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Abstract: In this work, we propose a solution to the problem of identification of sources in the brain
from measurements of the electrical potential, recorded on the scalp EEG (electroencephalogram),
where boundary problems are used to model the skull, brain region, and scalp, solving the inverse
problem from the EEG measurements, the so-called Electroencephalographic Inverse Problem (EIP),
which is ill-posed in the Hadamard sense since the problem has numerical instability. We focus
on the identification of volumetric dipolar sources of the EEG by constructing and modeling a
simplification to reduce the multilayer conductive medium (two layers or regions Ω1 and Ω2) to a
problem of a single layer of a homogeneous medium with a null Neumann condition on the boundary.
For this simplification purpose, we consider the Cauchy problem to be solved at each time. We
compare the results we obtained solving the multiple layers problem with those obtained by our
simplification proposal. In both cases, we solve the direct and inverse problems for two different
sources, as synthetic results for dipolar sources resembling epileptic foci, and a similar case with an
external stimulus (intense light, skin stimuli, sleep problems, etc). For the inverse problem, we use
the Tikhonov regularization method to handle its numerical instability. Additionally, we build an
algorithm to solve both models (multiple layers problem and our simplification) in time, showing
optimization of the problem when considering 128 divisions in the time interval [0, 1] s, solving the
inverse problem at each time (interval division) and comparing the recovered source with the initial
one in the algorithm. We observed a significant decrease in the computation times when simplifying
the numerical calculations, resulting in a decrease up to 50% in the execution times, between the
EIP multilayer model and our simplification proposal, to a single layer homogeneous problem of a
homogeneous medium, which translates into a numerical efficiency in this type of problem.

Keywords: inverse problem; electroencephalographic inverse problem; bioelectrical source; mathe-
matical modeling; boundary problem; differential equation

MSC: 31A25; 31A30; 65M32; 65N21; 35J08

1. Introduction

Mathematical modeling allows for interpreting phenomena in nature, physics, chem-
istry, biology, medicine, etc. It also gives momentum to the development of several tech-
nologies and techniques crucial in neuroscience. Among the widely-used methods for
analyzing neural activity, we list the brain scans based on tomography by positron emis-
sion, nuclear magnetic resonance, etc. [1,2]. Magnetoencephalography, as well as elec-
troencephalography, are also widely-known methods [1,3]. The neural activity has a large
number of bioelectrical signals [4,5]. Hence, electroencephalography is the most popular
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method among the methods for analyzing brain activity. Electroencephalography is a
non-invasive method, based on the electron’s study in the scalp for registering the brain’s
electrical activity [1]. Each electrical signal is produced by neuron populations, working
synchronously [4,6], known as electroencephalogram or EEG. Thus, the EEG is used to
detect anomalies and pathologies in the brain, such as epilepsy, mal-functioning, brain
rhythms, etc. [1], validated by several diagnostic techniques. In research works, given
situations require determining the causes underlying a specific phenomenon from partial
information [7]. Such problems are the so-called identification problems [8,9], widely
studied in neuroscience for identifying bioelectrical brain signals from the EEG. To provide
a solution for the identification problems, mathematical models, as well as non-invasive
techniques, are used to interpret the EEG as a record of the potentials of an electrical
signal [1,4,5,8]. These potentials come from a specific type of electrical activity of the
excitable tissues measuring the potential difference between an explorer electrode and a
reference one. Electrochemical activity generates bioelectrical sources. In some cases, we
can consider the generators concentrated in a region of the brain, represented by square-
integrable functions defined over that region [1,2,4,5,8]. In the particular case of dipolar
sources (representing epileptic foci), it is necessary to focus the problem analysis using the
generalized functions or distributions. We recall that epilepsy is one of the most common
neurological diseases, affecting around 50 million people of all ages around the world.
The epilectic foci are modeled by dipolar sources, which are represented using the Dirac
delta (WHO-epilepsy) [10]. One of the main applications of electroencephalography is to
study potentials, for determining zones of bioelectrical activity associated with a specific
stimulus, either for studying cognitive processes or for the diagnostic and detection of
epileptic foci (in both cases, located on the cerebral cortex or subcortical layers). Another
application of the EEG is determining sleep anomalies. We bear in mind that epileptic foci
can be related to edemas, tumors, and calcifications in the brain. Epilepsy is generated
mainly by genetic factors; however, there is also acquired epilepsy, as in the neurocysticer-
cosis case, and the presence of craniocerebral hemorrhages or trauma. The main cause
of epilepsy late-onset is still neurocysticercosis, an infection of parasitic origin caused by
the pig’s cysticercus that mainly affects individuals under 20 years of age and adults over
65 years to a lesser extent. Despite the considerable progress in other areas, EEG is still the
most widely-used tool for its diagnosis.

We recall that a source can be expressed as the direct sum of two components, with one
corresponding to the harmonic source producing the EEG. It is well known that it is not
possible recovering the complete source. The most widely-used methods in the literature
are devoted to recovering the harmonic source instead, namely, the Fourier Series Method,
the conjugate gradient with finite element method to solve the corresponding boundary
problems, and LORETA (based on Tikhonov regularization methods, to calculate the pa-
rameters of a dipolar source representing epileptic foci) [11]. Some of these methods are
easy to implement and conceptually simple in the case of simple geometries, for example,
the Fourier series method, as in Conde-Mones et al. [12], where a regularization is proposed
using a cut-off in spherical geometries. On the other hand, the conjugate gradient method
has a more complicated implementation and the capability to be used on more complex
geometries, for example, in inverse electroencephalography, considering two coupled
homogeneous regions [12], where such a method was used to solve the Cauchy problem
in an annular bidimensional region. In the same bidimensional case, Fraguela et al. [13]
analyzes the simple case of two concentric circles, requiring a priori information in order
to determine the complete source. In other works such as Morin et al. [14], the inverse
EIP is considered for two dipolar sources, addressing the nonlinear problem as two lin-
ear problems. These two works are illustrated without considering temporal variation.
Furthermore, the latter method, LORETA [11], is applied to determine sources that can be
represented by a finite number of parameters, which is a shortcoming since bioelectrical
sources in the brain are more complicated.
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Considering the applications of the homogeneous media problems, as in Tsitsas et al. [15],
we reduce the case of multiple layers to one homogeneous media. The latter allows
us to use the theoretical and numerical results for the multi-layer case. Our proposal
includes software tools to tackle these problems, considering the sources’ types presented
in the previously mentioned works, and solving the problem in time considering the
EEG frequencies.

