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Abstract: Road segmentation is one of the essential tasks in remote sensing. Large-scale high-
resolution remote sensing images originally have larger pixel sizes than natural images, while the
existing models based on Transformer have the high computational cost of square complexity, leading
to more extended model training and inference time. Inspired by the long text Transformer model,
this paper proposes a novel hybrid attention mechanism to improve the inference speed of the model.
By calculating several diagonals and random blocks of the attention matrix, hybrid attention achieves
linear time complexity in the token sequence. Using the superposition of adjacent and random
attention, hybrid attention introduces the inductive bias similar to convolutional neural networks
(CNNs) and retains the ability to acquire long-distance dependence. In addition, the dense road
segmentation result of remote sensing image still has the problem of insufficient continuity. However,
multiscale feature representation is an effective means in the network based on CNNs. Inspired
by this, we propose a multi-scale patch embedding module, which divides images by patches with
different scales to obtain coarse-to-fine feature representations. Experiments on the Massachusetts
dataset show that the proposed HA-RoadFormer could effectively preserve the integrity of the road
segmentation results, achieving a higher Intersection over Union (IoU) 67.36% of road segmentation
compared to other state-of-the-art (SOTA) methods. At the same time, the inference speed has also
been greatly improved compared with other Transformer based models.

Keywords: dense road segmentation; transformer; multiscale patches; hybrid-attention

MSC: 68T01

1. Introduction

Dense road segmentation based on high-resolution remote sensing images plays a vital
role in urban planning, traffic management, vehicle navigation, and map updating [1–3].
With the development of deep learning, the task of road segmentation has made significant
progress. It is essential to obtain multi-scale features for intensive detection tasks, such as
object detection and semantic segmentation in computer vision. The road segmentation
network based on CNNs achieves superior performance in intensive visual tasks through
the multi-size of the convolution kernel and multiscale on the feature map. For example,
Inception [4] utilizes the split-transform-merge strategy to fuse the features with different
sizes of receptive fields generated by multiscale convolution kernels (such as 3 × 3, 5 × 5,
and 7 × 7) and obtains a variety of receptive fields on the same level of the feature map,
which is conducive to identifying objects with different scales. HRNet [5] uses multiple
resolution branches to obtain fine and coarse features and constructs multiscale features
through information interaction between different levels of features.
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Although the model based on CNNs is widely used as a feature extractor in inten-
sive prediction tasks [6,7], the performance of the visual Transformer [8,9] has surpassed
CNNs [10] in many visual tasks. In the recent research on vision Transformer, ViT [11]
and its variant models [12–14] focus more on solving the large-scale computing problem
caused by the excessive length of the token sequence in the global attention mechanism. For
example, Swin Transformer [15] divides the tokens sequence with length N into N/n groups
through the sliding window and hierarchical design and uses the idea of divide and con-
quer to calculate local attention in groups, reducing the time complexity O(N ∗ n2). CSWin
Transformer [16] is also a local self-attention network, different from Swin Transformer. It
adopts cross window self-attention and obtains better performance by gradually expanding
the receptive field, and its time complexity is between ordinary window attention and
global attention.

However, there are two main problems in high-resolution dense road segmentation
based on Transformer. First, large-scale high-resolution remote sensing images have more
pixels, which means a large amount of calculation. It is challenging to optimize the time
complexity [17] of attention map calculation to ensure excellent segmentation performance.
Second, remote sensing images containing dense roads have the characteristics of road
density, complex and inconsistent scales. We need to build effective multiscale feature
representations to solve the problem of inaccuracy and incompleteness in road segmenta-
tion [18]. However, for high-resolution dense prediction, less attention has been paid to
how to establish compelling multiscale features. As shown in Figure 1, the above models
have in common that they follow the general idea of CNNs and use a single-scale patch
to build a simple multi-stage structure to obtain fine-to-coarse feature representations.
Therefore, the multiscale feature representation based on multi-scale patch embedding still
has room for improvement in the vision Transformer.

Figure 1. Top: single branch Transformer structure with single scale patch such as ViT-variants.
Bottom: HA-RoadFormer, a multi-branch Transformer structure with multi-scale patches.

