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Abstract: Hybridized algorithms are commonly employed to improve the performance of any existing
method. However, an optimal learning algorithm composed of evolutionary and swarm intelligence
can radically improve the quality of the final neuron states and has not received creative attention
yet. Considering this issue, this paper presents a novel metaheuristics algorithm combined with
several objectives—introduced as the Hybrid Election Algorithm (HEA)—with great results in solving
optimization and combinatorial problems over a binary search space. The core and underpinning
ideas of this proposed HEA are inspired by socio-political phenomena, consisting of creative and
powerful mechanisms to achieve the optimal result. A non-systematic logical structure can find a
better phenomenon in the study of logic programming. In this regard, a non-systematic structure
known as Random k Satisfiability (RANkSAT) with higher-order is hosted here to overcome the
interpretability and dissimilarity compared to a systematic, logical structure in a Discrete Hopfield
Neural Network (DHNN). The novelty of this study is to introduce a new multi-objective Hybrid
Election Algorithm that achieves the highest fitness value and can boost the storage capacity of DHNN
along with a diversified logical structure embedded with RANkSAT representation. To attain such
goals, the proposed algorithm tested four different types of algorithms, such as evolutionary types
(Genetic Algorithm (GA)), swarm intelligence types (Artificial Bee Colony algorithm), population-
based (traditional Election Algorithm (EA)) and the Exhaustive Search (ES) model. To check the
performance of the proposed HEA model, several performance metrics, such as training–testing,
energy, similarity analysis and statistical analysis, such as the Friedman test with convergence
analysis, have been examined and analyzed. Based on the experimental and statistical results, the
proposed HEA model outperformed all the mentioned four models in this research.

Keywords: hybridized algorithm; evolutionary algorithm; hybrid election algorithm; random k
satisfiability; election algorithm; Discrete Hopfield Neural Network

MSC: 68T20

1. Introduction

The term Artificial Neural Network (ANN) refers to generalizations of mathematical
models of the biological nervous system. Over the previous two decades, researchers
have enhanced the potentiality of ANNs, which added a new dimension to the study of
numerous scientific subjects. Dr Hopfield advanced the dynamics of ANN by proposing a
method for integrating feedback loop mechanisms, named the Hopfield Neural Network
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(HNN) [1]. With a recursive structure and graded response, this HNN, one of the earliest
types of neural networks, is akin to a dynamic system with two or more stable points of
equilibrium [2]. This HNN has variety and is potentially useful for health [3], behavioral
sciences [4], and energy [5]. However, the HNN not only always converges to an exact
pattern, which results in sub-optimal solutions but also suffers highly from its storage
capacity. In such a case, the introduction of logic programming can be a good counter.
Following this research, we explore the connections as a single symbolic instruction and its
nature into logical rule assemblies using HNN.

Satisfiability (SAT) representation is an important means of conveying logical rules
with mathematical information in AI through ANNs. In this context, a general query
arises—is the SAT necessary in a Discrete Hopfield Neural Network (DHNN)? To answer
this, SAT is designed to be readily attached as a symbolic instruction to represent the
output of DHNN. Abdullah invented the general concept of logic programming on DHNN
by computing the synaptic weights [6]. Later, a study [7] introduced new light to the
satisfiability study. This work proposed a higher-order Horn-Satisfiability (Horn-SAT)
programming, which focused on embedding Horn-clauses in a Radial Basis Function
Neural Network. Therefore, several researchers further extended the fundamentals of
Horn-SAT by proposing different systematic k Satisfiability (k-SAT), such as 2SAT and 3SAT.
The work by [8] transformed the constraint satisfaction problem into the 2SAT problem,
which is more effective in achieving a different number of solutions. Then, the work
by [9] introduced the systematic 3SAT logical expression with a well-known metaheuristics
Genetic Algorithm (GA). This work explored previous works to direct the search into
regions of better performance within the search space, thus, reducing the time and space
complexity. Maximum k Satisfiability (MAXkSAT), inspired by an expanded version of
Boolean SAT, began to gain favor in the ANN research field because it used false/negative
output in comparison to other SAT presentations [10]. Following that, [11] developed a
hybrid technique that uses an algorithm to optimize the 2SAT logical rule. This work has
risen to a new type of SAT study known as Maximum 2 Satisfiability (MAX2SAT). For
its nonredundant literals, the result of this MAX2SAT logical rule was also negative. The
proposed approach could display MAX2SAT behavior optimally during the DHNN testing
phase. However, there is no involvement of any process that can minimize the complexity
of the MAX2SAT model in the training phase. Subsequently, these studies investigated
only the systematic logical rule. The first attempt is to represent the symbolic output of the
HNN in terms of the non-systematic logical rule made by [12]. This research showed that
Random 2 Satisfiability (RAN2SAT) can be integrated into DHNN by minimizing a cost
function that corresponds to the network inconsistencies. Nonetheless, this work restricted
only k = 1, 2 in which no discussions were made on improvement strategy for k = 1, 2, 3 or
Horn Satisfiability. Another different type of non-systematic logical rule was sketched
by [13]. This study was a new variant of the 2 Satisfiability problems. This work revealed
that Major 2 Satisfiability (MAJ2SAT) is able to provide a new perspective in representing
some NP and probabilistic class problems. The non-systematic logic study was further
extended by [14], proposing a new dimension in the non-systematic Random k Satisfiability
(RANkSAT) study. This work showed the achievement of 100% accurate synaptic weights
by a higher order of RANkSAT (k = 3, 2) combination leads to 100% global minima solutions.
Though some researchers continue to focus on the usefulness of non-systematic logical
rules in DHNN, the notion has yet to be fully explored.

The effectiveness of a learning phase is a significant issue in DHNN. Ref. [15] revealed
the weakness of HNN as the number of neurons grows in terms of retrieval capacity. To
address this issue, a metaheuristic method was used to determine the best neuron state
that minimizes the cost function. Another significant work was proposed by [16], in which
the Hybrid Genetic Algorithm (GA) was incorporated with the training phase of HNN.
This hybrid model successfully obtained the best trade-off between solution quality and
computational time. Another study conducted by [17] demonstrated the Artificial Immune
System (AIS) in the training phase with the 3SAT logical rule. This investigation explained
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that AIS outperformed the Brute-Force algorithm in terms of the global minima ratio,
hamming distance and computational time. Ref. [18] successfully integrated the usage
of GA with HNN for solving combinatorial optimization problems. In their study, the
HNN was applied to GA to minimize each other’s shortcomings. The combination of
both methods reduces the possible local minima in solving various NP problems. Fur-
thermore, [19] introduced propositional satisfiability via a hybrid metaheuristic named
Hybrid Genetic Algorithm (HGA) in DHNN. This work explained that GA as a non-biased
algorithm can converge to a global solution compared to conventional learning models.
Finally, the authors [20] developed a hybrid HNN and integrated it with an Imperialist
Competitive Algorithm (ICA). This proposed hybrid method successfully found an optimal
solution in an acceptable computation time and managed to obtain a high-quality solution
with minimum cost. However, these metaheuristics focused exclusively on systematic
logical rules. Additionally, these metaheuristics lack a partition solution space for which
a more efficient solution is required to identify alternative neuron states to minimize the
cost function. Moreover, the mentioned metaheuristics have no specific balance with the
extrapolation and exploitation strategy.

Recently, social and political behaviours have also inspired the development of nu-
merous metaheuristic solvers. An election Algorithm (EA) is a form of an iterative social-
political algorithm that operates on populations of solutions via the ‘election’ procedure.
Ref. [21] addressed this Election Algorithm (EA) as a highly optimized metaheuristic for its
powerful solution search space, drawing the attention of many optimization researchers.
EA is a population-based iterative algorithm that works with solution groups. First, the
population will be divided into several parties based on their shared beliefs and views, the
best members of each party will be chosen as candidates, while the others will be voters
who support the candidate. Since EA suffers from a fundamental challenge; it always
becomes stuck at local optima due to the incapability of the operators. To overcome this
issue, later, the author [22] proposed the Chaotic Election Algorithm (CEA), which accel-
erates the convergence of the existing EA by introducing a migration operator. However,
these works also have no justification for several objectives to enhance the capacity of
these metaheuristics.

Research recently indicated that non-systematic logical rules can provide a flexible
structure and generate various interpretations that converge to global minimum solutions.
Pioneering work by [23] created a bridge between logic programming and a metaheuristic
named EA. This proposed method utilized EA with RAN2SAT logic programming that
created a lower error and higher retrieval capacity with glaring computational ability. The
work by [24] utilized higher-order RANkSAT (k = 1, 2, 3), which was implemented on EA
in the learning phase of DHNN to enhance the correct synaptic weight with minimal error
and resulted in high retrieval capacity. Notably, these works only focused on accuracy,
which means achieving the maximum fitness value of the EA model. The major lacking of
the previous studies is that they merely focused on a single objective function, which is
the highest fitness value, and there is no strategy in terms of the logical rule, which can
create a new diversity. Achieving only a fitness value or a single objective function policy
cannot discover the metaheuristics performances perfectly. Nevertheless, there have not
been any new metaheuristics that concentrate on multiple goals or multi-objective goals,
such as accuracy and diversity, that focused not only on exploration but also on exploita-
tion simultaneously in higher-order RANkSAT logical presentations. Notably, the optimal
solution to a multi-objective function is a better trade-off solution for several objectives
than the optimal solution to a single-objective function [25]. Furthermore, metaheuristics
with a multi-objective approach focus on two critical search processes: first, investigation
of the entire feasible space (exploration) and second, the examination of a local area of
the search space (exploitation) [26]. Excessive exploration strategies frequently decrease
the algorithm/metaheuristics performance [27]. It is imperative that unbalanced explo-
ration and exploitation assessment forwards to slow convergence that suffers from local
optima [28]. Hence, we proposed this novel Hybrid Election Algorithm (HEA) that employs
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a multi-objective concept where both fitness (accuracy) and diversity are put in the same
pair with higher-order RANkSAT (k = 3, 2) representation in DHNN. This strengthens our
proposed HEA model and strongly tunes the exploration and exploitation strategy in a
balanced manner.

Moreover, a method needs to be employed to achieve the trade-off between diversity
and accuracy (fitness value), which can scientifically improve the storage capacity of
DHNN and the global solutions of a model. For this reason, our proposed article promotes
fitness values addressed as accuracy and diversity in terms of the logical rule to develop
a distinct Hybrid Election Algorithm (HEA) identity. Furthermore, our proposed HEA
model introduces the notion of multi-objective functions, which adds another new light to
our research. The following are the novel contributions of our study:

1. To construct a randomly generated second-third order Random k Satisfiability logical
rule in the training phase that can optimize the correct synaptic weight and cost
function of the Discrete Hopfield Neural Network.

2. To create multi-objective functions that maximize the fitness, and employ k-Ideal
solution strings with a diversified logical rule to increase the storage capacity of the
Discrete Hopfield Neural Network.

3. To propose a new bipolar Hybrid Election Algorithm with an effective operator that
can balance the exploration and exploitation strategy in the training phase of the
Discrete Hopfield Neural Network.

4. To compare the compatibility of our proposed model with benchmark algorithms in
terms of the storage capacity, training error, testing error, the ratio of global solutions,
neuron variations and similarity analysis.

Our novel model will be tested in a series of computer simulations to see how effective
it is at reducing the cost function of the DHNN and arriving at useful end states. This
work is initially organized into three sections: an introduction (Section 1), an explanation
of the basic RANkSAT formulas (Section 2) and a discussion of DHNN (Section 3). The
Proposed Methods are explained in Sections 4 and 5. Experimental setup and performance
evaluation measures are further dissected in Sections 6 and 7. The last parts of the report
include the Results and Discussions (Section 8) and the Conclusion (Section 9). Here, a
summary of the related studies is given in Table 1 below.

