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Abstract: The theory of finitely supported structures is used for dealing with very large sets having a
certain degree of symmetry. This framework generalizes the classical set theory of Zermelo-Fraenkel
by allowing infinitely many basic elements with no internal structure (atoms) and by equipping
classical sets with group actions of the permutation group over these basic elements. On the other
hand, soft sets represent a generalization of the fuzzy sets to deal with uncertainty in a parametric
manner. In this paper, we study the soft sets in the new framework of finitely supported structures,
associating to any crisp set a family of atoms describing it. We prove some finiteness properties for
infinite soft sets, some order properties and Tarski-like fixed point results for mappings between soft
sets with atoms.
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1. Introduction

Finitely supported sets are related to the permutation models of the Zermelo–Fraenkel
set theory with atoms (ZFA) which were originally described by Fraenkel and Mostowski in
the 1930s to prove the independence of the axiom of choice from the other axioms of the ZFA
set theory [1,2]. Since the existence of atoms (that are defined as entities having no internal
structure) in ZFA requires the modification of the axiom of extensionality from the Zermelo–
Fraenkel set theory (ZF), finitely supported sets were alternatively described and studied
in the ZF set theory by equipping ZF sets with actions of the group of finitary permutations
(i.e., the group of one-to-one and onto transformations) of some basic elements whose
internal structure is ignored. If A is the set of all basic elements (called atoms by analogy
with the ZFA approach), a finitely supported element in a ZF set equipped with such a
group action is an element having the property that there exists a finite subset of A such
that every finitary permutation of A fixing the related subset of A pointwise also leaves it
unchanged under the effect of the group action. An invariant set is a ZF set equipped with
a group action of the group of all finitary permutations of A having the property that all
its elements are finitely supported. A finitely supported set is a subset of an invariant set
which is finitely supported as an element in the powerset of the invariant set. A finitely
supported structure is a finitely supported set equipped with a finitely supported binary
relation (these aspects are detailed in Section 2). A categorical development for finitely
supported sets is presented in [3], while a set theoretical approach is presented in [4].

Finitely supported sets were not only used to deal with very large structures [5],
but also to model renaming, fresh names and variables binding in the theory of pro-
gramming [3]. Inductively defined finitely supported sets involving the name-abstraction
together with a disjoint union and a Cartesian product are able to encode syntax modulo
renaming of bound variables. The concept of structural recursion for defining syntax-
manipulating functions can be formalized into this framework, which admits a proving
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method by structural induction. Some generalizations of finitely supported sets were used
in [6] to study automata or Turing machines over infinite alphabets by relaxing the notion
of finiteness (instead of assuming finitely many elements, one may assume finitely many
orbits/equivalence classes). Finitely supported partially ordered sets were first introduced
in [7] to describe a denotational semantics for a functional programming language incorpo-
rating facilities for manipulating syntax involving names and binding operations. For this,
the author presented the solution of the Scott recursive domain equation D ∼= (D → D) in
the framework of finitely supported structures. Later, we used finitely supported partially
ordered sets and lattices to describe abstract interpretation, rough sets and fuzzy sets in
the new framework and to provide various fixed point and approximation properties for
infinite structures [8].

The world of finitely supported structures contains both the family of non-atomic
ZF structures which are proved to be trivially invariant (i.e., all their elements are empty
supported because, intuitively, they are hierarchically constructed from ∅) and the family
of atomic structures with finite (but possibly non-empty) supports. One of our goals was
to check whether the ZF results remain valid when replacing a ‘non-atomic ZF structure’
with an ‘atomic and finitely supported structure’. We emphasized in [4] that results from
ZF might lose their validity when transferring them into an atomic framework (such as
ZFA). For example, the ‘multiple choice principle implies the axiom of choice’ is a valid
theorem in ZF (see Theorem 5.4 in [9]), but it does not hold in ZFA because the multiple
choice principle is valid in the second Fraenkel model of ZFA, namely model N2 from [10]
(see Theorem 9.2 of [11]), while the axiom of choice is not valid in the related model.

The meta-theoretical technique for transferring ZF results into the world of finitely
supported sets and structures is based on a closure property for finite supports in a (higher-
order) hierarchical construction (called ‘S-finite support principle’) claiming that “for any
finite set S of atoms, anything that can be defined in higher-order logic from structures supported
by S, by using each time only constructions supported by S, is itself supported by S" [4]. The
formal involvement of this meta-theoretical principle requires a step-by-step building of
the support of a structure by employing, at every step, the previously constructed supports
of the substructures of the related structure.

Regarding the motivation of this article, let us recall that the theory of finitely sup-
ported structures allows a discrete (finitary) representation of possibly infinite sets con-
taining enough symmetries to be concisely handled. This theory allows us to treat as
equivalent the elements in a structure that have a certain degree of similarity and to focus
only on those elements that are really different (those forming the support of the structure).
The aim of this paper is to define and study the soft sets in the framework of finitely
supported structures.

Fuzzy set theory deals with uncertainties [12]. While a crisp set has associated the
characteristic function which establishes whether a certain element belongs to the set, a
fuzzy set has associated a membership function which models the degree of membership
for each element. More exactly, the membership function associated to a fuzzy set X could
take any values in the real interval [0, 1], while the classical characteristic function of a set X
can only take two values: 0 (for non-membership) and 1 (for membership). More generally,
the unit interval [0, 1] could be replaced by an arbitrary complete lattice to define L-fuzzy
sets [13]. In [14] and [8], we studied the fuzzy sets and the L-fuzzy sets in the framework of
finitely supported structures and provided a discrete presentation of infinite (L-)fuzzy sets.

Soft sets represent a generalization of fuzzy sets [15]. If U is an initial universal set
and E is a set of parameters, a soft set is defined as a mapping from a subset of E to
the powerset of U. In this paper, we describe the soft sets in the framework of finitely
supported sets. After mentioning some preliminary results, we define a soft set with atoms
as a finitely supported mapping from a finitely supported set to the finitely supported
powerset of the universal set A of all basic elements. In this way, every element in the crisp
finitely supported set has a finitely supported subset of atoms associated. We present some
Dedekind-finiteness properties of the set of all soft sets with atoms defined on a certain
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finitely supported set satisfying a Dedekind-finiteness property. Particularly, we are able to
prove that whenever X is a finitely supported set having the property that its powerset is
Dedekind-finite, the finite powerset of the set of all soft sets with atoms defined on X× An

is also Dedekind-finite. Then we organize the set So f t(X) of all soft sets with atoms defined
on a finitely supported set X as a finitely supported complete lattice, and by using the
S-finite support principle, we prove a Tarski-like fixed point property stating that the set of
all fixed points of any finitely supported, order-preserving, self mapping on So f t(X) forms
a finitely supported complete lattice. Since the theory of finitely supported sets represents
a tool for providing a computational description of very large structures, our approach
helps us to provide finiteness properties for infinite fuzzy sets by involving the notion of
finite support.

2. Preliminaries

In this section, we present preliminary results regarding finitely supported sets. They
were also described by us in other articles and monographs we mention here [4]. They can
also be found in a slightly different framework of nominal sets in [3]. The elements of A
can be checked only for equality, i.e., their internal structure in not taken into consideration.
A transposition of atoms is a function that interchanges two atoms, i.e., a function of form
(x y) : A → A defined by (x y)(x) = y, (x y)(y) = x, and (x y)(z) = z for z 6= x, y. A
finitary permutation of atoms is defined as a bijection of A generated by composing finitely
many transpositions, i.e., a bijection of A leaving invariant all but finitely many elements
of A. The set of all finitary permutations of atoms is denoted by SA.

Definition 1 ([4]). Let X be a ZF set.

1. An SA-action on X is a group action of SA on X, i.e., a function · : SA × X → X having the
properties that IdA · x = x and π · (π′ · x) = (π ◦ π′) · x for all π, π′ ∈ SA and x ∈ X.