Our paper focuses on effectively constructing a hybrid-attention Transformer network
with multi-scales embedding called HA-RoadFormer for dense road segmentation in large-
scale high-resolution remote sensing images. We first exploit overlapping convolution
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operation to obtain the visual patches with the same sequence length by appropriately
changing the stride and padding. At the same time, the multiscale patch embedding
tokenizes these visual patches with different sizes. Then, tokens with different scales are fed
into respective Transformer branches independently. Due to the enormous computational
cost for high-resolution remote sensing images, we design a hybrid-attention mechanism
whose time complexity is linear with the number of tokens. Each Transformer branch
encoder performs hybrid-attention on tokens of different scales. Finally, the output features
from other Transformer encoder branches are aggregated to generate the fine-granularity
and coarse-granularity feature representations. Considering convolution’s powerful local
feature extraction ability [17], we introduce convolution local features to augment the
global features of Transformer in the feature aggregation model. Experiments on the
Massachusetts dataset showed that the proposed HA-RoadFormer could improve the
performance of dense road segmentation achieving a higher IoU (67.36%) compared to
other state-of-the-art methods. The many performances also prove the power generation
ability of our way.

The main contributions of the article are summarized as follows:

1. To reduce the high computational complexity of large-scale high-resolution remote
sensing images, we propose a hybrid attention mechanism with linear complexity.
Hybrid attention focuses on a few sampling points around the reference point. It
assigns a small number of fixed keys to each query, which can alleviate the problem of
limited input resolution. To retain the acquisition ability of long-distance dependence,
we use random attention as a supplement.

2. We explore multiscale patch embedding and multi-branch structure from a unique
perspective. Tokens of different scales are sent to the Transformer encoder indepen-
dently through multiple paths. Then, the generated features are aggregated to realize
coarse to fine feature representation at the same feature level.

2. Related Work

This section describes the related work from three aspects: road segmentation in
remote sensing images, Transformer with local attention enhancement, and vision Trans-
former for semantic segmentation. Figure 2 clearly shows the context of this section.

Figure 2. The overall context of related work.
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2.1. Road Segmentation in Remote Sensing Image

Benefiting from deep learning, remote sensing image recognition has made significant
progress [18–23]. Road segmentation based on deep learning is mainly the convolutional
neural network. For example, D-linkNet [10] won the DeepGlobe 2018 Road Extraction
Challenge championship by adding a cascaded dilated convolution structure between
encoder and decoder. Gao et al. [24] design a multiscale feature pyramid structure to
capture multiscale features achieving a better segmentation effect. Xin et al. [25] propose a
deep learning network composed of dense residual block and jump connections, which
fully uses the features at different levels.

Recently, the road segmentation framework based on Transformer has also been
innovated. For example, Zhang et al. [26] propose a remote sensing road segmentation
framework based on CSWin Transformer, improving IoU. However, the inference speed is
relatively slow compared with the model based on CNNs.

2.2. Transformer with Local Attention Enhancement

ViT regards the input image as a patch sequence. Still, this rough patch embedding
may destroy the local information of the image, which is also the difference between
image and language. As a local feature extractor, convolution aggregates features through
relatively fixed filters. This template matching process can effectively deal with most small
datasets. Still, it faces the combination explosion of feature representation when dealing
with large datasets such as massive remote sensing data. Compared with convolution,
the local attention mechanism can dynamically generate attention weight according to the
relationship between local elements.

To enhance the ability of local feature extraction and retain the non-convolution
structure, many works [27–29] adapted to the patch structure through the local self-attention
mechanism. For example, Swin Transformer limits the attention to one window, which
introduces the locality of convolution operation and saves the amount of calculation.
TNT [30] enhances local attention by more fine-grained patch division. We believe that
there will be a stronger correlation between adjacent pixels. This paper proposes a hybrid
attention mechanism with linear complexity composed of adjacent and random attention
based on this prior knowledge. We will introduce it in detail in Section 3.

2.3. Vision Transformer for Semantic Segmentation

ViT inherits the columnar structure of the original Transformer and adopts the fixed
resolution, so it ignores the representation of multiscale features. To better apply Trans-
former to intensive detection tasks, researchers introduced a pyramid structure to construct
multiscale feature representation based on ViT. For example, PVT [31] adopts a multi-stage
Transformer structure to obtain feature maps of different scales through different stages.
This characteristic has achieved good results in semantic segmentation tasks. Similar to
this structure, multi-stage Transformer networks include PiT [32], T2T-ViT [33]. At present,
most segmentation networks adopt feature pyramid networks [34] structure, which can
realize a seamless connection by replacing the CNNs backbone. However, this multiscale is
only reflected in the feature level, ignoring the multiscale of patch embedding.

