
����������
�������

Citation: Patrão, R.L.; Garcia, R.C.;

da Silva, J.M. An Integrated

Two-Level Integer Linear Program

(ILP) Model for Elective Surgery

Scheduling: A Case Study in an

Italian Hospital. Mathematics 2022, 10,

1901. https://doi.org/10.3390/

math10111901

Academic Editors: Cláudio Alves

and Telmo Pinto

Received: 17 March 2022

Accepted: 17 May 2022

Published: 1 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Integrated Two-Level Integer Linear Program (ILP) Model
for Elective Surgery Scheduling: A Case Study in an
Italian Hospital
Rafael L. Patrão 1,† , Reinaldo C. Garcia 2,*,† and João M. da Silva 3

1 Department of Electrical Engineering, ESAT, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium;
rafael.leitepatrao@student.kuleuven.be or rafaelcpatrao@gmail.com

2 Industrial Engineering Department, Faculty of Technology, Darcy Ribeiro Campus, University of Brasilia,
Brasilia 70910-900, DF, Brazil

3 Graduate Program in Applied Computing, Computer Science Department, Darcy Ribeiro Campus,
University of Brasilia, Brasilia 70910-900, DF, Brazil; joaomello@unb.br

* Correspondence: rcgarcia@unb.br
† These authors contributed equally to this work.

Abstract: The urban population is increasing worldwide. This demographic shift generates great
pressure over public services, especially those related to health-care. One of the most expensive health-
care services is surgery, and in order to contain this growing cost of providing better services, the
efficiency of surgical centers must be improved. This work proposes an integer linear programming
model (ILP) considering the case-mix planning (CMP) and the master surgical scheduling (MSS)
problems. The case-mix planning problem deals with the planning of the number of operating rooms
to be assigned to surgical specialties. The master surgical scheduling is related to when to assign the
rooms to the different specialties. The developed model uses a data set from a hospital of the city of
Turin, Italy. The results are very promising, showing a reduction from 240 weeks to 144 weeks to
empty the surgical waiting list (WL). Moreover, if changes to the hospital situation are implemented,
including the introduction of two new surgical teams into one of the hospital’s specialties, the time to
empty the surgical WL could decrease to 79 weeks.

Keywords: health-care services; master surgical scheduling; case-mix planning; integer linear
programming

MSC: 90-10; 90B70; 90B90; 90C05; 90C10

1. Introduction

The world’s urban population grew from 2.7 to 4.2 billion people in the past 20 years,
surpassing the rural population for the first time in 2007 according to data from [1]. The
population is not only growing but also it is living longer. The world’s average life
expectancy was 66.8 years in 1997 and 72.2 years in 2017, an increase of nearly six years [2].

This fast demographic shift directly affects the capacities of cities to provide public
services to their population. On top of the demographic changes, the pressure to cope with
extraordinary situations, like the COVID-19 pandemic [3], reinforces the need for more
flexibility in health-care systems. Thus, the question posed by this study is as follows: how
can the health-care systems worldwide provide quality health-care services to all in an
efficient and effective way?

Such challenges faced by health-care systems are summarized by the Sustainable
Development Goal 3 (SDG 3): Ensure healthy lives and promote well-being for all at all
ages [4]. Regarding services provided by the hospitals and other large urban health-care
infrastructures, the SDG’s targets 3.8 and 3.C indicate the challenges that tend to get more
complex with a new demographic scenario.
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The two targets 3.8 and 3.C show the need to achieve universal health-care coverage
and to increase health-care financing, respectively [4]. The social-economical aspects of the
health-care system are then the main drivers to change it. Since proper funding is required
to reach universal coverage of quality health-care, leading to a reduction in mortality rate,
the adequate use of these financial resources is essential.

Health spending has increased in recent years, an average of 6% per year in low and
middle income countries and 4% in high income countries. Most of this growth was due to
public spending constantly increasing since the year 2000, with the exception of the low
income countries [5].

The largest cost categories of a hospital are the operating rooms and the patients
wards groups, averaging 33% and 31% of its total costs, respectively. Therefore, efforts to
accomplish more efficient and effective health-care services should start decreasing the
costs of the aforementioned hospital categories [6]. Once the public health funds directed to
the hospitals are applied more efficiently, more resources can be freed to other health-care
services, including preventive care.

Considering the social-economical structure of health-care systems, solutions aiming
to increase the efficiency of surgery related areas are of great value to the health-care
organizations. The main objective of this paper is to develop an optimization model to
better manage the scarce resources regarding hospital operating rooms and patient wards.

This work has been implemented as a case study at a hospital located in Turin, Italy.
It is considered to be a medium-sized hospital, having about 440 ward beds and 12 operating
rooms, 8 of which are the target of this study.

The paper is organized as follows. Section 2 presents the literature review related to the
main concepts of the studied problem and some previous solutions. Section 3 introduces
the proposed Integer Linear Programming (ILP) model. The case study data from the
studied Italian hospital and the results obtained with the Static ILP model are presented
in Section 4. The results of the ILP Dynamic implementation are presented in Section 5.
A discussion to the obtained results is given Section 6. Finally, Section 7 provides the
conclusions of this research with some suggestions for future studies.

2. Literature Review

This section firstly presents the hospitals structures including the hospitals organiza-
tions and the role of the health staff. The classification of the studied hospital problem and
related works are then described.

