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Abstract: This paper is divided into two main portions. First, we look at basins of attraction as a tool
with a unique set of characteristics for discussing multistability and coexisting attractors in a gyrostat
chaotic system. For the validation of coexisting attractors in different basins, several approaches such
as bifurcation diagrams, Lyapunov exponents, and the Poincaré section are applied. The second half
of the study synchronizes two mechanical chaotic systems using a novel controller, with gyrostat
and quadrotor unmanned aerial vehicle (QUAV) chaotic systems acting as master and slave systems,
respectively. The error dynamical system and the parameter updated law are built using Lyapunov’s
theory, and it is discovered that under certain parametric conditions, the trajectories of the QUAV
chaotic system overlap and begin to match the features of the gyrostat chaotic system.

Keywords: nonlinear dynamical systems; basin of attraction; chaos; coexisting attractor; synchronization
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1. Introduction

Attracting the attention of many researchers since its first use for the investigation
of earth rotation in 1852, the gyrostat has been used in a great variety of physical objects,
such as QUAV, motor vehicles, spacecrafts, robots and so on. Moreover, industries that are
dependent upon the positioning and movement of objects through robots can also use a
gyrostat for stability [1]. Jalili and Emami [2] worked on finding the analytical solutions
of industrial machinery in turning processing, while Pivarčiová et al. analyzed a mobile
robotic system through an inertial navigation system [3]. In 2016, the combination of a
tractor–trolley–trailer system [4] was modeled to provide mobility for the passage of a
circular traffic jam. Chaos is an important phenomenon, which is famous for its sensitivity
to initial conditions and parameter values. Apart from famous chaotic systems such as the
weather forecast [5], finance [6] and biological [7] models, chaos in mechanical systems
is demanding discussion in this technological era. In 2012, Aslanov and Yudintsev [8]
considered a free gyrostat with small asymmetrical rotors and used an advanced Melinkov
function to determine homoclinic and heteroclinic orbits in a controlled manner. In 2001,
Kuang et al. [9] used Deprit’s variable for the first time to investigate chaos in the attitude
motion of a gyrostat satellite. A mathematical model for the orbital motion of the attitude
dynamics of a gyrostat attached to a satellite was derived by Abtahi [10], whereas Qi
et al. [11] modeled a chaotic gyrostat system with the aid of energies and external forces.
In 2018, Chegini et al. [12] assumed two rigid panels were attached with springs in a
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gyrostat to prove its chaotic nature, whereas they also investigated the existence of chaos in
a satellite system [13] moving in an orbital path.

A region E where iterations are defined in such a way that any initial condition in E
asymptotically converges to one attractor is known as a basin of attraction. Interestingly,
every point in the phase space of a linear system is in the basin of attraction, whereas in
nonlinear systems, points map asymptotically or directly to infinity. However, another
possibility in the nonlinear case is the convergence of few initial conditions to different
basins and mapping into other attractors. Mostly, researchers have considered difference
equations for computing basins of attraction, such as Brett and Kulenović [14], who consid-
ered a two-species competitive model composed of difference equations with quadratic
terms. In 2016, a period-two solution was taken into account for basins of attraction, where
the boundaries of two basins were asymptotically stable manifolds [15] and similar work
can be seen in [16]. There are also several methods provided to compute basins in discrete
and fractional dynamical systems [17–19]. Since the last decade, researchers have focused
on the computation of basins for chaotic systems.

Basins can also play a helpful role in finding hidden and coexisting attractors in chaotic
systems [20–23]. The coexisting attractor (multistability) [24] for a set of parameters has
been studied for many nonlinear systems. It identifies the nonuniqueness of the system’s
final state. There are concepts to deal with the complexity of a dynamical system, but the
coexisting attractor is one of the recent interest. Studies have revealed that, the famous
butterfly attractor in Lorenz-type systems was separated into two symmetrical attractors
in [25,26], whereas Xiong et al. [27] made it possible to bring tristability in a different set of
parameter. It has also been found that control methods are not only limited to help control
chaos but also have a special role in finding coexisting attractors [28,29].