CrossViT [35] uses dual paths in a single-stage structure Transformer (such as ViT [11]
and XCiT [36]) to embed patches of different scales. However, CrossViT only realizes the
interaction between other branches through CLS (class) token [11], while HA-RoadFormer
allows all patch interactions of different scales. In addition, in contrast with CrossViT (clas-
sification only), HA-RoadFormer more generally explores larger path dimensions (for exam-
ple, more than two dimensions) and uses a multi-stage structure for semantic segmentation.

3. Method
3.1. Overall Structure

Figure 3 shows the overall structure of the hybrid-attention Transformer with a multi-
branch (HA-RoadFormer). Since our goal is to explore dense road segmentation in high-
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resolution remote sensing images, multiscale at feature levels is important for segmentation
tasks. We propose a multi-stage structure rather than a single-stage one such as ViT.
Specifically, a 5 stage Transformer encoder is constructed for multiple scales on feature
level, which contains a conv-stem and four Transformer Blocks. Due to the large-scale
high resolution of remote sensing images, it requires higher calculation. Therefore, our
Transformer encoder adopts a local hybrid-attention mechanism and linear complexity of
the token sequence. In addition, LeViT [37] absorbs the advantages of CNNs and adopts a
convolutional stem block, which shows better low-level feature representation than non-
overlapping patch embedding. Motivated by this, we also introduce a stem block composed
of two 3 × 3 convolutions layers. The number of channels is C2/2 and C2, the stride is 2,
and the size of the input feature map is (W/4, H/4, C2). Where C2 represents the number
of input channels in stage 2. Each convolution is followed by batch normalization and
activation function.

Figure 3. The overall structure of HA-RoadFormer.

From stages 2 to 5, each stage is composed of MS-Patch Embed and MB-Transformer
Block. As shown in Figure 4, within the MB-Transformer Block, global average pooling is
used to fuse the features from each branch. Finally, the feature maps of the 2 to 5 stages
are gradually up-sampling and fused in the way of the U-net [38] to obtain the final road
segmentation results.
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Figure 4. Illustration of the designed Muti-Branch Transformer Block.

3.2. Hybrid Attention with Linear Complexity

As the core operation of the Transformer, the attention mechanism [39] has been
widely used in the field of natural language processing and computer vision. Its essence
is to aggregate information according to the current query’s weights given to the input
information. The expression of attention mechanism is as follows:

Attention(Q, K, V) = So f tmax(
Q× KT
√

dk
)×V (1)

where Q, K, and V are, respectively, from the mapping of the input X ∈ RN×C (N is the
encoded patch length, C represents the encoding dimension) to different feature spaces.
The expression of a linear transformation is as follows:

Q = X×WQ, K = X×WK, V = X×WV (2)

For the global attention mechanism, there are the following two shortcomings. First,
in terms of time complexity, because global attention needs to calculate an N × N attention
matrix, its time complexity is O(N2), which is unacceptable for high-resolution images.
Second, the global attention visual Transformer represented by ViT needs a larger amount
of data and has a slower convergence speed than CNNs. This is because the global attention
in Transformer equally treats the correlation between pixels with different distances and
is driven by massive data to learn advanced semantic features. However, CNN’s models
have the advantage of inductive bias, which is the convolution kernel builds a stronger
correlation between adjacent pixels. Based on such a priori knowledge, the convolution
neural network can converge faster.

As shown in Figure 5, to solve the above problems, hybrid attention with linear
complexity composed of adjacent and random attention is proposed in this paper. Inspired
by inductive bias in CNNs, we focus on calculating the attention matrix between adjacent
patches in adjacent attention. To ensure the Transformer’s ability to capture long-distance



Mathematics 2022, 10, 1915 7 of 15

dependence, in random attention, each query randomly focuses on long-distance keys, and
the super parameter determines the number of keys R. After the random superposition of
multi-layer Transformers, excellent convergence can still be achieved in the end.

Figure 5. Illustration of the designed hybrid attention matrix composed of adjacent and random
attention. In the attention matrix, green means not considered, red means considered by adjacent
attention, and yellow means considered by random attention.