2.1. Hospital Organizational Structures

Since the second half of the 19th century, the expansion of the medical professions
resulted in a specialization system that deeply influenced the hospital’s organization. Jointly
with the shift of medical care from community-based to hospital-based, the specialization
of medical knowledge created the specialty department structure, very common in today’s
hospitals. This functional knowledge-oriented specialization structure lead to a great degree
of similarity in the inner organization of hospitals in different countries [7]. However, there
are some broad organizational differences due to legal and institutional policies depending
on the region and the country. The two more general organizational models can be defined
as decentralized two-headed hospital and centralized single-headed hospital.

The first model, more common to the Anglo-Saxon countries, is characterized by the
physicians’ role as consultants, and the nurses and administrative staff role as managers
of common resources (wards, operating rooms, etc.). This division creates two separate
hierarchical lines, one for each group. This model is also characterized by a financially-
oriented culture, helping to engage both hierarchic groups in pursuing efficient resource
allocation [7,8].

The second model, common to the European health systems, is characterized by
the salaried physicians, having a centralized resource allocation being made by the top
management to the specialty departments, and hence a single hierarchical line. The resource
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allocation practices jointly with a lack of financial and managerial culture usually result in
inefficiencies regarding the usage of operating room time, idle ward capacity, and other
resource misuses [9].

Solutions to the resource allocation and management issues are then mainly related
to the European context with the centralized single-headed hospital model. Achieving
optimal or near-optimal resource usage is a real world concern, especially regarding those
resources which are expensive and difficult to acquire, like operating rooms.

Operating room scheduling can be classified according to problem features including
decision level, scheduling strategies, patient characteristics, and problem/data proper-
ties [10]. The decisions in most planning and scheduling problems can be broadly divided
into three levels, including strategic for long-term decisions, tactical for medium-term
decisions and operational for short-term decisions. At the strategic level, the scheduling
problems are considered as capacity allocation problems [11,12], capacity planning prob-
lems [13] and case-mix problems (CMP) [14]. It aims to improve the resource utilization
and the budget distribution among surgical specialties where the decisions are made for a
planning horizon of several months to one year. These short to long-term decision tech-
niques, like the CMP technique, can also be used at the tactical level, but they are mostly
used at the strategical level [10].

At the tactical level, the main problem class evaluated is Master Surgical Scheduling
(MSS) [11,15,16]. MSS aims to provide guidelines to assist the operational level decisions,
based on the strategic ones. As a cyclical schedule mechanism, the MSS allocates available
time at operating rooms to surgical specialties according to their needs, penalizing under-
supply. The MSS establishes the workload distribution during, in general, the time frame
of a month to a quarter ,and is important to the schedule process [10]. At the operational
level, short-term decisions are made to solve the so called Surgery Scheduling Problem
(SSP). The tactical decisions being input to the SSP, the execution plans of the operational
level objective is to assign resources to specific surgeries. The surgeries in the waiting list
are then allocated to a operating room, day, and starting time. This operational process is
divided in two steps, namely advance scheduling and allocation scheduling. The first step
aims to assign a day and operating room to each surgical procedure, while the second step
determines a surgery’s starting time [10].

Considering now the different scheduling strategies, there are three main strategies to
solve the scheduling problems: the block strategy [11,13,14,16], the open strategy [12], and
the modified block strategy [15]. The first organizes operating room usage by assigning
time blocks to specialties, and the blocks can last a full working-day, half of a working day,
or even be split by the hour. This strategy reduces scheduling complexity; once each block
is assigned to one surgical specialty it is its responsibility to decide how to better use the
block schedule [10].

In order to achieve a better utilization of the operating rooms, researchers have pro-
posed modifications to the block strategy, making it a more flexible one and avoiding the
delays of the open strategy. This modified strategy can work mainly in two ways, either by
reserving a part of the operating rooms time (block creating) and letting the rest free, or by
releasing unused time in the previously appointed blocks [17,18].

Regarding patient characteristics, there are two types of classification in the operating
room scheduling context: elective or non-elective, inpatients or outpatients. The elective
patients are the ones whose surgery is scheduled in advance, while the non-elective patient
arrivals are unexpected, and these patients need to be treated as soon as possible, being
usually denominated emergency or urgent patients. Inpatients are a group of patients
that have to stay overnight at the hospital and their number of night-stays depend on
the medical procedure and the patient’s overall health condition. Finally, the outpatients
usually leave the hospital on the same day of entrance.

Conventional surgeries are normally performed on inpatients once their procedures
tend to be more complex, requiring post-surgical hospitalization. Ambulatory surgeries
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are normally performed on outpatients given that these surgeries are usually simpler
procedures which do not require post-surgical hospitalizations [19].

The criteria of the described patients lead to four different patient groups, including the
elective inpatient, the elective outpatient, the non-elective inpatient, and the non-elective
outpatient [20]. The non-elective outpatient group is not a very common one, since an
emergency patient usually requires post-surgical hospitalization. The most critical group
for the operating room scheduling and the planning is the non-elective inpatient one, since
their arrival is not planned and they may occupy a ward for a long time. The elective
patient groups have their arrival scheduled and, in general, do not compete for the same
resources. The gravity of the non-elective patients is treated using one of two approaches.
The first approach is to reserve an operating room for the emergency arrivals, and to have
the emergency surgery take place as soon as an operating room becomes available. The
second approach is to perform the emergency surgery as soon as one of the ongoing elective
surgeries has been concluded [10].