In this work, we show a proposal to simplify the Electroencephalographic Inverse
Problem (EIP), which gives our motivation, considering its relevance in determining bioelec-
trical sources—in particular, sources associated with epileptic foci. As we have mentioned
before, the EEG is used to study cognitive processes and anomalies associated with these
processes. Tumors, edemas, and calcifications are also studied using the EEG. To this aim,
we consider in the first place the multiple layers conductive medium problem, modeled as
a two-regions boundary problem for volumetric dipolar sources in the brain, from EEG
measurements in the scalp. We use a simplification of the conductive medium problem
to a homogeneous region problem with a null Neumann condition on its boundary. Ad-
ditionally, the source must be recovered from one measurement on the boundary of the
homogeneous region, which is obtained from the EEG. We model the conductive medium
problem for two layers or regions (Ω1 and Ω2), solving the direct and inverse problem
from the model for two different sources in the conductive medium problem and the
previously mentioned simplification. In the case corresponding to the scalp potential, we
use exact procedures. To solve the simplified problem, we use the Green’s function in
a single homogeneous region modeled for the Poisson’s equation with a null Neumann
boundary condition along with the Fourier series method [9,16,17]. Thus, the inverse prob-
lem transforms into a sources identification problem in a homogeneous medium with a null
Neumann boundary condition. Subsequently, we build an algorithm to solve the problem
efficiently along the time interval [0, 1] s considering an iterative process for the optimal
number of the interval divisions (128) and solving the problem at each time in the interval
division. Our (simplification) gives numerical and computational advantages regarding
the classical solution method, as was shown in the numerical examples developed for two
types of sources. Thus, our proposal is feasible to improve the numerical computation of
the inverse problem for other sources’ types. Another advantage of our proposal is the
simplifications of the theoretical analysis because there are plenty of results for the case
of the boundary value problem Poisson equation with the Neumann boundary condition.
Furthermore, in the case of tumors, edemas, and calcifications, the electric characteristic
changes in the place occupied by the anomaly. The latter leads to considering more regions
and appropriated boundary conditions on the separation interface between the anomaly
and the healthy brain (we regard a physiological anomaly also known as brain pathology,
like the one corresponding to an alteration of the brain’s healthy tissue, caused by diseases
or alterations. In the case of a tumor, the zone occupied changes the conductivity, giving
place to a fibrous layer surrounding it, generating a current, the so-called secondary cur-
rent, producing an abnormal EEG). Thus, the numerical and computational advantages
mentioned above play an important role in this kind of problem.

We bear in mind that the simplification does not assume some piece of information
about the sources or the medium. It uses variable changes to reduce the inverse source
problem in a multi-layer region to one in a homogeneous region. As a first step, we solve
the Cauchy problem in an annular region. This is an ill-posed problem due to its numerical
instability, and regularization methods are used to handle the mentioned instability. Then,
a Neumann problem for the Laplace equation is solved, which is a well-posed problem.
These two problems allow us to find the proposal. The existence and uniqueness of the
solution to these problems can be studied separately.

2. Mathematical Model of the EIP

We model a source identification problem [4,5,18], with a source in the brain
(Figure 1g,h) and measurements (EEG) recorded on the scalp. We consider the EEG
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to be produced by large neuron conglomerates simultaneously activated (bioelectrical
sources) [4,6]. Moreover, we assume the electric currents produced in the region Ω1 are
caused only by the brain’s electrical activity. Such currents are classified as ohmic and
primaries. The former is produced by the movement of ionic charges across the extracellu-
lar fluid in the brain and the latter by the diffusion currents along the neural membranes
denoted by JP [1,6] (main scope in the identification problem). Such membranes give
additional information regarding the affected zone location (Figure 1h). We illustrate this
in the 3D models in Figure 1a–e, where we show the skull, brain, and scalp. In Figure 1a,
we show a human with short hair in the same scalp region. In Figures 1b,c, we show a cut
in the left region displaying the frontal and parietal lobes, respectively. In Figure 1d,e, we
show a rotation and transversal cut of Figure 1c, displaying the inner regions of the brain,
skull, and scalp separately, and, in Figure 1f, we show the skull and scalp in white, and the
inner brain region in colors, with two contrasting regions.

Figure 1. (a) 3D model of a human head; (b) cut in the skull and scalp in the upper-frontal left region
to show the frontal and parietal brain lobes; (c) rotation of the cut in (b); (d) transversal cut in (c) to
show the inner region of the brain. The skull and scalp are shown as interfaces; (e) profile of (d).
(f) The same as (e), contrasting the skull and scalp in white; (g) rotation of (f) showing in red a region
in the inner brain zone representing an anomaly; (h) the same as (g), showing the whole brain. We
indicate in red a possible anomaly in the brain surface. (i) mesh of the brain, similar to a 3D mesh for
applying certain types of numerical methods.

Without loss of generality, we consider the human head as a conductor medium split
into two disjoint regions [19], as seen in Figure 2c, with region 1 constituted by the brain,
2 by the light-tone color region (scalp and skull) in Figure 1f (where Ω = Ω1∪Ω2) Ω1 is
the cerebral cortex and Ω2 is the rest of the head. We can apply this idealization to our
construction, which could be further extended to consider additional layers to illustrate
the rest of the tissues introducing electrical noise, interference, or modifying the signal
coming from the source (inside Ω1). As we mentioned before, the electric activity of
the brain is generated by the ionic interchange of a conglomerate of neurons activated
simultaneously, and this electrical activity is recorded using electrodes located on the
scalp in a EEG (electroencephalogram) [1,4,6,13,14,18,20–22]. The ionic interchange of this
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conglomerate produces a current density called the bioelectrical sources and is denoted by
JP (the primary current). The Electroencephalographic Inverse Problem (IEP) consists of
finding, from the EEG, the bioelectrical sources that produces such EEG. The presence of
this density current generates electromagnetic potentials associated with the vector fields E,
and B which are coupled [23]. From experimental data, it has been found that the corporal
tissues can be regarded as a resistive medium for frequencies up to one Hertz since the
capacitive impedance is extremely small [1,4,5,23]. Hence, we can neglect the displacement
current in the Maxwell equations. Thus, the Ampere–Maxwell law can be written in the
following form: ∇×B = J with H the magnetic induction field. Taking the divergence of
both sides of the equation, we obtain ∇·J = 0 (describing the steady-state of the system).
These equations represent the quasi-static model [4,5,23].

The bioelectrical sources cannot radiate a considerable amount of energy since the
observation and the source size are considerably smaller than the wavelength associated
with the higher frequency produced by bioelectrical processes in the brain. These signals
behave as slowly varying signals, and therefore we can consider ∂B

∂t = 0, i.e., we can neglect
the variations of B on time t. Hence, from the previous results and the Faraday law, we
obtain ∇×E = 0, considering E = −∇U with E a conservative field. According to cerebral
tissues’ linearity and homogeneity properties, the currents in any instant depend on the
sources at such time and obey the superposition law. Hence, formally we can express the
total current as a superposition of a current associated with the primary source JP and
the one due to the presence of the electric field E in the brain region with conductivity
σ (σ is used to generalize the process, since there is a σi conductivity for each region
Ωi, with Ω = Ω1 ∪ Ω2) leading to JT = JP + σE, where JP denotes a primary current,
σ represents the ohmic current (in both cases density of current), and σi represents the
constant conductivity of the region σi (i = 1, 2). Hence, in the region Ω1 (which represents
the brain), the potential u satisfies

∇ · (∇u) =
∇ · JP

σ1
, (1)

from which we obtain ∆u = f , where f = 1
σ1
∇ · JP. In the region Ω2, there are no bioelectri-

cal sources, and the potential satisfies the Laplace equation. On the surface S1 separating the
homogeneous regions, the boundary conditions correspond to the transmission conditions

u1 = u2; σ1
∂u1

∂n1
= σ2

∂u2

∂n1
, on S1. (2)

Since the air conductivity is zero, we obtain

∂u2

∂n2
= 0, on S2. (3)

Finally, the potential u satisfies the following boundary value problem:

∆u1 = f in Ω1, (4)

∆u2 = 0 in Ω2, (5)

u1 = u2 on S1, (6)

σ1
∂u1

∂n1
= σ2

∂u2

∂n1
on S1, (7)

∂u2

∂n2
= 0 on S2. (8)

The EEG is related to the potential u in the following form (t-fixed) EEG = u2 |S2 . Thus,
if we consider the constant conductivities σ1 and σ2 in Ω1 and Ω2, respectively, the brain
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cortex S1, and the scalp S2, we can have a suitable representation of Figure 1 and in the
following boundary problem, the Electroencephalographic Inverse Problem (EIP) [4,18,24],
described in Equations (4)–(8) (where ui = u|Ωi

, i.e., ui is the electric potential in Ωi for
i = 1, 2, ni the unitary vector normal to the region Ωi, ∆ the Laplacian operator and
f = div(Jp/σ1)).