Hybrid attention has the following advantages: First, hybrid attention integrates the
prior knowledge of inductive bias compared with global attention. From the perspective of
optimization theory, the strong correlation between adjacent patches prioritizes backpropa-
gation, while the weak correlation far away realizes the random gradient update randomly.
Second, hybrid attention has the computational time cost of linear complexity, which is
important for large-scale high-resolution remote sensing images. Through the analysis,
the adjacent attention only needs to calculate the five diagonals in the attention matrix
selected according to the length of the patch, so its time complexity is O(N). The O(N)
time complexity can also be achieved by controlling the parameter R for random attention.

Specifically, given the input sequence X = (x1, x2, . . . , xN) ∈ RN×C, the sequence
is processed by the hybrid attention mechanism proposed in this paper. The attention
mechanism is described by a directed graph D, the node-set [N] = {1, 2, . . . , N}, and the
directed edge weight of the graph is the self-attention score between two nodes. For a
more straightforward introduction, this paper defines an adjacency matrix A ∈ [0, 1]N×N

belonging to graph D. If qi and ki participate in attention calculation, then aij = 1, otherwise
aij = 0. For example, a matrix whose adjacency matrix is all 1, that is, attention is calculated
between all patches, which is global attention.

Therefore, in the random attention mechanism proposed in this paper, the vector Qi
randomly selects vector Kj for attention calculation. Random attention is expressed as the
Formula (3):

A[i, random(j)] = 1 (3)

You only need to calculate the attention between two adjacent patches for the
adjacent attention matrix. For example, in patch 6 in Figure 5, you only need to set
A[6 : 2], A[6 : 5], A[6 : 6], A[6 : 7], A[6 : 10] to 1.

3.3. Multiscale Patch Embedding

In this paper, a multiscale patch embedding layer is designed to obtain coarse and
fine visual tokens at the same feature level. We use convolution operation to acquire
overlapping patches by controlling a certain stride and padding. Specifically, the input
of the stage i is obtained by the output Xi ∈ RHi−1×Wi−1×Ci−1 of the stage i − 1 through
2D reshape. We map Xi to a new token with the number of channels Ci through function
Fk×k(·), where Fk×k(Xi) is a 2D convolution operation, the convolution kernel size is k× k,
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the stride is s, and padding is p. The formula expression of the length and width of the
output 2D feature Fk×k(Xi) ∈ RHi×Wi×Ci is as follows:

Hi = f loor(
Hi−1 − k + 2× p

s
) + 1, Wi = f loor(

Wi−1 − k + 2× p
s

) + 1 (4)

Through (4), it is found that we can control the length of the tokens sequence by
adjusting stride and padding so as to output the same resolution feature map with different
patch sizes. Therefore, we use convolution operations with different convolution kernel
sizes in parallel in the patch embedding layer. For example, as shown in Figure 3, we can
obtain multi-sized visual tokens of the same sequence length with patch sizes.

To reduce the amount of calculation, we will make two detailed explanations in
our work. First, by superimposing the convolution operation with a small kernel and
gradually expanding the receptive field, the same effect of convolution operation with a
large kernel is achieved. It reduces the number of parameters [40]. Therefore, we use the
convolution of two 3× 3 to replace a 5× 5 convolution and three 3× 3 convolutions instead
of a 7 × 7 convolution. Second, we use depthwise separable convolution, composed of
depthwise and pointwise convolution [41]. All convolution layers are followed by batch
normalization and activation functions. Finally, visual tokens of different patch sizes are
independently sent to the Transformer encoder.

4. Experiment
4.1. Dataset and Preprocessing

Massachusetts roads [42] is the largest public road dataset globally, consisting of
1171 images, including 1108 training images, 14 verification images, 49 test images, and
corresponding labels. The size of each image is 1500 ∗ 1500 pixels, and the resolution
is 1.2 m/pixel. This dataset contains various features, such as roads, grasslands, forests,
and buildings.

According to the structure of HA-RoadFormer, the remote sensing image needs to be
down-sampling 32 times, and 512 is exactly a multiple of 32. Considering the memory of
hardware devices and segmentation results, the remote sensing images and the correspond-
ing label images in the dataset are randomly cut into 512 × 512 [43] pixel image samples.
Then, all the image samples are randomly divided into a new training set and validation
set in the proportion of 4:1 because 20 percent of the verification set is widely used [44].
Finally, the training set contains 14,366 image samples, and the verification set contains
3592 image samples.