Synchronization is a process in which master and slave systems achieve state con-
sistency using control inputs [30]. This topic has a variety of applications in hardware
implementation for the verification of several types of attractors [31]. In 2015, Esteban
et al. [32] discussed the existence of multiscrolls in chaotic systems and verified those
attractors through FGPA. Moreover, synchronization plays an important role in secure
communication [33,34]. In 2021, González-Zapata et al. synchronized artificial neuron
chaotic systems and implemented their technique to transfer an image file in a secure
way [35]. Moreover, synchronization is categorized on the basis of its properties including
(complete, cluster and lag) synchronizations. All these types are further divided on the
basis of identical or nonidentical synchronization [36]. In 2020, Chen [37] synchronized two
identical gyrostat dynamical systems with the aid of a newly designed controller, variable
substitution and a feedback controller (VSFC) to obtain global stability. Similarly, Lazaros
et al. [33] used an active control strategy for the synchronization of two nonidentical sys-
tems. For two decades, researchers have been working on synchronization and utilizing it
in engineering-based application [38–41]. There are some research works found on aerial
vehicles in which a gyrostat was used to navigate position, but the unpredictability in a
gyrostat can lead to disorder in the path navigation and losing signals with such aerial
vehicles. We have noticed the following points which motivated us to continue our work.

• Qi et al. [11] modeled a gyrostat chaotic system and discussed its bifurcation using
energy functions.

• In 2021, Sabir et al. [42] considered the same model of gyrostat for the existence of
oscillatory solutions. The authors also worked on bringing stability to their trajectories
with the help of an Mchaotic controller.

• In 2022, Marwan et al. [43] designed a full-order generalized observer for fractional-
order chaotic systems and used the same gyrostat model as an application.

• In 2015, Sprott and their team [44] provided a platform to classify and quantify basins
in several planes. In 2017, Xiong et al. [27] plotted a basin of attraction in three
dimensions for the first time for the Lorenz system and discussed its tristability.

From the above cited literature, we see that no one has ever discussed the basins
of gyrostat systems. However, Xiong et al. [27] achieved three symmetrical basins in
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the Lorenz system for a different parameter set but using the same concept we obtain
multistability in a gyrostat system with infinitely many symmetrical basins. Moreover,
in this work, we focus on a finding coexisting attractor in the considered system using
basins of attraction. For more depth these basins are constructed in three dimensions as
well, for the first time in mechanical systems, while for more novelty, the same model is
synchronized with another mechanical system using an Mchaotic controller. This controller
was used for the first time by Sabir et al. [42] for controlling chaos and no one has used it
for the purpose of synchronization.

This paper is organized in such a manner that in Section 2, a gyrostat chaotic system
is examined to find basins of attraction in two and three dimensions, whereas several
dynamical properties for a coexisting attractor are discussed in Section 3. Section 4 presents
the synchronization of two nonidentical mechanical-based chaotic systems using an Mchaotic
controller, while Section 5 is the concluding part of our work.

2. Multistability of the Gyrostat System

Spacecrafts, in which rotors are fixed to a rigid body, are referred to as gyrostats. The
three-dimensional autonomous system of ordinary differential equations of a gyrostat [11] is:

Ix ẋ = −µxx− hzy + hyz + (Iy − Iz)yz + Lx

Iyẏ = hzx + µyy + (Ix − Iz)xz + Ly

Iz ż = −hyx− µzz + (Ix − Iy)xy + Lz.

(1)

In Section 4, we show the synchronized gyrostat and quadrotor chaotic systems,
therefore for convenience, system (1) is simplified into:

ẋ1 = −b11x1 − b12x2 + b13x3 + F1mx2x3 + L1m

ẋ2 = b21x1 + b22x2 + F2mx1x3 + L2m

ẋ3 = −b31x1 − b33x3 + F3mx1x2 + L3m,

(2)

where the changed parameters along with their values for when a system (2) is chaotic are
given in Table 1; the parametric values given in Table 1 are taken from [11].

Table 1. Parametric values for Gyrostat chaotic model [11].