Ω1    S1   

σ1  

Ω2   σ2          S2    

 

Figure 2. (a) 3D model in Figure 1e; (b) 3D model showing the scalp and skull as a single region
(region 2) in a light-tone color (similar to white); (c) two different regions 1 and 2, with different
conductivities σ1 and σ2, and outer regions S1 and S2, respectively, for the regions Ω1 and Ω2.

The boundary conditions in Equations (6) and (7) are the so-called transmission
equations or conditions, and we obtain Equation (8) considering the conductivity of ΩC

as zero (the air conductivity). From Green’s formulae [9,17,24], we deduce the following
compatibility condition ∫

Ω1

f = 0. (9)

The cerebral cortex has a thickness varying from 1.5 mm to 4.5 mm. Hence, from the
point of view of mathematical modeling, the cerebral cortex can be considered as a 3D-
space surface. Thus, the bio-electrical sources generated in the cerebral cortex, not only
dipolar sources, can be regarded as functions defined on the mentioned surface. Therefore,
the boundary condition associated with the S2 current fluxes reflects the presence of cortical
sources. Following the notation used for the volumetric sources, we denote the cortical
current density by Jp. Hence, the boundary condition is given by:

σ1
∂u1

∂n1
= σ2

∂u2

∂n1
+ Jp · n1 on S1, (10)

with Jp · n1 the cortical source, satisfying a compatibility condition similar to Equation (9).
Moreover, if we consider simultaneously cortical and volumetric sources, the compatibility
condition is given by ∫

Ω1

f +
∫

∂Ω1

Jp · n1 = 0. (11)

To build a simplification of the EIP, we analyze the identification problem of the source
f , using the boundary problem described in Equations (4)–(8) along with the boundary
condition u2 = V, considering only volumetric sources, and we neglect the presence of
cortical sources. Hence:
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Definition 1. The inverse problem associated with Equations (4)–(8) (EIP) consists of determining
a source f from a measurement V defined over S2, such as the solution u of the direct problem
corresponding to the source f , satisfying u|S2

= V.

3. Simplification of the Electroencephalographic Inverse Problem
3.1. Operational Statement

We present some results. In the first place, we consider the following spaces

U =

{
f ∈ L2(Ω1) :

∫
S1

f dS1 = 0
}

= L2(S1)/R, (12)

V =

{
u ∈ H1(Ω) :

∫
Ω

u dΩ = 0
}

= H1(Ω)/R, (13)

W =

{
v ∈ L2(S2) :

∫
S2

v dS2 = 0
}

= L2(S2)/R. (14)

Definition 2. Let f ∈ U , the function u ∈ V is the so-called weak solution to the Problems (4)–(8)
if it satisfies

σ1

∫
Ω1

∇u1.∇vdx + σ2

∫
Ω2

∇u2.∇vdx =
∫

Ω1

f v dx, (15)

∀ v ∈ H1(Ω).

Theorem 1 is related to the existence and uniqueness of the weak solution. Its proof
can be found in [13].

Theorem 1. Let f be a function such that f ∈ U , and the condition in Equation (9) is necessary and
sufficient for the existence of a weak solution to the described problem in Equations (4)–(8). The weak
solution is unique if u ∈ V , i.e., u satisfies

∫
Ω u(x)dx = 0. Furthermore, ‖u‖H1(Ω) ≤ C‖ f ‖L2(S1)

,
where the constant C does not depend on the function f .

Taking into account the existence and uniqueness of the solution to the described
problem in Equations (4)–(8), we can define the operator T : U → V , with T( f ) = u. This
operator is continuous, as follows from the inequality in Theorem 1. The composition of
the continuous operator T and the trace operator Tr : V → W (a compact operator) define
a compact operator A : U → W given by A = Tr ◦ T, i.e., A( f ) = u|S2

, whose kernel is
described in the Theorem 2:

Theorem 2. Let H1(Ω1) be a subspace of harmonic functions in Ω1 orthogonal to constant
functions. Hence, [KerA]⊥ = H1(Ω1) holds.

Theorem 3 allows us to apply regularization methods for handling the numerical insta-
bility present in this problem. The proof of the Theorem is in the work by Fraguela et al. [13].

Theorem 3. Im(A) is dense in L2(S2).

Thus, the operator A allows us to study the shortcomings of the inverse identification
problem [13].

3.2. Simplified Electroencephalographic Inverse Problem

We can reduce the model describing the EIP to a homogeneous region by using a
harmonic function u2 determined by the following Cauchy problem [7,9,24]:

∆u2 = 0, in Ω2 (16)
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u2 = V, on S2 (17)

∂u2

∂n2
= 0, on S2. (18)

To determine ū, we consider

∆ū = 0, in Ω1 (19)

∂ū
∂n2

= ψ, on S1, (20)

where ψ = σ2
σ1

∂u2
∂n2
|S1

, and ū is orthogonal to the constants. Hence, the uniqueness of the
solution holds if the compatibility condition is satisfied according to ψ. The condition
is given by

∫
S1

ψ(s)ds (deduced from Green’s formulae) [9,17,24]. As the last step, we
consider the following inverse problem: To determine a source function f satisfying the
following boundary value problem

σ1∆û = f in Ω1, (21)

σ1
∂û
∂n

= 0 in S1, (22)

for û|S1
= g = φ− u|S1

and φ = u2 |S2 . From the previous arguments, we can solve the EIP
using the inverse problem in a homogeneous region set by Equations (21) and (22), which
we call the Simplified Electroencephalographic Inverse Problem (SEIP). We are considering
the problem in a homogeneous region. Hence, we can use the Green’s function to find a
solution to the problem described in Equations (21) and (22). Thus:

Definition 3. The so-called Green’s function of the boundary problem described in Equations (21) and (22)
is a function G(y, x) satisfying the following boundary problem:

∆G(y, x) = δ(y− x)− 1
m(Ω)

, y, x in Ω, (23)

∂G
∂n

∣∣∣∣
S
= 0, x∈S = ∂Ω, y∈Ω, (24)

with m(Ω) the volume of the region Ω.