4.2. Implementation Details

In this experiment, we implemented HA-RoadFormer using the open-source frame-
work PyTorch. Before training, we use data enhancement, such as random rotation, to
expand the data again. The sum of cross entropy loss and dice loss function is used in the
training process as the final loss function [26] and optimized with Adam [45] algorithm.
We used 4 NVIDIA RTX 2080ti GPUs (11 G) by a workstation with four graphic card slots.
The data flow of multi-GPU training is shown in Figure 6. According to [46], we set the
batch size to 2, and the initial learning rate was 0.001. We set the training epoch to 100 and
use early stopping by observing the decline curve of the loss function. According to [47],
when the loss of the training set no more prolonged decreases and tends to be stable, while
the loss of the verification set begins to increase, we stop the iteration.
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Figure 6. The data flow of multi-GPU training.

4.3. Evaluation Metrics

To quantify the results of road segmentation, the most common evaluation metrics [48,49]
in the field of semantic segmentation are used: Precision, Recall, F1-score, and IoU. Road
segmentation is regarded as a binary classification problem in our work, and the prediction
results are divided into two categories: road and non-road. For this problem, the sample data
can be classified into four cases: true positive (TP), false positive (FP), true negative (TN),
and false-negative (FN). The evaluation metric formulas deduced by them are as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score =
2TP

2TP + FN + FP
(7)

IoU =
TP

TP + FP + FN
(8)

4.4. Experimental Results on Massachusetts Road Dataset

To verify the performance of HA-RoadFormer in road segmentation task, we select
representative road segmentation networks, such as DeepLabV3+ [50], D-LinkNet [10],
D-ResUnet [51], and Transformer based networks DCS-TransUperNet [26] and ViT [11],
making comparative experiments on Massachusetts road dataset.

Table 1 shows the quantitative analysis under different models. As shown in Table 1,
HA-RoadFormer achieved the best performance in Precision (82.94%), Recall (79.43%),
F1-Score (81.14%), and IoU (67.36%). Experiments show that our HA-RoadFormer has
better road segmentation ability. In addition, the attention mechanism of linear complexity
reduces the amount of calculation. Compared with other Transformer based models, the
inference speed of HA-RoadFormer has been greatly improved, which further narrowed
the inference speed gap between HA-RoadFormer and CNNs based models.
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Table 1. Quantitative analysis results with different methods on the Massachusetts roads dataset.

Method Precision (%) Recall (%) F1-Score (%) IoU (%) Inference (ms)

DeepLabV3+ 75.47 72.23 73.81 58.86 1.65
D-LinkNet 77.91 69.85 73.66 58.54 1.22
D-ResUnet 75.95 77.58 76.75 61.69 2.32

ViT 80.55 77.64 79.06 63.85 2.45
DCS-TransUperNet 82.44 78.43 80.38 65.56 2.84

HA-RoadFormer 82.94 79.43 81.14 67.36 1.86

Figure 7 shows a very representative visualization result. We selected two scenes
with relatively dense roads (the first and third row) to compare the results. To compare
the segmentation results more clearly, we use the red rectangular box to circle the crit-
ical comparison places, and enlarge the area (the second and fourth lines). In Figure 7,
(a) is a remote sensing image, (b) is the corresponding label, and then the third to sev-
enth columns are the road segmentation results of DeepLabV3+, D-LinkNet, D-ResUnet,
DCS-TransUperNet and HA-RoadFormer (the last column). Through the experimental
comparison in the second row, it is found that HA-RoadFormer with multiscale patch
embedding has apparent advantages in the segmentation of minor roads. In image 2, we
highlight and compare the scenes of multiple adjacent main roads with great difficulty in
detection. The difficulty is that the pixels at the edge of the road are very easy to confused,
resulting in the segmentation result being an adhesive block. From the locally enlarged
view (the fourth row) in image 2, compared with other networks, the segmentation result of
HA-RoadFormer (the last column) has better continuity, and the edge of the road is clearer.
In addition, Figure 8 shows more examples of segmentation results.

Figure 7. Visualization result of road segmentation from different methods. (a) The test image.
(b) The ground truth. (c) Results with DeepLabV3+. (d) Results with D-LinkNet. (e) Results with
D-ResUnet. (f) Results with DCS-TransUperNet. (g) Results with HA-RoadFormer.
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Figure 8. More examples of segmentation results. (a) The test image. (b) The ground truth. (c) Results
with DeepLabV3+. (d) Results with D-LinkNet. (e) Results with D-ResUnet. (f) Results with DCS-
TransUperNet. (g) Results with HA-RoadFormer.

