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Abstract: The rapid and accurate damage assessment of buildings plays a critical role in disaster
response. Based on pairs of pre- and post-disaster remote sensing images, effective building damage
level assessment can be conducted. However, most existing methods are based on Convolutional
Neural Network, which has limited ability to learn the global context. An attention mechanism helps
ameliorate this problem. Hierarchical Transformer has powerful potential in the remote sensing
field with strong global modeling capability. In this paper, we propose a novel two-stage damage
assessment framework called SDAFormer, which embeds a symmetric hierarchical Transformer into
a siamese U-Net-like network. In the first stage, the pre-disaster image is fed into a segmentation
network for building localization. In the second stage, a two-branch damage classification network
is established based on weights shared from the first stage. Then, pre- and post-disaster images
are delivered to the network separately for damage assessment. Moreover, a spatial fusion module
is designed to improve feature representation capability by building pixel-level correlation, which
establishes spatial information in Swin Transformer blocks. The proposed framework achieves
significant improvement on the large-scale building damage assessment dataset—xBD.

Keywords: remote sensing image; building damage assessment; deep learning; two-stage framework;
spatial fusion

MSC: 53C20

1. Introduction

When a serious natural disaster strikes, residential buildings are damaged in high
probability, which poses a great threat to property and life [1,2]. According to the statistics,
building collapse is one of the main causes of human casualties after natural disasters [3].
Rapid and accurate building damage assessment prior to rescue actions can support effec-
tive emergency rescue planning and save more lives [4], and it is essential for Humanitarian
Assistance and Disaster Response (HADR) [5]. It has become an indispensable reference
for rescue actions after natural disaster strikes nowadays.

Remote sensing has the advantage of acquiring ground target information over a
large area and has been widely used to observe disaster areas. In recent years, with the
development of remote sensing technology and satellite constellations, remote sensing data
have become more easily accessible when disasters occur. High-resolution optical images,
synthetic aperture radar (SAR) and LiDAR data are frequently used in the interpretation
of disaster-affected areas [6–11]. When a disaster occurs, it becomes an important way
to assess the post-disaster situation [12]. High-resolution optical images are more widely
used [13] since the real building conditions can be easily interpreted from them, which
provides a powerful source of information to assess the extent and scope of the damage.

A number of building damage assessment methods based on high-resolution optical
remote sensing images have been proposed.
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• According to whether pre-disaster or post-disaster remote sensing images are used,
building damage assessment methods can be divided into the following two categories:
(1) methods that use only post-disaster images; and (2) methods that use both pre-
disaster and post-disaster images. For post-disaster image-based methods, damage
assessment is usually conducted by image segmentation [14]. However, the outlines
of buildings in post-disaster images may be blurred by the strike of disaster, and the
characteristic of the buildings often changes dramatically. Collapsed buildings lose
their regular geometric shapes, where the regular texture feature distribution does not
apply, resulting in building assessment errors. For the above problems, if pre-disaster
image of intact buildings is available and used, it can help locate the damaged parts
of buildings [15]. In [16], a two-stage framework is proposed for damage detection
from both pre-disaster and post-disaster images. The networks of two stages share the
same weight and are responsible for building localization and damage classification,
respectively. In this paper, we design our network mainly based on this idea.

• According to the image processing methods used, building damage assessment meth-
ods can be divided into the following three categories: (1) manual visual interpretation,
(2) traditional machine learning-based methods, and (3) deep learning-based methods.
The manual visual interpretation has good specificity and relatively high accuracy,
but it takes a lot of time, and the effectiveness of the interpretation depends on human
experience and the time spent; thus, it may lead to missing the best time for rescue.
Therefore, it is necessary to automatically perform damage assessment from remote
sensing images. Many machine learning algorithms with shallow structures have been
developed, such as the methods based on Support Vector Machine (SVM) [17] and
Random Forest (RF) [18]. These methods have reached relatively high precision within
a small number of parameters. Annabella et al. apply SVM classifier on the changed
features of buildings, including color, texture, correlation descriptors, and statistical
similarity, to detect the destroyed building objects after the earthquake [19]. However,
the manually extracted features from remote sensing images by these methods are
not sufficiently general, and in most cases, they are only valid for specific situations.
These models are difficult to transfer to other geographic areas [20]. Moreover, a high
level of a priori knowledge, as well as a large amount of time, is required for the
feature extraction. Therefore, it is not practical to apply traditional machine learning
algorithms to building damage assessment quickly after the disasters strike.