2. An SA-set is a pair (X, ·), where X is a ZF set and · : SA × X → X is an SA-action on X.
3. Let (X, ·) be an SA-set. We say that S ⊂ A supports x if for each π ∈ Fix(S), we have

π · x = x, where Fix(S) = {π ∈ SA |π(a) = a for all a ∈ S}. An element which is
supported by a finite subset of atoms is called finitely supported.

4. Let (X, ·) be an SA-set. We say that set X is an invariant set whenever for each x ∈ X there
is a finite set Sx ⊂ A supporting x.

5. Let X be an SA-set, and x ∈ X. If there is a finite set supporting x, then there exists a (unique)
least finite set supp(x) supporting x [4], defined as the intersection of all sets supporting x,
which is called the support of x. An empty supported element is equivariant; z ∈ X is
equivariant if and only if π · z = z for all π ∈ SA.

Let (X, ·) and (Y, .) be SA-sets. According to [4], the set A of atoms is an invariant
set with the SA-action · : SA × A → A defined by π · a := π(a) for all π ∈ SA and a ∈ A.
The Cartesian product X × Y is an SA-set with the SA-action ⊗ defined by π ⊗ (x, y) =
(π · x, π . y) for all π ∈ SA and all x ∈ X, y ∈ Y. For (X, ·) and (Y, .) invariant sets,
(X × Y,⊗) is also an invariant set. The powerset ℘(X) = {Y |Y ⊆ X} is an SA-set with
the SA-action ? defined by π ? Y := {π · y | y ∈ Y} for all π ∈ SA and Y ∈ ℘(X). For
an invariant set (X, ·), ℘ f s(X) denotes the set formed from those subsets of X that are
finitely supported in the sense of Definition 1(3) as elements of the SA-set ℘(X) with respect
to the SA-action ? described above; (℘ f s(X), ?|℘ f s(X)) is an invariant set, where ?|℘ f s(X)

represents the action ? restricted to ℘ f s(X). Non-atomic sets are trivially invariant, i.e.,
they are equipped with the action � defined by π � x = x for all π ∈ SA and x ∈ X.

Definition 2.

1. A subset Y of an invariant set (X, ·) is called finitely supported if and only if Y ∈ ℘ f s(X).
In this case, we shortly say that (Y, ·) is a finitely supported set.

2. A subset Y of an invariant set (X, ·) is uniformly supported if all of its elements are
supported by the same finite set of atoms.
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3. A finitely supported set that does not contain a uniformly supported infinite subset is
called un-finite.

If π ∈ SA, X ∈ ℘(Y) and Y is an SA-set, then π ? X = X if and only if π ? X ⊆ X,
considering ? defined on ℘(Y). Hence, X is finitely supported by S if and only if π · x ∈ X
for all x ∈ X and π ∈ Fix(S) (this is because finitary permutations of atoms are of finite
order). We also note that a finite subset of an invariant set is uniformly supported by the
union of the supports of its elements.

It is worth noting that there may exist subsets of an invariant set that are not finitely
supported. As presented in [4], a subset of the invariant set A of all atoms is finitely
supported if and only if it is finite or it has a finite complement. Furthermore, if X ⊂ A
and X is finite, then supp(X) = X. If Z ⊆ A and Z has a finite complement, then
supp(Z) = A \ Z.

Since functions are particular subsets of the Cartesian product of two sets, for two
invariant sets (X, ·) and (Y, .), U ∈ ℘ f s(X), V ∈ ℘ f s(Y), we say that a function f : U → V
is finitely supported if f ∈ ℘ f s(X×Y). Note that YX is an SA-set with the SA-action ?̃ defined
by (π?̃ f )(x) = π . ( f (π−1 · x)) for all π ∈ SA, f ∈ YX and x ∈ X. A function f : U → V is
finitely supported (in the sense of the above definition) if and only if it is finitely supported
with respect to the permutation action ?̃. The set of all finitely supported functions from U
to V is denoted by VU

f s .

Proposition 1. Let U be a finitely supported subset of an invariant set (X, ·) and V a finitely
supported subset of an invariant set (Y, .). A function f : U → V is supported by S if and only if
for all u ∈ U and all π ∈ Fix(S) we have π · u ∈ U, π . f (u) ∈ V and f (π · u) = π . f (u).

It is proven in [4] that a finitely supported function f : A→ A is bijective if and only
if it is a finitary permutation; thus, finitary permutations are simply called permutations in
the framework of finitely supported structures.

3. Finitely Supported Soft Sets

In this section, we present the notion of a soft set with atoms by translating the ZF
concept of a soft set in the framework of finitely supported structures. A soft set with
atoms is a finitely supported function from a finitely supported set to the finitely supported
powerset of all atoms. Formally, this is expressed below.

Definition 3. Let X be a finitely supported set. A soft set with atoms on X is a pair (X, f ), where
f : X → ℘ f s(A) is a finitely supported function, and A is the invariant set of all atoms equipped
with the canonical SA-action (π, a) 7→ π(a) for π ∈ SA, a ∈ A.

Proposition 2. Let X be a finitely supported set.

1. The pair (X, f ), where f : X → ℘ f s(A) is defined by f (x) = supp(x) for all x ∈ X, is a
soft set with atoms.

2. The pair (X, g), where g : X → ℘ f s(A) is defined by g(x) = A \ supp(x) for all x ∈ X, is
a soft set with atoms.

Proof. We note that X is a finitely supported set, which means it is a finitely supported
subset of an invariant set (Y, ·), i.e., X is a finitely supported element of ℘(Y) having a
support supp(X) defined as the least finite set of atoms supporting X.

1. Let π ∈ Fix(supp(X)) and x ∈ X. Therefore, π · x ∈ X. We claim that Sx :=
π ? supp(x) = {π(a) | a ∈ supp(x)} supports π · x. Let τ ∈ Fix(Sx). This means
τ(π(a)) = π(a) for all a ∈ supp(x). Thus, π−1(τ(π(a))) = π−1(π(a)) = a for all
a ∈ supp(x), and so π−1 ◦ τ ◦ π ∈ Fix(supp(x)). Since supp(x) supports x, we
get that (π−1 ◦ τ ◦ π) · x = x, and so τ · (π · x) = (τ ◦ π) · x = π · x from which
supp(π · x) ⊆ Sx = π ? supp(x) for each x ∈ X and each π ∈ Fix(supp(X)) (*). We
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can apply the relation (*) for the elements π−1 ∈ Fix(supp(X)) and π · x ∈ X. We
have that supp(x) = supp((π−1 ◦ π) · x) = supp(π−1 · (π · x)) ⊆ π−1 ? supp(π · x),
for which (since the relation ⊆ on ℘ f s(A) is equivariant) π ? supp(x) ⊆ π ? (π−1 ?

supp(π · x)) = (π ◦π−1) ? supp(π · x) = supp(π · x). Thus, f (π · x) = supp(π · x) =
π ? supp(x) = π ? f (x) for all x ∈ X and all π ∈ Fix(supp(X)) meaning that f is
finitely supported, and so it is a soft set with atoms.

2. Let π ∈ Fix(supp(X)) and x ∈ X. Therefore, π · x ∈ X. Since A is an invariant set,
we get that π ? A = A. According to item 1, we have g(π · x) = A \ supp(π · x) =
A \ (π ? supp(x)) = (π ? A) \ (π ? supp(x)) = π ? (A \ supp(x)) = π ? g(x) for all
x ∈ X, and so g is finitely supported according to Proposition 1.

4. Finiteness Properties of Soft Sets with Atoms

The goal of this section is to prove several un-finiteness properties for infinite soft sets
with atoms. We start this section with a lemma that can be proved by involving the S-finite
support principle.

Lemma 1. Let (U, ·), (V, ·) be finitely supported sets.