New Parameters Old Parameters Value Units

b11
µx
Ix

2 N · s ·m−1 · kg−1

F1m
Iy−Iz

Ix

1
3 N/A

b12
hz
Ix

0.7933 s−1

F2m
Iz−Ix

Iy
−1 N/A

b13
hy
Ix

0.1914 s−1

F3m
Ix−Iy

Iz
1 N/A

b21
hz
Iy

1.19 s−1

L1m
Lx
Ix

0 N ·m−1 · kg−1

b22
µy
Iy

3.215 N · s ·m−1 · kg−1

L2m
Ly
Iy

0 N ·m−1 · kg−1

b31
hy
Iz

0.5742 s−1

L3m
Lz
Iz

22.8 N ·m−1 · kg−1

b33
µz
Iz

5.8 N · s ·m−1 · kg−1

Figure 1 illustrates the chaotic trajectories of system (2) with initial conditions
(x1, x2, x3) = (0.1, 0.1, 0.1) and parameter values given in Table 1. An interesting property
of Equation (2) is that for some values of the bifurcation parameter, the system shows more
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than one stable chaotic attractor. So, in this section we investigated the basin, which is the
set of points that asymptotically approaches a certain attractor as time advances.

Figure 1. Chaotic attractor of system (2).

For a decade, researchers have been working on the computation of basins by cross-
sectioning, and Figure 2 is the same plot of the gyrostat system with a slightly changed
parameter value of b22.

Figure 2. Two-dimensional cross-section of basin of attraction at x3 = 0 for b22 = 3.9 based on
discrete points with the aid of MATLAB.

It can be observed from Figure 1 and the cross-section of the basin at x3 = 0 that
the gyrostat had a global attractor before changing its parameter value, b22, but the 2D
cross-section of the basins of attraction at x3 = 0 indicates the complexity of the basins,
consisting of discrete points connected through three colors (yellow, black and white).
These colors are categorized as points consisting of yellow for the first basin, black colored
points for the second basin, whereas white colored points in Figure 2 approach infinity.
Figure 2 also shows the existence of infinitely many symmetrical fractals by breaking the
chaotic attractor of system (2), but for simplicity, we have limited the range of our findings
to the interval J = [−50, 50].

In systems of multiple attractors, it is possible to observe more than one basin and
sometimes the structure of boundaries between the basins might be very complex. Such
complexities may lead to a phenomenon called final state sensitivity, in which the boundary
shows a fractal pattern [18,27].

For the bifurcation parameter b22 = 3.48 the system shows three stable chaotic attrac-
tors. In Figure 3a we plotted the intersection of the basins with the planes x10 = 0, x20 = 0
and x30 = 0. The initial conditions in each region converge to the attractor plotted with the
same color as in Figure 3b.
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Figure 3. (a) Intersections of the basins of attraction of Equation (2) with the planes x10 = 0, x20 = 0
and x30 = 0. For the parameter value b22 = 3.48, the system presents three stable chaotic attractors,
depicted in (b).

We studied the basin of attraction in the considered system for multistability. Dynami-
cal systems with multiple attractors obey the property that each basin of attraction divides
the space into separated regions where points eventually approach each attractor.

As shown in Figures 4 and 5, different basins are indicated using various colors.
In Figure 5 a three-dimensional version of the basins are observed. The figures were
generated using a grid of 120 × 120 × 120 and recording the final state of each initial
condition after some transient time. The boundary between the basins of the red and the
blue attractors can be seen as smooth and well-defined. However, basins of the blue and
black attractors are intermingled, which increases the final state sensitivity and impacts
the predictability of the dynamical behavior. Another information we can take from
Figures 3 and 4 is that although the red attractor may be characterized by x < 0, it is
possible for a dynamical orbit to approach this attractor even if its initial condition is
given by x1 > 0, by adjusting the values of x20 and x30. This is also true for the blue and
black attractors, although more care must be taken in this case due to the complexity of
the boundary.

In Figure 5a, the points in the first basin with the red color are of the attractor centered
at (−10.5, −1.37, 2.08), and the yellow points observed in Figure 5b are in the second
basin of the attractor centered at (9.5, −1.37, 2.08). According to the classification in [44],
these basins fall into the “type 1” category.