Ω1 represents one of the simple geometries mentioned at the beginning (for example),
a circle of radius R = R1. Green’s function is given by

∆xG(y, x) = δ(x− y)− 1
πR1

2 , in Ω, (25)

∂G(x, y)
∂n

= 0,∈∂Ω1, (26)

with a solution given by

G(x, y) =
1

2π

{
ln|x− y|+ ln

∣∣∣xy− R1
2
∣∣∣− |x|2 + |y|2

2R1
2

}
, (27)

where y is the complex conjugate of y. From the previous arguments and considering
Definition 3, we establish the following Theorem (Theorem 4), regarding the solution
representation in terms of Green’s functions. The proof of Theorem (Theorem 4) is in the
references [24–26].
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Theorem 4. If f∈C⊥0 , then the classic solution u of the SEIP is given by

u(x) =
∫

Ω
G(y, x) f (y)dy, (28)

with G the Green’s function satisfying the problem in Equations (25) and (26).

4. EIP Considering Dipolar Sources

Determining the distributions describing the bioelectrical sources (given the neural
activity) is not an easy task. Several techniques and methods have been applied to simplify
this problem. For instance, from the previous simplification (SEIP), we can consider a
current dipole (a dipolar model of equivalent current) already validated as an accurate
representation of sources (shallow sources) inside the brain [13,14,20–22,27]. Hence, we can
extend the analysis beyond more complex systems with multiple dipoles of the equivalent
current type. In this sense, we illustrate the previously mentioned arguments with models
simulating epileptic foci using several dipoles or multipolar expansions. Therefore, we
consider a single dipole [4], representing the source function f , and at the same time

f =
1
σ1

div(Pδ(x− a)), (29)

with P the dipolar moment and δ(x− a) the Dirac delta centered at a [17,24]. If the current
is given by Jp = Pδ(x− a), the existence’s proof of the boundary problem solution is
carried out using Theorem 4 as follows: There exists a succession of continuous functions
fn converging to the Dirac delta. Moreover, there exists the solution un of the boundary
problem, for each element in the functions succession div(P fn). Such a succession un
converges to the solution to the problem described in Equations (21) and (22), with

un(x) =
∫

Ω
G(y, x) fn(y)dy. (30)

Since limn→∞un exists and does not depend on the convergence of the succession
to f , we will refer to such a limit as the solution to the boundary problem described in
Equations (21) and (22). Thus, if f is given by Equation (29), the solution is

u(x) =
[(

P
σ1

)
·
(−→
5yG(y, x)

)]∣∣∣∣
y=a

, (31)

with G(x, y) the Green’s function of the problem. In this case, we have a unique solution
to the inverse problem if the measurement V is well-known over all the scalp [9,28,29].
Hence, if we know V, we can recover the parameters of the dipolar source, i.e., the dipolar
momentum P and its location a, using the least squares method [9,29]

min
P,a

(
‖û(x)− f ‖2

)
, (32)

with û the solution of the problem described in Equations (21) and (22), f given by
Equation (29), and û expressed in terms of the source f . We bear in mind the incon-
veniences of using the Green’s function method [9,17,24] for explicitly determining the
functions in complex geometries. Generally speaking, if there are edges where we cannot
apply the Green’s method [17], we can use the ideas presented in this work, to develop an
algorithm to ease the determination of the Green’s functions and hence the solution.

5. Development of the Model Using Simple Geometries
5.1. Concentric Circles Model

In order to validate the ideas laid out in Section 4, we need in the first place to provide
a solution to the direct problem. Hence, we consider the human head modeled with two
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concentric circumferences, as shown in Figure 3a,b, to obtain an exact solution without using
numerical methods. The previously stressed arguments are crucial for building examples to
validate the Simplification of the EIP (SEIP) to a problem defined in a homogeneous region.
The results of this section can be extended (in the circumference case) to concentric spheres,
considering that we will require to compute numerically some integrals associated with
the Fourier coefficient of the solution (solution of the direct problem). Hence, we conclude
that geometries with certain complexity as spherical ones can be solved with our proposed
method, requiring, however, numerical methods to solve the direct and inverse problems
associated with the phenomenon. Even in such a case, the proposed method offers several
advantages in reducing the required computations. According to the ideas stressed in this
work, we can reduce the inverse problem to a circular homogeneous region problem using
the aforementioned Green’s function method [9,17,24].

Ω1   σ1    S1            
 

Ω1   σ1    S1            
 

Figure 3. (a) Two regions model in Figure 2c chosen for representation with two simple regions;
(b) 2D representation of the model in (a) with two concentric circles representing regions 1 and 2;
(c) 3D representation of the model in (a) with concentric spheres.

5.2. Direct Problem Solution

To find a solution to the direct problem, we consider the following auxiliary boundary
problem (similar to the boundary problem described in Equations (4)–(8)

∆ω1(r, θ) = 0 in Ω1, (33)

∆ω2(r, θ) = 0 in Ω2, (34)

ω1(r, θ) = ω1(r, θ)− g in S1, (35)

σ1
∂ω1

∂n1
(r, θ) = σ2

∂ω2

∂n1
(r, θ) in S1, (36)

∂ω2

∂n2
(r, θ) = 0 in S2, (37)

with g(x) = û(x) =
[(

P
σ1

)
·
(−→
5yG(y, x)

)]∣∣∣
y=a

and x∈S1. The solution of the direct prob-

lem described in the boundary problem in Equations (33)–(37) is unique and orthogonal to
the constants space [9,24]. Hence, the solution to the problem is given by:

u(x) =
{

û + ω1 x∈Ω1
ω2 x∈Ω2

, (38)
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considering G(x, y) given in Equation (27) and the model in Equations (33)–(37), we com-
pute the solution applying the Fourier series method [16,17], obtaining an equations system
from the coefficients and substituting the variable values in the proper regions. Thus,

ω1(r, θ) =
∞

∑
k=1

[
a1

krkcos(kθ) + b1
krksin(kθ)

]
, (39)

ω2(r, θ) =
∞

∑
k=1

{[
a2

krk + b2
kr−k

]
cos(kθ) +

[
c2

krk + d2
kr−k

]
sin(kθ)

}
, (40)

with ω1 and ω2 expressed as Fourier series [16], with a1
k and b1

k the coefficients of ω1;
a2

k , b2
k , c2

k and d2
k the coefficients of ω2. Furthermore, we consider Equation (35), with

g(θ) = ∑∞
k=1
[
g1

kcos(kθ) + g2
ksin(kθ)

]
(with coefficients g1

k and g2
k), to determine if the coeffi-

cients satisfy
σ1g1

k = (σ1 − σ2)a2
k R1

k + (σ1 + σ2)b2
k R1

−k, (41)

σ1g2
k = (σ1 − σ2)c2

k R1
k + (σ1 + σ2)d2

k R1
−k, (42)

with r→R1 in Ω1 or S1. If r→R2 in Ω2 or S2, we can finally verify that the coefficients in
Equations (39) and (40) are given by

a2
k =

σ1g1
k R1

k

(σ1−σ2)R1
2k+(σ1+σ2)R2

2k , c2
k =

σ1g2
k R1

k

(σ1−σ2)R1
2k+(σ1+σ2)R2

2k ,

b2
k =

σ1g1
k R1

k R2
2k

(σ1−σ2)R1
2k+(σ1+σ2)R2

2k , d2
k =

σ1g2
k R1

k R2
2k

(σ1−σ2)R1
2k+(σ1+σ2)R2

2k ,

(43)

a2
k =

σ1g1
k

(
R1

2k + R2
2k
)

R1
k
[
(σ1 − σ2)R1

2k + (σ1 + σ2)R2
2k
] − g1

k

R1
k , (44)

b2
k =

σ1g2
k

(
R1

2k + R2
2k
)