Table 1. Summarizes of the related studies.

Author(s) Detail of the Studies Summary and Findings

Hopfield and Tank [1] Nonlinear analogue response of the neurons
and energy analysis in HNN.

The proposed work can solve various
combinatorial problems.

Wan Abdullah [6] The first work incorporates SAT with HNN.

The work capitalized on the structure of SAT and
the approach is able to yield connection strengths
(synaptic weight) between each neuron resulting

in an energy-minimizing dynamic network.

Sathasivam et al. [12] A non-systematic RAN2SAT was developed
to represent the symbolic output in HNN.

The work can locate maximum production of
global solutions, which indicates RAN2SAT is

successfully embedded in the operations
of HNN.

Karim et al. [14]
A higher-order non-systematic RANkSAT

representation was developed to present the
symbolic output in DHNN.

The work can attain a 100% global minima
solution that indicates RANkSAT is successfully
embedded in the operations of DHNN for the

higher order of k.

Kashumuddin et al. [15]
An integrated representation of

k-satisfiability (k-SAT) in a mutation Hopfield
neural network (MHNN).

The main purpose is to estimate other possible
neuron states that lead to global minimum

energy through available output measurements.
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Table 1. Cont.

Author(s) Detail of the Studies Summary and Findings

Mansor et al. [17] Artificial Immune System (AIS) integrated
with HNN to do 3SAT.

A new algorithm named AIS was proposed with
a few parameters and compared with

existing algorithms.

Emami and Derakhsan [21] Developed a new socio-politically inspired
algorithm named Election Algorithm (EA).

A comprehensive comparison was made with
several benchmarks problem. The performance
of EA is up to the level in terms of final solution

accuracy, convergence speed and robustness.

Sathasivam et al. [23]
This paper utilizes a bipolar EA incorporated

with the HNN in optimizing
RANkSAT representation.

The effect of Bipolar EA in enhancing the
learning processes of a Hopfield Neural Network

(HNN) to generate global solutions.

Bazuhair et al. [24] This study proposed higher-order random k
satisfiability for k ≤ 3 representation with EA.

The proposed RANkSAT representation
incorporated with EA in HNN is capable to
optimize the learning and retrieval phase as

compared to the traditional Exhaustive
search model.

2. Random k Satisfiability (RANkSAT)

One of the significant breakthroughs in the SAT study is Random k Satisfiability
(RANkSAT), which continues to be the preferred choice for ANN researchers due to its
independent clause composition [29]. RANkSAT is a non-systematic logical structure
that comprises a set of x literals as A1, A2, A3, . . . , Ax with a group of y clauses where
J(k)1 , J(k)2 , J(k)3 , . . . , J(k)y [30].

Generally, a collection of random instances B = eN over N Boolean variables forms
the RANkSAT clause. Every logical clause normally has exactly k variables that are linked
with the OR (∧) operator and are negated with a probability of 1

2 [31]. The literal values
are expressed in the bipolar form {1, −1}, which denotes either true or false. For k ≤ 3,
the probability proportion in the negative to positive form is 1:1, 2:1, or 1:2. Note that
RANkSAT can employ α3,1

RANkSAT, α3,2
RANkSAT and α3,2,1

RANkSAT where the formulation is shown
in the Equations (1)–(3):

α3,1
RANkSAT = ∧w

i=1 J(3)i ∧
u
i=1 J(1)i (1)

α3,2
RANkSAT = ∧w

i=1 J(3)i ∧
v
i=1 J(2)i (2)

α3,2,1
RANkSAT = ∧w

i=1 J(3)i ∧
v
i=1 J(2)i ∧

u
i=1 J(1)i (3)

where

J(k)i =


Gi , k = 1

(Hi ∨ Ii) , k = 2
(Mi ∨ Ni ∨Oi) , k = 3

(4)

whereby w, v and u are the total numbers of the third, second and first order of logic in
each clause in αk

RAN3SAT, respectively. From Equation (4), the literals (positive or negative)
are set at random.

Equations (5)–(7) show examples of α3,1
RANkSAT, α3,2

RANkSAT and α3,2,1
RANkSAT:

α3,1
RANkSAT = (¬M1 ∨ N1 ∨O1) ∧ (M2 ∨ N2 ∨ F2) ∧ G1 ∧ G2 (5)

α3,2
RANkSAT = (¬M1 ∨ N1 ∨O1) ∧ (H1 ∨ I1) ∧ (¬H2 ∨ I2) (6)

α3,2,1
RANkSAT = (¬M1 ∨ N1 ∨O1) ∧ (M2 ∨ N2 ∨O2) ∧ (H1 ∨ I1) ∧ ¬G1 (7)

from the equations above, the outcome of each logic is known by replacing the values of
{1, −1} (neuron states) with each literal. For example, α3,2

RANkSAT is said to be satisfiable
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when α3,2
RANkSAT = 1 that provides true values. On the other hand, α3,2

RANkSAT = −1 de-
notes unsatisfiable, which gives false values. In this paper, the RANkSAT complies only
k = 3, 2 since [14] showed that α3,2

RANkSAT structural combination provides a more consistent
interpretation. In the next section, we focus on how α3,2

RANkSAT logic can be represented
via DHNN.

3. Random k Satisfiability in Discrete Hopfield Neural Network (DHNN)

The Discrete Hopfield Neural Network (DHNN) is a type of ANN referred to as
a feedback network. In most cases, feedback refers to the output being sent back into
the network. DHNN used one of the most successful storage techniques, termed con-
tent addressable memory (CAM) processes with binary/bipolar threshold units that are
guaranteed local minimum convergence. DHNN is a network with no hidden layers and
comprises interconnected neurons where the neurons are updated asynchronously. Here,
we used the asynchronous neuron adaption of Theorem 1 to represent the DHNN units in
bipolar values (1, −1). Theorem 1 shows that DHNN operated asynchronously concerning
its condition.

Theorem 1. All networks described by (8) in randomized asynchronous mode will fall into a
network gap with a probability of one when starting at an initial state in search space [32].

Si =

 1, i f
n
∑
j

WabcSbSc ≥ Up

−1, otherwise
(8)

From (8), Wabc is the synaptic weight from unit a to c. Sb is the current state of the
unit b, and Up is the pre-defined threshold. Several studies [33,34] defined Up = 0 to
verify that the DHNN always lead to a decrease in energy monotonically. The synaptic
weight between neurons a and b corresponds to the intensity of connections between
two neurons. Likewise, the neuron connections are approached Wab as W(3)

abc =
[
W(3)

abc

]
n×n

with
[
Up
]

n×1 = [U1, U2, U3, . . . , Un]
T . The computation of the cost function Cαk

RAN3SAT
in

DHNN is significant to decrease the logical inconsistency of αk
RAN3SAT

(
Cαk

RAN3SAT
= 0

)
.

The design of Cαk
RAN3SAT

Equations (9) and (10) that adapts all forms of logic combinations

αk
RAN3SAT is as follows.

Cαk
RAN3SAT

=
1
8

w

∑
i=1

(
3

∏
j=1

Lij

)
+

1
4

v

∑
i=1

(
2

∏
j=1

Lij

)
+

1
2

u

∑
i=1

(
1

∏
j=1

Lij

)
(9)

Lij =

{ 1
2 (1− Si1), i f ¬i1
1
2 (1 + Si1), otherwise

(10)

where Si1 is the neuron state where i1 ∈ {1,−1}. The probability for consistent interpreta-
tion is expressed in (11).

P
(

Cαk
RAN3SAT

= 0
)
=

3

∏
i=1

(
1− 1

2i

)χ (J(k)i )

(11)

where χ(J(k)i ) is the number of J(k)i clauses. The fundamental goal of using αk
RAN3SAT

DHNN is to successfully minimize the cost function Cαk
RAN3SAT

, which aids in finding proper

synaptic weights and producing a good energy profile. Since αk
RAN3SAT has a zero-cost

function, it provides a satisfied interpretation (all clauses give truth value).
The local field of DHNN is given by (12). Si(t) is symbolized as the final state of

neurons, whereby W(3)
abc , W(2)

ab , W(1)
a are for third, second and first-order, respectively.
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The Hyperbolic Tangent Activation Function (HTAF) was used in the testing phase dy-
namics of DHNN to enable the convergence of final neuron states while avoiding neuron
oscillation [17]. The local field of our proposed model is formulated in (12) and (13) as
follows:

hp(t) =
n

∑
c=1,c 6=b

n

∑
b=1,b 6=c

W(3)
abc SbSc +

n

∑
b=1,b 6=a

W(2)
ab Sb + W(1)

b (12)

Si(t) =


1,

n

∑
c=1,c 6=b

n

∑
c=1,c 6=b

W(3)
abc SbSc +

n

∑
b=1,b 6= a

W(2)
ab Sb + W(1)

a ≥ 0

−1,
n

∑
c=1,c 6=b

n

∑
c=1,c 6=b

W(3)
abc ScSb +

n

∑
b=1,b 6=a

W(2)
ab Sb + W(1)

a < 0
(13)

Here, Equation (12) is the overall formulation of the local field for αk
RAN3SAT and (13) is

a piecewise function of the generated final state of the neuron according to the value of (8).
In this paper, Wan Abdullah (WA) method is used to compare Equation (9) with Equation
(14), which is noted as an energy function Hαk

RAN3SAT
. Therefore, the WA method is an ideal

method to find Wabc in the case of αk
RAN3SAT DHNN.

Hαk
RAN3SAT

= − 1
3

n
∑

a=1,a 6=b 6=c

n
∑

b=1,a 6=b 6=c

n
∑

c=1,a 6=b 6=c
W(3)

abc SaSbSc

− 1
2

n
∑

a=1,a 6=

n
∑

b=1,a 6=b
W(2)

ab SaSb −
n
∑

a=1
W(1)

a Sa

(14)

and then the value Hαk
RAN3SAT

attains the absolute final energy, and the minimum energy

Hmin
αk

RAN3SAT
is gained from αk

RAN3SAT that reduced monotonically [24]. Hence, Hmin
αk

RAN3SAT
is

calculated by (15).

Hmin
αk

RAN3SAT
= −

a
(
ψ3

i
)
+ 2
(
b
(
ψ2

i
))

+ 4
(
c
(
ψ1

i
))

8
(15)

and ψ1
i , ψ2

i , ψ3
i ∈ J(k)i and c, b, a symbolize the numbers for 1 literal, 2 literals and 3 literal

clauses in αk
RAN3SAT.

Finally, Equation (16) can analyze the final neuron states’ quality by distinguishing
between the global and local minimum solutions. Notably, if (16) is satisfied, and the
final neuron states will attain global minima solution; else, it would be trapped in a local
minima solution. ∣∣∣Hαk

RAN3SAT
− Hmin

αk
RAN3SAT

∣∣∣ ≤ τ (16)

where τ = 0.001 is the pre-defined value, which is known as the tolerance value. Algorithm
1 summarizes the steps of DHNN-RANkSAT through the pseudo-code below.

The schematic diagram for DHNN-RANkSAT is shown in Figure 1 where the RANkSAT
represents k = 3, 2. In this diagram, the red line represents the third-order clauses, and the
purple line denotes the second-order clauses, respectively. Within each main block, the
pink, orange and blue colored lines illustrate the connection of each neuron. The energy
filter represents whether it aligns with the tolerance value or not. The output of the diagram
depicts that either it can achieve the global minimum or a local minimum energy.
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Algorithm 1 The pseudocode of DHNN-RANkSAT in the logic phase.