Figure 4. Three-dimensional basin of attraction on a grid of 120× 120× 120 points. In (a), we plotted
the basin of attraction of the red attractor of Figure 3b. In (b), the colored region is the basin of the
blue attractor of Figure 3b, while the black region is the basin of the black attractor.
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Figure 5. Three-dimensional basin of attraction based on 10 million discrete points using MATLAB.

Most previous studies on basins are focused on cross-sections in 2D, while there is
also a 3D example of a basin plot such as in [27] for the tristability of the Lorenz system,
but we obtained results for multistability using FORTRAN and MATLAB in continuous
and discrete points, which can be seen in Figures 4 and 5, respectively. Both results in
Figures 4 and 5 look similar; the difference is that the results achieved using FORTRAN
with eight processors are informative and good-looking from a reader’s end. However, the
results obtained with the aid of MATLAB were using four processors and were represented
in a discrete way, which can provide more information for the readers by zooming on it.

Studying the basins of attraction gives us information on the system, such as the region
of stability, which is crucial in certain problems including our system. By studying the
region of basins, we were able to predict the future behavior of points in the space, such as
whether they would escape to infinity or be attracted to an attractor. Different states of the
gyrostat, such as being chaotic or not, affect the use of it in spacecrafts and a comprehensive
knowledge will give astronauts better control to it.

3. Coexisting Attractor Extracted from Second Basin

In Section 2, we saw that some trajectories were approaching towards another region
and stayed there, which indicated the existence of another attractor in the system (2). In this
section, the analysis of system (2) was performed using famous tools such as a bifurcation
diagrams, Lyapunov exponents and the Poincaré section, using the Runge–Kutta algorithm.
Moreover, for each simulation in this paper, the time step was ∆t = 0.001. In Figure 6, the
bifurcation diagrams of coexisting (red color) and chaotic attractors (blue) were plotted for
a damping coefficient b22 in the range [0, 4]. In order to perform a deeper analysis of the
bifurcations, we divided Figure 6 into six subregions, R1–R6, and each region is enclosed in
various colored rectangles.

As the damping coefficient starts from zero, two single lines in red and blue colors
emerge for b22 ∈ [0, 1.25] as illustrated in Figure 7a, which shows the nonexistence of the
bifurcation, but as the damping coefficient crosses b22 = 1.25, the bifurcation starts to take
place in R2, which is more visible in Figure 7b for b22 ∈ (1.25, 1.5).

Jumping into regions R3–R5 shown in Figure 7c–e, a number of bifurcations are
observed with uncountable periodicity and eddy-type trajectories in which nothing can be
predicted about the trajectories except chaos. Here, it is interesting to discuss that a chaotic
region lies in the middle, because as we increase the value of the damping coefficient b22
towards 4, again, a predictable period of bifurcation can be seen in Figure 7f, which ends
with the property that the period 6 bifurcation shrinks into a period-doubling bifurcation
for both attractors.
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Figure 6. Bifurcation diagram in the second basin for the coexisting attractor in system (2).

(a) R1 (b) R2 (c) R3

(d) R4 (e) R5 (f) R6

Figure 7. Bifurcation diagram partitioned in subregions (bifurcation leading to chaos).

Chaos in dynamical systems depends on many factors, but the sensitivity to initial
conditions is one of the main factors. Therefore, perturbing the initial conditions in chaotic
systems can verify its chaotic nature, and may lead to the concept of Lyapunov expo-
nents. After perturbation, if the system has a stable solution, then nearby trajectories will
come closer exponentially, while in the chaotic case, with a negligible perturbation nearby
trajectories will separate exponentially.

In Figure 8, the Lyapunov exponents diagram with respect to the bifurcation parameter
b22 were plotted. The exponents were calculated according to the algorithm proposed by
Wolf [45] considering the same initial condition for each value of b22, so although it was
useful to investigate the presence of chaos, this diagram was not able to indicate the
presence of effects such as bi- or tristability.
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Figure 8. Lyapunov exponents λi for i = 1, 2, 3 at each value of bifurcation parameter b22.