Deep learning has been extensively developed in recent years, and the methods
based on Convolutional Neural Network (CNN) have achieved high-level accuracy on
various tasks [21–24] due to its powerful automatic feature extraction capability. Many
researchers have made great progress in building damage assessment when introducing
CNN. Koch et al. [25] propose a metric-based method with siamese CNN networks for
one-shot classification tasks. An energy function of a weighted distance between the twin
feature vectors is utilized. The tied parameters between the siamese network allow the
same metric computed when two distinct images are fed into the network. Liu et al. [26]
use an end-to-end framework to detect damaged buildings from remote sensing images
by combining CNN and Recurrent Neural Network (RNN). Nex et al. [27] use multi-
level classification instead of binary classification to asses the extent of damage. In [28],
for an image patch, all buildings at the edges are occluded to allow the model to focus
on the central buildings. Zhan et al. [29] apply U-Net [30], which is originally used for
medical image segmentation, on two-phase SAR images for building structure change
detection. Based on CNN, U-Net consists of a symmetric Encoder–Decoder in which
down-sampling and up-sampling are introduced. U-Net proposes skip connections that
enable the integration of low-level features and high-level features, thereby improving
the representation of spatial information. With the capability to restore high-resolution
information and high-level feature extraction, different kinds of U-Nets have been widely
applied to change detection and damage assessment tasks. Yang et al. [31] construct the
Recurrent-CNN (RCNN) U-Net, which can extract spatial context and exploit rich low-level
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features. RCNN performs region of interest (ROI) segmentation before feature extraction
on the ROI instead of the whole image. To exploit the correlation between pre- and post-
disaster images, Xiao et al. [32] propose a siamese U-Net to process the task of building
segmentation and damage classification simultaneously. However, the actual receptive
field of the CNN-based network is much smaller than the theoretical receptive field [33].
In other words, the representation ability of the network is limited. In the process of
damage assessment, the limited receptive field constrains the contextual information that
the network can utilize, which has a significant impact on the assessment performance.

The Transformer architecture [34] has the advantage of a global receptive field and
has the potential to overcome the above problems of CNNs. It initially achieved great
success in Natural Language Processing (NLP). The Vision Transformer (ViT) introduces
Multi-head Self-Attention (MSA) into vision tasks [35]. Recently, ViT and its variants have
shown powerful global relational modeling capabilities and outperform the state-of-the-art
CNN models in many tasks [36–38]. Compared to CNN with a limited receptive field,
Transformer keeps the sizes of input and output unchanged and effectively captures global
contextual information. Chen et al. [39] propose a two-branch ViT with skip connections
to learn multi-scale features. It proves that learning features from different scales is also
effective in vision tasks. Wang et al. [40] introduce the Pyramid Vision Transformer, which
is a unified Transformer backbone for vision tasks with pixel-level prediction that does not
require convolution operations. However, there are two challenges in applying Transformer
in remote sensing domain, i.e., the various scales of ground objects and the extreme high-
resolution images. To limit the high computational complexity of ViT on high-resolution
images, Swin Transformer [41] proposes a shifted window mechanism to construct a
hierarchical structure and shows great potential in semantic segmentation. The shifted
window mechanism significantly reduces the computation cost and make it possible to
process high-resolution images. In the field of medical image segmentation, the Swin
Transformer architecture shows great performance [42], but its potential has not been
confirmed in the field of damage assessment.