1 Start
2 Set the initial parameters, maximum combination (COMBMAX) = 1, trial number
3 Initialize the neuron to each variable consisting of Si ∈ [S1, S2, S3, . . . Sn]
4 While (i ≤ trial)
5 Forming initial states by using Equation (8)

[TRAINING PHASE]
6 Define cost function Cαk

RAN3SAT
by using Equation (9)

7 For Si ∈ [S1, S2, S3, . . . Sn] do
8 Check clauses satisfaction by Equation (9)
9 If Cα k

RAN3SAT
= 0

10 Si→ Satisfied
11 Else
12 Si→ Unsatisfied
13 End For
14 Calculate synaptic weights by using the Wan Abdullah method.
15 Compute the Hαk

RAN3SAT
by using Equation (14).

[TESTING PHASE]
16 Local field computation to find the final state by using Equation (12)
17 For (i ≤ trial)
18 End For
19 Compute the Hmin

αk
RAN3SAT

by using Equation (15)

20 Calculate the final energy with tolerance value.
21 Check If it is Global minimum energy or local minimum energy
22 If

∣∣∣HPRAN3SAT − Hmin
PRAN3SAT

∣∣∣≤ Tolerance

23 Assign Global minimum energy
24 Else
25 Assign local minimum energy
26 End
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4. Proposed Multi-Objective Functions for DHNN

This paper proposes several objective functions that ensure accuracy and diversity.
The foremost concept is to introduce the multi-objective nature in our proposed work so
that we can maximize the fitness value as well as create diversity in the logical rule with
enhancing the storage capacity of DHNN. The potentiality of the proposed multi-objective
concept is that it embeds all the objectives in a perfect alignment maintaining the RANkSAT
strategy. Analyzing the accuracy and diversity would be an inventive study of higher-order
RANkSAT representation.

Consequently, the question arises: How can an algorithm achieve both accuracy and
diversity at the same flow? To answer this question, a satisfactory equilibrium needs to be
set up with two fundamental concepts- exploration and exploitation of the search space
that can balance with accuracy and diversity of the proposed algorithm. Additionally,
researchers ponder that those algorithms/metaheuristics search methods can reach better
performance if the exploration and exploitation of the search space maintain the appropriate
balance [35].

Researchers needs to know that accuracy and diversity are also not in the same pair,
and to achieve accuracy and diversity in an algorithm, a multi-objective concept needs to
comply to achieve the trade-off between diversity and accuracy also. To find the novelty of
our proposed work, we need to investigate the performance and robustness of optimum
solutions. Here, the main novelty of our proposed work optimizes three objectives: (i) the
maximum fitness, (ii) diversity ratio and (iii) k ideal solution strings. Mathematically, the
proposed multi-objective functions can be generalized as:

f (Fmax,, γ, S(i)
max)

Now these three objective functions are explained below in detail.

4.1. Maximum Fitness Value

To achieve maximum fitness, the fitness value is estimated through certain steps of
the individual operations strategy of an algorithm. Strings that obtain the highest fitness
value are selected for the next stage. If a certain number of strings of an algorithm cannot
achieve the highest fitness value, it needs to undergo the trial again from the beginning of
its mechanism. The illustration of the general form of maximum fitness value of RANkSAT
by summing up the fitness value of each order of clauses is shown below:

Fmax =
p

∑
i=0

C(3)
i +

q

∑
i=0

C(2)
i +

r

∑
i=0

C(1)
i

where C(3)
i , C(2)

i , C(1)
i are the third-order, second-order and first-order clauses of RANkSAT,

respectively.

4.2. Each Clause Contains at Least One Negative State Ck
i , k ≥ 2

The state of the literal is one of our objectives for addressing diversity in a logical rule.
To ensure this objective, we include at least one negative state in each clause of RANkSAT,
which will make the logical rule more diverse. In the logical diversity arrangement for
RANkSAT, we focus on the literals arrangement for δP3SAT (3SAT) and δP2SAT (2SAT) clauses.
Since δP3SAT and δP2SAT can create more than one possible solution, we only evaluate these
clauses in our diversity calculation strategy. Note that δP1SAT (first-order) clauses have
no substitute options for clause satisfaction so it has no impact on our diversity logical
strategy. Hence, the calculation of diversity in terms of logical structure for δP3SAT and δP2SAT
is expressed as in the equation is described below:

γ =
p

∑
i=0

C(3)
i +

q

∑
i=0

C(2)
i
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4.3. k-Ideal Solutions Strings (ISS)

In DHNN, the solution string is represented in bipolar form. This solution string is
stored as an associative memory system known as Content Addressable Memory (CAM).
Each solution string from the learning phase will span the initial bipolar vector and become
the root of the storage. After satisfying Equations (18) and (19), the solution strings are
chosen. These solution strings are known as Ideal Solution Strings (ISS). Notably, if the
mechanism of an algorithm fails to achieve ideal strings, a further trial will occur from
the highest fitness string reservoir. Since DHNN suffers from limited storage capacity,
enhancing the storage capacity of DHNN is the real focus of our proposed HEA. Here the
arrangements of Ideal strings are shown below:

S(i)
max = [S(1), S(2), S(3), S(4), S(5)]

overall, these multi-objective functions have been written mathematically in Equations
(17)–(20):

f (Fmax,, γ, S(i)
max) (17)

Subject to

(For Fitness) Fmax =
p

∑
i=0

C(3)
i +

q

∑
i=0

C(2)
i +

r

∑
i=0

C(1)
i (18)

(For Diversity) γ =
p

∑
i=0

C(3)
i +

q

∑
i=0

C(2)
i (19)

(k-Ideal Solution Strings) S(i)
max = [S(1), S(2), S(3), S(4), S(5)] (20)

where C(3)
i , C(2)

i , C(1)
i are the third-order, second-order and first-order clauses and γ repre-

sent the combination of a minimum number of negative states in each clause of RANkSAT
and S(1), . . . , S(5) are the total (05) CAM or Ideal solution strings, respectively.

5. Proposed Hybrid Election Algorithm (HEA)

The key motivation of a hybridized algorithm is that it can cover a wide range of
solutions and generate several distinct computations. Generally, metaheuristics have
two segments that allow them to carry out the optimization process. These segments
include the exploration of search spaces to identify potential regions of good solutions, as
well as the exploitation phase, which intensifies the search for the best regions to find better
solutions [36].

Moreover, a logical representation that follows non-systematic logical expressions,
such as RANkSAT, is more effective in a hybrid metaheuristic for avoiding overfitting
solutions. In this context, the novel Hybrid Election Algorithm (HEA) is introduced, a
type of social-political metaheuristics that combines evolutionary algorithms and swarm
intelligence operations, which occupy both exploration and exploitation in a proper manner.
There are no recent works that employ achieving the highest fitness value along with
creating diversity in the logical rules. The core reason for addressing HEA in our paper is
achieving maximum fitness value and simultaneously creating diversity in the logical rules
in the same pair.

In terms of optimization, HEA introduced another efficient optimizer that can improve
the local solutions. Following this, the characteristics of RANkSAT can rely heavily on the
HEA because of its effective and robust mechanism. The HEA is utilized in this paper to
find the best RANkSAT assignment that minimizes the cost function during the training
phase of DHNN. The model is elucidated with detailed information in the next section.
The procedure of the Hybrid Election Algorithm in DHNN-RANkSAT is explained in
Section 5.1, Section 5.2, Section 5.3, Section 5.4 and Section 5.5
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5.1. Initialization

The population (NPOP) of individuals consisting of voters and candidates includes potential
solutions of the search space of αHEA

RAN3SAT is generated randomly. Let Si = {S1, S2, S3, . . . SN},
Si ∈ (1,−1) is initialized. The state of each individual is noted as 1(TRUE) and −1(FALSE),
which aligns with the possible instances αHEA

RAN3SAT. Consider the search space of αHEA
RAN3SAT

being SαHEA
RAN3SAT

= {S1, S2, S3, . . . S2n}.

5.2. Eligibility Assessment

All randomized instances must undergo eligibility/fitness function assessment. There
will be a reward for each of the correct instances that results in a satisfying RANkSAT
clause. During the eligibility/fitness assessment process, the number of achieved clauses is
used to determine the eligibility of the individuals. The eligibility or fitness value can be
determined from Equation (21).

fLj =
NC

∑
i=1

C(k)
i , k = 1, 2, 3 (21)

C(k)
i =

{
0, False
1, True

(22)

where C(k)
i means the order of RANkSAT clauses. The aim is to increase the value of the

eligibility/fitness function or decrease the value of the cost function.

5.3. Initial Formation of the Parties

In this stage, the solution space is divided into Nparty parties. Then, the process of
calculation of voters for each party can be written in Equation (23).

Nj =
NPop

NParty
, j = 1, 2, 3, 4 (23)

where NPop is the size of the population. Equation (23) is used to determine the eligibility
of each instance (voters or candidates). In each party j, the prospective solution with the
highest eligibility value is elected as a candidate Lw. The remaining the instances are
attached as the voter Vw of the candidate. Then, the correlation distance function (CorD)
between the candidate Lw and the voter Vw was expressed in Equation (24).

CorD( fLw , fVw) = fLw − fVw (24)

5.4. Advertisement Campaign

After organizing the initial parties, we select the initial candidate with the highest
fitness solution in each party. The main distinction between standard EA and the proposed
HEA is largely due to the progress made in this advertising campaign. Next, each candidate
will launch its advertising campaign, which will consist of four steps: positive advertisement,
negative advertisement, coalition, and newly affiliated- another effective step is the caretaker
party. Hence, these sub-steps of the advertisement campaign are explained below.

5.4.1. Positive Advertisement

The candidate will reveal their plans during this stage and attempt to sway voters
voting selections. Hence, the number of voters who the candidate will influence is given
as follows:

NAj = Njσ
p, j = 1, 2, 3, 4 (25)
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where σp is a positive advertisement rate σp ∈ [0, 0.5]. The reasonable effect between the
candidate and the voter is expressed as the eligibility correlation distance coefficient by (26).

ωvi =
1

1 + CorD( fLw , fVw)
(26)

Each influenced voter vi will determine the number of neuron states that can update
based on the following Equation (27).

Svi = Njωvi (27)

where Nj = 3w + 2v + u is the sum of the first, second and third-order of αHEA
RANkSAT. First,

the influenced voter will update the neuron state randomly according to the predetermined
number. Then, the eligibility/fitness value of each of the influenced voters vi will be
evaluated based on (21). In each party, there is the possibility that the influenced voter vi

will replace the current candidate due to higher eligibility/fitness value.
As a result, the candidate will be replaced by the solution with the highest fitness value

in order to improve the quality of the solutions in the parties (more qualified supporters). If
a voter and a candidate have the same eligibility, the candidate position shall be maintained
(no replacement will be made). Suppose the best solution is identified in the positive
advertisement. In that case, it will continue to be a candidate in the following steps until
the first iteration is completed, at which point it will be announced as the best solution in
the election stage.

5.4.2. Negative Advertisement

At this point, candidates use negative advertising to try to entice supporters from
other parties to their side to expand the search space. This negative campaign generally
benefits popular parties because it leads to an increase in popularity. Equation (28) depicts
the number of voters (Nj) candidates can attract from other parties voters (NAj ) with the
highest fitness value.

NA∗j = σn(Nj − NAj) (28)

where A∗j are the voters from other parties, and σn is a negative advertisement rate
σn ∈ [0, 0.5]. The correlation or similarity belief between the voters and the candidates is
similar to Equation (29).

CorD( fLw , fV∗w) = fLw − fV∗w (29)

The reasonable effect from the candidate to the voter from another party is defined based
on the eligibility distance correlation coefficient ωv∗i .

ωv∗i =
1

1 + CorD( fLw , fV∗w)
(30)

Each influenced voter v∗i will determine the number of neuron states, which can be
updated based on the following Equation (31).

