2y, F∗12 = −T∗2z
F∗13 = −T∗3x, F∗14 = −T∗3y, F∗15 = −T∗3z

(11)

Here,

a1 =

 .
η1 − q1η2

5 − q1η2
6

q1
.
η6 + 2η1η6 + q1η4η5

−q1
.
η5 − 2η1η5 + q1η4η6



a2 =

2η6(η2S3 + q2η3C3)− q2η5(η5C3 + η4S3) +
.
η2C3 + q2S3

( .
η6 −

.
η3
)
− 2η2η3S3 − q2C3

(
η2

3 + η2
6
)

2η6(η2C3 − q2η3S3) + q2η4(η5C3 + η4S3)−
.
η2S3 + q2C3

( .
η6 −

.
η3
)
− 2η2η3C3 + q2S3

(
η2

3 + η2
6
)

−2η5(η2C3 − q2η3S3)− 2η4(η2S3 + q2η3C3)− q2
( .
η5C3 +

.
η4S3

)
+ q2η6(η4C3 − η5S3)


a3 = −m1

m3
a1 −

m2

m3
a2

T∗1 = −J1

 .
η4 +

.
η7.

η5 +
.
η8.

η6 +
.
η9

, T∗2 = −J2

 .
η4 +

.
η10.

η5 +
.
η11.

η6 +
.
η12

, T∗3 = −J3

 .
η4 +

.
η13.

η5 +
.
η14.

η6 +
.
η15


Since spacecraft 1 and 2 are affected by the control force/torque, the actuator-failure

spacecraft is not affected by other external forces except the gravitational force. Therefore,
the generalized active force can be expressed as:

F1 = Fg
1x + Fu

1x −m1/m3Fg
3x

F2 = C3

(
Fg

2x + Fu
2x

)
− C3m2/m3Fg

3x − S3

(
Fg

2y + Fu
2y

)
+ S3m2/m3Fg

3y

F3 = q2C3m2/m3Fg
3y − q2C3

(
Fg

2y + Fu
2y

)
− q2S3

(
Fg

2x − Fu
2x

)
+ q2S3m2/m3Fg

3x

F4 = −q2S3

(
Fg

2z + Fu
2z

)
+ q2S3m2/m3Fg

3z +
(
τu

1x + τu
2x
)

F5 = −q1

(
Fg

1z + Fu
1z

)
+ q1m1/m3Fg

3z − q2C3

(
Fg

2z + Fu
2z

)
+ q2C3m2/m3Fg

3z +
(

τu
1y + τu

2y

)
F6 = q1

(
Fg

1y + Fu
1y

)
− q1m1/m3Fg

3y + q2C3

(
Fg

2y + Fu
2y

)
− q2C3m2/m3Fg

3y

+q2S3

(
Fg

2x + Fu
2x

)
− q2S3m2/m3Fg

3x +
(
τu

1z + τu
2z
)

F7 = τu
1x + τd

1x, F8 = τu
1y + τd

1y, F9 = τu
1z + τd

1z, F10 = τu
2x + τd

2x, F11 = τu
2y + τd

2y, F12 = τu
2z + τd

2z
F13 = τd

3x, F14 = τd
3y, F15 = τd

3z

(12)

Here, Fg
i is the gravitational force, Fu

i is the control force, Fd
i is the disturbance force, τu

i

is the control torque, τd
i is disturbance torque, and Fg

i = −µmiri/r3
i = −µmi

(
r f + ρi

)
/r3

i .
Based on the Kane equation, the multi-spacecraft formation dynamics equation can be

expressed as follows:

F∗r + Fr = 0 (r = 1, · · · , 15) (13)

The derivatives of generalized coordinates and generalized rates with respect to time
are derived from Equations (9) and (13), as follows:
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.
q1 = η1,

.
q2 = η2,

.
q3 = η3.

q4 = (C6η5 − S6η6)/C5 − nS4T5,
.
q5 = S6η5 + C6η6 − nc4,

.
q6 = η4 − (C6η5 − S6η6)T5 + nS4/C5.

q7 = −(C7η7 + S7η8)T8 − η9,
.
q8 = S7η7 − C7η8,

.
q9 = −(C7η7 + S7η8)/C8.