4.5. Ablation Experiment

To further explore the role of multiscale patch embedding in road segmentation, we
visualized the attention feature map. As shown in Figure 9, (a) is the input remote sensing
image, (b) is the ground truth, and (c) represents the result of road segmentation. (e–g) are
from different scale patch embedded branches in the fifth stage of HA-RoadFormer. (e) is
the heat map from small patches. It pays more attention to the detailed information of the
road and captures the road pixels more accurately. Still, it lacks the overall continuity, which
is reflected in the intermittent state of the highlighted points in the heat map. (f, g) are the
heat maps from medium-scale and large-scale patches. It is a higher-level semantic feature
which pays more attention to the broad range of the image and enhances the continuity
of road segmentation. The heat map (g) shows that large patches filter out the noise and
small road targets. At the same time, it will also misjudge large areas such as roads, such as
gullies and dark slender regions. Heat map (h) is the result of the feature fusion of three
different branches (e–g). It combines the overall features of large patches and improves
the continuity of road segmentation and retains the fine features of small patches, and
improves the segmentation ability of minor roads. Finally, the road segmentation result
(c) is obtained. These results show that the multi-branch structure embedding based on
a multiscale patch can acquire fine and coarse features and capture segmented objects of
different scales more accurately.

In addition, (d) represents the heat map of the attention feature matrix in the second
stage of HA-RoadFormer. We find that the model gradually began to pay attention to
the pixels near the road. Although the heat map does not show great attention in yellow
or red, it can still show that the hybrid attention with linear complexity proposed has
an effective feature extraction ability in the shallow layer of the network. It has been
proved that focusing on adjacent local information and randomly focusing on long-distance
dependence is effective.
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Figure 9. Analysis of attention heat map of the patch from different scales. (a) The test image.
(b) The ground truth. (c) Results with HA-RoadFormer. (d) the heat map of the attention feature
matrix in the second stage of HA-RoadFormer. (e) the heat map from the small-scale branch. (f) the
heat map from the medium-scale branch. (g) the heat map from the large-scale branch. (h) the heat
map of the feature fusion of three different branches.

Table 2 quantitatively analyzes different ablation experiments. Compared with HA-
RoadFormer (IoU: 67.36%), we use the models with single branch embedding and double
branch embedding, achieving the IoU as follows: 63.94%, 64.27%, respectively. Experiments
show that patch embedding with different scales plays significant roles in feature extraction,
proving the effectiveness of multiscale embedding in HA-RoadFormer. In addition, we
design a contrast model called RoadFormer, which replaces the hybrid attention with global
attention and the other parts are consistent with HA-RoadFormer. The experimental results
show that the IoU (67.36%) of HA-RoadFormer is slightly higher than that of RoadFormer
(66.50%). However, the inference time is greatly improved, reduced from 2.94 ms to 1.86 ms.

Table 2. Quantitative analysis results in different patch embedding combinations and
attention mechanisms.

Method IoU (%) Inference (ms)

HA-RoadFormer with two patches 64.27 1.66
HA-RoadFormer with one patch 63.94 1.40

RoadFormer 66.50 2.94
HA-RoadFormer with three patches 67.36 1.86

5. Conclusions

This paper aims to solve the problem of dense road segmentation in high-resolution
remote sensing images. Since the time complexity of the global attention in the original
Transformer is directly proportional to the square of the length of the token sequence,
this amount of calculation results in lower inference speed for large-scale high-resolution
remote sensing images. Therefore, this paper proposes local hybrid attention with linear
complexity, which retains the acquisition ability of Transformer’s long-distance dependence
and introduces the idea of inductive bias such as CNNs. This prior knowledge makes the
model converge faster. We propose a Transformer Road segmentation network based on
multiscale patch embedding, which obtains the multiscale feature representation under the
same level of features through multiscale patch embedding to solve the problem of dense
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segmentation. We have got the road segmentation results of SOTA on the Massachusetts
roads dataset. The segmentation results are more significantly improved in the dense
road remote sensing images. In addition, we conducted ablation experiments. Through
the comparative analysis of heap maps, it is found that there is an interpretable effect of
multiscale patch embedding in attention.

Although HA-RoadFormer has achieved excellent road segmentation results, there
is still room for optimization. Roads are continuous in space, and this unique topology is
the most prominent feature of roads. It is a very promising job to study how to fuse this
topology information into neural networks to improve the quality of road segmentation.
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