Sv∗i = Njωv∗i (31)

By using Equation (26), we can calculate the eligibility of the new supporters. Again,
if a voter has a fitness value greater than the candidate, the candidate will be replaced by
this voter.

5.4.3. Coalition

During this stage, parties collaborate and establish a coalition in order to explore
additional areas in the search space αHEA

RANkSAT. The processes and formulations used in
the coalition stage were the same as in the previous strategy. First, the two parties will
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be randomly combined to determine the new candidate after this merger. To begin, use
Equation (22) to determine the eligibility distance function and distance coefficient. Then,
using Equation (23), specify the number of variables that need to be updated in each voter
from this united party. The fitness values of all voters have now been updated. Finally, a
comparison is made between the voters’ fitness and previous candidates’ fitness. This will
be elected if the old candidate still has the highest fitness value in the next stage. However,
if other circumstances arise, such as a voter having a higher fitness rating than the previous
candidate. This fittest voter will be a new candidate who will face off against another
political party.

5.4.4. Caretaker Party

After completing the traditional coalition stage, the accuracy of the proposed model is
tested. If this proposed model satisfies its accuracy (by finding k strings that achieve the
highest fitness value), we can proceed to the next phase, known as the diversity phase. This
diversity phase generates the ability to create the ‘best pool’ of instances where voters can
only stay with the maximum fitness value. This ‘best pool’ is named the Caretaker party. In
this stage, those who achieved the highest fitness value were selected for this pool. Mainly
Caretaker party takes care of all of its best strings. Therefore, the dynamic stairs enhance
the diversity of the proposed HEA mechanism model. The selection process for choosing
the highest fitness value can be calculated by Equation (28).

Cbest
p = θ fLj (32)

where θ = [0.1, 0.4] is the ratio of the achieved maximum fitness value.
The mutation insertion concept is also utilized in this Caretaker party to improve its

diversity, which creates a new dimension in the study of the proposed HEA model. Notably,
the Caretaker party emphasizes the exploitation mechanism. Thus, it is better to choose
such a type of mutation insertion, which can choose randomly with a more localized search.
Moreover, the general mutation is muted randomly while there is no mechanism to detect
unsatisfied clauses and inclusion of positive/negative states. In this context, we exploit shift
mutation that works by shifting a randomly chosen frontier between two adjacent clauses
by one/ single step, either to the right to the left or vice versa [37]. Shift mutation not only
focuses on non-satisfied clauses but also focuses on the inclusion of positive-negative states
combination in each clause. In retrospect, the Shift mutation operator essentially provides
HEA with local search capability; a phenomenon called intensification. However, shift
mutation is a more localized search operation than swap mutation.

Hence, the condition of Equation (32) is satisfied; the fittest voters are moved to the
next stage for the participating final round—‘Election Day’.

5.5. The Election Day

The best solution (the candidate) in each party will be tested at this stage. Then,
this solution will be announced as the optimal solution if it has attained the maximum
fitness value with desired logical states (at least one negative state in the solution string).
Otherwise, a second iteration will be carried out. After that, the procedures will be repeated
until all conditions (from Equations (23)–(32)) have been met.

Meanwhile, we provide a real example in Appendix A that may guide how voters
and candidates represent the value of a Party. Now, we present the pseudocode in the
Algorithm 2 and sketch the total flowchart in Figure 2, of our proposed Hybrid Election
Algorithm (HEA) below:
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Algorithm 2 Pseudocode for proposed Hybrid Election Algorithm.

1 Start
2 Initialize the population NPOP consisting of Si ∈

{
S1, S2, S3, . . . SNPOP

}
3 While i ≤ trial
4 Forming initial parties by using Equation (23)
5 For J ∈

{
1, 2, 3, . . . NParty

}
do

6
Calculate the similarity between the voters and the candidates by using
Equation (24)

7 End For
8 [Positive Advertisement]
9 For Si ∈ {1, 2, 3, . . . Nsi} do
10 Evaluate the number of voters by using Equation (25)
11 Evaluate the reasonable effect from the candidate ωvi by using Equation (26)
12 Update the neuron state according to Equation (27)
13 If fvj

i
> fLj

14 Assign vj
i as new Lj

15 Else
16 Remain Lj
17 End For

Negative Advertisement]
18 For Si ∈

{
1, 2, 3, . . . Nv∗j

}
do

19
Evaluate the similarity between the voters from the other party and the
candidate from Equation (28)

20
Evaluate the reasonable effect from the candidate ωv∗i and update the neuron
state by using Equation (30)

21 If fv∗i > fLj

22 Assign v∗i as new Lj
23 Else
24 Remain Lj
25 End For
26 [Coalition]
27 For Si ∈

{
1, 2, 3, . . . Nv∗j

}
do

28
Evaluate the similarity between the voters from the other party and the
candidate from Equation (29)

29
Evaluate the reasonable effect from the candidate ωv∗i and update the neuron
state by using Equation (30)

30 If fv∗i > fLj

31 Assign v∗i as new Lj
32 Else
33 Remain Lj
34 End For
35 End While

[Caretaker Party]
36 For Si ∈ {1, 2, 3, . . . N} do
37 //Input Mutation operator//
38 If fvN

i
> fLj

39 //Choose Five Highest fitness candidates//
40 Assign 5v∗i as new 5Lj (Select five voters as five new candidates)
41 Else
42 Remain 5Lj (Five new candidates)
43 End For
44 Return Output the Five final neuron states
45 End
46 End While
47 Return Output the final neuron state
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5.6. Model Reproducibility

The same experiments need to be conducted to reproduce a framework with the model
DHNNRANkSAT-HEA repeatedly on certain data sets or obtain the same results. Specific
factors should be considered as below:

i. The logical presentation must be RANkSAT for k = 3, 2 structure where the threshold
iteration is set at 100 to distinguish the maximum capacity of the presented algorithms.

ii. To achieve the optimal synaptic weight in the training phase, the WA method is
utilized. According to [24], the WA method is more stable than Hebbian learning.
It is worth mentioning that different logic operators have different capabilities in
producing negative literal.

6. Experimental Setup

In this section, we verify the effectiveness of the proposed DHNNRANkSAT-HEA
model during the training phase. This experiment considers multi objectives concept,
which determines the proposed model achieves the highest fitness value, generates a
correct number of negative literals in each clause and produces ideal solution strings. To
guarantee the reproducibility of the experiment, we set up our experiment as follows:

6.1. Simulation Design and Simulation Datasets

All the simulations will be conducted on the same features to avoid biases during
experimentation. The features are as follows:

i. Device Setting: The simulation was run on the device with a 4 GB RAM Intel Core i5
processor with a 64-bit Windows 10 Operating System where the CPU time threshold
for data generation will be 24 h. The proposed model was implemented and analyzed
by using Dev C++ version 5.11.

ii. SAT Configuration: The number of neurons ranging from 10 ≤ NN ≤ 120. The
logical framework is based on third and second-order logic. Therefore, the clauses in
a logical structure are chosen randomly.

iii. Proposed HEA Code (Online): The source code of the proposed model can be found
at the mentioned link: https://bit.ly/3PEcYl4 (25 May 2022)

https://bit.ly/3PEcYl4
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The experiment will be conducted with simulated data produced at random by the
proposed model. The simulated data set’s elements are strings of bipolar values that are
(−1, 1) based on the RANkSAT for k = (3, 2) structure. Simulation data sets are often utilized
in testing and evaluating the capabilities of a new proposed SAT in DHNN, according to
research by [12,14,15,23,24]. As a result, when applied to real-life data sets, the results of
the simulated data set will project the usefulness of the proposed model.

6.2. Parameters Assignment

Tables 2–4 show the parameter control considered in this study. The number of ideal
strings will be set to 5. To evaluate the final energy of DHNN, the tolerance value will be
0.001 [23]. DHNN will undergo relaxation by applying the Sathasivam relaxation method.
The relaxation rate is set to 3 because a lower value will cause the neuron to exchange
information and relax to global minimum energy. All parameters are tuned offline. Since
the parameter values are identified before applying the algorithm.

Table 2. Parameter list for the DHNNRANkSAT-HEA model.

Parameter Parameter Value

Number of Neurons (NN ) 10 ≤ NN ≤ 120 [14]

Number of Learning (NH) 100 [23]

Number of Trials (NT) 100 [23]

Neuron Combinations (NCM) 100 [14]

CPU time threshold 24 h [12]

Order of Clauses Z(3)
i , Z(2)

i [14]

Total Number of Clauses 1 ≤ n(Z(3)
i + Z(2)

i ) ≤ 50 [14]

Size of Population (NPOP) 120 [21]

Number of Parties (NParty) 4 [21]

Positive advertisement (σP) 0.5 [21]

Negative advertisement (σn) 0.5 [21]

Diversity of logical rules (in Percentage) 40%

Activation Function Hyperbolic Tangent Activation Function [17]

Neuron state Initialization (Training Phase) Random

Testing Phase Neuron State Random

Number of Learning Iterations 100 [24]

Table 3. List of parameters used in DHNNRANkSAT-EA, DHNNRANkSAT-GA and DHN-
NRANkSAT-ABC.

Parameter Parameter Value

Number of Neurons (NN ) 10 ≤ NN ≤ 120 [14]
Number of Learning (NH) 100 [23]

Number of Trials (NT) 100 [23]
Neuron Combinations (NCM) 100 [14]

Size of Population (NPOP) 120 [23]
Number of Parties (NParty) 4 [24]
Positive advertisement (σP) 0.5 [23]
Negative advertisement (σn) 0.5 [23]

Neuron state Initialization (Training Phase) Random
Testing Phase Neuron State Initialization Random

Number of Learning Iterations 100 [24]
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Table 4. List of parameters used for DHNNRANkSAT-ES.

Parameter Parameter Value

Number of Neurons (NN ) 10 ≤ NN ≤ 120 [14]
Number of Learning (NH) 100 [15]

Number of Trials (NT) 100 [17]
Neuron Combinations (NCM) 100 [23]

Neuron state Initialization (Training Phase) Random
Testing Phase Neuron State Initialization Random

Number of Learning Iterations 100 [24]

The optimal parameter setting founded by the tuning process is used in solving prob-
lems and these parameter values remain unchanged during the simulation run. Moreover,
our proposed algorithm is following the work of [12,14,15,21–24] and to make a fair com-
parison, all the parameter values should be automatically tuned with the mentioned studies.
Otherwise, strongly impairing a non-tuned algorithm could mislead the conclusion from
the proposed algorithm [38]. The training and testing phase will randomly initialize the
neuron state. Tables 2–4 summarize the parameter assignments.

7. Performance Evaluation Metrics
7.1. Numerical Calculation of Storage Capacity (βC)

An associative memory system or CAM is formed as a ‘storage box’ for the Discrete
Hopfield Neural Network. Discovering multiple CAM in a single model should increase
the storage capacity of DHNN. In the general simulation strategy, each solution string is
stored in a single CAM, which is the basic nature of DHNN. Interestingly, more solution
strings will be approached in our proposed simulation approach.

The string that satisfies both maximum fitness and diversity phase is called ‘Fully
Satisfied Strings (µ)’. In a single simulation, if the model generates at least five (05) full
satisfied strings (µ) are considered “Ideal Solution Strings (ρ)”. To predict the storage
capacity via CAM, it is necessary to find the relation between full satisfied strings (µ) and
Ideal solution strings (ρ). Equation (33) explains how our model achieves its destination in
terms of the storage capacity of DHNN:

βC =

{
1, When µ ≤ ρ
0, Otherwise

(33)

where the value of βC corresponding to 1 means that the model achieved its full storage
requirement regarding CAM.