q10 = −(C10η10 + S10η11)T11 − η12,
.
q11 = S10η10 − C10η11,

.
q12 = −(C10η10 + S10η11)/C11.

q13 = −(C13η13 + S13η14)T14 − η15,
.
q14 = S13η13 − C13η14,

.
q15 = −(C13η13 + S13η14)/C14

(14)



.
η1 = q1

(
η2

5 + η2
6
)
+

(
f1x − 1

M

3
∑

i=1
mi fix

)
.
η2 = q2(η3 − η6)

2 + q2(η4S3 + η5C3)
2 + C3

(
f2x − 1

M

3
∑

i=1
mi fix

)
− S3

(
f2y − 1

M

3
∑

i=1
mi fiy

)
.
η3 = (η4S3 + η5C3)(η4C3 − η5S3)− η4η5 +

2η2(η6−η3)
q2

− 2η1η6
q1

+ 1
q1

(
f1y − 1

M

3
∑

i=1
mi fiy

)
− 1

q2

[
S3

(
f2x − 1

M

3
∑

i=1
mi fix

)
+ C3

(
f2y − 1

M

3
∑

i=1
mi fiy

)]
.
η4 = 2 C3

S3
η5

(
η1
q1
− η2

q2

)
+ 2η5η3 − 2η4η2

q2
− 2η4η3C3

S3
− η6η5

− 1
q2S3

(
f2z − 1

M

3
∑

i=1
mi fiz

)
+ C3

q1S3

(
f1z − 1

M

3
∑

i=1
mi fiz

)
.
η5 = − 1

q1

(
2η1η5 − q1η4η6 + f1z − 1

M

3
∑

i=1
mi fiz

)
.
η6 = − 1

q1

(
2η1η6 + q1η4η5 − f1y +

1
M

3
∑

i=1
mi fiy

)
.
η7 =

(
τu

1x + τd
1x

)
/J1 −

.
η4,

.
η8 =

(
τu

1y + τd
1y

)
/J1 −

.
η5,

.
η9 =

(
τu

1z + τd
1z

)
/J1 −

.
η6

.
η10 =

(
τu

2x + τd
2x

)
/J2 −

.
η4,

.
η11 =

(
τu

2y + τd
2y

)
/J2 −

.
η5,

.
η12 =

(
τu

2z + τd
2z

)
/J2 −

.
η6

.
η13 = τd

3x/J3 −
.
η4,

.
η14 = τd

3y/J3 −
.
η5,

.
η15 = τd

3z/J3 −
.
η6

(15)

Here,
fi = fg

i + fu
i + fd

i , M = m1 + m2 + m3,

3

∑
i=1

mifi = −µrcm

(
m1

r3
1
+

m2

r3
2
+

m3

r3
3

)
− µ

(
m1

r3
1

ρ1 +
m2

r3
2

ρ2 +
m3

r3
3

ρ3

)
+ m1fu

1 + m2fu
2 + Fd

1 + Fd
2 + Fd

3

Equations (14) and (15) are the multi-spacecraft formation 6DOF coupled dynamics
model for the actuator-failure spacecraft. It can be seen from this model that, in addition to
the nonlinear terms brought by trigonometric functions, the dynamic model also reflects
the interaction between the attitude and orbit. Therefore, this model takes into account the
interaction between configuration changes and the relative attitude of the spacecraft. The
nonlinear dynamic equation (15) can be regarded as a function of generalized coordinates
q, generalized velocity η, and control variables uc.

In this paper, only spacecraft 1 and 2 are controllable. The control variables are
defined as uc =

[
Fu

1 Fu
2 τu

1 τu
2
]T, and the state variables are defined as g =

[
q η

]T
=[

q1 · · · q12 η1 · · · η12
]T. Here, q and η are the nominal states. This paper focuses

on solving the attitude-orbit coupling control problem of the formation system between
two controllable spacecraft and an uncontrollable spacecraft. Our objective is to design an
event-triggered attitude-orbit coupling controller to guarantee that the attitude and orbit
can reach nominal states under the limited communication bandwidth and actuator failures.