1. There exists a finitely supported bijective function
ϕ : { f : U → ℘ f s(V) | f is finitely supported} → ℘ f s(U ×V).

2. There exists a finitely supported bijection f : U ×V → V ×U.
3. If there is a finitely supported bijection f : U → V, then there exists a finitely supported

bijection g : ℘ f s(U)→ ℘ f s(V).
4. If there is a finitely supported bijection f : U → V, then there exists a finitely supported

bijection f−1 : V → U.
5. If there is a finitely supported bijection f : U → V, then U is un-finite if and only if V

is un-finite.

Proof.

1. Let us define ϕ as follows:

ϕ( f ) =
{
{(u, v) | u ∈ U, v ∈ f (u)}, if ∃u ∈ U. f (u) 6= ∅;
∅, if ∀u ∈ U. f (u) = ∅.

• We remark that ∅ is equivariant under the SA-action on the powerset of an
invariant set. Indeed, since ⊆ is equivariant, we have ∅ ⊆ π ? ∅ ⊆ π2 ? ∅ ⊆
. . . ⊆ πn ? ∅ ⊆ . . . for all π ∈ SA. Since there is m ∈ N such that πm = IdA, we
get that ∅ = π ? ∅ for all π ∈ SA.

• ϕ is well-defined. Let f : U → ℘ f s(V) be a finitely supported function. We claim
that ϕ( f ) is supported by supp(U) ∪ supp(V) ∪ supp( f ). Let π ∈ Fix(supp(U) ∪
supp(V) ∪ supp( f )). Then π ? U = U, π ? V = V, f (π · z) = π ? f (z) for all
z ∈ U. We have π ? ϕ( f ) = π ? ∅ (if ∀u ∈ U. f (u) = ∅) = ∅ (if ∀u ∈ U. f (u) =

∅)
π·u:=u′
= ∅ (if ∀u′ ∈ U. f (π−1 ·u′) = ∅) = ∅ (if ∀u′ ∈ U.π−1 ? f (u′) = ∅) = ∅

(if ∀u′ ∈ U. f (u′) = ∅). Moreover, π ? ϕ( f ) = π ? {(u, v) | u ∈ U, f (u) 6=
∅, v ∈ f (u)} (if∃u ∈ U. f (u) 6= ∅) = {π ⊗ (u, v) | u ∈ U, f (u) 6= ∅, v ∈
f (u)} (if∃u ∈ U. f (u) 6= ∅) = {(π · u, π · v) | u ∈ U, f (u) 6= ∅, v ∈ f (u)}
(if∃u ∈ U. f (u) 6= ∅)

π·u:=u′ ,π·v:=v′
= {(u′, v′) |π−1 · u′ ∈ U, f (π−1 · u′) 6= ∅, π−1 ·

v′ ∈ f (π−1 · u′)} (if∃u′ ∈ U. f (π−1 · u′) 6= ∅) = {(u′, v′) | u′ ∈ π ? U, π−1 ?
f (u′) 6= ∅, v′ ∈ π ? f (π−1 · u′)} (if∃u′ ∈ U.π−1 ? f (u′) 6= ∅) = {(u′, v′) | u′ ∈
U, f (u′) 6= π ? ∅, v′ ∈ f (π · (π−1 · u′))} (if∃u′ ∈ U. f (u′) 6= π ? ∅). Hence,

π ? ϕ( f ) =
{
{(u′, v′) | u′ ∈ U, f (u′) 6= ∅, v′ ∈ f (u′))}, if ∃u′ ∈ U. f (u′) 6= ∅;
∅, if ∀u′ ∈ U. f (u′) = ∅

= ϕ( f ).
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• ϕ is finitely supported. Let π ∈ Fix(supp(U) ∪ supp(V)). We have ϕ(π?̃ f ) =
∅ (if ∀u ∈ U.(π?̃ f )(u) = ∅) = ∅ (if ∀u ∈ U.π ? f (π−1 · u) = ∅) = ∅ (if ∀u ∈
U. f (π−1 · u) = π−1 ? ∅) = ∅ (if ∀u ∈ U. f (π−1 · u) = ∅)

π−1·u:=u′′
= ∅ (if ∀u′′ ∈

U. f (u′′) = ∅) = π ? ∅ (if ∀u′′ ∈ U. f (u′′) = ∅). Moreover, in the other case,
ϕ(π?̃ f ) = {(u, v) | u ∈ U, (π?̃ f )(u) 6= ∅, v ∈ (π?̃ f )(u)} (if ∃u ∈ U.(π?̃ f )(u) 6=
∅) = {(u, v)|u ∈ U, π ? f (π−1 · u) 6= ∅, v ∈ π ? f (π−1 · u)}(if ∃u ∈ U.π ? f
(π−1 · u) 6= ∅) = {(u, v) | u ∈ U, f (π−1 · u) 6= π−1 ? ∅, π−1 · v ∈ f (π−1 ·
u)} (if ∃u ∈ U. f (π−1 · u) 6= π−1 ? ∅) = {(u, v) | u ∈ U, f (π−1 · u) 6= ∅, π−1 ·
v ∈ f (π−1 · u)} (if ∃u ∈ U. f (π−1 · u) 6= ∅)

π−1·u:=u′′ ,π−1·v:=v′′
= {(π · u′′, π · v′′) | u′′ ∈

π−1 ? U, f (u′′) 6= ∅, v′′ ∈ f (u′′)} (if ∃u′′ ∈ U. f (u′′) 6= ∅). Thus, we get that ϕ(π?̃ f ) ={
{π ⊗ (u′′, v′′) | u′′ ∈ U, f (u′′) 6= ∅, v′′ ∈ f (u′′)}, if ∃u′′ ∈ U. f (u′′) 6= ∅;
π ? ∅, if ∀u′′ ∈ U. f (u′′) = ∅

= π ? ϕ( f ).

• ϕ is injective. Assume ϕ( f ) = ϕ( f ′). If ϕ( f ) = ϕ( f ′) = ∅, then f (u) = f ′(u) = ∅ for
all u ∈ U. Otherwise, (u, v) ∈ ϕ( f ) ⇔ (u, v) ∈ ϕ( f ′). Therefore, v ∈ f (u) ⇔ v ∈ f ′(u),
f (u) = ∅⇔ f ′(u) = ∅, and so f (u) = f ′(u) for all u ∈ U.

• ϕ is surjective. Let T ∈ ℘ f s(U ×V). If T = ∅, we consider g : U → ℘ f s(V), g(u) = ∅ for
all u ∈ U. Clearly for π ∈ Fix(supp(U)∪ supp(V)) we have π · u ∈ U and g(π · u) = ∅ =
π ? ∅ = π ? g(u), meaning that g is finitely supported. Clearly, ϕ(g) = T. Now, assume
T 6= ∅ and let U1 = {u ∈ U | ∃v ∈ V such that (u, v) ∈ T}. We claim that U1 is supported
by supp(U) ∪ supp(V) ∪ supp(T). Let π ∈ Fix(supp(U) ∪ supp(V) ∪ supp(T)). Since
supp(T) supports T, we get that (π · u, π · v) = π ⊗ (u, v) ∈ T for all (u, v) ∈ T. Let
u1 ∈ U1. Then there is v1 ∈ V such that (u1, v1) ∈ T. Hence, there exists π · v1 ∈ V
such that (π · u1, π · v1) ∈ T, and so π · u1 ∈ U1, which means U1 is supported by
supp(U) ∪ supp(V) ∪ supp(T), i.e., supp(U1) ⊆ supp(U) ∪ supp(V) ∪ supp(T). We also
remark that supp(U \U1) ⊆ supp(U) ∪ supp(V) ∪ supp(T). We define h : U → ℘ f s(V)

as follows: h(u) =
{
{v | (u, v) ∈ T}, if u ∈ U1;
∅, if u /∈ U1

.