7.2. Diversity Calculation Strategy

In a multi-objective function, diversification of a model is a vital criteria. In a
population-based metaheuristic, the diversity metric is a state-of-the-art metric that can
assist in exploration and exploitation assessment that can find the real solutions for real-
world applications [39]. The calculation procedure for diversity depends on the various
parameters and relevant objects. Here, in our paper, we calculate the diversity ratio in
a logical structure. The maximum diversity and the calculation of the diversity rate of a
logical structure are shown in Equations (34) and (35).

Maximum Diversity, Dmax = ξ(3m + 2n) (34)

where ξ = 0.40, means that the total diversity of the logical rule will be calculated from
40%, m = Number of 3SAT clauses and n = Number of 2SAT clauses.

Calculation of Proposed Diversity rate =
νA
νT
× 100% ≥ 40% (35)
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vA = Achieved Number of States, and vT = Target Number of States.

7.3. Mean Absolute Error

During the training and testing phase, the standard error based on the average dif-
ference between the computed fitness value and the expected fitness value of the DHNN-
RANkSAT model process is acquainted with Mean Absolute Error (MAE). According to [40],
MAE appears to be a trustworthy statistic in measuring the correctness of a model. Thus, the
calculation process for MAE in DHNN-RANkSAT (Training and Testing phase) is recrafted
as follows:

MAE =
1
n

∣∣∣∣ fmax − fi

∣∣∣∣ (36)

where fi refers to the obtained fitness value, fmax is the maximum number of fitness values,
and n denotes the number of iterations that corresponds to the RANkSAT logic.

7.4. The Ratio of Global Solutions (RGS)

Energy analysis can be carried out by observing the quality of the solutions to deter-
mine if it is global minima solutions that correspond to global minimum energy. The ratio
of global minima solutions can be calculated as

RGS =
1

NT ∗ NCM

n

∑
i=1

NGHPRANkSAT
(37)

where NG means the number of global minimum energy by the proposed model.

7.5. Similarity Index (SI)

This study will use a similarity analysis metric to compare the final states obtained
using DHNN-RANkSAT. In theory, the majority of neuron states recovered by DHNN have
reached global minimum energy. Inspired by the work of [23], this similarity metric will be
extended to examine the RANkSAT logical representation form of the network final states.
The comparison is performed by taking the benchmark states Si

max with the states attained
by the network Si. The formula of the general comparison of the benchmark state and final
state is given as in Equation (39):

CSi
max,Si =

{
(Si

max, Si); i = 1, 2, . . . n
}

(38)

The standard specification variables can be defined by considering the following
domains:

l refers to the total number of occurrences for (Si
max = 1, Si = 1) in CSi

max,Si .
m refers to the total number of occurrences for (Si

max = 1, Si = −1) in CSi
max,Si .

n refers to the total number of occurrences for (Si
max = −1, Si = 1) in CSi

max,Si .
o refers to the total number of occurrences for (Si

max = −1, Si = −1) in CSi
max,Si .

In this paper, we suggest a variant of the similarity index called the Gower–Legendre
similarity index (GLI) that considers negative co-occurrences, with a particular emphasis on
positive-negative states [41]. The Gower–Legendre similarity index is adjusted in this study
to account for the similarity between the simulation of final states Si and the benchmark
final states Si

max.

GLI =
lo

l + 0.5(m + n) + o
(39)
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7.6. Total Neuron Variation (TNV)

The Total Neuron Variation (TNV) of the DHNN model is the number of solutions
that are formed in each neuron combination, and this is calculated by (40) and (41):

TNV =
λ

∑
V=1

GV (40)

GV+1 =

{
1, xi+1 6= xi
0, xi+1 = xi

(41)

where λ is the total number of solutions produced by the DHNN model and is the solution
produced in the i-th trial.

7.7. Median Absolute Deviation (MAD)

Median Absolute Deviation (MAD) is a robust measure of variability because it uses
the median as an estimate of the distribution’s center and the absolute difference rather
than the squared difference [42].

MAD = Median(|xi − x|) (42)

Here, xi is the refers to each value while x means the average value that corresponds to the
RANkSAT models.

7.8. Friedman Statistical Analysis (Fd)

Friedman statistical analysis is used to find significant differences in the output of two
or more algorithms simulated data. By computing the ranking of observed results for each
metaheuristic, the Friedman test can be used to compare several methods. The general
form for computing the Friedman test is given in Equation (43) [43].

Fd =
12N

K(K + 1)

(
∑

j
R2

j −
K(K + 1)2

4

)
(43)

where K is the number of metaheuristics in the test, j represents its associative index, N is
the number of runs, and Rj stands for the average rank of each algorithm. In addition, the
distribution of the p-value is according to Chi-Squared distribution with (K− 1) degree
of freedom. It is common to declare a result as a significant one if the p-value is less than
0.05 or 0.01 [44].

7.9. Baseline Method

Our paper focuses on investigating the performance of DHNNRANkSAT-HEA. The
proposed DHNNRANkSAT-HEA model will be compared with [19,23,24,45]. Now we will
discuss the following as our baseline method:

i. The conventional EA model was proposed by [24] utilizing RAN3SAT representation,
integrated with the WA method. The determination of Hmin

αRAN3SAT
follows Equation (15)

and the populations are selected randomly. However, this EA emphasized accuracy
(fitness value) by utilizing Equation (21), and there was no discussion based on the
logical rule. Additionally, there was no more local improvement operator introduced
in that work. Moreover, this work focused only single objective, which is enhancing
fitness value with less iteration.

ii. Ref. [23] also complied ES technique for checking the efficiency of the ES model.
Note that ES has no optimizer to enhance its capacity to improve the local or global
solutions. Even though ES has no specific mechanism to increase the solution search
competence. In that work, there is no involvement of the multi-objectives that can
focus on the storage capacity in terms of solution string.
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iii. The study by [19] introduced the GA model for evaluating the competence of the
model with HNN. The qualified initial population can result in more fitted answers
and a higher convergence rate. This belief encouraged to produce elementary pop-
ulation required for GA using HNN. Conversely, GA is highly dependent on the
mutation operator during the initial stage due to an ineffective crossover operator. In
that work, there is no contribution to improving the performances of the operators
and utilizing the concept of multi-objective functions.

iv. Ref. [45] incorporates HNN with ABC algorithm in minimizing 2SAT architecture.
This work indicates the credibility of 2SAT in representing the behaviors of neurons
in HNN. On the contrary, there was no involvement of logical diversity and as well as
no strategy to enhance the storage capacity of HNN.

Our proposed work focuses on the learning phase instead of the retrieval phase of
the DHNN. Thus, different classes of HNN, such as Mutation HNN, Kernel HNN and
Boltzmann HNN, are not applicable for comparison. Meanwhile, Figure 3 depicts the
overall flowchart of different DHNN-RANkSAT models.
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8. Result and Discussions

Estimating the performance of any metaheuristics requires metrics for accuracy in
terms of fitness, bias and variability. To check the prediction of our algorithm, we simulated
the model and studied the dynamics of the various number of neurons. This study aims
to see how effective our proposed model is by limiting the number of neurons (NN). In
addition, we experimented with solution strings (storage capacity), training error, testing
error, energy analysis and similarity index in the interval 10 ≤ NN ≤ 120. Moreover, to
assess the performances via statistical metric, we consider ‘MAE’ as a performance indicator
in training, testing and energy analysis. The error value is calculated in MAE. Notably, a
lower MAE value will be considered as a higher tendency in achieving optimal solutions.
Finally, Friedman test analysis is conducted for each part where the analysis is attached in
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each table by mentioning average (AVG), minimum (MIN), maximum (MAX) value with
average rank (AVG.RANK) of each model.

8.1. Training Phase
8.1.1. Ideal Solution Strings

Figure 4 depicts the relative performances of αES
RANkSAT, αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT
and αHEA

RANkSAT models in terms of Ideal Solution Strings, which are represented as CAM.
Here, we see that for the small number of neurons,αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT

only can generate five (05) Ideal solution strings. From the interval 50 ≥ NN ≥ 70, these
models’ performances go down rapidly. For αES

RANkSAT, the generating number of ideal
solution strings is almost zero at NN ≥ 90. This happened due to lower management of
synaptic weight calculation, for which this model cannot gather correct stored patterns
in the testing phase. Additionally, αES

RANkSAT has no filtering process, which satisfies our
objective functions for subtle desired ideal solution strings. Similarly, for higher NN,
αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT is also inefficient in achieving ideal solution strings. This is
because αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT has no additional operator except a positive adver-
tisement/ mutation/scout bee operator, respectively, that can improve the local solution,
which impacts finding ideal solution strings. These models failed to utilize the Pareto
optimality concept to generate ideal solution strings for higher NN. If we look into the
αHEA

RANkSAT model, the arranging capacity of ideal solution strings is very impressive. From
the initial point to NN = 120, this model continuously produces five ideal solution strings.
This gives clear evidence that the αHEA

RANkSAT model has fully utilized both diversity and
fitness phase concepts by which more local solution improving optimizers are involved to
achieve optimal synaptic weight that leads to our target ideal solution strings.
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According to Deb and Deb [46], introducing a mutation operator in any algorithm
can improve the exploration and exploitation strategy. The Shift mutation in the caretaker
party of the advertisement campaign concept develops the population to introduce a higher
ability to find more satisfied solution strings that leads to global solutions too. Hence, we
can conclude by mentioning that the αHEA

RANkSAT model created desired ideal solution strings,
expressed herein CAM and outperformed the other models.

8.1.2. Fitness

Figure 5a and Table 5 show that the results of training errors (the fitness value) in MAE
and Figure 5b present the MAD-Fitness value for the models αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT,
αABC

RANkSAT and αHEA
RANkSAT. Having a lower value of MAE and MAD indicates a higher degree
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of accuracy (fitness). In general, it is noticeable that the MAE value for αES
RANkSAT, αEA

RANkSAT,
αGA

RANkSAT, αABC
RANkSAT models rise after a certain number of neurons.

This means that the higher MAE of a model cannot optimize desired fitness value in
the training phase. After NN ≥ 15, the MAE values for αES

RANkSAT model start continuously
rising without any intervention. This has happened because αES

RANkSAT has trial and error
nature that causing the sub-optimal training phase. It was stated by [17] that αES

RANkSAT
exploiting ’trial and error’ nature for the higher number of neurons.

If we check the αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT conditions, the error proportionally

increases as the number of neurons rises. This elucidates that these models have no
additional optimization phase to achieve the multi-objectives, which is not defined, and
there is a high chance to gain non-improving solutions. On the other hand, fitness for MAE
value αHEA

RANkSAT is up to the level. From the interval 10 ≤ NN ≤ 100, the MAE value of
αHEA

RANkSAT is zero. This means that the combination of 3SAT and 2SAT clauses can gain more
satisfied interpretations, which helps to achieve maximum fitness value.

However, the proposed αHEA
RANkSAT model has a strong influencer, such as the caretaker

party in the advertisement campaign, which mainly reduces the fluctuation of MAE. After
the negative and coalition campaign strategy, the voter increases the chances to enhance
the eligibility where the selected voters with the highest eligibility value have formed a
stronger party. Thus, individual eligibility for all the voters and candidates increases and
the absolute error is reduced vividly. This finding has a good agreement with the study
of [14] where clause arrangement is the key issue in Random Satisfiability. Notably, 3SAT
clauses αRANkSAT create more satisfied state options that show the potential MAE value is
almost zero in DHNN. Moreover, in the whole simulation, the αHEA

RANkSAT generates a poor
MAE value in terms of fitness, which shows that αHEA

RANkSAT consists of effective optimizers
that can achieve the optimal training phase.
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Table 5. Tabulated fitness values for different DHNN-RANkSAT models.