3. Event-Triggered Attitude-Orbit Coupling Control

Equation (15) is a nonlinear dynamic system, which is difficult to synthesize. Thus, to
facilitate the controller design, the nonlinear dynamic is linearized at operating points q, η
and uc, where uc is the nominal control variable to be designed later.
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Define the deviation of the nominal state as δq, δη, δuc. Considering the short-period
small disturbance assumption near the nominal state, variables can be expressed as

q = q + δq, η = η+ δη, uc = uc + δuc (16)

As a first-order Taylor expansion is performed at the nominal state, the state variable
can be expressed as

.
g(q, η, uc) =

[ .
q1 · · · .

q12
.
η1 · · · .

η12
]T

≈ g(q, η, uc) +
∂g
∂q

∣∣∣
(q, η, uc)

·δq + ∂g
∂η

∣∣∣
(q, η, uc)

·δη+ ∂g
∂uc

∣∣∣
(q, η, uc)

·δuc
(17)

After linearization, it can be expressed as

δ
.
g =

[
δ

.
q

δ
.
η

]
= A(q, η, uc)

[
δq
δη

]
+ B(q, η, uc)δuc (18)

Here, A(q, η, uc) is the state matrix, B(q, η, uc) is the input matrix, and the specific
forms are

A(q, η, uc) =



∂
.
q1

∂q1
· · · ∂

.
q1

∂q12

∂
.
q1

∂η1
· · · ∂

.
q1

∂η12
...

. . .
...

...
. . .

...
∂

.
q12

∂q1
· · · ∂

.
q12

∂q12

∂
.
q12

∂η1
· · · ∂

.
q12

∂u12
∂

.
η1

∂q1
· · · ∂

.
η1

∂q12

∂
.
η1

∂η1
· · · ∂

.
η1

∂η12
...

. . .
...

...
. . .

...
∂

.
η12

∂q1
· · · ∂

.
η12

∂q12

∂
.
η12

∂η1
· · · ∂

.
η12

∂η12



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (q, η, uc)

B(q, η, uc) =



∂
.
q1

∂uc1
· · · ∂

.
q1

∂uc12
...

. . .
...

∂
.
q12

∂uc1
· · · ∂

.
q12

∂uc12
∂

.
η1

∂uc1
· · · ∂

.
η1

∂uc12
...

. . .
...

∂
.
η12

∂uc1
· · · ∂

.
η12

∂uc12



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (q, η, uc)

To simplify the description, A is used to denote A(q, η, uc) and B is used to denote
B(q, η, uc). The state equation of (18) is rewritten as:

.
X = AX + Bu, X(0) = X0, t ≥ 0 (19)

Here, X is an n-dimensional state, u is a p-dimensional control input. A and B are
constant-valued matrices of n× n and n× p.

Considering the attitude-orbit coupling control system (19) of the multi-spacecraft
formation, when

.
q = 0 and

.
η = 0, the configuration and relative attitude of the formation

are stable. Multi-spacecraft attitude-orbit coupling control is composed of two parts:
nominal control and deviation control. In order to achieve the desired configuration
and relative attitude, it is assumed that the generalized coordinate nominal state is q.
Combining q,

.
q = 0 and Equation (9), the generalized rate nominal state η is further

obtained. Considering the nominal state q and η, with
.
η = 0 and Equation (15), the control

quantity uc can be obtained.
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When considering the actuator attenuation, the object model of the infinite time LQ
problem can be expressed as:{ .

X = AX + Bρu, X(0) = X0, t ∈ [0, ∞)
J(u) =

∫ ∞
0

(
XTQX + uTRu

)
dt

(20)

Here, ρ = diag{ρ1, ρ2, . . . , ρn} is an active factor of the actuator, satisfying 0 < ρ
i
≤

ρi ≤ ρi ≤ 1, where ρ
i

and ρi are constants; ρ = max{ρi}means the maximum value of ρi;

ρ = min
{

ρ
i

}
means the minimum value of ρ

i
, i = 1, 2, · · · , 6.