We prove that h is well-defined. Let us consider u ∈ U1, and π ∈ Fix(supp(U) ∪
supp(V) ∪ supp(T) ∪ supp(u)). We have π · u = u, and π ? h(u) ={

π ? {v | (u, v) ∈ T}, if u ∈ U1;
π ? ∅, if u /∈ U1

={
{π · v | (u, v) ∈ T}, if u ∈ U1;
∅, if u /∈ U1

π·v:=v′
={

{v′ | (π−1 · u, π−1 · v′) ∈ T}, if u ∈ U1;
∅, if u /∈ U1

={
{v′ |π−1 ⊗ (u, v′) ∈ T}, if u ∈ U1;
∅, if u /∈ U1

={
{v′ | (u, v′) ∈ π ? T}, if u ∈ U1;
∅, if u /∈ U1

={
{v′ | (u, v′) ∈ T}, if u ∈ U1;
∅, if u /∈ U1

= h(u), which means that h(u) ∈ ℘ f s(V) for all

u ∈ U1. We used π ? T = T because π fixes supp(T) pointwise. For u ∈ U \U1, we
have h(u) = ∅ ∈ ℘ f s(V). Let π ∈ Fix(supp(U)∪ supp(V)∪ supp(T)), and so π ? T = T,
π ? U1 = U1. Then, h(π · u) ={

{v | (π · u, v) ∈ T}, if π · u ∈ U1;
∅, if π · u /∈ U1

={
{π · (π−1 · v) |π ⊗ (u, π−1 · v) ∈ T}, if u ∈ π−1 ? U1;
∅, if u ∈ π−1 ? (U \U1)

π−1·v:=w
={

{π · w |π ⊗ (u, w) ∈ T}, if u ∈ U1;
∅, if u ∈ U \U1

={
{π · w | (u, w) ∈ π−1 ? T}, if u ∈ U1;
∅, if u ∈ U \U1

={
{π · w | (u, w) ∈ T}, if u ∈ U1;
π ? ∅, if u ∈ U \U1

= π ? h(u), which means that h is finitely

supported (according to Proposition 1). Moreover, ϕ(h) = T, and so ϕ is surjective.
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2. Let us define f : U × V → V ×U by f (u, v) = (v, u) for all u ∈ U and v ∈ V. Let
π ∈ Fix(supp(U) ∪ supp(V)). Then π · u ∈ U for all u ∈ U, and π · v ∈ V for all
v ∈ V. Hence π ⊗ (u, v) ∈ U × V and π ⊗ (v, u) ∈ V ×U for all u ∈ U and v ∈ V.
Furthermore, f (π⊗ (u, v)) = f (π · u, π · v) = (π · v, π · u) = π⊗ (v, u) = π⊗ f (u, v)
for all u ∈ U and v ∈ V. According to Proposition 1, f is finitely supported.

3. We define g(X) = { f (x) | x ∈ X} = f (X) for X ∈ ℘ f s(U), X 6= ∅ and g(∅) =
∅. First, we prove that for X ∈ ℘ f s(U) and Y ∈ ℘ f s(V), f (X) is supported by
supp(U) ∪ supp(V) ∪ supp(X) ∪ supp( f ) and f−1(Y) is supported by supp(U) ∪
supp(V) ∪ supp(Y) ∪ supp( f ), that is f (X) ∈ ℘ f s(V) and f−1(Y) ∈ ℘ f s(U). Let σ ∈
Fix(supp(U) ∪ supp(V) ∪ supp(X) ∪ supp( f )). Let v ∈ f (X), meaning that v = f (x)
for some x ∈ X. We have σ · x ∈ X and σ · v = σ · f (x) = f (σ · x) ∈ f (X), meaning
that σ ? f (X) = f (X). Now, let π ∈ Fix(supp(U) ∪ supp(V) ∪ supp(Y) ∪ supp( f )).
We have π ?Y = Y and π ? f−1(Y) = {π · u | u ∈ f−1(Y)} = {π · u | f (u) ∈ Y} π·u:=z

=
{z | f (π−1 · z) ∈ Y} = {z |π−1 · f (z) ∈ Y} = {z | f (z) ∈ π ? Y} = {z | f (z) ∈ Y} =
f−1(Y). Clearly, g is injective because g(X) = g(Z) implies f (X) = f (Z), and so
f−1( f (X)) = f−1( f (Z)), from which X = Z. We also have that g is surjective because
Y = g( f−1(Y)) for all Y ∈ ℘ f s(V).
It remains to prove that g is finitely supported. Let π ∈ Fix(supp( f ) ∪ supp(U) ∪
supp(V)). We have g(π ? X) = { f (x) | x ∈ π ? X} = { f (x) |π−1 · x ∈ X} π−1·x=z

=
{ f (π · z) | z ∈ X} = {π · f (z) | z ∈ X} = π ? { f (z) | z ∈ X} = π ? g(X), and so g is
finitely supported according to Proposition 1.

4. We prove that supp( f ) ∪ supp(U) ∪ supp(V) supports f−1. Let π be a permutation
of atoms fixing this set pointwise. Let fix an arbitrary v ∈ V. Then f (π−1 · u) = π−1 ·
f (u) for all u ∈ U (according to Proposition 1). We have f−1(π · v) = u′ ⇔ f (u′) =
π · v ⇔ π−1 · f (u′) = v ⇔ f (π−1 · u′) = v ⇔ f−1(v) = π−1 · u′ ⇔ π · f−1(v) = u′.
Thus, f−1(π · v) = π · f−1(v) for all v ∈ V, meaning that f−1 is finitely supported
(according to Proposition 1).

5. According to items 3 and 4, there exists a finitely supported bijection g : ℘ f s(U) →
℘ f s(V) and a finitely supported bijection g−1 : ℘ f s(V)→ ℘ f s(U). Assume that V is
un-finite. Let F be a uniformly supported (by S) family of elements in ℘ f s(U). Let
π ∈ Fix(S ∪ supp(g)). Then π fixes pointwise the support of each member of F ,
and so π ? X = X for all X ∈ F . For X ∈ F we have π ? g(X) = g(π ? X) =
g(X); thus, {g(X) |X ∈ F} is a uniformly supported subset of V which should be
finite. Since g is injective, we have that F is finite. Conversely, assume that U is
un-finite. Let G be a uniformly supported (by S′) family of elements in ℘ f s(V). Let
σ ∈ Fix(S′ ∪ supp(g−1)). Then σ fixes pointwise the support of each member of G.
For Y ∈ G, we have σ ? g−1(Y) = g−1(σ ? Y) = g−1(Y), and so {g−1(Y) |Y ∈ G} is a
uniformly supported subset of U which should be finite. Since g−1 is injective, we
have that G is finite.

Theorem 1. Let X be a finitely supported set such that ℘ f s(X) is un-finite.
Then the set So f t(X) = { f : X → ℘ f s(A) | f is finitely supported} is also un-finite.

Proof. According to Lemma 1(1), there exists a finitely supported bijection ϕ : So f t(X)→
℘ f s(X × A). According to Lemma 1(2) and (3), there exists a finitely supported bijection
ψ : ℘ f s(X× A)→ ℘ f s(A× X). According to Lemma 1(4), there exists a finitely supported
bijection ρ : ℘ f s(A× X) → { f : A → ℘ f s(X) | f is finitely supported}. Thus, there is a
bijection ρ ◦ ψ ◦ ϕ : So f t(X) → { f : A → ℘ f s(X) | f is finitely supported} supported by
supp(ρ) ∪ supp(ψ) ∪ supp(ϕ) ∪ supp(X). We prove that { f : A → ℘ f s(X) | f is finitely
supported } is un-finite, which will complete our proof.