NN HEA EA ES GA ABC

10 0 0 0 0 0
15 0 0 0 0 0
20 0 0 6.5 0 0
25 0 0 9.9 0 0
30 0 0 11 2.173 0
35 0 0 13.8 3.981 0
40 0 0 15.46 5.94 0
45 0 0 17.94 8.91 2.98
50 0 0 19.79 11.88 3.96
55 0 2.9 20.58 14.85 4.8
60 0 4.8 22.231 17.82 10
65 0 12 26 20.87 12
70 0 15 28.4 24 14.5
75 0 18 29.7 27 21.25
80 0 25.6 31.679 30 22.77
85 0 23.2 34 33 28.79
90 0 28.79 37.25 36 30.4
95 0 30.4 40 39 35

100 0 36 40 42 36.35
105 4.985 37.8 43 45 41.06
110 6.028 41.06 45 44 42.25
115 7.994 44.5 46 46 45.15
120 9.6 45.15 48 45 46.991

AVG 1.244 15.878 25.488 21.627 17.315
Min 0 0 0 0 0
Max 9.6 45.15 48 45 46.991

Avg. Rank 1.87 2.59 3.91 3.57 3.07

A similar concept applies to Figure 5b, which represents the MAD-Fitness value for
the different RANkSAT models. In this Figure, it is also clearly visible that the MAD value
for αHEA

RANkSAT is straight zero. This means that the αHEA
RANkSAT model achieved 100% of the

desired fitness value.
Additionally, the Friedman test has also been conducted and is shown in Table 5 for

the αEA
RANkSATαES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT and αHEA
RANkSAT models. The degree of freedom

is d f = 4, considering a0 = 0.05, and the Chi-Square value for MAE-fitness is χ2 = 72.167.
The null hypothesis of equal performance for all the models is rejected. Furthermore, the
lower value of an average rank represents the better position of a model. Here, we have
also checked the rank analysis of the models through Table 5 and identified that the lowest
number rank for fitness occurred for αHEA

RANkSAT model, which is 1.87.

8.1.3. Diversity

Figure 6a and Table 6 depict the training error in MAE concerning the diversity and
Figure 6b represents the error in MAD for αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT and

αHEA
RANkSAT models. Here, the lower MAE and MAD values present the higher diversity of

the model. In all models, it has been found that as the number of neurons increases the
MAE value is getting higher, and the diversity is projecting lower. This means that as NN
increases, the population diversity diminishes.

During the interval 10 ≤ NN ≤ 50, αES
RANkSAT has a very negligible error in terms

of diversity. After the mentioned interval, the MAE values increase rapidly. This hap-
pens because this model has no partition and that cannot create more negative literal in
searching satisfied interpretations. Moreover, we know that αES

RANkSAT is always able
to run for a lower number of neurons for its weak mechanism. Following this, the
αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT models performance ability is better than αES
RANkSAT model

because these models have partition solution space, that can adopt more negative literal for
finding satisfied interpretations. Although αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT perform better,
the lack of exploration and exploitation balance strategy in the operators creates lower
diversity when NN increases.
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Alternatively, the proposed αHEA
RANkSAT makes the combination of the state with the

non-benchmark logical state, which achieved a maximum diversity rate that creates a
dynamic shed until NN ≤ 100 (the accumulated error is practically zero). αHEA

RANkSAT has
more partition solution spaces rather than other models, which keeps the advertisement
campaign strategy of this algorithm in a balanced manner and retains the lower status of
MAE value. This lines up that the different number of negative literals αHEA

RANkSAT shows
additional compatibility as a symbolic instruction in DHNN. Involving mutation strategy
in the diversity phase ensures the algorithm’s exploitation and global search abilities [47].
However, the effect of the interaction of the mutation machinist in the advertisement
campaigns caretaker party improves the final states of the neurons as well as leads the
global search abilities.

Similarly, we can write for Figure 6b that represents the MAD value for the diversity
in different RANkSAT models. In this Figure, it is also clearly visible that the MAD value
for αHEA

RANkSAT is absolutely zero. This means that the αHEA
RANkSAT model has fulfilled with a

100% diversity strategy.
Here, the Friedman test was also conducted in Table 6 for αEA

RANkSATαES
RANkSAT, αGA

RANkSAT,
αABC

RANkSAT and αHEA
RANkSAT models. The degree of freedom is d f = 4, considering a0 = 0.05,

and the Chi-Square value for the MAE-fitness is χ2 = 42.579. The null hypothesis of equal
performance for all the models is rejected. Furthermore, the lower value of an average rank
represents the better position of a model. Here, we have also checked the rank analysis of
the models through Table 6, that identifies the lowest rank for fitness occurred for αHEA

RANkSAT
model, which is 1.48.

8.2. Testing Phase

The error analysis in the testing phase is sketched in Figure 7 and Table 7. In this
section, the behavior of various models in terms of synaptic weight management that
retrieve the final states of neurons and produce global minima solutions are discussed. The
competence of the testing phase in DHNN will be the indicator of αk

RAN3SAT model which
can successfully achieve optimal synaptic weights to retrieve the final states that produce
global minima solutions.

Referring to Figure 7,αES
RANkSAT generates zero MAE value with lower NN whereas the

testing-MAE value sharply rises and reaches maximum error that is MAE = 100 when NN
is higher. This has happened due to αES

RANkSAT generating the wrong synaptic weight for
higher NN, which complies with the sub-optimal training phase. However, the models
αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT also failed to achieve its desired correct synaptic weight for
higher NN, and this creates a higher testing-MAE value. This happened due to more
NN, αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT, which cannot explore the search space properly, which
affects minimizing the cost function. To avoid this issue in the future, these models can
adopt a greedy selection operator that can avoid sub-optimal solutions [48].
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Table 7. Tabulated MAE-Testing values for different DHNN-RANkSAT models.

NN HEA EA ES GA ABC

10 0 0 0 0 0
15 0 0 0 0 0
20 0 0 0 0 0
25 0 0 0 0 0
30 0 0 0 0 0
35 0 0 0 0 0
40 0 0 0 0 0
45 0 0 0 0 0
50 0 0 0 0 0
55 0 0 11 40 0
60 0 0 20 60 0
65 0 0 30 80 0
70 0 0 40 80 0
75 0 40 60 100 0
80 0 60 60 100 0
85 0 60 60 100 15
90 0 80 80 100 20
95 0 80 100 100 30

100 0 80 100 100 40
105 0 80 100 100 40
110 0 80 100 100 60
115 0 80 100 100 65
120 0 80 100 100 70

AVG 0 31.304 41.782 54.783 14.782
MIN 0 0 0 0 0
MAX 0 80 100 100 70

AVG. RANK 2 2.89 3.67 4.09 2.56

On the other hand, we can investigate the scenario of αHEA
RANkSAT, which depicts the

best performance in the testing phase. From the initial stage to NN = 120, the proposed
αHEA

RANkSAT creates the finest result achieving almost zero MAE values in the testing phase.
This has happened since αHEA

RANkSAT has two filtering phases (fitness and diversity) are
mentioned in the multi-objective concepts, which have several layers. These layers have
a strategy for improving global search space, which is an exploration and local search
space, which is known as exploitation. This strategy generates a zero-value cost function
for αHEA

RANkSAT that leads to 100% global minimum solutions. Importantly, if the mechanism
of αHEA

RANkSAT failed to retrieve optimal synaptic weight, the testing phase will be affected.
Hence, it can be validated that αHEA

RANkSAT is a better model for finding global minima
solutions compared to the other mentioned models.

Here, the Friedman test is conducted in Table 7 for αEA
RANkSATαES

RANkSAT, αGA
RANkSAT,

αABC
RANkSAT and αHEA

RANkSAT models. The degree of freedom is d f = 4, considering a0 = 0.05,
and the Chi-Square value for the MAE-fitness is χ2 = 51.399. The null hypothesis of equal
performance for all the models is rejected. Furthermore, the lowest value of an average
rank represents the better position of a model. Here, we also check the rank analysis of
the models through Table 7 and identify that the lowest rank occurred for αHEA

RANkSAT model,
which is 2.00.

Energy Analysis

In this section, the types of energy analysis for different DHNN models are ex-
plained. Here, Figure 8 and Table 8 elucidate the ratio of global solutions (RGS) reached
by αES

RANkSAT, αEA
RANkSAT and αHEA

RANkSAT models. Figure 9 and Table 9 represent the difference
in energy examined by measuring the MAE value with different NN.
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Figure 8. Ratio Global Solutions (RGS) for different DHNN-RANkSAT models.

Table 8. Tabulated values of RGS for different DHNN-RANkSAT models.

NN HEA EA ES GA ABC

10 1 1 1 1 1
15 1 1 1 1 1
20 1 1 1 1 1
25 1 1 1 1 1
30 1 1 1 1 1
35 1 1 1 1 1
40 1 1 1 1 1
45 1 1 1 1 1
50 1 1 1 1 1
55 1 0.2 0.2 1 1
60 1 0.2 0.2 0.2 1
65 1 0.2 0.2 0.2 1
70 1 0.2 0.2 0.2 1
75 1 0.2 0.2 0.2 1
80 1 0.2 0.2 0.2 1
85 1 0.08 0.12 0.2 1
90 1 0.04 0.04 0.12 1
95 1 0.04 0 0.12 1

100 1 0.04 0 0.12 0.8
105 1 0.04 0 0.12 0.2
110 1 0.04 0 0.04 0.2
115 1 0.04 0 0.04 0
120 1 0.04 0 0.04 0

AVG 1 0.659 0.450 0.513 0.834
MIN 1 0.04 0 0.04 0
MAX 1 1 1 1 1

AVG. RANK 4 2.86 2.13 2.85 3.57

In Figure 8 and Table 8, we can check whether the number of negative literals of 3SAT
and 2SAT clauses influences the RGS. The capability of a model in achieving RGS = 1,
indicates the effectiveness of a proposed model to produce a consistent final neuron state.
In this figure, we see that αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT approaches RGS→ 1 for a certain
interval 10 ≤ NN ≤ 60. Conversely, this consistency is degraded when NN increases. At
NN ≥ 60 the RGS for αABC

RANkSAT, αEA
RANkSAT, αGA

RANkSAT has rapidly drops, and for NN ≥ 100,
it approaches zero. This is happened due to the presence of more 2SAT clauses, which
creates more non-satisfied interpretations as well as no logical variety involved to overcome
the final neuron states effectively. Though αABC

RANkSAT, αEA
RANkSAT have a good optimizer, there

are no specific objectives that can improve the logical rule and the operators cannot explore
and exploit it properly.
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Table 9. Tabulated MAE-Energy values for different DHNN-RANkSAT models.

NN HEA EA ES GA ABC

10 0 0 0 0 0
15 0 0 0 0 0
20 0 0 0 0 0
25 0 0 0 0 0
30 0 0 0 0 0
35 0 0 0 0 0
40 0 0 0 0 0
45 0 0 0 0 0
50 0 0 0 0 0
55 0 0 0 0 0
60 0 0 0 0.895 0
65 0 1.839 1.88 1.221 5.39
70 0 3.298 3.717 3.657 6.28
75 0 3.543 4.333 4.02 7.96
80 0 5.601 6.821 5.871 8.01
85 0 8.003 8.541 7.09 8.13
90 0 8.169 11.222 8.991 8.19
95 0 10.854 12.982 10 12.54

100 0 11 13.079 11.473 14
105 0 12.72 14.714 12.314 14.72
110 0 13.75 14.077 13 14.75
115 0 14.28 15.089 14.65 15.28
120 0 15.75 16.029 16.826 15.95

AVG 0 4.731 5.325 4.783 5.704
MIN 0 0 0 0 0
MAX 0 15.75 16.029 16.826 15.95

AVG.RANK 1.93 2.67 3.63 3.00 3.76

Interestingly, our proposed αHEA
RANkSAT consistently produces the highest ratio of global

solutions in the interval 10 ≤ NN ≤ 120. The abovementioned optimal range consistently
produces RGS = 1 for αHEA

RANkSAT. This is caused since αHEA
RANkSAT employs the multi-objective

function concept, which brings a different number of solutions by introducing negative
states in the diversity phase of 3SAT and 2SAT clauses. More importantly, the appropriate
placement of the local and global search operators tends RGS = 1. This logical variety
includes the ideal neuron state where the HTAF update the final neuron state successfully.