The elective surgery problem must take into account the objective functions, the
variable uncertainties, and the multiple stages of the problem. Regarding uncertainty,
one of the most important variables is the surgery duration ,since the inherent stochas-
tic behavior of the surgical process leads to considerable effects at any operating room
scheduling [12,13,15]. Moreover, the patient arrival time, the resource availability, and
the length of stay (LOS) are also variables which have stochastic behavior [13]. Objective
functions aim to maximize the operating room utilization and to minimize the resource
usage, in order to minimize costs. Most of the already developed models either maximize
the efficiency, the profit, or the satisfaction, or minimize the costs, the waiting time, or the
required resources [10]. In some cases, it is possible to implement an objective function,
combining the desirable results from both the maximization and the minimization cases
without the formulation of a minmax problem.

Many studies evaluate the operating room scheduling problem in multiple stages,
and the most common approach is the application of the following two stages [13]. The
first stage consists of resource allocation to different surgeries or specialties, providing the
surgery sequence. The second stage determines the surgery’s starting time and assigns
additional resources according to previews recorded needs, including room overtime [10].

2.2. Related Works

A cyclic master surgery scheduling model with multiple objectives has already been
developed [21]. The implemented objectives were the leveling of the wards occupancy, the
allocation of an operating room to a single surgical specialty and the MSS being as simple
and repetitive as possible.The proposed model assumes a multinomial distribution model
for both the number of patients per operating room block and the LOS of each patient.
The problem is solved using mixed integer programming and a simulated annealing meta-
heuristics. Other characteristics of the mentioned model include making the operating
block’s size a flexible one, assigning different surgeon blocks and different periods. The
final result of the work was a decision support system applied in a medium-sized Belgian
hospital where the operating room time was allocated to individual surgeons instead of
surgical specialties.

Aringhieri et al. in their work [22] deal with the problems of tactical and operational
decision levels regarding the block scheduling strategy being applied to a hospital in
Genova (Genoa), Italy. All strategic level decisions were assumed as input data, in particular
the number of operating room time blocks assigned to each specialty, weekly. The aim
was to integrate both the operating room planning and the patient scheduling decision
levels to achieve better schedules. This two-level proposition approach is implemented
by exploiting the inherent hierarchy between these decision levels, since an operating
room assignment decision affects the patient scheduling. A binary linear programming
formulation and a two level meta-heuristics approach was applied, the two levels being
one, developing the model, and two, solving the problem.
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A three-phase approach to the operating theater scheduling problem was applied
to a Genoese hospital [23]. The first phase of the applied method consisted of solving a
bin packing-like problem to determine the number of weekly sessions for each specialty,
considering the waiting list and the residual demand for each specialty as the decision
criteria. The MSS implementation uses surgical time blocks depending on the physician
preferences regarding patient length of stay. The models for the first and second phases
are solved using the Cplex 8.0 software. Furthermore, based on the optimal schedule, a
simulation was developed to assess how different patient sequencing methods would work
and their impact in the entire system [23].

The three decision levels have also been considered, where first a case-mix problem is
solved, and then a master surgical scheduling is established [24]. The work’s objective is to
coordinate the utilization of manifold resources including the operating rooms and beds.
At the first level, the case-mix problem is solved to obtain the optimal patient case-mix,
maximizing the overall financial contribution. At the second level, the MSS takes into
account the variable resource requirements of each patient group (a subset of each specialty),
improving the resource utilization by minimizing the total expected bed shortage. At the
third level, stochasticity is introduced to evaluate the performance of the deterministic
solution in a volatile environment.

3. Elective Surgery Scheduling Proposed Model

An evaluation of the patient treatment macro process is applied to identify the relevant
variables and constraints in the proposed model. The flowchart for the elective patient
treatment process is presented in Figure 1, considering only the emergency cases at the
post-surgical stage, since they occupy the same wards as the elective patients.

Figure 1. Patient flow requiring a surgery.
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The process starts at the pre-surgical stage, with the patient going to the hospital to
have a medical appointment. The doctor will then assign a pathology and a booking class to
the patient, and add him/her to the surgical waiting list (WL). The cases where no surgery
is required are not considered, since they do not use the surgical resources. After a waiting
period, the surgery stage begins, with the patient returning to the hospital to be operated
on. In order for the surgery to happen, a room needs to be assigned to a operation/surgical
team on a specific day. Surgeries from the same specialty, even from the same type, will
vary in their duration. Nevertheless, the mean time was used to obtain the average number
of people operated by any surgical team in a specific day.

In the post-surgical stage, the patient operated on can require a bed in a ward, or not.
It mainly depends on the type of the surgery and the patient’s health conditions. It was also
observed that some patients needing a bed do not stay overnight, staying only a few hours
to recover and going home afterwards. These types of patients are classified as outpatients.

The patients needing to stay many consecutive days in the hospitals are called inpa-
tients. This inpatient mean length of stay (LOS) is used to estimate the bed occupancy at the
wards. When the recovery period described is concluded, the patients leave the hospital,
finishing the patient’s treatment process for the purposes of this work.

The hospital process and activities represent the intersection between major hospitals
fields like the medical clinics, the operating rooms, and the wards. Since the medical clinical
is the first stage of the process, the waiting list is defined at this stage impacting the work
of the operating rooms and the wards. The WL for each specialty is considered an input for
this work.

The decisions taken by the operating room department clearly affect the ward’s
occupation. Therefore, the main goal of this study is to help the decision makers for the
operating rooms and the wards to efficiently use these hospital areas.

The developed model aims to define the CMP and find the MSS maximizing the global
benefits associated with each surgical specialty. The implemented model also aims to
minimize the cost of misplacing patients in the wrong ward. It does so considering the
different sets of constraints, using the input data, which describes the actual hospital’s
situation at any given moment, like the waiting list, the mean operation time, and the
mean LOS.