Normally, the optimal u(t) can be expressed as:

u(t) = KX(t), K = −R−1BTP (21)

Here, matrix P is the solution of the following matrix, the Riccati equation

PA + ATP + Q− ρPBR−1BTP = 0 (22)

Here, ρ = max{ρi}, i = 1, 2, · · · , n.
Since the calculation resources and communication bandwidth on orbit are limited, to

save the calculation resources and reduce the burden of communication of the network,
the event-trigger mechanism is introduced. However, the event trigger mechanism will
cause signal transmission errors. If the control policies and event trigger mechanisms are
designed independently, it may result in a decrease in control performance or even an
unstable system. Therefore, event-triggering mechanisms and control strategies need to
be jointly designed. In this section, the event-triggered control law and event-triggered
mechanism will be co-designed.

According to (21), the event-trigger control law based on the LQR method can be
rewritten as

u(t) = KX(tk), t ∈ [tk, tk+1) (23)

Here, X(tk) is the latest updated state vector. {tk}, k ∈ N is a non-periodic sampling se-
ries.

To adjust the event-triggered mechanism, the following dynamic event-triggered
mechanism is designed:

η(t) + β(σ
∣∣∣∣∣∣X(t)

∣∣∣∣∣∣2 − κ
∣∣∣∣∣∣E(t)∣∣∣∣∣∣2 + µe−λt) < 0 (24)

Here, E(t) = X(tk) − X(t), β > 0, σ > 0, κ > 0, µ > 0 and λ > 0 are positive
parameters. η(t) is a dynamic variable, which is defined as follows

.
η(t) = −αη(t) + (σ

∣∣∣∣∣∣X(t)
∣∣∣∣∣∣2 − κ

∣∣∣∣∣∣E(t)∣∣∣∣∣∣2 + µe−λt) (25)

Here, α > 0 is a positive parameter. The initial condition of η(t) is defined as
η(0) = η0 > 0.

Remark 1. Compared with the sampling control, the control period of the sampling control is fixed,
while the control period of the dynamic event-triggered control is variable.

Remark 2. Compared with the event-triggered control (etc.), the parameters of the event-triggered
mechanism are constants, while the parameters of the dynamic event-triggered mechanism can
be adaptively adjusted and thus may reduce the triggered times significantly. Moreover, it can
be known that when lim

t→∞
η(t) = 0 and lim

t→∞
µe−λt = 0, the dynamic event-triggered condition
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η(t) + β(σ
∣∣∣∣X(t)

∣∣∣∣2 − κ
∣∣∣∣E(t)∣∣∣∣2 + µe−λt) < 0 will reduce to the static event-triggered condition

σ||X(t)||2 − κ||E(t)||2 < 0 .

Lemma 1. Given positive parameters β, σ, κ, µ, λ, α and η0, then η(t) ≥ 0 and ∀t ∈ [tk, tk+1)
always hold.

Proof. Considering the dynamic event-triggered mechanism (24), it can be known that
∀t ∈ [tk, tk+1), η(t) + β(σ

∣∣∣∣X(t)
∣∣∣∣2 − κ

∣∣∣∣E(t)∣∣∣∣2 + µe−λt) ≥ 0 holds. Since β > 0, we have
β(σ

∣∣∣∣X(t)
∣∣∣∣2 − κ

∣∣∣∣E(t)∣∣∣∣2 + µe−λt) ≥ (−1/β)η(t) . From (28), it can be directly derived
that

.
η(t) ≥ −(α + 1/β)η(t), ∀t ∈ [tk, tk+1). By a comparison lemma, it can be con-

cluded that the solution of η(t) satisfies η(t) ≥ η̂(t), where η̂(t) is the solution of equation
.
η̂(t) = −(α + 1/β)η̂(t) with η̂(0) = η0. Since η̂(t) = η0e−(α+1/β)t > 0 and ∀t ∈ [tk, tk+1),
we have η(t) > 0 and ∀t ∈ [tk, tk+1). The proof is completed. �

According to (20) and (23), (19) can be rewritten as

.
X = AX + BρKX(t) + BρE(t) (26)

Theorem 1. Considering the attitude-orbit coupling control system (19) of a multi-spacecraft
formation, the controller is designed as shown in Equation (23), where the state feedback matrix is
obtained by Equation (22). The event-trigger condition is shown as in Equation (24). If there exists
positive parameters β, σ, κ, µ, λ, α, γ and matrices B, P and K, the following conditions hold

αβσ = σ + γ
∣∣∣∣PBBTP

∣∣∣∣
κ > γ−1ρ2∣∣∣∣KTK

∣∣∣∣
αβκ = κ − γ−1ρ2∣∣∣∣KTK

∣∣∣∣ (27)

Then the closed-loop control system is stable.