From Figure 8, it is observed that the dynamics in system (1) for both (strange and
coexisting) attractors exhibit unpredictability at b22 ≈ 1.5, when the first Lyapunov expo-
nent becomes greater than zero. The dynamics remains mostly chaotic till b22 ≈ 3.78 and
then converges towards a limit cycle again. Inside the range of b22, we can also observe
the presence of periodic windows, which are associated with the shrimp-shaped structures
observed in the parameter space.

Lyapunov exponents can be achieved for each value of the bifurcation parameter as shown
in Figure 8, but one can also verify the Lyapunov exponents for single values. In Figure 9,
there are six Lyapunov exponents where (λ1,1, λ1,2, λ1,3) = (0.7, 0, −5.34) represent the chaotic
attractor belonging to the first basin, whereas (λ2,1, λ2,2, λ2,3) = (0.6, 0, −5.32) represent the
coexisting attractor belonging to the second basin. Chlouverakis and Sprot in 2005 modified the
Kaplan–Yorke dimension DXY [46] and reported that DXY belonged to interval I = [2, 3] for
any dynamical system showing the existence of chaos. Hence, in both our cases,

DXY = 1.5 + 0.5

√
1− 8λa

λc
(3)

We obtained D1XY = 2.215662 and D2XY = 2.189611 for the chaotic and coexisting
attractors, respectively, using Equation (3). As D1XY and D2XY both belonged to interval
I = [2, 3], therefore, the coexisting attractor was confirmed in system (2).

Figure 9. Lyapunov exponents λ1,i; i = 1, 2, 3 for the chaotic attractor and λ2,i; i = 1, 2, 3 for the
coexisting attractor.

A further study in dynamical analysis reveals that the Poincaré section is also one of
the tools which plays a fundamental role in detecting chaos. Apart from getting information
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about chaos, one can also obtain whether the obtained solution is periodic or not. It is
worth noting that Poincaré sections have recently been used to detect chaotic behavior
in fractional order systems with hidden attractors [47]. Moreover, it is also important to
mention that the dimension of a Poincaré section (PS) is always one less than the dimension
of its corresponding dynamical system (DS):

dim(PS) = dim(DS)− 1. (4)

The reason behind the dimension in Equation (4) is the intersection of the orbits
generated from the solution of the dynamical system with the plane in each direction.

For convenience, we have plotted the coexisting attractor along with the chaotic
attractor. In Figure 10, two subfigures in the x–y plane can be observed, in which Figure 10a
illustrates the Poincaré section of both attractors and indicates an unlimited number of
points after passing though the x–y plane. All these points illustrate the existence of chaos,
whereas Figure10b shows the phase portraits of both attractors. Moreover, the attractor
given in blue color belongs to the first basin, while the attractor with red color is in the
second basin.

(a) Poincaré section (b) Phase portrait

Figure 10. Poincaré section and corresponding phase portrait of chaotic attractor vs. coexisting attractor in
system (2) for x1− x2 plane.

The explanation for other two planes, x2–x3 and x1–x3 is similar and shown in
Figures 11 and 12, respectively.

(a) Poincaré section (b) Phase portrait

Figure 11. Poincaré section and corresponding phase portrait of chaotic attractor vs. coexisting
attractor in system (2) for x2–x3 plane.
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(a) Poincaré section (b) Phase portrait

Figure 12. Poincaré section and corresponding phase portrait of chaotic attractor vs. coexisting
attractor in system (2) for x1–x3 plane.

4. Synchronization of Two Nonidentical Mechanical Systems Using Mchaotic Controller

Synchronization is a famous procedure used for adapting the properties of a master
system. This phenomenon became well-known after the publications of [48–50], where the
author used a control input for overlapping trajectories of a slave system over a master
system. In other words, we can say that after some time “t”, the slave system will start
following the trajectories of the master system.

Definition 1 ([51]). Let us suppose V : x → V(x) is a Lyapunov function, then V(x) is negative
definite if it satisfies the following properties:

V(x) > 0, ∀ x, (5)
dV
dx
≤ 0, ∀ x. (6)

In 2021, Sabir et al. [42] designed an Mchaotic controller for controlling chaos, therefore,
in this section, we used (Algorithm 1, [42]) for the synchronization of two mechanical
systems. For this, the master system was considered to be a gyrostat chaotic system (2) and
a quadrotor unmanned aerial vehicle (QUAV) system (8) was taken as the slave system.