The optimal capacity allocation and scheduling are obtained as indicated in Figure 2.
Starting with the required data sets (example in Table 1), the values of two variables must
be calculated, as shown in Equations (1) and (2), respectively. These data are used as input
to the ILP model resulting in optimal scheduling and its associated capacity allocation.
The achieved result is used to update the elective surgery waiting list. In the static case
this would be the end of the optimization process, whereas in the dynamic case, such an
iteration is repeated until the waiting list is empty.

Table 1. Specialties Data sets.

Specialties
Waiting
List W Ls

Profit Ps
Surgical
Team ts

Operating
Efficiency µs

Length of
Stay δs

Plastic 98 €885.03 4 11.26 1

General 1577 €1171.56 11 1.04 7

Thyroid 721 €309.17 1 1.01 3

Gynecological 178 €848.40 10 1.71 3.8

Ophthalmology 2116 €303.42 4 4.93 0.5

Odontology 39 €484.91 6 14.91 0.2

Otolaryngology 536 €822.54 6 1.67 3.4

Orthopedics 631 €1016.71 10 1.39 2.6

Urology 395 €1496.38 5 1.82 3
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Figure 2. Operating room optimal scheduling flowchart.

3.1. Elective Surgery Scheduling Model Variables

Let S be the set of medical/surgical specialties and let R be the set of operating rooms,
normally part of an operating block. Let A be the set of active days, the ones when surgeries
are made, and let W be the set of wards which contains the post-operative beds. For this
model, the planning horizon of the master surgical scheduling is equal to the dimension
of A.

Sets of indexes:
S: set of surgical specialties;
R: set of Operating Rooms;
A: set of active days;
W: set of wards (divisions of post-operative beds).

The sets of variables and data include monetary and non-monetary ones like each
specialty average profit (Ps) or the surgical team numbers for each specialty (ts).

Sets of parameters:
Dsw = Binary relation matrix where 1 represents a misplacement of a patient from specialty
s in the ward w, 0 otherwise;
q = Maximum number of operation sessions in a specific day;
Bw = Total number of beds for each ward w;
Ew = Expected number of emergency patients occupying a bed in the ward w;
WLs = Number of patients from specialty s in the waiting list for surgery;
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Ps = Average profit made by each specialty s;
cs = Cost (penalty) associated with the misplacement of a patient from specialty s;
µs = Expected number of patients from specialty s to be operated in each operation session;
δs = Expected number of days for a patient from specialty s to occupy any ward bed;
Ywa = Number of patients already occupying beds in the ward w in the day a;
bs = Benefit of assigning an operation session to specialty s;
ts = Number of surgical teams of specialty s.

Sets of variables:
Te = Time, in weeks, to empty the waiting list;
yswa = Number of patients from specialty s allocated to a bed in ward w in day a;

Most of the described variables represent data directly obtained from the observation
of the hospital’s operation, like variables q, ts, and Bw. Other variables need some previous
calculations, since they correspond to an aggregate value. The best example of an evaluated
variable is bs, the benefit of assigning an operation session to specialty s, being obtained
by the weighted sum of two other variables (Equation (1)). Another example is the value
of Ywa, representing the number of patients occupying beds in the ward w on the day a.
The values of Ywa are then evaluated and given as input to the model, every day, since the
patients can leave the wards (belonging to any specialty) and new patients can request a
ward (if they were operated on). Therefore, the values of bs and Ywa are evaluated everyday,
being given as input to the model.

bs = w1
WLs

µs

(
∑

WLs

µs

)−1
+ w2Ps

(
∑ Ps

)−1 (1)

The benefits bs are calculated according to Equation (1) where w1 and w2 are the
weights given to the waiting list and the profit, respectively. If w1 > w2, the hospital’s
priority is to empty the waiting list but if w2 > w1, the hospital gives more priority
to increase its profit. The weights are defined so that w1, w2 ∈ [0, 1] and w1 + w2 = 1.
Moreover, bs ∈ [0, 1] and ∑ bs = 1. The time to empty the waiting list Te is obtained by
the ratio of the variables WLs and µs (Equation (2)). When evaluating Te, Xs needs to be
determined, representing the total number of operation sessions assigned to each specialty
per week.

Te = max
(WLs

µsXs

)
, ∀s ∈ S (2)

The variables cs represent the penalty to misplace a patient from each specialty s. Their
values must be decided based on medical understanding regarding the consequences of
misplacing a patient in the wrong ward, where he/she cannot receive the adequate care.
Likewise bs, cs ∈ [0, 1], so both have the same scale. In particular, a value of cs = 1 heavily
penalizes any solution having a patient misplacement.

Decision variables:

xsra =

{
1 if room r is assigned to specialty s on day a
0 otherwise

The decision variables describe how many operating rooms must be assigned for each
specialty in a daily basis. Therefore, the binary decision variables xsra represent the optimal
decision set obtained from the implemented integer linear programming (ILP) model.