Proof. Consider the following Lyapunov function

V(t) = XT(t)PX(t) + η(t) (28)

Here, the P is the solution of Equation (22).
From (23), (25) and (26), one has

.
V(t) = XT(t)(ATP + PA)X(t)−XT(t)PBρR−1BTPX(t) + 2XT(t)PBρR−1

×BTPE(t)− αη(t) + (σ
∣∣∣∣X(t)

∣∣∣∣2 − κ
∣∣∣∣E(t)∣∣∣∣2 + µe−λt)

(29)

Since there exists a positive parameter γ, the following inequality holds

2XT(t)PBρKE(t) ≤ γ||PBBTP||
∣∣∣∣∣∣X(t)

∣∣∣∣∣∣2 + γ−1
∣∣∣∣∣∣KTρρK

∣∣∣∣∣∣∣∣∣∣∣∣E(t)∣∣∣∣∣∣2 (30)

Thus, the Equation (33) can be rewritten as

.
V(t) ≤ XT(t)(ATP + PA)X(t)−XT(t)PBρR−1BTPX(t)

+γ||PBBTP||||X(t)
∣∣∣∣2 + γ−1

∣∣∣∣KTρρK
∣∣∣∣∣∣∣∣E(t)∣∣∣∣2 − αη(t)

+(σ
∣∣∣∣X(t)

∣∣∣∣2 − κ
∣∣∣∣E(t)∣∣∣∣2 + µe−λt)

(31)

Since the following inequality always holds

XT(t)PBρR−1BTPX(t)− ρXT(t)PBR−1BTPX(t) ≤ 0 (32)
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according to (22), (31) and (32), one has

XT(t)(ATP + PA)X(t)−XT(t)PBρR−1BTPX(t) ≤ −XT(t)QX(t) (33)

Then, according to (22), (31) and (33), one has

.
V(t) ≤ −XT(t)(Q + PBρR−1BTP)X(t) + γ||PBBTP||||X(t)

∣∣∣∣∣∣2 + γ−1
∣∣∣∣∣∣KTρρK

∣∣∣∣∣∣∣∣∣∣∣∣E(t)∣∣∣∣∣∣2
−αη(t) + (σ

∣∣∣∣X(t)
∣∣∣∣2 − κ

∣∣∣∣E(t)∣∣∣∣2 + µe−λt)
(34)

Define Q1 = Q + PBρR−1BTP and ρ = min
{

ρ
i

}
, i = 1, 2, · · · , 6. According to (27)

and (34), one has

.
V(t)≤ −XT(t)Q1X(t)−α(η(t)− β (σ

∣∣∣∣X(t)
∣∣∣∣2 − κ

∣∣∣∣E(t)∣∣∣∣2 + µe−λt) ) (35)

According to Lemma 1, it can be known that ∀t ∈ [tk, tk+1),

α(η(t)− β (σ
∣∣∣∣X(t)

∣∣∣∣2 − κ
∣∣∣∣E(t)∣∣∣∣2 + µe−λt) ) > 0 (36)

Hence, it can be concluded that ∀t ∈ [tk, tk+1), for ||X(t)||6= 0 ,
.
V(t) < 0 holds, which

means that the closed-loop system is stable. This completes the proof. �

In the following, we will focus on proving that the designed event-triggered mecha-
nism has a nonzero upper bound, which shows that the Zeno behavior can be avoided.

Theorem 2. Considering the attitude-orbit coupling control system (19) with controller (23), all
conditions in Theorem 1 are assumed to be held. Then there exists a positive parameter Tk > 0, such
that tk+1 − tk ≥ Tk holds.