In the αHEA
RANkSAT mechanism, both exploration (negative and coalition campaign) and

exploitation (positive and caretaker party) function equally for which this αHEA
RANkSAT exe-

cutes only a single iteration in comparison to other models. Hence, the RGS obtained by
the αHEA

RANkSAT model has a good agreement of the work by [15] where RGS approaching
1 can achieve 100% global minimum energy.

Here, the Friedman test results for αEA
RANkSATαES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT and αHEA
RANkSAT

models have been demonstrated in the Table 8. The degree of freedom is d f = 4, considering
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a0 = 0.05, and the Chi-Square value for RGS is χ2 = 42.041. The null hypothesis of equal
performance for all the models is rejected. Furthermore, the higher RGS value of an average
rank represents the better position of a model. Here, we also check the rank analysis of the
models through Table 8 and identify that the highest value for RGS occurred for αHEA

RANkSAT
model, which is 4.00.

In terms of energy analysis, Figure 9 and Table 9 illustrate how the MAE value
between the minimum energy (Hmin

αk
RAN3SAT

) and final energy (Hαk
RAN3SAT

) is used to examine

the difference in energy. From the mentioned Figure and Table, we also observe a similar
trend for αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT models in which the MAE value in the

energy analysis is sharply increasing in the interval of 60 ≤ NN ≤ 120. This takes
place since αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT cannot generate more satisfied solution

strings for which it requires higher iterations that are trapped to local optima. On the other
hand, our proposed αHEA

RANkSAT model has no error that is zero MAE value from the initial
point until the end of the simulation. This has happened due to the generating satisfied
solution strings following Equations (18) and (19). After the mutation the caretaker party
αHEA

RANkSAT has a large capacity in achieving more satisfied solution strings, which arises zero
MAE value for energy analysis and satisfied Equation (16) with tolerance value accurately.
Despite creating intelligence effort throughout the learning phase, this network has been
presented with an excellent error reduction mechanism to prevent non-improving solutions.
As a result, the neuron state for αHEA

RANkSAT has minimum state oscillation and has been
updated properly during the testing phase.

In Table 9, the Friedman test directed for αEA
RANkSATαES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT and
αHEA

RANkSAT models. The degree of freedom is d f = 4, considering a0 = 0.05, and the Chi-
Square value for Energy-MAE is χ2 = 37.536. The null hypothesis of equal performance for
all the models is rejected. Furthermore, the lower value of an average rank represents the
better position of a model. Here, we also check the rank analysis of the models through
Table 9 and recognize that the lowest rank value for MAE-Energy occurred for the αHEA

RANkSAT
model, which is 1.93.

8.3. Similarity Index

In Figures 10 and 11 as well as Tables 10 and 11, we have examined the similarity
and dissimilarity of the obtained final neuron states using the similarity index (SI). This
indexing is specific for binary variables and use for divergency studies [49]. In the similarity
index analysis, we have looked for the study of Total Neuron Variation (TNV) and the
Gower–Legendre Index (GLI) according to the Equations (40) and (39).
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NN HEA EA ES GA ABC 

10 21.4 17.8 15.4 6.2 13 

15 36 35 38.8 33 22 

20 68.4 36.6 55 46.2 31 

25 78.8 75 69.4 56.6 72 

30 90.2 77.2 77 64.2 81 
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Figure 10. Total Neuron Variation (TNV) for different DHNN-RANkSAT models.
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Figure 11. Gower–Legendre Similarity Index (GLI) for different DHNN-RANkSAT models.

Table 10. Tabulated TNV values for different DHNN-RANkSAT models.

NN HEA EA ES GA ABC

10 21.4 17.8 15.4 6.2 13
15 36 35 38.8 33 22
20 68.4 36.6 55 46.2 31
25 78.8 75 69.4 56.6 72
30 90.2 77.2 77 64.2 81
35 96 76.5 81.8 73.6 82.8
40 96.4 90.8 87.4 81 81.6
45 98.6 95 93 85 94
50 99 98.6 94.8 91.8 92
55 99.2 92.8 90 69.2 95
60 99.4 93 78.8 48 100
65 100 57 59 44.2 80.5
70 100 47.4 49 39 55
75 100 39.8 39 32 35
80 100 40 48 23 25
85 100 40 40 20.5 20
90 100 20 12.8 13 20
95 100 20 0 12.5 20

100 100 20 0 12.5 20
105 100 20 0 0 20
110 100 20 0 0 0
115 100 20 0 0 0
120 100 20 0 0 0

AVG 90.583 50.108 44.747 37.053 46.083
MIN 21.4 17.8 0 0 0
MAX 100 98.6 94.8 91.8 100

AVG. RANK 4.91 3.33 2.52 1.46 2.78

Table 11. Tabulated GLI values for different DHNN-RANkSAT models. The notation * means no
value has been generated in that particular point.

NN HEA EA ES GA ABC

10 0.676 0.624 0.603 0.711 0.671
15 0.668 0.619 0.680 0.698 0.698
20 0.694 0.687 0.677 0.724 0.667
25 0.724 0.687 0.692 0.703 0.704
30 0.730 0.695 0.698 0.744 0.704
35 0.705 0.728 0.701 0.731 0.697
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Table 11. Cont.

NN HEA EA ES GA ABC

40 0.729 0.739 0.715 0.758 0.724
45 0.721 0.724 0.709 0.838 0.728
50 0.750 0.738 0.746 0.812 0.719
55 0.719 0.710 0.734 0.793 0.666
60 0.763 0.706 0.709 0.590 0.619
65 0.777 0.579 0.677 0.551 0.606
70 0.742 0.497 0.469 0.490 0.559
75 0.731 0.316 0.271 0.387 0.487
80 0.760 0.311 0.291 0.298 0.341
85 0.749 0.304 0.244 0.224 0.311
90 0.751 0.154 0.257 0.198 0.324
95 0.749 0.167 * * 0.134

100 0.760 0.146 * * 0.145
105 0.770 0.151 * * 0.126
110 0.748 0.159 * * *
115 0.751 0.156 * * *
120 0.749 0.159 * * *

AVG 0.735 0.466 0.429 0.446 0.459
MIN 0.668 0.146 0.257 0.198 0.126
MAX 0.777 0.739 0.746 0.838 0.728

AVG. RANK 1.87 1.59 1.17 1.67 1.64

8.3.1. Total Neuron Variation (TNV)

Figure 10 and Table 10 show the evaluation of total neuron variation (TNV) for various
DHNN-RANkSAT models. The performance of αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT

and αHEA
RANkSAT with DHNN in terms of variation of final neuron states in the training phase

will be examined in this section. According to the finding, the neuron variations generate
for αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT are slowly growing up, and these models have achieved
maximum peak with TNV = 94.8, TNV = 98.6 and TNV = 91.8, respectively in NN = 50.
The model αABC

RANkSAT reached the highest peak at NN = 60 and achieved TNV = 100.
After NN = 50 and NN = 60, the number of solution variations for the αES

RANkSAT,
αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT models continuously drops down, and after NN ≥ 100, the
neuron variation is very low for αEA

RANkSAT and almost zero for αES
RANkSAT, αGA

RANkSAT, αABC
RANkSAT.

This is due to αES
RANkSAT having no optimization layer that cannot explore the search space.

A higher number of neurons (NN), αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT becomes stuck at local

optima due to the inability of the key operators, such as advertising campaigns for EA in
searching for solution space.

To the contrary, our proposed αHEA
RANkSAT model has gradually reached the peak and

remained until the end of the simulation. This is owing to the efficient synaptic weight
management and training provided by αHEA

RANkSAT. Furthermore, αHEA
RANkSAT has two phases

with four-layer optimization, which allows for the intensification and diversification of
a large search space with the use of optimization operators. This model has manifested
that the proposed logical structure is very effective in creating more variation of solutions
as the number of neurons increases. Moreover, the variation analysis by αHEA

RANkSAT shows
the diversified negative literals impact of DHNN on the production of global solutions.
Consequently, we can say that lower energy analysis (ratio global) affects the low per-
formance TNV (for αES

RANkSAT, αEA
RANkSAT, αGA

RANkSAT, αABC
RANkSAT) and higher energy analysis

(ratio global) depicts the increased performance of TNV for αHEA
RANkSAT.

In Table 10, the Friedman test directed for αEA
RANkSATαES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT and
αHEA

RANkSAT models. The degree of freedom is d f = 4, considering a0 = 0.05, and the Chi-
Square value for TNV is χ2 = 61.511. The null hypothesis of equal performance for all the
models is rejected. Furthermore, the highest value of an average rank represents the best
position of a model. Here, we have also checked the rank analysis of the models through
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Table 10 and identified that the highest rank for TNV has occurred for αHEA
RANkSAT model,

which is 4.91.

8.3.2. Gower–Legendre Index (GLI)

Figure 11 and Table 11 portrayed the GLI value attained by different DHNN-RANkSAT
models. GLI measures the similarity of negative states concerning the benchmark state.
For this case, the higher GLI value is better for investigating the similarity index. In our
analysis, the αES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT models have recorded poor values 0.2, 0.198 and
0.126, respectively, for higher NN. This states that for higher NN, different number of
negative states in the logical rule results valleys, which decrease to a lower value. Even at
95 ≤ NN ≤ 120, αES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT cannot generate any value, which means
that these models are trapped into 100% local minima solutions. Correspondingly, for
higher NN, the GLI value is staked at 0.15, which is also very low. This αEA

RANkSAT model
can generate a minimum GLI value at the end of the simulation because it can produce a
few global solutions for higher NN and the variables of each state for αk

RAN3SAT obtained
are not all equal to the ideal neuron states.

Nevertheless, the proposed αHEA
RANkSAT generates a designated value 0.65 ≤ GLI ≤ 0.75 un-

til the end of the simulation, which shows a higher GLI value rather than other presented
models. This demonstrates that the proposed αHEA

RANkSAT showcased with the different NN
do not affect the variation of final neuron states. Moreover, the composition of multi-
objective concept effect αHEA

RANkSAT for higher GLI value since this proposed model makes a
good alignment with RANkSAT representation. In addition, the higher GLI value admits
the mechanism that is capable of finding ideal solution strings, which enhances the storage
capacity of DHNN. This model successfully explored more diverse states that result in
global minimum energy.

In Table 11, the Friedman test directed for αEA
RANkSATαES

RANkSAT, αGA
RANkSAT, αABC

RANkSAT and
αHEA

RANkSAT models. The degree of freedom is d f = 4, considering a0 = 0.05, and the Chi-
Square value for GLI is χ2 = 17.072. The null hypothesis of equal performance for all the
models is rejected. Furthermore, the highest value of an average rank represents the best
position of a model. Here, we also check the rank analysis of the models through Table 11
and identify that the highest rank for GLI occurred for αHEA

RANkSAT model, which is 1.87.
From Figures 4–11 and Tables 5–11, the scenario of the overall performances of the

models is demonstrated. The final neuron states attained by the proposed αHEA
RANkSAT model

is found very nominal in the over-fitting issue and obtain the highest neuron variation
achieved at the end of the simulation. More importantly, the storage capability in terms
of ideal solution strings, error calculations and energy analysis exposed that the αHEA

RANkSAT
model achieved the highest global minima solutions, which correspond to global minimum
energy. If we observe the compatibility of the mentioned models in terms of storage
capacity, training analysis, testing analysis, energy analysis and similarity analysis our
proposed DHNNRANkSAT-HEA model outperformed the traditional EA, ES, GA and
ABC models.