Assume by contradiction that, for a certain S ∈ ℘ f in(A), there exist infinitely many
functions f : A→ ℘ f s(X) that are supported by S. For each function f , there exist and are
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unique two functions f |S and f |A\S (i.e., the restrictions of f to S and A \ S, respectively)
that are supported by S. This follows from Proposition 1 since supp(S) = supp(A \ S) = S,
and so for π ∈ Fix(S) we have π(x) = x ∈ S, f |S(π(x)) = f (π(x)) = π ? f (x) =
π ? f |S(x), ∀x ∈ S, and π(y) ∈ A \ S, f |A\S(π(y)) = f (π(y)) = π ? f (y) = π ? f |A\S(y)
for all y ∈ A \ S.

We prove that there is a finitely supported injection ϕ from {h : S→ ℘ f s(X) | h finitely
supported } into ℘ f s(X)|S|, where |S| represents the cardinality of S. If S = {x1, . . . , xn}, we
may define ϕ(h) = (h(x1), . . . , h(xn)). Let π be a permutation fixing {x1, . . . , xn}∪ supp(X)
pointwise. We have ϕ(π?̃h) = ((π?̃h)(x1), . . . , (π?̃h)(xn)) = (π ? h(π−1(x1)), . . . , π ?
h(π−1(xn))) = (π ? h(x1), . . . , π ? h(xn)) = π ⊗ ϕ(h) for all h ∈ ℘ f s(X)S

f s, and so ϕ is
finitely supported. Using the relation supp(U1)∪ . . .∪ supp(Un) = supp((U1, . . . , Un)) for
all U1, . . . , Un ∈ ℘ f s(X), we have that the |S|-times Cartesian product of ℘ f s(X) does not
contain a uniformly supported infinite subset; otherwise, ℘ f s(X) should itself contain a
uniformly supported infinite subset, contradicting our hypothesis.

Since we proved that f |S can be defined in at most finitely many ways, there must
exist an infinite family U of functions g : (A \ S) → ℘ f s(X) which are supported by the
same S. Let us fix an element z ∈ A \ S, and let g ∈ U . For π ∈ Fix(S ∪ {z}), according
to Proposition 1, we have π ? g(z) = g(π(z)) = g(z) meaning that supp(g(z)) ⊆ S ∪ {z}.
However, in ℘ f s(X) there exist only finitely many elements supported by S ∪ {z}. Thus,
there is k ∈ N such that g1(z), . . . , gk(z) are distinct elements in ℘ f s(X) with g1, . . . , gk ∈ U ,
and g(z) ∈ {g1(z), . . . , gk(z)} for all g ∈ U . Let us take g ∈ U and an arbitrary w ∈ A \ S,
meaning that the transposition (z w) fixes S pointwise. We have that there exists i ∈
{1, . . . , k} such that g(z) = gi(z). Since g, gi are both supported by S and (z w) ∈ Fix(S),
according to Proposition 1 we get that g(w) = g((z w)(z)) = (z w) ? g(z) = (z w) ? gi(z) =
gi((z w)(z)) = gi(w), which finally leads to g = gi on their entire domain of definition
A \ S. Therefore, U ⊆ {g1, . . . , gm} meaning that U is finite, a contradiction with our
assumption that U is infinite.

Corollary 1. The set So f t(Am) is un-finite for every m ∈ N.

Proof. We have to prove that for any m ∈ N, ℘ f s(Am) is un-finite (and the result follows
from Theorem 1). For m = 1, this is obvious because the subsets of A (i.e., the elements of
℘ f s(A)) supported by a certain S ∈ ℘ f in(A) are precisely the supersets of A \ S and the
subsets of S, being at most 2(|S|+1) such subsets. We proceed by induction on m. Assume
that ℘ f s(Am) is un-finite. According to Theorem 1, So f t(Am) is un-finite. According to
Lemma 1(1), there exists a finitely supported bijection ϕ : So f t(Am) → ℘ f s(Am × A) =

℘ f s(Am+1), and so ℘ f s(Am+1) is also un-finite.

Corollary 2. Let X be a finitely supported set such that ℘ f s(X) is un-finite.
Then the set So f t(X× An) is also un-finite for all n ∈ N∗.

Proof. From the proof of Theorem 1, we have that the set { f : A → ℘ f s(Y) | f is finitely
supported } is un-finite whenever Y is a finitely supported set such that ℘ f s(Y) is un-
finite (1). We prove that ℘ f s(X × An) is un-finite by induction on n. For n = 1 we have
to prove that ℘ f s(X × A) is un-finite. According to Lemma 1, we have that there is a
finitely supported bijection between ℘ f s(A × X) and the set { f : A → ℘ f s(X) | f is
finitely supported }. Hence, by (1), ℘ f s(A × X) is un-finite, and so ℘ f s(X × A) is also
un-finite (according to Lemma 1). Now, assume that ℘ f s(X × Ak) is un-finite for some
k ∈ N∗. We have that there is a finitely supported bijection (by supp(X)) between X× Ak+1

and (X × Ak)× A; according to Lemma 1(2), there is a finitely supported bijection (also
by supp(X)) between (X × Ak) × A and A × (X × Ak). From Lemma 1(3), there is a
finitely supported bijection between ℘ f s((X × Ak) × A) and ℘ f s(A × (X × Ak)), and a
finitely supported bijection between ℘ f s(X × Ak+1) and ℘ f s(A × (X × Ak)). However,
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from Lemma 1(1), there is a finitely supported bijection between ℘ f s(A× (X× Ak)) and
the set Z = { f : A → ℘ f s(X × Ak) | f is finitely supported}. Since ℘ f s(X × Ak) is un-
finite according to the inductive hypothesis, from (1) we have that Z is un-finite, and so
℘ f s(X × Ak+1) is un-finite, from which ℘ f s(X × An) is un-finite for all n ∈ N∗. From
Theorem 1, we get that So f t(X× An) is un-finite for all n ∈ N∗.

Corollary 3. Let X be a finitely supported set such that ℘ f s(X) is un-finite. Then, for any n ∈ N,
every injective function ϕ : So f t(X× An)→ So f t(X× An) is also surjective.

Proof. Fix some n ∈ N. According to Theorem 1 and Corollary 2, So f t(X× An) is un-finite.
Assume by contradiction that there is an injective function ϕ : So f t(X× An)→ So f t(X×
An) having the property that Im(ϕ) ( So f t(X× An). Therefore, there is f0 ∈ So f t(X× An)
such that f0 /∈ Im(ϕ), and hence, f0 6= ϕm( f0) for all m ∈ N∗. Using an induction on k, we
show that ϕk( f0) is supported by supp(ϕ) ∪ supp( f0) ∪ supp(X) for all k ∈ N. For k = 0,
we have that ϕ0( f0) = f0 is supported by supp( f0)∪ supp(X) according to the definition of
the support. Let π ∈ Fix(supp(ϕ) ∪ supp( f0) ∪ supp(X)). For k = 1 we have π?̃ϕ( f0) =
ϕ(π?̃ f0) = ϕ( f0), and so ϕ1( f0) is supported by supp(ϕ) ∪ supp( f0) ∪ supp(X). From the
inductive hypothesis and since supp(ϕk( f0)) is the intersection of all finite sets supporting
ϕk( f0), we have that supp(ϕk( f0)) ⊆ supp(ϕ) ∪ supp( f0) ∪ supp(X). Therefore, we also
have π ∈ Fix(supp(ϕk( f0)), that is π?̃ϕk( f0) = ϕk( f0). Since So f t(X × An) is supported
by supp(X) and π fixes supp(X) pointwise, we have π?̃ f ∈ So f t(X × An) for all f ∈
So f t(X× An). According to Proposition 1, π?̃ϕk+1( f0) = π?̃ϕ(ϕk( f0)) = ϕ(π?̃ϕk( f0)) =
ϕ(ϕk( f0)) = ϕk+1( f0), and so ϕk+1( f0) is supported by supp(ϕ) ∪ supp( f0) ∪ supp(X),
from which our claim follows. Since ϕ is injective and f0 6= ϕm( f0) for all m ∈ N∗, we
get that ϕp( f0) 6= ϕq( f0) for all p, q ∈ N, p 6= q. Therefore, the sequence (ϕk( f0))k∈N ⊆
So f t(X× An) is infinite and uniformly supported by supp(ϕ)∪ supp( f0)∪ supp(X), which
represents a contradiction.