3.2. The ILP Model

The proposed integer linear programming (ILP) model consists of one objective func-
tion (3) and eight sets of constraints, from (4) to (11). The implemented model has about
88 inequality constraints and five equality constraints, besides 180 integer and 360 binary
constraints. The sets’ values of the previously described variables and data sets are S = 9
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(surgical specialties), A = 5, (active days), R = 8 (number of operating rooms), and W = 4
(number of wards). The implemented model is given next.

max ∑
s

bs ∑
r

∑
a

xsra − cs ∑
w

Dsw ∑
a

yswa (3)

s.t. ∑
s

∑
r

xsra ≤ q, ∀a ∈ A (4)

∑
r

xsra ≤ ts, ∀s ∈ S, ∀a ∈ A (5)

µs ∑
r

∑
a

xsra ≥
WLs

Te
, ∀s ∈ S (6)

µs ∑
r

∑
a

xsra ≤WLs, ∀s ∈ S (7)

µs ∑
r

xsra = ∑
w

yswa, ∀a ∈ A, ∀s ∈ S (8)

∑
s

yswa + Ywa + Ew ≤ Bw, ∀a ∈ A, ∀w ∈W (9)

yswa ∈ N, ∀s ∈ S, ∀a ∈ A, ∀w ∈W (10)

xsra ∈ {0, 1}, ∀s ∈ S, ∀a ∈ A, ∀r ∈ R (11)

The main contribution of this work is the introduction of the second term in the
objective function having a penalty due to the possible misplacement of a patient. Moreover,
the way that the term bs is evaluated is another contribution of this work since bs depends
not only on the waiting list but also on the surgery price for each specialty.

The objective function (Equation (3)) maximizes the benefit bs to assign an operating
room r to a specialty s at any day a, minus the cost cs of misplacing patients yswa in the
wrong ward w. The benefit and the cost can be adjusted according to the hospital’s priorities
resulting in the number of operating time blocks per specialty and their assigned day. The
allocation of patients of each specialty s to the appropriate ward w is done by the relation
in the misplacement matrix Dsw.

The first constraint (Equation (4)) considers that the total number of room assignments
must be less or equal to the total number of available operation sessions q for all days a. If
q = R, the number of time blocks assigned is the same as the total number of operating
rooms, hence one time block per day. For any q > R, there may be more than one time
block assignment per room per day. The next constraint (Equation (5)) considers the total
number of operating room assignments for all specialties s to be less or equal to the number
of surgical teams of the specialty, for all days a.

The constraints given by Equations (6) and (7) are related to the the minimum and
maximum number of patients to be operated during the planing horizon, respectively. The
constraint (6) sets then the number of operated patients for each specialty to be at least
WLs

Te . Therefore, this constraint allows the waiting list to be emptied in no more than Te
weeks, besides assuring the assignment of at least one operating room to any specialty. The
addition of constraint (6) is also a contribution of this work. The constraint (7) limits the
number of patients to be operated by the number of the patients in the waiting list.

The constraint given by Equation (8) represents the identity of the patients being
operated and allocated to recovery beds for all specialties s, in all days a. The product of µs
and ∑r xsra gives the total number of patients operated in all operating rooms r. Patients
who will be allocated to recovery beds at different wards are represented by the variable
yswa. The constraint given by Equation (9) restricts the number of allocated beds by adding
the number of already occupied beds, Ywa, and the expected number of emergency patients.
These three variables are limited by the total number of beds, for all wards w on all days a.
Finally, Equations (10) and (11) set, respectively, all yswa as positive integers and all xsra as
binary in the interval {0, 1}.
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3.3. Dynamic Model

The majority of the published work related to the master surgical scheduling (MSS)
problem have planning horizons of two weeks to one month, and the case-mix planning
(CMP) problem can go up to six months. The previously described ILP model is imple-
mented to calculate the new solution weekly, obtaining multiple solutions, since there are
different weeks. Therefore, each new solution is based on updated information from the
previous solution due to the decreasing of the waiting list for each specialty. The described
model is then applied in a dynamic approach.

The set of weeks in the planning horizon is considered to be D, and for each d ∈ D
a new MSS is generated. The number of operated patients is then subtracted from the
waiting list WLs for each new iteration. These new values for WLs are used to recalculate
the benefits bs being applied in the constraints (6) and (7). The calculation continues D
times or until WLs = 0, ∀s ∈ S. Moreover, the values for the bed occupancy, Ywa, are used
to update the constrain (10). Therefore, the static model solves the problem just once, and it
assumes that the obtained schedule for the operations for each specialty is replicated for all
the following weeks. The dynamic model solves the problem in a way that for each iteration
(week) there is an update in the WL for each specialty, resulting, in general, in different
schedules for the operations for each specialty from one week to the next one. It can be
concluded that the dynamic implementation is then a more realistic one for the studied
problem. Nevertheless, the static approach is considered due not only to its simplicity but
also to the comparisons to be made with the dynamic one.

The static and the dynamic implementations of the ILP developed model were im-
plemented in the Julia programming language. The JuMP package [25] was used as the
modeling interface to COIN-OR Branch-and-Cut (CBC) ILP solver [26].

4. Hospital Data and Static Results

In order to obtain real world results, data from an Italian hospital in the city of Turin,
Italy was used. All data presented in this study refers to the year of 2018, with the exception
of the waiting list WLs, which was collected in January 2019. It must be added that even
though the WLs data set was collected in January 2019, and not in 2018, all the other values
presented in Table 1 are still valid. Therefore, the average profit per specialty, the number
of surgical teams, the operating efficiency, and the length of stay were obtained in 2018 but
they were still the same by January 2019. It is possible to separate the data on specialty
related and non-specialty related.

4.1. Specialty Related Data

The surgical specialties are the core of the surgical process of a hospital. They are the
ones assigned to use the operating rooms block times, and they are the main organizational
structure of the studied Italian hospital. In Table 1, five data sets are presented, related
to each one of the nine specialties being part of the general surgical block at the studied
hospital, namely: Plastic, General, Thyroid, Gynecological, Ophthalmology, Odontology,
Otolaryngology, Orthopedics, and Urology.