R1
k
[
(σ1 − σ2)R1

2k + (σ1 + σ2)R2
2k
] − g2

k

R1
k . (45)

The coefficients in Equations (43)–(45) are the solution to the problem described in
Equations (33)–(37). Without loss of generality, we can consider that the experimental
measurement (EEG) is given by V = ∑∞

k=1
[
V1

k cos(kθ) + V2
k sin(kθ)

]
, with its corresponding

coefficients given by

V1
k = g1

k
σ1g1

k R1
kR2

k

(σ1 − σ2)R1
2k + (σ1 + σ2)R2

2k , (46)

V2
k = gg

k
σ1g1

k R1
kR2

k

(σ1 − σ2)R1
2k + (σ1 + σ2)R2

2k , (47)

computing the Fourier expansion of the function g =
[(

P
σ1

)
·
(−→
5yG(y, x)

)]∣∣∣
y=a

. To this

aim, we obtain in the first place
−→
5yG(y, x) with G given by Equation (27):

−→
5yG(y, x) =

x− y
|x− y|2 +

y
R1

2 +
1

|x− y|2
([

A∂G1 x1 + B∂G2 x2
]
,
[
A∂G1 x2 − B∂G2 x1

])
, (48)

with A∂G1 = x1y1 + x2y2 + R1
2 and B∂G2 = y1x2 − y2x1. If we consider the electric dipole

(representing the epileptic foci, P= (p1, p2)), we find the following expression for g

g(x) =
p1

σ1|x− y|2
{

Cxyg + (x1 − y1)
}
+

p2

σ2|x− y|2
{

Ct
xyg + (x2 − y2)

}∣∣∣∣∣
y=a

, (49)
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with Cxyg = A∂G1 x1 + B∂G2 x2 and Ct
xyg = A∂G1 x2 + B∂G2 x1. Considering the orthogonality

between constant functions and the solution, we can neglect some terms, such as y1
R1

2

and y2
R1

2 ; denoting x1 = R1cos(θ), x2 = R1sin(θ), y1 = rcos(θy) and y2 = rsin(θy) and
substituting them into Equation (49), we obtain

g(x) =
p1

(
1− R1

2
)

σ1|x− y|2
[
R1cos(θ)− rcos

(
θy
)]

+
p2

(
1− R1

2
)

σ2|x− y|2
[
R1sin(θ)− rsin

(
θy
)]

. (50)

Thus, the Fourier coefficients of g are

g1
k = p1

(
1− R1

2
)

πr0
k−1

σ1R1
k−2
(

R1
2 − r02

)[r0
2cos

(
(k + 1)θy

)
+ R1

2cos
(
(k− 1)θy

)]

+ p2

(
1− R1

2
)

πr0
k−1

σ2R1
k−2
(

R1
2 − r02

)[r0
2sin

(
(k + 1)θy

)
+ R1

2sin
(
(k− 1)θy

)]

−
(

p1cos
(
θy
)

σ1
+

p2sin
(
θy
)

σ2

)(
1− R1

2
)

2πr0
k+1cos

(
kθy
)

R1
k−2
(

R1
2 − r02

) ,

(51)

g2
k = p1

(
1− R1

2
)

πr0
k−1

σ1R1
k−2
(

R1
2 − r02

)[r0
2sin

(
(k + 1)θy

)
+ R1

2sin
(
(k− 1)θy

)]

+ p2

(
1− R1

2
)

πr0
k−1

σ2R1
k−2
(

R1
2 − r02

)[r0
2cos

(
(k + 1)θy

)
+ R1

2cos
(
(k− 1)θy

)]

−
(

p1cos
(
θy
)

σ1
+

p2sin
(
θy
)

σ2

)(
1− R1

2
)

2πr0
k+1sin

(
kθy
)

R1
k−2
(

R1
2 − r02

) .

(52)

We include the procedure to obtain Equations (51) and (52) in Appendix A. The re-
striction of the function ω2 on S2 gives us the solution to the direct problem. In order to
solve the inverse problem, we require the solution of the direct problem. We use COMSOL
and MATLAB to obtain the solutions of the direct and inverse problems and to compare
the results. Moreover, we consider the quasi-static model to generate a temporal variation
of the EEG (or generate an EEG). We need to solve the direct problem at each time. We con-
sider a moment in a time interval as a partition (segment or step) of the time interval where
the EEG is measured. For the purposes of this work, we consider the time interval given by
t = [0, 1]. We will divide this interval conveniently. We recall that the brain frequencies
are below 64 Hz [1,6]. Thus, by virtue of the Nyquist theorem, we propose a number of
divisions multiple of 64, for example, 128 division of time interval t, [30,31]. Moreover (to
validate the computation times as well), we propose 64, 128, 256, and 512 divisions of the
time interval to compare results of the computation time and obtained error, comparing
both the model and recovered sources. The latter allows us to obtain the largest information
set regarding our proposal (the problem simplification and the iterative algorithm). We
did not include the time in the model. However, it is straightforward to introduce it when
considering the solution evolution at each time, obtaining a solution for each time. Hence,
we denote by fti = f (x, ti), x ∈ Ω1, and uti = u(x, ti), x ∈ Ω, i = 1, . . . , 256. Thus, we build
an algorithm, considering the solution of the boundary problem using the least-squares
method, our simplification proposal, and the solution at each time. The algorithm returns
the recovered source as the inverse problem solution. The algorithm also compares the
source considered in the boundary problem (model source) with the recovered source.
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We describe this algorithm in Figure 4 and indicate the equations considered in each it-
eration. The described flowchart can be used to build other algorithms generalizing the
methods to solve the boundary problem (an original conductive medium problem for
different layers or our simplification) using the Fourier series method [9,17], finite element
method [24,26], or any other method. Moreover, the time integration to the solution is per-
formed straightforwardly in the iteration considering the solution of the inverse problem
at each time.

  

Figure 4. Algorithm of the proposal in this work, for optimizing the computation times by simplifying
the direct problem having an inverse problem solution that allows us to determine the source function
and the solution at different times. The algorithm is iterative, with i the number of iterations,
depending on the number of points or divisions equal to 64, 128, 256, 512 in the time interval t = [0, 1].
The comparison was performed according to the COMSOL problem construction to generate the
Matlab code, starting from the geometry construction, the regions or region (due to the problem
simplification), boundary conditions, and the mesh quantification in the finite element method.