Corollary 4. Let X be a finitely supported set such that ℘ f s(X) is un-finite.
Then ℘ f in(So f t(X× An)) is also un-finite for all n ∈ N.

Proof. Let { f1, . . . , fk} ∈ ℘ f in(So f t(X × An)). First, we prove that supp({ f1, . . . , fk}) ∪
supp(X) = supp( f1) ∪ . . . ∪ supp( fk). Let us take π ∈ Fix(supp( f1) ∪ . . . ∪ supp( fk)).
Then π ∈ Fix(supp( fi)), and so π?̃ fi = fi for all i ∈ {1, . . . , k}. Hence, π ? { f1, . . . , fk} =
{π?̃ f1, . . . , π?̃ fk} = { f1, . . . , fk} meaning that supp( f1) ∪ . . . ∪ supp( fk) supports
{ f1, . . . , fk}, and so we have supp({ f1, . . . , fk}) ⊆ supp( f1) ∪ . . . ∪ supp( fk). Accord-
ing to Proposition 1, we have that π ⊗ (x, (a1, . . . an)) ∈ X × An for all x ∈ X and
a1, . . . , an ∈ A, and so π ? X = X meaning that supp(X) ⊆ supp( f1) ∪ . . . ∪ supp( fk).
Hence, supp({ f1, . . . , fk}) ∪ supp(X) ⊆ supp( f1) ∪ . . . ∪ supp( fk).

Conversely, let a ∈ supp( f1) ∪ . . . ∪ supp( fk). If a ∈ supp(X), the problem is solved;
thus, assume a /∈ supp(X). There exists j ∈ {1, . . . , k} such that a ∈ supp( f j). Let b ∈ A
such that b /∈ supp(X), b /∈ supp({ f1, . . . , fk}) and b /∈ supp( f1) ∪ . . . ∪ supp( fk). We
prove that (b a)?̃ f j 6= f1, . . . , fk. Indeed, assume by contradiction that (b a)?̃ f j = fi
for some i ∈ {1, . . . , k}. Since b, a /∈ supp(X), we have (b a) ∈ Fix(supp(X)), and so
(b, a) ∈ Fix(supp(X × An)). According to Proposition 2, since a ∈ supp( f j) we have
b = (b a)(a) ∈ (b a)(supp( f j)) = supp((b a)?̃ f j) = supp( fi) contradicting the choice
of b. Therefore, (b a) ? { f1, . . . , fk} 6= { f1, . . . , fk}. Since b /∈ supp({ f1, . . . , fk}), we should
have a ∈ supp({ f1, . . . , fk}); otherwise, we would have (b a) ∈ Fix(supp({ f1, . . . , fk}))
and (b a) ? { f1, . . . , fk} = { f1, . . . , fk} - a contradiction.

It is easy to note that we have supp(X) ⊆ supp({ f1, . . . , fk}). Let
σ ∈ Fix(supp({ f1, . . . , fk})). Then, for each l ∈ {1, . . . , k}, there is a unique m ∈ {1, . . . , k}
such that σ?̃ fl = fm. Thus, whenever (x, (a1, . . . , an)) ∈ X × An, we have that it be-
longs to the domain of definition of some fl , and so (σ · x, (σ(a1), . . . , σ(an))) belongs
to the domain of definition of fm, meaning that σ · x ∈ X for all x ∈ X. We get that
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supp({ f1, . . . , fk}) = supp( f1) ∪ . . . ∪ supp( fk). Thus, whenever supp({ f1, . . . , fk}) ⊆ S,
we have supp( fi) ⊆ S for all i ∈ {1, . . . , k}. Therefore, if ℘ f in(So f t(X × An)) had an in-
finite uniformly supported subset, then So f t(X × An) would have an infinite uniformly
supported subset. However, from Corollary 2, we know that So f t(X × An) is un-finite.
This ends the proof.

5. Order Properties of Soft Sets with Atoms

In this section, we define a finitely supported order relation in the family of all soft
sets with atoms (on a certain finitely supported set), and prove that this family can be
organized as a finitely supported complete lattice. Furthermore, we prove a Tarski-like
fixed point theorem.

Definition 4.

1. A finitely supported partially ordered set (P,≤, ·) is a finitely supported set (P, ·)
equipped with a partial order relation ≤ that is finitely supported as a subset of P× P.

2. A finitely supported lattice (L,≤, ·) is a finitely supported set (L, ·) equipped with a lattice
order relation ≤ that is finitely supported as a subset of L× L.

3. A finitely supported complete lattice is a finitely supported lattice (L,≤, ·) with the
property that every finitely supported subset of L has a greatest lower bound and a least upper
bound in L.

Lemma 2. Let F be a finitely supported family of elements from ℘ f s(A). Then,

1. ∪
X∈F

X ∈ ℘ f s(A);

2. π ? ∪
X∈F

X = ∪
X∈F

(π ? X) for all π ∈ SA.

Proof.

1. Let π ∈ Fix(supp(F )). Then π ? X ∈ F for all X ∈ F . Let x ∈ ∪
X∈F

X, that is x ∈ Y

for some Y ∈ F . We have π ? Y ∈ F , and so π(x) ∈ π ? Y with π ? Y ∈ F . This
means π(x) ∈ ∪

X∈F
X, and hence, ∪

X∈F
X is supported by supp(F ).

2. Since F is finitely supported, we have that π ?F = {π ? X |X ∈ F} is supported by
π ? supp(F ) (from the proof of Proposition 2), and its union exists (by item 1). Let
z ∈ π ? ∪

X∈F
X. Then z = π(x) with x ∈ ∪

X∈F
X. Then there is Y ∈ F such that x ∈ Y,

and so z ∈ π ? Y ⊆ ∪
X∈F

(π ? X). Conversely, if z ∈ π ? Y for some Y ∈ F , we have

that z = π(y) with y ∈ Y ⊆ ∪
X∈F

X, i.e., z ∈ π ? ∪
X∈F

X.

Theorem 2. Let (X, ·) be a finitely supported set. On So f t(X), we define the relation f ≤ g if and
only if f (x) ⊆ g(x) for all x ∈ X. Then (So f t(X),≤, ?̃) is a finitely supported complete lattice.

Proof. Obviously, So f t(X) is supported by supp(X). This is because for σ ∈ Fix(supp(X))
and f ∈ So f t(X) we have that σ?̃ f : σ ? X = X → ℘ f s(A) is finitely supported (this
follows from the proof of Proposition 2), and so σ?̃ f ∈ So f t(X). Let π ∈ Fix(supp(X)),
meaning that π · x ∈ X for all x ∈ X. It is easy to note that the order relation ⊆ on ℘ f s(A)
is equivariant. Let f , g ∈ So f t(X) such that f ≤ g. Thus, f (x) ⊆ g(x) for all x ∈ X,
and so, since π−1 · x ∈ X, we get that f (π−1 · x) ⊆ g(π−1 · x) for all x ∈ X. Finally,
since ⊆ is equivariant, we get that π ? f (π−1 · x) ⊆ π ? g(π−1 · x) for all x ∈ X, which
means (π?̃ f )(x) ⊆ (π?̃g)(x) for all x ∈ X, and so π?̃ f ≤ π?̃g. Therefore, ≤ is supported
by supp(X).