The data source given in Table 1 was obtained from the analyzed hospital by the time
of this study. It is important to say that data sources related to revenues and efficiency ratios
not only in the health sectors but also in other fields are very sensitive issues. Therefore,
without loss of generality, the applied data source in this study must be taken to evaluate
the robustness of the developed model. Future studies should then take into account
variations in the used data set of this study.

The waiting list WLs and the profit Ps data are used to obtain the benefit variables bs
of the objective function (Equation (3)). These data present a great variety of values. The
smallest values of WLs and Ps belong to Odontology and Ophthalmology, respectively.
Similarly, the largest values of WLs and Ps are the ones in the Ophthalmology and Urology
specialties, respectively. These variations in WLs and Ps will definitely impact how the
operating rooms will be assigned to each specialty.
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The operating efficiency µs and the Length of Stay δs express characteristics of both
surgeon’s work and patient’s overall health conditions. Therefore, these data characterize
the work flow of each specialty, being related to the most critical constraints of the model
representing the bottlenecks of the treatment process.

It is important to analyze the number of surgical teams ts, being one of the most critical
constraints. A small surgical teams, like the case of Thyroid, can severally limit the number
of operated patients reducing the capacity to effectively perform the operation block.

4.2. Non-Specialty Related Data

The data sets for each specialty are independent but they influence the general op-
erating block. The number of postoperative beds (Bw) gives the total number of recovery
beds per ward. Since there are four wards (W = 4), the number of beds for each ward is
Bw = [18, 28, 40, 31].

The misplacement matrix, shown in Table 2, represents the specialty assignments to
the wards. The matrix Dsw shows then when a misplacement happens in the assignment
process. According to Table 2, a plastic surgery patient must be allocated to ward 1, and if a
different allocation occurs to this patient, it results in a penalty in the objective function.

Table 2. Misplacement matrix Dsw.

Specialties
Wards

1 2 3 4

Plastic 1 0 0 0

General 1 0 1 0

Thyroid 1 0 1 0

Gynecological 1 0 0 1

Ophthalmology 1 0 0 0

Odontology 1 0 0 0

Otolaryngology 1 0 0 1

Orthopedics 1 1 0 0

Urology 1 0 0 1

The number of operating room block times q is related to the number of operating
rooms R, meaning the number of operation sessions to be assigned to any specific day.
Since the total number of operating rooms in the studied hospital is R = 8, and the hospitals
practices a one-time-block-per-day policy, than q is also equal to 8 (q = 8).

The data variable Ew approximates the number of emergency patients occupying a
recovery bed in ward w at any given day. This data is used to better assess the number of
available beds in the wards. The values Ew = [0, 2, 5, 3] were set based on historical data.

4.3. Static Results

Implementing the developed model, one can obtain different operating room sched-
ules. These different schedules can be achieved if different weights for w1 and w2 are used
in Equation (1), for instance. This schedule flexibility also allows the hospital’s administra-
tion to adapt to changes not only in the surgery demand but also in the shortage of any
essential supply or even to extraordinary situations, like the COVID-19 pandemic.

4.3.1. First Results for the Static Approach

The results given by the ILP implemented model are then compared with the actual
schedule at the studied Hospital. This comparison used the average weekly schedule from
the hospital, since they operated in a monthly schedule, and the proposed weekly schedule.
The schedule already applied in the studied Hospital is called the Current schedule, and the
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obtained schedule when applied the developed model is called the New schedule as shown
in Tables 3 and 4, respectively. It can be observed that the Current schedule and the New
schedule fully used the 40 weekly available operating room blocks. Moreover, it must be
then stated that the results shown in Tables 3 and 4 give the schedules for each specialty on
a specific day of the week.

Table 3. Current schedule used in the studied Hospital.

Specialties Mon. Tue. Wed. Thu. Fri. Total

Plastic 0 1 1 0 0 2

General 2 3 2 2 2 11

Thyroid 1 1 1 0 0 3

Gynecological 1 0 1 2 1 5

Ophthalmology 1 0 1 1 0 3

Odontology 1 0 0 0 0 1

Otolaryngology 1 1 0 1 1 4

Orthopedics 0 2 1 2 2 7

Urology 1 0 1 0 2 4

Table 4. New schedule with w1 = w2 = 0.5 and cs = 0.

Specialties Mon. Tue. Wed. Thu. Fri. Total

Plastic 0 0 0 1 0 1

General 7 6 0 0 6 19

Thyroid 1 1 1 1 1 5

Gynecological 0 0 0 0 1 1

Ophthalmology 0 0 1 3 0 4

Odontology 0 0 0 1 0 1

Otolaryngology 0 0 1 2 0 3

Orthopedics 0 1 3 0 0 4

Urology 0 0 2 0 0 2

The time to empty the waiting list Te was calculated for both schedules. The total
values in Table 3 led to a Te = 240 weeks, since the specialties taking the most of the time,
General and Thyroid, were not assigned with enough operating room blocks. Moreover,
the schedule presented in Table 4, the New schedule, used all the Thyroid resources and
increased the operating room blocks assigned to General surgery in almost 73%, from
11 blocks to 19 blocks. The new time to empty the waiting list resulted in Te = 144 weeks,
a reduction of 96 weeks, showing an increase in the efficiency of the use of the available
hospital considered resources.

This result demonstrates that the model is able to obtain new schedules reducing the
time to empty the waiting list being one of its main goals. When maximizing the overall
benefit, the ILP implemented model is capable to achieve the WLs reductions. The next
step is to compare the number of misplaced patients when the Current schedule and the New
schedule are applied.