Thus, in Figure 5a–h, we show the boundary problem solution (simplified, in COM-
SOL) of a single region described in Equations (21) and (22) (reduced in Equations (8)–(33)
with its solution in Equations (51) and (52) for the 2D and 3D cases in Figure 5a,b,
respectively. We show the original boundary problem for two regions described in
Equations (4)–(8) for the 2D case and 3D case in Figure 5e,f, respectively. We also show
the solution (in Matlab) of the direct problem with its solution restricted to the boundary
(û|Ω(z)) in two different points over the boundary for z = x in Figure 5c and z = −x in
Figure 5g. We point out that the solutions for the simplified case û|Ω(z) with normal u|Ω(z),
and z in the equatorial disk in the 2D and 3D cases are similar with a dispersion value of
1 × 10−5. Thus, the originally simplified modeled problem (2D and 3D) is equivalent or
has acceptable dispersion values. On the other hand, we show the solution to the direct
problem (Matlab) to the 3D case of two regions, placing z in the poles. Hence, in Figure 5d,
we show û|Ω(z) with z = y, and in Figure 5h for z = −y. Considering both the regions,
the radius value is 1, and the conductivity 2, for region 1, whereas, for region 2, the radius
value is 1.2 and conductivity 1, for both the 2D and 3D case, at a single time.
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Figure 5. Solution of the problem described in Equations (21) and (22) for the 2D (a) and 3D (b)
cases. The solution of the original boundary problem for two regions described in Equations (4)–(8)
for the 2D (e) and 3D (f) cases for a single time (at t = 1 seg). We simulate the problem in time to
obtain a solution (in Matlab) to û|Ω(z) z = x in Figure 5c and z = −x in Figure 5g. Solution of the
direct problem (Matlab) for the 3D case of region 1, û|Ω(z), with z = y in (d),with z = −y in (h), with
z = x in (c), and with z = −x in (g). Considering both the regions, the radii values are 1 and 1.2,
conductivities 2 and 1, for regions 1 and 2, respectively.

6. Inverse Problem Solution

To solve the inverse problem, we consider P = [−1, 1] (dipolar moment), for the

function δ(x− a) ≈ 1
Mβ

exp
(
− β2

β2−|x−a|2

)
, if |x− a| < β, and 0 in other case with x and a

vectors (Equation (29)). Mβ is the normalization constant Mβ =
∫

Ω1
exp
(
− β2

β2−|x−a|2

)
dx

with x ∈ Ω1. Therefore, without loss of generality, we can assume the measurement is given
by V = ∑∞

k=1
[
V1

k cos(kθ) + V2
k sin(kθ)

]
. Following the previously described procedure,

we determine function u2 as the solution of the Cauchy problem in Ω2 from V. Hence,
we obtain

u2(r, θ) =
1
2

∞

∑
k=1

{
V1

k HrRcos(kθ) + V2
k HrRsin(kθ)

}
, (53)

with HrR =
(

r
R2

)k
+
(

R2
r

)k
. Subsequently, we determine the harmonic function u in Ω1,

orthogonal to the constants, such as the Neumann condition ∂u
∂n1

= ψ = σ2
σ1

∂u2
∂n1
|S1

holds.
Such a function is given by

u =
σ2

2σ1

∞

∑
k=1

(
r

R1

)k
[(

R1

R2

)k
−
(

R2

R1

)k
][

V1
k cos(kθ) + V2

k sin(kθ)
]
, (54)

the measurement (simulation of a given experiment or experimental data) g in S1 should satisfy

g =
1
2

∞

∑
k=1

[(
R1

R2

)k(
1− σ2

σ1

)
+

(
R2

R1

)k(
1 +

σ2

σ1

)][
V1

k cos(kθ) + V2
k sin(kθ)

]
. (55)

We emphasize that the Fourier coefficients of g are expressed in terms of V1
k and V2

k
(Equation (55)). On the other hand, these coefficients are given in terms of the dipolar
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source parameters P and a. Finally, we should determine the dipole parameters P and a
from the measurement V (EEG), using the least-squares method [13,14,20–22]. Thus, if we
assume the coefficients V1

k and V2
k are known, we only require to minimize the functional

min
P,a

∞

∑
k=1

(
g1

k − g̃1
k

)2
+
(

g2
k − g̃2

k

)2
, (56)

with g̃1
k and g̃2

k Fourier coefficients approximations of g from Equation (55) (g1
k and g2

k in
Equations (51) and (52). We can obtain the measurement over the whole scalp if the mea-
surement (EEG) is performed in a finite number of points in the scalp (electrodes) [1,3,6,8].
Such measurement can be obtained using an interpolation regularized method as that pre-
sented by Bustamante et al. [32] or the spherical splines interpolation method presented by
Perrin et al. [33]. Simple geometries had been used to analyze the electroencephalographic
inverse problem (EIP). However, in the case of dipolar sources, several methods have been
presented to find their location—for example, in the work by Clerc et al. [34] considering
rational approximations in the complex plane and the work by Tsitsas et al. [15], where
an algorithm for finding the dipole from the Cauchy data are developed, considering the
human head as a spherical model, similar to the extension of a case we have addressed in
this work.

7. Numerical Examples

We present numerical (synthetic) examples aiming to illustrate the ideas presented in
this work. We consider R1 = 1.2, R2 = 2, σ1 = 3 and σ2 = 1, as well as a dipolar source
such as P= [−1, 1] (Equation (29)) in Equations (46), (47), (A2) and (A3). We compute
the measurement V corresponding to the EEG (simulated according to the conditions
in this work at time t = [0, 1], see Figure 5c,d,g,h). The computations are performed
under the numerical consideration of the model, with a mesh containing some parameters
(similar to the finite element), as we show in Figure 1i, recalling that the anomaly is located
as in Figure 1g or Figure 1h. On the other hand, we consider the inherent error of the
measurement Vδ due to the equipment, randomly related to the Fourier coefficients of V
such that

∥∥V −Vδ
∥∥

L2(S2)
< δ, as well as the generalized error, for a suitable δ, a random

number Rand, and the errors E1
k and E2

k , associated with the Fourier coefficients V1
k and V2

k ,
given by

Error =
∞

∑
k=1

E1
k(Rand)(|V|max)

√
(6δ) cos(kθ) + E2

k(Rand)(|V|max)
√
(6δ) sin(kθ) (57)

Considering this, we have the approximation to the function g given by:

gδ =
1
2

∞

∑
k=1

[(
R1

R2

)k(
1− σ2

σ1

)
+

(
R2

R1

)k(
1 +

σ2

σ1

)][
V1,δ

k cos(kθ) + V2,δ
k sin(kθ)

]
(58)

for the 2D case. On the other hand, for the 3D case, we consider the source (x2 − y2)z.
We can analyze this source in spherical coordinates as r3

2 [1− cos(2φ)]cos(φ)cos(2θ). We
apply the previously described theory to solve the direct problem considering two regions,
to simplify the problem to one region as well (as we have described through this work).
In this case, the solution of the direct problem obtained as the restriction of the solution
of the boundary value problem of two 3D regions, using the Fourier series method [17] is
given by:

V(θ, φ) =
14σ1R1

9R2
3√2π[

4(σ2 − σ1)R1
7 − (4σ2 + 3σ1)R2

7
]
27
√

105
[Y2,3(θ, φ) + Y3,2(θ, φ)], (59)
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with Y the spherical harmonics [9,17] for a solution u(r, θ, φ) in Ω1 of the form

u(r, θ, φ) =
∞

∑
n=0

n

∑
m=n

[
a1

nmrn + b1
nmrn+2

]
Ynm(θ, φ), (60)

and in Ω2

u(r, θ, φ) =
∞

∑
n=0

n

∑
m=n

a2
nmrnYnm(θ, φ), (61)

In this case, the error is given by

Error =
∞

∑
n=0

n

∑
m=n

anm(Rand)nm(|V|max)
√

6δ

nπ
√

2n + 1
Ynm(θ, φ). (62)

In what follows, we consider the parameters described at the beginning of this section
(R1 = 1.2, R2 = 2, σ1 = 3 and σ2 = 1). For the numerical experiments, we use COMSOL
and MATLAB to solve the direct problems. We use scripts developed by us (in MATLAB)
to solve the problems using circular and spherical harmonics. To minimize the functional
in Equation (56), we use the fminunc Matlab function .