Let F be a finitely supported family of elements in So f t(X). Let us fix x ∈ X. We
prove that the family Fx = { f (x) | f ∈ F} is finitely supported. Let π ∈ Fix(supp(X) ∪
supp(F ) ∪ supp(x)). Then π?̃ f ∈ F for all f ∈ F , and π · x = x. Let f (x) ∈ Fx. Then
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f ∈ F , and so there is a unique g ∈ F such that π?̃ f = g, i.e., f = π−1?̃g. Thus,
f (x) = (π−1?̃g)(x) = π−1 ? g((π−1)−1 · x) = π−1 ? g(π · x) = π−1 ? g(x), and so π ?
f (x) = g(x) ∈ Fx.

According to Lemma 2, we can define ∨
f∈F

f : X → ℘ f s(A) by ( ∨
f∈F

f )(x) = ∪
f∈F

f (x)

for all x ∈ X. According to Lemma 2(1), since Fx is finitely supported, we get that ∨
f∈F

f is

well-defined (its image is contained in ℘ f s(A)). A simple calculation shows that ∨
f∈F

f is the

least upper bound of F in (So f t(X),≤). Let π ∈ Fix(supp(X) ∪ supp(F )). According to
Proposition 1, in order to prove that ∨

f∈F
f is finitely supported, we should prove the relation

( ∨
f∈F

f )(π · x) = π ? ( ∨
f∈F

f )(x) for all x ∈ X, or equivalently,

∪
f∈F

f (π · x) = π ? ∪
f∈F

f (x). For every f ∈ F there is a unique g ∈ F such that π?̃ f = g,

i.e., f = π−1?̃g, and f (x) = (π−1?̃g)(x) = π−1 ? g((π−1)−1 · x) = π−1 ? g(π · x) for all
x ∈ X. Thus, for all x ∈ X we have the following equality of finitely supported sets:
{ f (π · x) | f ∈ F} = {g(π · x) | g ∈ F} = {π ? f (x) | f ∈ F}. By using Lemma 2(2),
we get that ∪

f∈F
f (π · x) = ∪

f∈F
(π ? f (x)) = π ? ∪

f∈F
f (x) for all x ∈ X, and so ∨

f∈F
f is

finitely supported.
Similarly, ∧

f∈F
f : X → ℘ f s(A) defined by ( ∧

f∈F
f )(x) = ∩

f∈F
f (x) for all x ∈ X is finitely

supported, and it is the greatest lower bound of F .

Theorem 3. Let (X, ·) be a non-empty, finitely supported set. Let ϕ : So f t(X)→ So f t(X) be a
finitely supported, order-preserving function. The set Fixϕ = { f ∈ So f t(X) | ϕ( f ) = f } is itself
a non-empty finitely supported complete lattice supported by supp(X) ∪ supp(ϕ).

Proof. We prove that Fixϕ is a non-empty, finitely supported set. Let us consider π ∈
Fix(supp(X) ∪ supp(ϕ)). Since supp(So f t(X)) ⊆ supp(X), we have that π?̃ f ∈ So f t(X)
for all f ∈ So f t(X). Now, let us consider f ∈ Fixϕ, namely ϕ( f ) = f . According
to Proposition 1, since π fixes supp(ϕ) pointwise, we have ϕ(π?̃ f ) = π?̃ϕ( f ) = π?̃ f
meaning π?̃ f ∈ Fixϕ, and so Fixϕ is supported by supp(X) ∪ supp(ϕ).

Let Preϕ = { f ∈ So f t(X) | f ≤ ϕ( f )}. Preϕ is non-empty because it contains the least
element of So f t(X). Let π ∈ Fix(supp(X)∪ supp(ϕ)), and f ∈ Preϕ. Then f ≤ ϕ( f ). Since
supp(≤) ⊆ supp(X), we have that π fixes supp(≤) pointwise, and so π?̃ f ≤ π?̃ϕ( f ) =
ϕ(π?̃ f ), which means π?̃ f ∈ Preϕ. Thus, Preϕ is supported by supp(X) ∪ supp(ϕ), and
since So f t(X) is a complete lattice, there must exist ∨

g∈Preϕ

g. For each f ∈ Preϕ, we have

f ≤ ∨
g∈Preϕ

g. Since ϕ is order preserving, we get that ϕ( f ) ≤ ϕ( ∨
g∈Preϕ

g), and so f ≤

ϕ( f ) ≤ ϕ( ∨
g∈Preϕ

g), from which ∨
g∈Preϕ

g ≤ ϕ( ∨
g∈Preϕ

g), i.e ∨
g∈Preϕ

g ∈ Preϕ. Since ϕ is order

preserving, we should have ϕ(h) ∈ Preϕ for all h ∈ Preϕ. Since ∨
g∈Preϕ

g ∈ Preϕ, we have

ϕ( ∨
g∈Preϕ

g) ∈ Preϕ, and so (according to the definition of the least upper bound of Preϕ)

we get that ϕ( ∨
g∈Preϕ

g) ≤ ∨
g∈Preϕ

g, which finally leads to ∨
g∈Preϕ

g = ϕ( ∨
g∈Preϕ

g), and so Fixϕ

is non-empty.
Let U be a finitely supported subset of Fixϕ. Since So f t(X) is a finitely supported com-

plete lattice, we have that ∨
g∈U

g exists in So f t(X). We prove that ∨
g∈U

g ∈ Fixϕ. Considering

f ∈ U, we have f ≤ ∨
g∈U

g, and so ϕ( f ) ≤ ϕ( ∨
g∈U

g). Since U ⊆ Fixϕ, we have ϕ( f ) = f ,

and so f ≤ ϕ( ∨
g∈U

g), from which it follows that ∨
g∈U

g ≤ ϕ( ∨
g∈U

g). Now, let h ∈ So f t(X)

such that ∨
g∈U

g ≤ h, and so ϕ( ∨
g∈U

g) ≤ ϕ(h), from which ∨
g∈U

g ≤ ϕ(h). Thus, ∨
g∈U

g ≤ h

implies ∨
g∈U

g ≤ ϕ(h) (†).
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Let PostU
ϕ = { f ∈ So f t(X) | ϕ( f ) ≤ f and ∨

g∈U
g ≤ f }. Let π ∈ Fix(supp(X) ∪

supp(ϕ) ∪ supp( ∨
g∈U

g)), and let f ∈ PostU
ϕ . Then ϕ( f ) ≤ f . Since ≤ is supported by

supp(X), we have π?̃ϕ( f ) ≤ π?̃ f . However, according to Proposition 1, since π fixes
supp(ϕ) pointwise, we get that π?̃ϕ( f ) = ϕ(π?̃ f ), and so ϕ(π?̃ f ) ≤ π?̃ f . Since f ∈ PostU

ϕ ,
we have ∨

g∈U
g ≤ f . Thus, since π fixes supp( ∨

g∈U
g) pointwise and ≤ is supported by

supp(X), we get that ∨
g∈U

g = π?̃ ∨
g∈U

g ≤ π?̃ f . Thus, π?̃ f ∈ PostU
ϕ , meaning that PostU

ϕ is

supported by supp(X) ∪ supp(ϕ) ∪ supp( ∨
g∈U

g). Therefore, there exists a greatest lower

bound of PostU
ϕ , namely ∧

g∈PostU
ϕ

g. For each f ∈ PostU
ϕ , we have ∧

g∈PostU
ϕ

g ≤ f , and so

ϕ( ∧
g∈PostU

ϕ

g) ≤ ϕ( f ) ≤ f . Hence, ϕ( ∧
g∈PostU

ϕ

g) ≤ f for all f ∈ PostU
ϕ , and so ϕ( ∧

g∈PostU
ϕ

g) ≤

∧
g∈PostU

ϕ

g. Moreover, ∨
g∈U

g ≤ f for each f ∈ PostU
ϕ , and so ∨

g∈U
g ≤ ∧

g∈PostU
ϕ

g meaning that

∧
g∈PostU

ϕ

g ∈ PostU
ϕ . Since ϕ is order preserving, by using (†), we get that ϕ( f ) ∈ PostU

ϕ

whenever f ∈ PostU
ϕ . Since ∧

g∈PostU
ϕ

g ∈ PostU
ϕ , we get that ϕ( ∧

g∈PostU
ϕ

g) ∈ PostU
ϕ , and so

∧
g∈PostU

ϕ

g ≤ ϕ( ∧
g∈PostU

ϕ

g) from the definition of a greatest lower bound.