Proof. Considering the system (19) and the control law (26), according to the definition of
E(t), it can be derived that:

.
E(t) =

.
X(t) = AX(t) + BρKX(tk) (37)

Further, one has ∣∣∣∣∣∣ .
E(t)

∣∣∣∣∣∣=∣∣∣∣∣∣A + BρK
∣∣∣∣∣∣∣∣∣∣∣∣X(tk)

∣∣∣∣∣∣+∣∣∣∣∣∣A∣∣∣∣∣∣∣∣∣∣∣∣E(t)∣∣∣∣∣∣ (38)

As E(tk) = 0, the solution to Equation (37) can be expressed as:

||E(t)|| ≤ ||A + BρK||||X(tk)||
||A|| (e||A||(t−tk) − 1) (39)

In combination with the event-triggered condition (24), it can be derived that

1
βκ

√
η(t) + β(σ

∣∣∣∣X(t)
∣∣∣∣2 + µe−λt) ≤ ||A + BρK||||X(tk)||

||A|| (e||A||(t−tk) − 1) (40)

Thus, one has

t− tk ≥ Tk =
1
||A|| ln

(
1 +

ϑ1

ϑ2

)
> 0 (41)

Here, ϑ1 = 1
βκ

√
η(t) + β(σ

∣∣∣∣X(t)
∣∣∣∣2 + µe−λt) and ϑ2 = ||A+BρK||||X(tk)||

||A|| , which means
that the event-trigger mechanism designed in this paper can avoid the Zeno phenomena.
This completes the proof. �
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4. Simulations and Discussions

Aiming at a formation configuration composed of two controllable spacecrafts con-
sidering the control torque attenuation of actuators and one uncontrollable spacecraft
with actuator failure, simulations of the attitude-orbit coupling closed-loop control of the
multi-spacecraft formation, considering 6DOF relative attitude, were carried out.

Assume that the mass m1, m2 and the inertia I1, I2 of the controllable spacecraft 1 and
spacecraft 2 are 500 kg and 150 kg·m2. The mass m3 of the uncontrollable spacecraft 3 is
2800 kg and the inertia of the uncontrollable spacecraft 3 is unknown.

The desired configuration of the three spacecrafts is an isosceles triangle with the un-
controllable spacecraft as the vertex, and the relative positional relationship is determined
by Equation (1). It is expected that the configuration is symmetrically distributed about
the yf axis of the orbital system H. The relative attitude of each spacecraft is constant in the
formation-fixed coordinate system B. The coefficients of the nominal state are shown in
Tables 1–3.

Table 1. The relative position.

¯
ρ1

¯
ρ2

¯
φ

12 m 12 m 120◦

Table 2. The relative azimuth.

¯
ϕ

¯
θ

¯
ψ

0◦ 0◦ −30◦

Table 3. The relative attitude angle.

¯
α1

¯
β1

¯
γ1

¯
α2

¯
β2

¯
γ2

¯
α3

¯
β3

¯
γ3

0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

Initial bias and process noise were added to the simulation. The error of the relative
distance is (2.4 m, −2.4 m). The error of the relative distance change rate is (0.02 m/s,
−0.03 m/s). The error of the configuration angle and the angle change rate is (−5◦, 0.05◦/s).
The relative attitude-angle error of spacecraft 1 is (−6◦, −5◦, 3◦), and the error of the
attitude-angle change rate is (0.02◦/s, 0.03◦/s, −0.02◦/s). The relative attitude-angle error
of spacecraft 2 is (−4◦, 6◦, −3◦). The error of the attitude-angle change rate is (−0.02◦/s,
−0.04◦/s, 0.03◦/s). Since the general relative attitude is the attitude relative to the orbit
system, for the convenience of calculation, the relative azimuth/angle change rate is taken
as 0.

The process noise includes the influence of the external disturbance force and distur-
bance torque. Considering the periodic change in the orbital motion, the process noise was
designed as 

Fd
1 =

[
3 2 1.5

]
× 10−2 sin(nt) N

Fd
2 =

[
5 3 −1

]
× 10−2 sin(nt) N

Fd
3 =

[
4 −2 −3

]
× 10−2 sin(nt) N{

τd
1 =

[
2 −1 1

]
× 10−4 sin(nt) N ·m

τd
2 =

[
1 2 −1

]
× 10−4 sin(nt) N ·m

(42)

The Q, R were designed as follows:

Q = diag[100, 100, 100, 5, 5, 5, 100, 100, 100, 100, 100, 100, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
R = diag

[
10, 10, 10, 10, 10, 10, 102, 102, 102, 102, 102, 102] (43)
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ρi, i = 1, 2, · · · , 6 represents the actuator effective factor for the attitude and orbit
control. For the convenience of simulation, ρi = 0.85 + 0.05 sin(t) was set, so it can be
known that 0.8 ≤ ρi ≤ 0.9.