The previously stressed ideas can be used in more realistic geometries of the head
along with numerical methods, such as the finite differences and finite element methods.

In Figure 6, we show the solutions to the boundary problems as well as that to the
direct and inverse problems for the numerical examples previously mentioned in Section 7.
In Figure 6a–d, we show the solution to the boundary problem for the dipolar source
in Figure 6a,b for the two regions 2D and 3D cases, respectively. In Figure 6c,d, we
show the simplified 2D and 3D cases, respectively. In Figure 6e,f, we show the source
recovered solution from solving the inverse problem, respectively. In Figure 6g–j, we
show the boundary problem for the source (x2 − y2)z, in Figure 6g,h, the two regions 2D
and 3D cases, respectively, whereas, in Figure 6i,j, the simplified case for the 2D and 3D,
respectively. In Figure 6k,l, we show the source and the recovered solution from solv-
ing the inverse problem. The errors obtained between the exact and recovered sources
were 0.018 for the dipolar source case, and 0.019 for the source (x2 − y2)z. In Table 1,
we show the numerical results from our different comparisons and proposals. We re-
call that we applied our simplification (reduced) proposal and Fourier series solution in
Equations (46) and (47) (obtained as well from Equations (51) and (52)) to solve the inverse
problem. Moreover, we solved the two-layers (original) conductive medium problem,
comparing in both inverse problems the recovered source. As we mentioned previously,
we included time into the problem and subsequently solved both problems, original and
reduced, using our algorithm, described in Figure 4, for different time interval divisions
(moments in time) of 64, 128, 256, 512 to compare our results. Among these divisions, we
concluded that the time interval t = [0, 1] is the most optimal and efficient, as we show
in Table 1 having significantly short computation times with respect to other divisions.
Moreover, the percentage error (error [%]) between the model source (computed from the
dipolar momentum P= [−1, 1] in Equation (29) and for f = (x2 − y2)z) and the recovered
source (final part of the algorithm shown in Figure 4) validates our proposal as optimal,
with a computation time of 2 min in average and an error of 0.02%. In Table 1, we also
show the computation times for different sources recovered by inverse problems involving
the multiple-layers conductive medium problem and our simplification proposal, along
with the errors between the model sources and the recovered sources solving the inverse
problem using our algorithm at different times.
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Figure 6. Solution of the problem described in Equations (21) and (22) (simplified) for the 2D and
3D case for the dipolar source and (x2 − y2)z, as well as the original boundary problem for two
regions described in Equations (4)–(8). (a–d) solution of the boundary problem in the dipolar source;
(a,b) two regions case; (c,d) simplified 2D and 3D regions case, respectively; (e,f) source and recovered
solution from solving the inverse problem; (g–j) solution of the boundary problem of the source
(x2 − y2)z; (g,h) two regions case; (i,j) simplified 2D and 3D case, respectively; (k,l) source and
recovered solutions from solving the inverse problem.

Table 1. Software comparison. Computation times in minutes and seconds (min:sec) for the two
used software: Matlab and COMSOL, obtained when solving the multiple layer conductive medium
problem (original) and using our simplification proposal (reduced). We tested these methods when
solving two different sources: one computed from the dipolar momentum P = [−1, 1] and the other
one from the expression f = (x2 − y2)z. We show the percentage error (%) and the absolute error
(A) between the exact and recovered sources after solving the inverse problem in time, and dividing
the time interval in 64, 128, 256, and 512 parts (each division corresponds to a moment in time).
DTI (Divisions of the time interval): M (Matlab), C (Comsol)—in the last column: O (Original),
R (Reduced).

DTI 64
Error

128
Error

256
Error

512
Error

% A % A % A % A

Source computed from the EEG with P = [−1, 1], Equation (29)

M 1:32 0.1009 0.0111 2:50 0.0213 0.0015 5:10 0.0201 0.0016 10:11 0.0189 0.0017 O
0:56 0.0897 0.0095 1:40 0.0185 0.0023 4:10 0.0176 0.0013 8:05 0.0170 0.0012 R

C 2:11 0.0908 0.0081 3:20 0.0205 0.0031 6:15 0.0199 0.0021 15:25 0.0187 0.0021 O
1:35 0.0789 0.0065 2:10 0.0181 0.0019 5:05 0.0171 0.0020 11:55 0.0167 0.0013 R

Source computed from f = (x2 − y2)z

M 2:03 0.1111 0.013 3:22 0.0240 0.0031 5:45 0.0223 0.0019 10:57 0.0211 0.0024 O
1:28 0.0999 0.0087 2:11 0.0190 0.0021 4:52 0.0188 0.0022 8:59 0.0183 0.0016 R

C 2:46 0.0899 0.0093 3:59 0.0214 0.0019 6:57 0.0211 0.0025 16:11 0.0200 0.0018 O
1:53 0.0700 0.0065 2:31 0.0199 0.0021 5:43 0.0192 0.0015 12:33 0.0180 0.0014 R
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8. Conclusions

In this work, we study the inverse problem for brain bioelectrical sources using the
EEG recorded on the scalp. These sources and the EEG are correlated by a boundary
value problem deduced from Maxwell’s equations and the head electrical properties. This
boundary value problem is defined in a non-homogeneous region representing the head.
We consider the epileptic foci case, i.e., anomalies with no electric characteristic changes
in the brain but influencing the triggers’ quantities of the brain cells due to a possible
problem in the sodium channels (sodium pathy). We are not considering tumor-associated
anomalies such as edemas and calcifications, which have electric characteristic changes
in the region they occupy. However, for illustration purposes, we briefly stress the tumor
case. In the case of a tumor, the zone occupied by it changes its conductivity, generating a
fibrous layer surrounding it. In such a layer, the produced current, i.e., the second current,
produces an abnormal EEG. If the layer is considerably thin, it can be considered as the
surface separating the region occupied by the anomaly from the healthy brain. In such a
case, the generating source of the abnormal EEG can be regarded as a shallow-type source,
defined over the separation surface and the boundary condition of the separation interface
between the healthy brain and the pathology is given by Equations (6) and (10). On the
other hand, if the fibrous layer is thick, the EEG generating source can be considered a
volumetric source. In this case, the boundary conditions of separation interface are given
by Equations (6) and (7).

We emphasize that, in this work, we are focusing only on the source type identification
rather than on its localization since the used space coordinates are an idealization for
the models and geometric considerations regarding the skull and head representation.
Hence, the localization problem is beyond the scope of this work and will be addressed
in a forthcoming article since the simplification can optimize the spatial localization of
the source.

We apply a simplification, leading us to a boundary value problem in a homogeneous
region. In the simplification, we solve the Cauchy problem for the Laplace equation
in an annular region and use the Green’s functions method to reduce the problem to
a homogeneous region. We solve the simplified problem in space and included time
as an additional variable to solve the phenomenon at different times. We consider a
moment in time as the division of the time interval in multiples of the frequency known
in the EEG. Hence, we propose an algorithm to analyze the boundary problem, the direct
problem solution, and the inverse problem solution at each time, considering the time as
the iterations in the algorithm. We summarize the results of our proposal in Table 1. We
observe that the optimal times and errors show the highest efficiency for 128 divisions in
the time interval with an error of 0.02% and computation time of 2 min in Matlab.