8.4. Impact Analysis

The pioneer observation from the above discussions and analysis, it is clearly visible
that αHEA

RANkSAT is superior to other presented models. The balanced exploration–exploitation
mechanist, proper placement of the local–global search operators and the perfect intelligent
mutation mechanism piled αHEA

RANkSAT as an unbeatable strength compared to other men-
tioned models with the optimal solutions. As shown in the pseudo-code of αHEA

RANkSAT, the
diversity phase was observed to explore more negative states that correspond to the pro-
jected solution string. For the exploration part, the trajectory of the fitness value is obtained
by the ‘maximum fitness phase’ in the advertisement campaign (Negative advertisement
and Coalition part).

This is contrary to other models (αES
RANkSAT, αEA

RANkSAT, αGA
RANkSAT, αABC

RANkSAT), which in-
crease the gap between the desired outcome and the current fitness value of the population.
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In terms of exploitation, the Positive advertisement and Caretaker party of the advertise-
ment campaign keep fasting to acquire the highest fitness value. The exploration and
exploitation strategy assemble to achieve our objectives in a single iteration. On the other
hand, other models do not acquire similar benefit because of unbalancing position of
exploration–exploitation mechanisms that creates lower fitness value. Thus, αHEA

RANkSAT is
reported to provide a positive impact although the initial population was initialized in
random nature.

8.5. Convergence Analysis

In this experiment, Figure 12a–d shows the convergence behavior of the proposed
αHEA

RANkSAT was compared with other state-of-the-art algorithms. The combined existence
of the exploration and exploitation strategy of the proposed αHEA

RANkSAT is more balanced
in comparison to other algorithms. As shown in Figure 12a–d, the convergence curve
for different RANkSAT models illustrated that αHEA

RANkSAT requires only single iterations
to obtain optimal solutions compared to other state-of-the-art algorithms. Having more
exploitation mechanisms, the αHEA

RANkSAT model manages to avoid being trapped in the
local solutions.
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Although, αEA
RANkSAT, αABC

RANkSAT showed competitive performances, the number of itera-
tions requires more than the proposed model. Another obvious issue is that αGA

RANkSAT needs
higher iterations since the operator is not quite effective. The models αEA

RANkSAT, αABC
RANkSAT

and αGA
RANkSAT have the primary weakness in terms of exploration and exploitation in de-

ploying and utilizing the operators. This convergence analysis shows that αES
RANkSAT failed

to present the influence since it has no exploration and exploitations mechanisms.

8.6. Overall Comparative Overview of the Proposed αHEA
RANkSAT Method with Existing Methods

In this section, we consider a different number of neurons (NN = 30, 60, 90, 120) to
verify the effectiveness of the proposed model with some other standard models. Table 12
illustrates an overall comparison of αHEA

RANkSAT with existing methods with different metrics.
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Table 12. Overall performance analysis for different DHNN-RANkSAT models.

Models Fitness
(fLj

) Diversity (νT) MAE-Testing Number of Global
Solutions (NGlobal)

MAE-Energy Total Neuron
Variations (TNV)

Gower–
Legendre Index

(GLI)

αHEA
RANkSAT 97.60% 98.08% 0 100% 0 97.40 74.82%

αEA
RANkSAT (Original

version) [23] 80.31% 92.55% 40 70% 5.98 52.55 42.85%

αES
RANkSAT [12] 70.38% 89.07% 50 51% 6.81 42.15 41.6%

αGA
RANkSAT [19] 74.75% 91.30% 47.5 56% 6.68 38.80 38.30%

αABC
RANkSAT [45] 78.15% 92.73% 22.5 75% 6.04 50.25 41.17%

Based on Table 12, for different numbers of neurons αHEA
RANkSAT generated the superior

result in terms of fitness accuracy, diversity accuracy, testing error, energy error, total neuron
variations and similarity index analysis compared to other mentioned models. It means
that αHEA

RANkSAT satisfies our desired objectives: maximum fitness value and diversified
logical structure with desired ideal solution string that enhances the storage capacity of
DHNN. It is worthwhile to discuss the intriguing fact revealed by the retrieval capability
of DHNN in ensuring the final states of the neurons that lead to global convergence. The
robust operators of the proposed αHEA

RANkSAT enhanced the capability of achieving the highest
number of global solutions. In a nutshell, we can express that our proposed αHEA

RANkSAT
model outperformed all the mentioned models.

8.7. Pareto Optimality Analysis

The performance of αHEA
RANkSAT in doing multi-objective function can be examined

through Pareto front solutions [50]. Here, Figure 13 explains the Pareto frontier of a multi-
objective function with two criteria where most points belong to the Pareto frontier area.
This figure delineates several important features—dominated states, non-dominated states,
Pareto front and Ideal objective state of Pareto optimality for a multi-objective function.
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Generally, the Pareto front consists of the set of best trade-off points, which are noted
as the non-dominated points. While the Ideal states define the upper bounds (optimal
points) for the objective function values, respectively. According to the study of [51], the
neuron state produced by the αHEA

RANkSAT model as shown in Figure 14 that follows the
non-dominated states as well as upper bound states which achieves Ideal states.
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However, our proposed model does not entirely incorporate the concept of Pareto
dominance in the selection of Ideal strings. Our proposed αHEA

RANkSAT relies greatly in the
competency of both objective functions. In this context, an Ideal string must comply
with maximum fitness with logical diversity that are stored in CAM (DHNN). When the
string achieves maximum fitness then it proceeds to the diversity phase. The mechanism
continues unless any one of the phases failed to satisfy the objective functions. Moreover,
the Pareto optimality can be considered when five (5) ideal solution strings fail to generate
in a simulation. In our total simulation (10 ≤ NN ≤ 120), the proposed model successfully
achieved five ideal solution strings. Hence, the sub optimal neuron state for αHEA

RANkSAT
cannot be found and analyzed.

9. Conclusions

This paper reveals a novel multi-objective DHNNRANkSAT-HEA model, and a new
insight into the non-systematic logical rule for a high dimensional decision system. A
higher order logical structure addressed as RANkSAT (for k = 3, 2) is formed to optimize
the cost function of DHNN. This paper proposed a novel multi-objective function that
capitalize maximum fitness and diversified ratio of negative literals in each clause with
five ideal solution strings that increase the storage capacity of DHNN.

A new hybrid metaheuristic, named Hybrid Election Algorithm (HEA), is also pro-
posed by introducing a dynamic ‘Caretaker party’ operator in the mechanism of an ad-
vertisement campaign that improves the quality of local solutions. More importantly, our
proposed model is capable of maintaining balance between the exploration–exploitation
strategy for which it can avoid sub optimal solutions. Importantly, our proposed DHN-
NRANkSAT-HEA model successfully interprets to minimize the cost function within a
single iteration during the training phase. Finally, we observed from the experimental
evaluations and statistical and impact analysis that our proposed DHNNRANkSAT-HEA
model achieved superior results in comparison with other models.

According to the famous no-free-lunch theorem [52], no metaheuristic/algorithm
can perform equally well in all types of conditions. In this regard, our model might not
guarantee that it can be successfully implemented on other ANNs, such as the Radial Basis
Function Neural Network, since each ANN model has individual architecture analysis. On
the other hand, this DHNNRANkSAT-HEA model has several shortcomings that could be
addressed in future research. We emphasize that our proposed model limits the number of
maximum combinations (COMBMAX), which also limits the simulation ability to generate
satisfiable neuron states. Furthermore, this study stops at 120 neurons, in contrast to [23],
which takes up to 300 neurons. This discussion also verified that the compatibility of
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α3,2
RANkSAT with the proposed αHEA

RANkSAT model in DHNN logic programming can be applied
in the logic/data mining field [53,54] in the next exploration.
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Abbreviation

ANN Artificial Neural Network
HNN Hopfield Neural Network
DHNN Discrete Hopfield Neural Network
SAT Boolean Satisfiability
3SAT 3 Satisfiability
2SAT 2 Satisfiability
RANkSAT Random k Satisfiability

DHNNRANkSAT-HEA
Random k Satisfiability with Hybrid Election Algorithm in Discrete
Hopfield Neural Network

A DHNNRANkSAT-EA
Random k Satisfiability with Election Algorithm in a Discrete
Hopfield Neural Network

DHNNRANkSAT-ES
Random k Satisfiability with Exhaustive search in a Discrete
Hopfield Neural Network

DHNNRANkSAT-GA
Random k Satisfiability with Genetic Algorithm in a Discrete
Hopfield Neural Network

DHNNRANkSAT-ABC
Random k Satisfiability with Artificial Bee Colony algorithm in a
Discrete Hopfield Neural Network

αk
RAN3SAT Random 3 Satisfiability

α3,2
RANkSAT Random k Satisfiability for k= 3,2

RAN2SAT Random 2 Satisfiability
RAN3SAT Random 3 Satisfiability
MAJ2SAT Major 2 Satisfiability
αHEA

RANkSAT Hybrid Election Algorithm for Random k Satisfiability
αEA

RANkSAT Election Algorithm for Random k Satisfiability
αES

RANkSAT Exhaustive Search Algorithm for Random k Satisfiability
αGA

RANkSAT Genetic Algorithm for Random k Satisfiability
αABC

RANkSAT Artificial Bee Colony Algorithm for Random k Satisfiability
δP3SAT 3 SAT clauses
ES Exhaustive Search
δP2SAT 2 SAT clauses
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MAE Mean Absolute Error
MAD Median Absolute Deviation
NN Number of Neurons
HTAF Hyperbolic Tangent Activation Function
RGS Ratio of Global Solutions

J (k)
i Clause combination for 3,2,1 literal.

fLj Best fitness

Si State of the i-th neuron
Wabc Synaptic weight from the unit a to c
σ Advertisement rate
µ Full Satisfied Strings
ρ Ideal Solution Strings
hi Local field
CorD Correlation Distance function
∧ Conjunction (AND)
∨ Disjunction (OR)
¬ Negation
GLI Gower–Legendre Index
Hαk

RAN3SAT
Energy function Random 3 Satisfiability

Hmin
αk

RAN3SAT
Minimum Energy function for Random 3 Satisfiability

f (Fmax, γ, S(i)
max)

Multi-objective functions that contain maximum fitness value with
diversity ratio and ideal strings.

TF Tolerance value for fitness function
TD Tolerance value for diversity analysis
νA Achieved a number of states for diversity
νT The target number of states for diversity
βC Numerical calculation of storage capacity
ξ Diversity of the logical rule in percentage

Appendix A

We provide a real example that may guide you on how a party, voters and candidate
represent the value.

Consider an example: αHEA
RANkSAT = (A ∨ B ∨ ¬C) ∧ (D ∨ ¬E ∨ F) ∧ (¬G ∨ ¬H)

Table A1. Calculation of voters and Candidate of a Party P.

Voters SA SB SC SD SE SF SG SH Fitness Value

1 1 1 1 1 1 1 1 1 2

2 1 −1 1 −1 1 1 −1 1 3

3 −1 −1 1 1 −1 1 1 1 1

4 −1 −1 1 −1 1 1 −1 1 2

From the above table, we observe that there are three voters of the Party P. Each voter
has an individual fitness value. Here, we see that Voter 2 achieved the highest fitness value,
and accordingly, Voter 2 will be considered as the Candidate of the Party P.
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