Theorem 1. The trajectories of a QUAV chaotic system (8) are synchronized with gyrostat system (2)
using Mchaotic controller Mi = Ai + Wi, i = 1, 2, 3, where Ai = Sx + N(e, x) + k with,

S =

 a11 − b11 a12 − b12 b13
−a21 + b21 a22 + b22 0
−b31 0 a33 − b33

, N(e, x) =

−F1s(e2e3 + x2e3 + e2x3)
−F2s(e1e3 + x1e3 + e1x3)
−F3s(e1e2 + x1e2 + e1x2)

, (7)

k =

(F1m − F1s)x2x3 + L1m
(F2m − F2s)x1x3 + L2m
(F3m − F3s)x1x2 + L3m

, Wi =

(ā11 − ρ) ā12 0
−ā21 (ā22 − ρ) 0

0 0 (ā33 − ρ)

e1
e2
e3

.

Proof. We start the proof of Theorem 1 by following the steps of the algorithm given in [42].
In step 1, we add time-dependent control inputs Mi(t) to each equation of the slave system:

ẏ1 = −a11y1 − a12y2 + F1sy2y3 + M1(t)
ẏ2 = a21y1 − a22y2 + F2sy1y3 + M2(t)
ẏ3 = −a33y3 + F3sy1y2 + Ω + M3(t).

(8)

Then, the error terms, the difference between the state variables of system (2) and (8)
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e1 = y1 − x1,
e2 = y2 − x2,
e3 = y3 − x3,

(9)

can be used to obtain the error dynamical system by differentiating Equation (9)

ė1 = −a11e1 − a11x1 − a12e2 − a12x2 + b11x1 + b12x2 − b13x3

+F1sy2y3 − F1mx2x3 − L1m + M1(t),

ė2 = a21e1 + a21x1 − a22e2 − a22x2 − b21x1 − b22x2 + F2sy1y3 (10)

−F2mx1x3 − L2m + M2(t),

ė3 = −a33e3 − a33x3 + b31x1 + b33x3 + F3sy1y2 − F3mx1x2

−L3m + Ω + M3(t).

Mi(t) is further composed of two parts. First, we find Ai, i = 1, 2, 3, using an active
control strategy:A1

A2
A3

 =

(a11 − b11)x1 + (a12 − b12)x2 + b13x3
(b21 − a21)x1 + (a22 + b22)x2
−b31x1 + (a33 − b33)x3

+

 −F1s(e2e3 + x2e3 + e2x3) + (F1m − F1s)x2x3 + L1m + W1
−F2s(e1e3 + x1e3 + e1x3) + (F2m − F2s)x1x3 + L2m + W2
−F3s(e1e2 + x1e2 + e1x2) + (F3m − F3s)x1x2 + L3m −Ω + W3

. (11)

The error dynamical system can be simplified by putting Equation (11) into Equation (10):

ė1 = −a11e1 − a12e2 + W1,

ė2 = a21e1 − a22e2 + W2, (12)

ė3 = −a33e3 + W3.

However, the second part Wi of controller Mi is still there. To find Wi, we assume
that the remaining parameters are anonymous and the limiting value of the solution of
Equation (12) approaches zero as time advances

W1 = −k1e1 + (ā11 − ρ)e1 + ā12e2,

W2 = −k2e2 + ā21e1 + (ā22 − ρ)e2, (13)

W3 = −k3e3 + (ā33 − ρ)e3,

where ki > 0, i = 1, 2, 3, are gain values, ρ is the desired eigenvalue and ā11, ā12, ā21,
ā22, ā33 are estimated parameters of a11, a12, a21, a22, a33, respectively. Substituting back
Equation (13) into Equation (12) yields:

ė1 = −(k1 + ρ)e1 − Γ11e1 − Γ12e2,

ė2 = −(k2 + ρ)e2 + Γ21e1 − Γ22e2, (14)

ė3 = −(k3 + ρ)e3 − Γ33e3,

where Γk=ak − āk(t) for k = (11), (12), (21), (22), (33). In the final step, we need to find
anonymous time-dependent parameters using a quadratic Lyapunov function:

T(e) =
1
2

(
e2

1 + e2
2 + e2

3 + Γ2
11 + Γ2

12 + Γ2
21 + Γ2

22 + Γ2
33

)
. (15)

Moreover, Equation (15) satisfies the first condition of Definition 1, because T(e) is
quadratic and will be positive for all values of e. However, to achieve the second condition
of Definition 1, we need to differentiate T(e) with respect to their corresponding trajectories
and use Equation (14) into the differentiation of Equation (15):
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dT(e)
dt

= −(k1 + ρ)e2
1 − (k2 + ρ)e2

2 − (k3 + ρ)e2
3 + Γ11(Γ̇11 − e2

1) + Γ12 ×

(Γ̇12 − e1e2) + Γ21(Γ̇21 + e1e2) + Γ22(Γ̇22 − e2
2) + Γ33(Γ̇33 − e2

3). (16)

The following updated parameter law (17) can be used for achieving dT(e)
dt to be

negative definite: 

Γ̇11 = −k4Γ11 + e2
1

Γ̇12 = −k5Γ12 + e1e2

Γ̇21 = −k6Γ21 − e1e2

Γ̇22 = −k7Γ22 + e2
2

Γ̇33 = −k8Γ33 + e2
3.

(17)

Using Equation (17) into Equation (16) yields:

dT(e)
dt

= −Λ, (18)

where Λ = (k1 + ρ)e2
1 + (k2 + ρ)e2

2 + (k3 + ρ)e2
3 + k4Γ2

11 + k5Γ2
12 + k6Γ2

21 + k7Γ2
22 + k8Γ2

33.
Solving Equation (18) by the variable separable method yields:

T(e) = exp(−Λt). (19)

Hence, we get our desired result from Equation (19) that, as t tends to infinity, T(e)
approaches zero. This shows that, the considered Lyapunov function is dissipative and y(t)
will start following x(t) when the error term approaches zero.

Graphical Validation of Theorem 1

Mathematically, the results given in Theorem 1 with the Mchaotic controller ensure
that the trajectory of the QUAV system synchronizes with the gyrostat chaotic system.
However, numerical simulations were conducted to validate the analytical work given in
Equations (11)–(19).

Figure 13 is a phase portrait of system (8) following the path of system (2) in which
trajectories are observed in three different colors. The trajectory in yellow color represents
Equation (2) and is considered as the master system. The green colored trajectory shows
the slave system and the blue color illustrates the error between master and slave systems.
As the estimated parameters start approaching their original values, using the parameter
updated law (17), the error terms ei = yi − xi, i = 1, 2, 3, tend to zero which indicate the
slave system in green color will converge towards the master system as time advances.

Figure 14 shows the time history of Figure 13, which illustrates that the trajectories of
system (8) emerge from their initial points and overlap x1, x2 and x3 with the advancement
in time. For convenience, an area where synchronization occurs is visualized in more depth
in zoomed-in inserts. Here, the dotted lines are for y1, y2 and y3 and the full lines shows x1,
x2 and x3. In each zoomed-in insert, the dotted lines join the full lines at a specific point
and follow these lines till the end, which confirms the occurrence of synchronization.
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Figure 13. Synchronization of master and slave systems.

Figure 14. Time history of master and slave systems

5. Conclusions

In this research, for the first time, a coexisting attractor in the gyrostat system was
examined utilizing basins of attraction, and the technique for searching basins employed in
the current work was also reliable for computers with two or four processors. Furthermore,
the same approach was used in the current study to shatter the chaotic attractor of the
considered model into an endless number of fractals, as seen in Figure 2. For the first time
in a spacecraft model, a three-dimensional basin of attraction was plotted to determine
the existence of a coexisting attractor in the considered model. For the confirmation
and illustration of the coexisting attractor, certain basic dynamical features were applied.
Moreover, a newly built controller was employed in the second portion of this study for
synchronizing two mechanical systems. This concept was explained in more detail with
the help of Figure 14, in which the trajectories of a QUAV system started approaching the
trajectories of our considered model and followed their pattern till the end.
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