In order to reduce the communication frequency between the sensor and controller,
the event trigger mechanism was introduced, which was designed as ||e(t)||≤ 0.02||X(t)||.
The eigenvalue distribution of the open-loop system in the nominal state is shown in
the left figure in Figure 2. From this figure, it can be seen that the open-loop system is
unstable. After applying the event-triggered control law, the eigenvalue distribution of the
closed-loop system is shown in the right graph in Figure 2, from which it can be seen that
the closed-loop system is stable.
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The simulation results of the closed-loop system are shown in Figures 3–11. The
simulation results show that the relative position and the attitude of each spacecraft can be
quickly stabilized to the nominal state, so as to maintain the relative state of the six degrees
of freedom of attitude orbit coupling of three-spacecrafts formation. The tracking error is
small. Figures 3–5 demonstrate the curves of the relative distance, relative configuration
angle and azimuth angle. It is also seen that the relative distance, relative configuration
angle and the azimuth angle converge to a stable state at 100 s, 200 s and 300 s, respectively.
It should be emphasized that the change process of the spatial configuration can be seen
from Figure 6.
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From Figures 7 and 8, one can find the change in the relative attitude pointing of 
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synchronous control of attitude pointing while realizing orbit adjustment. From Figure 7, 

the relative attitude angle of spacecraft 1 can be seen and spacecraft 1 is in a stable state at 
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the sampling period in the project can be better than 0.064 s. Therefore, the minimum time 
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designed event-trigger mechanism is effective. It can not only avoid the Zeno 
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method. Further research will focus on more complicated cases, such as partial state 
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From Figures 7 and 8, one can find the change in the relative attitude pointing of
spacecraft 1 and 2 in the fixed-coordinate system of the formation system. The relative
attitude pointing of spacecraft 1 and 2 tends to be consistent, which can complete the
synchronous control of attitude pointing while realizing orbit adjustment. From Figure 7,
the relative attitude angle of spacecraft 1 can be seen and spacecraft 1 is in a stable state at
100 s.

It can be seen from Figure 9 that the trigger time interval of any two events is greater
than 0, of which the minimum value is 0.12 s and the maximum value is 18.12 s. At present,
the sampling period in the project can be better than 0.064 s. Therefore, the minimum
time interval of two event triggers is greater than the sampling period. This indicates
that the designed event-trigger mechanism is effective. It can not only avoid the Zeno
phenomenon, but also meet the requirements of practical engineering use. It can be seen
from Figures 10 and 11 that the control force required by spacecraft 1 and spacecraft 2
is less than 9 N. The required control torque is less than 0.1 Nm. Therefore, the actual
engineering capability can meet the demand.

5. Conclusions

In this paper, we have proposed an event-triggered attitude-orbit coupled control
approach to solve the problem of the attitude-orbit coupled control system of a multi-
spacecraft formation with limited communication capability and actuator failure. First, an
integrated nonlinear dynamic model including the coupling characteristics of attitude and
orbit is established based on the Kane equation. Second, the nonlinear dynamic model is
linearized at the reference state to facilitate the controller design. In order to reduce the
communication rate, the dynamic event-triggered mechanism was introduced. Finally, an
event-triggered fault tolerant control law is developed to overcome the influence of actuator
failure and the event-triggered mechanism. The stability of closed-loop control systems is
analyzed. A sufficient condition that guarantees that Zeno’s behavior can be avoided is
given. Simulation results were given to show the effectiveness of the proposed method.
Further research will focus on more complicated cases, such as partial state unmeasurable,
signal quantization, torque distribution and optimization, unknown disturbances, and
additive actuator faults, which were not addressed in this design work.
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