4.3.2. Impacts of Different Costs cs

The number of weekly misplaced patients when applying any model must be also
taken into account once it shows a disequilibrium when comparing the operating room
schedule and the wards resources. Even though the results presented in Table 4 reduced
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the number of weeks to empty the waiting list, it also generated a total misplacement of
52 patients. Reducing this mismatch among surgeries and available beds is also one of the
goals of the proposed model. It must also be said that the actual mismatch with the Current
schedule is about 17 patients.

The decrease in the number of misplacement patients can be achieved making the
cost term cs equal to one (cs = 1) in the objective function. The first results in Table 4 were
obtained making the cost cs equal to zero (cs = 0) meaning that if there was a misplacement,
it did not affect the value of the objective function. A new schedule is then obtained in
Table 5 when making cs equal to one.

Table 5. New schedule with w1 = w2 = 0.5 and cs = 1.

Specialties Mon. Tue. Wed. Thu. Fri. Total

Plastic 1 0 0 0 0 1

General 6 5 2 2 4 19

Thyroid 1 1 1 1 1 5

Gynecological 0 1 0 0 0 1

Ophthalmology 0 1 1 2 0 4

Odontology 0 0 0 0 1 1

Otolaryngology 0 0 0 3 0 3

Orthopedics 0 0 4 0 0 4

Urology 0 0 0 0 2 2

When the cost associated with the misplacement of a patient is equal to one (cs = 1),
the General surgery operating room blocks were more evenly spread during the week
reducing to 12 the number of misplaced patients.This result is not only lower than the one
where cs is equal to zero (no misplacement cost) but is better than the actual number of
17 weekly misplaced patients in the studied hospital.

When analyzing Tables 4 and 5, making cs equal to one results in better scheduling
with regard to the use of the ward’s beds, without increasing the time to empty the waiting
list. The number of weekly assignments for each specialty also shows a more balanced
schedule than the one previously applied in the Italian hospital. It must be added that the
weekly schedules for the static results shown in Tables 3–5 will not change over the time
period to empty the waiting list.

5. Dynamic Results of the ILP Model and Discussion

The previous results show the model’s capacity to generate better schedules regarding
the time to empty the waiting list (Te) and the balancing of the ward’s bed usage. Although
these results already represent an increase in the hospital performance, the value of the time
to empty the waiting list equal to 144 weeks (Te = 144) is not a desired one. A dynamic
model is then implemented once there will be surgeries every week. The waiting list will
then change on a weekly basis, varying the objective function penalty term, resulting in
different surgery schedule each week. It must be said that changes in the waiting list due to
new entries every week were not considered in the model, since such data was not available
in the hospital by the time of this study.

In order to better explore the model performance in this dynamic scenario, three sets of
analyses are implemented. Each one focused on the effects of different parameter changes
in the final Te value and the overall performance of the system. The obtained results when
varying the benefit weights w1 and w2 are given in Section 5.1. Afterwards, the results when
increasing the surgical teams of the most needed surgical specialty, Thyroid, are shown
in Section 5.2. The outcome achieved when allowing double-shifts during some days of
the week jointly with the parameter changes previously applied is shown in Section 5.3.
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Finally, it must be remembered that for each dynamic case next evaluated, the model can
provide different weekly schedules, such as the one shown in Table 4, for instance, because
the waiting list changes on a weekly basis, and the model takes into account this dynamic
change in the waiting list.

5.1. Benefit Weights Influence in the ILP Model

The benefits bs are one of the main parameters related to the objective function. When
the value of bs changes due to varying the weights w1 and w2, one can prioritize the
specialties being either able to rapidly empty their waiting list, or to generate more profit,
respectively. Different values for each weight were tested and the limit cases are presented
in Figure 3a, with w1 = 0.1 and w2 = 0.9, and in Figure 3b, with w1 = 0.9, and w2 = 0.1.

(a) (b)

Figure 3. Patients in the waiting list per week with (a) w1 = 0.1 and (b) w1 = 0.9.

The mentioned cases show the sensitivity of the model to changes in the benefits, bs.
The final time to empty the waiting list in Figure 3a is Te = 144, while the result in Figure 3b
gives also Te = 144. Nevertheless, even though the two cases give the same time to empty
the waiting list, the hospital manager can give priority to profit in the short run when the
hospital budget is particularly scarce [27], choosing then the case where w2 = 0.9. The next
subsections show the results given the same weights for w1 and w2 (w1 = w2 = 0.5). The
cases to be considered include the increase in the surgical team specialty, and allowing
double-shifts during some days of the week.

5.2. Surgical Teams Influence

The results given in Figure 3a,b show that it takes a long time to empty the waiting list
for the Thyroid specialty. Therefore, the number of the Thyroid’s surgical team is increased
by one, having a new value of 2 surgical teams for this specialty.

When adding the new surgical team for the Thyroid specialty there was a reduction
of 42 weeks to empty the waiting list. This difference for the final Te is shown in Figure 4
(from 144 weeks to 102 weeks). Thus, this huge decrease in the value of Te shows the
importance of increasing the number of surgical teams to decrease the WL for a specialty
having, in this case, a decrease of almost 30% in the time to empty the waiting list.
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Figure 4. Patients in the waiting list per week with a additional Thyroid surgical team.

5.3. Maximum Operating Sessions Analysis

The operating room block times q can be greater than the number of available operating
rooms R = 8, once some rooms can be used by more than one operating team daily. Such a
work structure can increase the number of patients operated on for those specialties having
many surgical teams, like the General and the Orthopedics specialties. Thus, analyses were
made with different values of q, and the most interesting results, for q = 10, are shown in
Figure 5.