Although the shifted window mechanism of Swin Transformer makes the computa-
tional complexity linear with the input size, this strategy weakens the global modeling
capability of Transformer to some extent, which requires additional spatial information to
compensate for it. Moreover, in the building damage assessment based on high-resolution
optical remote sensing images, certain classes of damage have highly identical appearances,
e.g., no damage and minor damage. Therefore, existing methods use an attention mecha-
nism to address these issues. Fu et al. [43] build long-range correlations through parallel
channel attention and position attention. CBAM [44] constructs spatial-level and channel-
level attention for adaptive feature refinement. Chen et al. [45] propose a feature extractor
with a pyramid spatial–temporal attention module for change detection. In remote sensing
images, pixel-level spatial correlation should receive more attention to avoid semantic
ambiguity due to the occlusion of ground objects [46]. Therefore, we introduce vertical and
horizontal self-attention mechanisms to construct pixel-level spatial correlations.

In this paper, to address the limitation of CNN in global relational modeling, we pro-
pose a hierarchical Transformer-based two-stage framework, named SDAFormer, for build-
ing damage assessment for the first time. As mentioned earlier, the assessment process
is split into two stages to make full use of the semantic information in the pre- and post-
disaster images. In Stage 1, a Transformer-based U-Net-like pixel-level segmentation net-
work is used for building localization. Inspired by Residual network [47] and U-Net [30],
a symmetric encoder–decoder structure with skip connections is constructed as the seg-
mentation network based on Transformer block. Then, the segmentation results are used
to guide the building locations for Stage 2. In Stage 2, damage classification is conducted
by using a siamese network. The weights trained in Stage 1 are utilized to initialize the
network weights of Stage 2 to improve the efficiency of the training process. In addition,
a spatial fusion (SF) module is proposed to enable the network to aggregate global features
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in spatial dimensions. The framework is evaluated on the xBD dataset [48] and individual
disaster datasets.

The main contributions of this paper can be summarized as follows.

• We propose a Transformer-based two-stage framework for pre- and post-disaster
remote sensing image analysis. Based on the siamese U-Net architecture, a pure
Transformer-based encoder–decoder structure is constructed for the building damage
assessment task instead of CNN.

• To enhance the spatial correlation of global features, a spatial fusion (SF) module is
presented. We introduce self-attention in the horizontal and vertical directions to
enhance the pixel-level feature representation capability.

The rest of this paper is organized as follows. Section 2 presents the detailed methods.
Section 3 presents the data used and experimental results. Section 4 contains the discussion
and Section 5 draws conclusions.

2. Methods
2.1. Overall Architecture

The overall architecture of the proposed SDAFormer is shown in Figure 1, which
consists of two stages: building localization (Stage 1) and damage classification (Stage 2).
In Stage 1, a branch of SDAFormer, the segmentation network based on Swin Transformer,
is used for building localization. This branch uses only the pre-disaster images as input and
generates the building location masks. In Stage 2, both the pre-disaster and post-disaster
images are fed into the siamese SDAFormer branches, respectively. Damage assessment is
performed in Stage 2. Each branch of SDAFormer constitutes a Swin Transformer-based
U-Net-like network. The weights are initialized from the trained weights of Stage 1 and
shared between the two branches to better exploit the correlation between the pre- and
post-disaster images.
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Figure 1. An overview of the SDAFormer framework. It is composed of two stages: (a) Stage 1:
building localization, (b) Stage 2: damage classification.
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2.2. Two-Stage Framework

Both tasks of change detection and damage assessment are based on the detection of
the changed features of the image pairs, where the siamese structure is widely used for
the network. However, compared with the goal of change detection, which is to find the
regions of change between two temporal images, the building damage assessment task
has some key differences. To fit the building damage assessment task, we use a two-stage
framework and split the task into building localization and damage classification instead
of directly applying the siamese network. The reasons are as follows.

• Firstly, instead of simply detecting changes, the damage level of each building also
needs to be classified from the changes in the building damage assessment task.
Therefore, locating buildings from the pre-disaster images provides more precise
localization results and guides the damage classification in Stage 2.

• Secondly, the intact buildings are also required to be detected. In other words, the un-
changed building objects need to be located and classified as the level of no damage,
which is not required in the change detection task.

• Thirdly, a two-stage framework helps resolve the offset noise between two temporal
images. In the building localization, only the pre-disaster image is used to ignore the
offset noises from the post-disaster image. Moreover, the model trained in Stage 1 is
transformed into the siamese network for classification, and the weights are shared.
This strategy allows the network to process the pre-disaster and post-disaster images
using the same approach, which helps overcome the offset noises.