We illustrate the algorithm with sources associated with epilepsy. The latter is one of
the most relevant applications of the EEG. In particular, we consider sources associated
with epileptic foci. Moreover, the simplicity of the epileptic foci modeling is an attractive
example of the dipolar moment application, relating the electromagnetic theory in the
sources’ nature and the construction of our bioelectric activity-based proposal. We conclude
that our proposal has applications in the identification of this kind of source.
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Appendix A

To obtain explicitly the Fourier coefficients of the g(x) (Equation (50)), we must
remember A∂G1 and B∂G2 defined in Equation (48) for Cxyg = A∂G1 x1 + B∂G2 x2 and Ct

xyg =
A∂G1 x2 + B∂G2 x1. On the other hand, considering the orthogonality between constant
functions and the solution, we can neglect some terms, such as y1

R1
2 and y2

R1
2 ; and substituting

them into Equation (49), we obtain

g(x) =
p1

(
1− R1

2
)

σ1|x− y|2
[
R1cos(θ)− rcos

(
θy
)]

+
p2

(
1− R1

2
)

σ2|x− y|2
[
R1sin(θ)− rsin

(
θy
)]

. (A1)

Thus, to calculate the Fourier coefficients of g in Equation (A1), we follow
the expressions:

g1
k = 〈g(x), cos(kθ)〉

=
p1

(
1− R1

2
)

R1
2

σ1

∫ 2π

0

cos(θ)cos(kθ)

|x− y|2
dθ

+
p2

(
1− R1

2
)

R1
2

σ2

∫ 2π

0

sin(θ)cos(kθ)

|x− y|2
dθ

−
[(

1− R1
2
)

rR1
2

(
p1cos

(
θy
)

σ1
+

p2sin
(
θy
)

σ2

)∫ 2π

0

cos(kθ)

|x− y|2
dθ

]
,

(A2)

g2
k = 〈g(x), sin(kθ)〉

=
p1

(
1− R1

2
)

R1
2

σ1

∫ 2π

0

cos(θ)sin(kθ)

|x− y|2
dθ

+
p2

(
1− R1

2
)

R1
2

σ2

∫ 2π

0

sin(θ)sin(kθ)

|x− y|2
dθ

−
[(

1− R1
2
)

rR1
2

(
p1cos

(
θy
)

σ1
+

p2sin
(
θy
)

σ2

)∫ 2π

0

sin(kθ)

|x− y|2
dθ

]
.

(A3)

In order to obtain explicitly the coefficients of Equations (A2) and (A2), we need to
compute the integrals I j

ik (i = 1, 2 and j = 1, 2), given by
I1
1k =

∫ 2π
0

cos(θ)cos(kθ)

|x−y|2
dθ, I2

1k =
∫ 2π

0
sin(θ)cos(kθ)

|x−y|2
dθ,

I1
2k =

∫ 2π
0

cos(θ)sin(kθ)

|x−y|2
dθ, I2

2k =
∫ 2π

0
sin(θ)sin(kθ)

|x−y|2
dθ.

(A4)

We reduce these integrals to the following integrals Im
i :{

Im
1 =

∫ 2π
0

cos(mθ)

|x−y|2
dθ, Im

2 =
∫ 2π

0
sin(mθ)

|x−y|2
dθ, (A5)

with m = 1, 2, 3, . . . (positive integer). Hence,

Im
2 =

2πrmsin
(
θy
)

R1
m−1(R12− r02)

. (A6)
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We use complex variable notions [17] to test it. Setting x = R1eiθ and y = r0eiθy , we
re-write Equation (A6) as

Im
2 =

1
R1

m−1 Im

(∫ 2π

0

ym

|x− y|2
dθ

)
, (A7)

and, considering that dx = ixdθ, the following holds:

Im
2 =

1
R1

m−1 Im

(
−i
∫ 2π

0

xm−1

|x− y|2
ixdθ

)
=

1
R1

m−1 Im

(
−i
∫
|x|=R1

xm−1

|x− y|2
dθ

)
. (A8)

We define Φ(y) = − xm

R1
2−xy

considering Φ(x)
x−x0

= xm

(x−y)(R1
2−xy)

and x0 = y. Thus, since

Φ is an analytic function in Ω1 [17,35], we have

Im
2 =

1
R1

m−1 Im(i(2πiΦ(x0))) =
1

R1
m−1 Im

(
2π

ym

R1
2 − r02

)
=

2πrmsin
(
mθy

)
R1

m−1
(

R1
2 − r02

) , (A9)

analogously

Im
1 =

2πrmcos
(
mθy

)
R1

m−1
(

R1
2 − r02

) , (A10)

using and applying trigonometrical identities in the integrals I j
ik (i = 1, 2 and j = 1, 2), we

re-write them as

I1
1k =

2πr0
k−1

R1
k

 r0
2cos

(
(k + 1)θy

)(
R1

2 − r02
) +

R1
2cos

(
(k− 1)θy

)(
R1

2 − r02
)

, (A11)

I2
1k =

2πr0
k−1

R1
k

 r0
2sin

(
(k + 1)θy

)(
R1

2 − r02
) −

R1
2sin

(
(k− 1)θy

)(
R1

2 − r02
)

, (A12)

I1
2k =

2πr0
k−1

R1
k

 r0
2sin

(
(k + 1)θy

)(
R1

2 − r02
) +

R1
2sin

(
(k− 1)θy

)(
R1

2 − r02
)

, (A13)

I2
2k =

2πr0
k−1

R1
k

 r0
2com

(
(k + 1)θy

)(
R1

2 − r02
) −

R1
2cos

(
(k− 1)θy

)(
R1

2 − r02
)

. (A14)

Equations (A11)–(A14) allow us to obtain the function g in terms of its coefficients gk
i

(i = 1, 2), given by

g1
k = p1

(
1− R1

2
)

πr0
k−1

σ1R1
k−2
(

R1
2 − r02

)[r0
2cos

(
(k + 1)θy

)
+ R1

2cos
(
(k− 1)θy

)]

+ p2

(
1− R1

2
)

πr0
k−1

σ2R1
k−2
(

R1
2 − r02

)[r0
2sin

(
(k + 1)θy

)
+ R1

2sin
(
(k− 1)θy

)]

−
(

p1cos
(
θy
)

σ1
+

p2sin
(
θy
)

σ2

)(
1− R1

2
)

2πr0
k+1cos

(
kθy
)

R1
k−2
(

R1
2 − r02

) ,

(A15)
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g2
k = p1

(
1− R1

2
)

πr0
k−1

σ1R1
k−2
(

R1
2 − r02

)[r0
2sin

(
(k + 1)θy

)
+ R1

2sin
(
(k− 1)θy

)]

+ p2

(
1− R1

2
)

πr0
k−1

σ2R1
k−2
(

R1
2 − r02

)[r0
2cos

(
(k + 1)θy

)
+ R1

2cos
(
(k− 1)θy

)]

−
(

p1cos
(
θy
)

σ1
+

p2sin
(
θy
)

σ2

)(
1− R1

2
)

2πr0
k+1sin

(
kθy
)

R1
k−2
(

R1
2 − r02

) .

(A16)
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