We established that ∧
g∈PostU

ϕ

g ∈ Fixϕ with ∨
g∈U

g ≤ ∧
g∈PostU

ϕ

g. Hence, ∧
g∈PostU

ϕ

g is an upper

bound for U; now we prove that it is the least one. Let h ∈ Fixϕ be another upper bound
of U. Then ∨

g∈U
g ≤ h (because ∨

g∈U
g is the least upper bound of U in So f t(X), and h is an

upper bound of U in So f t(X)). Thus, h ∈ PostU
ϕ , from which we get that ∧

g∈PostU
ϕ

g ≤ h. We

have that ∧
g∈PostU

ϕ

g is the least upper bound of U in Fixϕ.

We proved that every finitely supported subset of Fixϕ has a least upper bound. Now,
we have to prove that V has a greatest lower bound, where V ∈ ℘ f s(Fixϕ). For f ∈ Fixϕ,
let ↓ f = {g ∈ Fixϕ | g ≤ f }. Let π ∈ Fix(supp(X) ∪ supp(ϕ) ∪ supp( f )). We have
that π fixes supp(Fixϕ) and supp(≤) pointwise. Let g ∈↓ f . We have that π?̃g ∈ Fixϕ

and π?̃g ≤ π?̃ f = f . Thus, π?̃g ∈↓ f , meaning that ↓ f is finitely supported. Let
MV = ∩{↓ h | h ∈ V}, π ∈ Fix(supp(V) ∪ supp(X)), and f ∈ MV . It follows that f ≤ h
for all h ∈ V. Let g ∈ V be an arbitrary element. Since π fixes supp(V) pointwise, we
have π−1?̃g ∈ V. However, f ≤ π−1?̃g. Since supp(≤) ⊆ supp(X), we have that π fixes
supp(≤) pointwise. Thus, π?̃ f ≤ π?̃(π−1?̃g) = g, and so π?̃ f ∈ MV , meaning that MV
is finitely supported. Therefore, ∨

s∈MV
s is the least upper bound of MV . We prove that

∨
s∈MV

s = ∧
t∈V

t. For t ∈ V, we have that t is an upper bound of MV , and so ∨
s∈MV

s ≤ t. Since t

has been arbitrarily chosen from V, we get that ∨
s∈MV

s ∈ MV . Since ∨
s∈MV

s is maximal

among the lower bounds of V (and it is a lower bound of V), we conclude that it is the
greatest lower bound of V.

Theorem 4. Let X be a finitely supported set such that ℘ f s(X) is un-finite.
Then every finitely supported chain in (So f t(X),≤, ?̃) is finite.

Proof. According to Theorem 1, the set So f t(X) is un-finite. Let T be a finitely supported
chain in So f t(X), i.e., a finitely supported, totally ordered subset of (So f t(X),≤, ?̃). Let f
be an arbitrary element from T, and π ∈ Fix(supp(T) ∪ supp(X)). We have π?̃ f ∈ T.
Since T is totally ordered (i.e., any two elements of T are comparable with respect to ≤),
we must have either f < π?̃ f or f = π?̃ f , or π?̃ f < f . Assume f < π?̃ f . By induction
on m, we prove that f < πm?̃ f for all m ∈ N∗. For m = 1, this is clear from our assumption.
Assume f < πn?̃ f for some positive integer n. Since the order relation ≤ is supported by
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supp(X) and π fixes supp(X) pointwise, we get that π ? f ≤ π ? (πn ? f ) = (π ◦ πn) ? f =
πn+1 ? f . However, since ? is a group action and permutations of atoms are bijective,
we get that π ? f 6= π ? (πn ? f ); otherwise, if π ? f = π ? (πn ? f ), we would get that
π−1 ? (π ? f ) = π−1 ? (π ? (πn ? f )), that is f = πn ? f , contradicting the inductive
hypothesis. Thus, π?̃ f < πn+1?̃ f . Since f < π?̃ f , we get that f < πn+1?̃ f , and so
f < πm?̃ f for all m ∈ N∗. However, since any permutation of atoms is a finite composition
of transpositions, it must have a finite order in the permutation group SA, i.e., there is k ∈ N
such that πk = IdA. We have that f < f , a contradiction. Similarly, if π?̃ f < f , we would
get that πm?̃ f < . . . < π?̃ f < f for all m ∈ N∗, and so f < f , a contradiction. Therefore,
σ?̃ f = f for all σ ∈ Fix(supp(T)∪ supp(X)), meaning that supp( f ) ⊆ supp(T)∪ supp(X).
Since f has been arbitrarily chosen from T, we have that T is uniformly supported by
supp(T) ∪ supp(X). However, So f t(X) is un-finite, and so T should be finite.

6. Conclusions

A soft set with atoms on a finitely supported set X is defined as a finitely supported
function f : X → ℘ f s(A). Examples of such soft sets with atoms are the mapping that
associates to each x ∈ X its support and the mapping that associates to each x ∈ X the
complement of its support, respectively (Proposition 2). The un-finite sets are those finitely
supported sets which do not contain infinite uniformly supported subsets. A closure
un-finiteness property states that whenever the finitely supported powerset of a finitely
supported set X is un-finite, we have that the set of all soft sets with atoms on X and the
set of all soft sets with atoms on X × An with n ∈ N∗ are also un-finite (Theorem 1 and
Corollary 2). If the finitely supported powerset of X is un-finite, then any finitely supported
injective self-mapping on the set of all soft sets with atoms over X× An is also surjective
(Corollary 3).

Furthermore, according to Theorem 2, the family So f t(X) of all soft sets with atoms
on a finitely supported set X can be organized as a finitely supported complete lattice,
i.e., there may be defined a finitely supported order relation on So f t(X) such that any
finitely supported subset of So f t(X) has a least upper bound and a greatest lower bound.
A Tarski-like fixed point result presented as Theorem 3 states that the set of all fixed points
of a finitely supported order preserving self-function on So f t(X) form a non-empty, finitely
supported complete lattice. According to Theorem 4, when the additional condition of
un-finiteness for the finitely supported powerset of X is imposed, we have that every
finitely supported totally ordered subset of So f t(X) is finite.

The concept of a soft set with atoms could be extended by replacing the universal
set A with a higher-order atomic set. If Y is the finitely supported universal set (that
replaces A) and X is a finitely supported set, a finitely supported soft set of higher-order on X
is a pair (X, f , Y), where f : X → ℘ f s(Y) is a finitely supported function. We denote
So f tY(X) = { f : X → ℘ f s(Y) | f finitely supported}. In fact, So f tA(X) = So f t(X) with
the notations used in this article. The proofs of Lemma 2, Theorem 2 and Theorem 3 do
not use the particular form of the canonical SA-action on A but only the properties of a
group action. Thus, involving similar proving methods and the S-finite support principle
for constructing higher-order supports, we additionally obtain the following results:

• Let (X, ·) and (Y, �) be finitely supported sets. On So f tY(X), we define the relation
f ≤ g if and only if f (x) ⊆ g(x) for all x ∈ X. Then (So f tY(X),≤, ?̃) is a finitely
supported complete lattice, supported by supp(X) ∪ supp(Y).

• Let (X, ·) and (Y, �) be non-empty finitely supported sets.
Let ϕ : So f tY(X) → So f tY(X) be a finitely supported, order-preserving function.
The set Fixϕ = { f ∈ So f tY(X) | ϕ( f ) = f } is itself a non-empty, finitely supported
complete lattice, supported by supp(X) ∪ supp(ϕ) ∪ supp(Y).
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