The value of q = 10 means that there is a double shift for two operating rooms.
Therefore, when the model is implemented allowing this double shift, and the Thyroid
surgical teams have a value of 2, the time to empty the waiting list decreased from 102 weeks
to 93 weeks. This result is the first one suggesting it is possible to empty the waiting list in
less than a 2 year period, or about 1 year and 11 months. When analyzing Figure 5a, it can
be still observed that the Thyroid specialty continues to be the one to take longer to empty
its waiting list.

(a) (b)

Figure 5. Patients in the waiting list per week with (a) Thyroid = 2 and (b) Thyroid = 3.

A third surgical team for the Thyroid specialty is then added to the model. Finally,
the waiting list becomes empty in a period of 79 weeks (Te = 79), or basically 1 year and
7 months. This final result can be considered quite good since the first results showed a
required time of 3 years (Te = 144 weeks) to empty the WL. The results show the robustness
of the developed model to help the hospital decision managers to use their resources in a
more efficient way.
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All the presented results were obtained running the model on a PC with a Intel Core
i5 processor 2.50 GHz × 4 having 8 GB of RAM. The Julia/JuMP script had an average
running time of about 25 s. The Julia/JuMP script was the chosen one because it is an open
source programming language being a quite powerful one. Just for comparison, when the
model was implemented in the Julia and in the Matlab programming languages, it took
about 25 s and 8 s to run the model, respectively. Nevertheless, the computer used to run
the model was not a very powerful one, and certainly the result of 25 s obtained by the
Julia open source language can be definitely applied in the real world.

6. Discussion

The results obtained give insights about how to improve not only the organizational
structure and operations of the analyzed Italian hospital but also other similar hospitals.
It was possible to accomplish further improvements to the system, increasing either the
number of surgical teams or allowing double shifts to the operating rooms.

The developed model is able to improve the efficiency of the system spreading in a
more evenly way the surgeries among the different specialties. Moreover, observing which
specialty was taking longer to empty the waiting list, further improvements were obtained
when the number of surgical teams was increased.

The expansion of surgical teams represents an organizational and financial challenge,
usually being considered as a last resource type of policy to be applied in order to in-
crease the efficiency of the system. However, when a hospital has great patient demand
and short resource capacity, the decision to raise its personnel resource availability must
be considered.

A promising measure is the double-shift approach allowing the use of “idle rooms”
being a possible policy to be implemented to improve the number of operated patients. The
double-shift policy, jointly with the rise of the surgical teams, enabled the time to decrease
by 45% to empty the waiting list even when the optimization model had already been
applied to the so-called static case.

7. Conclusions

The health-care sector faces many challenges when it comes to efficiently using its
scarce resources in a period with a higher demand. This work proposes a new ILP model
to empty the surgery waiting list of nine different specialties more quickly. The model con-
siders the number of surgery teams and of ward beds, and the surgery prices, among other
factors. The ILP developed model is implemented using the data set of an Italian hospital.

The applied model is based on case-mix planning and master surgical scheduling
problems. The attained scheduling distributed the resources more evenly, improving
the balancing of the workload. Moreover, the balancing of the ward’s beds is accrued
introducing a penalty cost to the misplacement of a patient in a wrong ward.

The developed model has certainly some limitations. The main caveats of the applied
model are the ones related to the weekly increase of the patient demand for each specialty
besides the increase in the costs related to the hiring of new health personnel, including the
expansion of the surgical teams.

Further studies must then take into account the increase in the weekly surgery requests.
This extension was not implemented in the proposed model due mainly due to the lack
of data related to this increase in the surgery demand. Certainly, when one considers this
raise in the surgery needs, there will also be an increase to the time to empty the surgeries
waiting list, and that will make the model a more realistic one.

Cost-benefit analysis could also be evaluated regarding the cost to hire new surgical
teams, and the economics and social benefits accrued due to the rise in the number of
weekly operated patients. The possibility of raising the number of ward beds and building
new pavilions can also be considered in the future, due to a possible bottleneck in the
number of ward beds.
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Nevertheless, the results demonstrated that it is possible to reduce the time taken to
empty the waiting list for the surgeries by about 45%, from 144 weeks to 79 weeks. These
results are very promising in a time of very scarce financial and health resources.
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Abbreviations
The following abbreviations and variables are used in this manuscript:

ILP Integer Linear Programming
SSP Surgery Scheduling Problem
CMP Case-mix planing
MSS Master Surgical Scheduling
LOS Length of Stay
CBC COIN-OR Branch-and-Cut
Sets of indexes:
S set of surgical specialties;
R set of Operating Rooms;
A set of active days;
W set of wards (divisions of post-operative beds).
Sets of variables and data:

Dsw
Binary relation matrix where 1 represents a misplacement of a patient from specialty s
in the ward w, 0 otherwise;

q Maximum number of operation sessions in a specific day;
Bw Total number of beds for each ward w;
Ew Expected number of emergency patients occupying a bed in the ward w;
WLs Number of patients from specialty s in the waiting list for surgery;
Te Time, in weeks, to empty the waiting list;
Ps Average profit made by each specialty s;
Ywa Number of patients already occupying beds in the ward w in the day a;
yswa Number of patients from specialty s allocated to a bed in ward w in day a;
bs Benefit of assigning an operation session to specialty s;
cs Cost (penalty) associated with the misplacement of a patient from specialty s;
µs Expected number of patients from specialty s to be operated in each operation session;
δs Expected number of days for a patient from specialty s to occupy any ward bed;
ts Number of surgical teams of specialty s.
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