2.2.1. Stage 1: Building Localization

The building segmentation is performed in Stage 1 to locate the buildings. As shown
in Figure 1a, in Stage 1, only the pre-disaster images are input to train the network for the
localization of buildings. Compared with the post-disaster images, the building contours
in the pre-disaster images are more distinct to perform building segmentation. A single-
branch U-Net-like network is used, which is shown in Figure 2. The Swin Transformer
block [41] is the basic unit of the network. Patch partition is conducted for the encoder,
in which the inputs are partitioned into non-overlapping patches of size 4 × 4 pixels to
generate sequence embeddings. Then, a linear embedding layer is introduced to flatten and
project patches into dimension C. These transformed patch tokens are put into the encoder
for feature extraction, which consists of patch merging layers and the Swin Transformer
blocks embedded with the SF module. The output feature map of the encoder is fed
into a bottleneck consisting of two consecutive standard Swin Transformers, in which the
number of channels and resolution of the feature map are kept constant. The decoder
consists of standard Swin Transformer blocks and patch expanding layers, in which the
patch expanding layer is responsible for up-sampling. By skip connections, the multi-scale
features from the encoder can be fused with the extracted features to compensate for the loss
of spatial information due to down-sampling. The network outputs a binary segmentation
mask to locate the building objects before the disaster, and the results are used to guide the
damage classification in the next stage.
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Figure 2. The architecture of U-Net-like network based on Swin Transformer block, which is com-
posed of encoder, bottleneck, decoder and skip connections. Spatial fusion modules are embedded in
the encoder.

2.2.2. Stage 2: Damage Classification

In Stage 2, the same backbone network as in Stage 1 is used, as shown in Figure 1b.
In this stage, the weights from Stage 1 are used here for weight initialization. The pre-
disaster and post-disaster images are sent into the two-branch network separately. The fea-
ture maps generated by the two branches are concatenated and put into a convolution
layer of 1 × 1 so that the location information of the pre-disaster images can guide the
damage classification of post-disaster images. The generated output is then used for the
final classification of damage levels.

2.3. Swin Transformer Block

The traditional transformer block includes an MSA (Multi-head Self-Attention) mod-
ule, MLP (MultiLayer Perceptron) and LN (Layer Normalization) layer. The output sl of
layer l is represented as [35]

ẑl = MSA
(

LN(zl−1)
)
+ zl−1, (1)

zl = MLP
(

LN(ẑl)
)
+ ẑl (2)

where zl represents the output of the Transformer block.
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The computational costs of Transformer blocks grow quadratically as the number of
tokens increase, which limits its application, especially on high-resolution remote sens-
ing images. Therefore, Swin Transformer [41] proposes the shifted window mechanism.
The Swin Transformer blocks consist of two sequential units, i.e., Window-based Multi-head
Self-Attention (W-MSA) and Shifted Window-based Multi-head Self-Attention (SW-MSA),
which is shown in Figure 3.
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Figure 3. (a) The structure of a standard Transformer block [35]. (b) Two consecutive Swin Trans-
former blocks [41], which are called Window-based Transformer block and Shifted Window-based
Transformer block, respectively.

In the W-MSA, the image is divided into non-overlapping windows of a certain size of
N, and each window contains N × N patches. Self-attention is conducted within local win-
dows, relieving the problem of high computing costs in MSA. To keep the correlation across
windows, the SW-MSA introduces shifted windows partitioning, which brings information
communication between adjacent non-overlapping windows of the previous layer.

Self-attention is conducted within windows, each of which covers N×N patches. N is
set to 8 to fit in with the resolution in this experiment. These two Swin Transformer blocks
are renamed as Window-Transformer (W-Trans) block and Shifted Window-Transformer
(SW-Trans) block. Two successive W-Trans and SW-Trans can be formulated as [41]

ẑl = W-MSA
(

LN(zl−1)
)
+ zl−1, (3)

zl = MLP
(

LN(ẑl)
)
+ ẑl , (4)

ẑl+1 = SW-MSA
(

LN(zL)
)
+ zl , (5)

zl+1 = MLP
(

LN(ẑl+1)
)
+ ẑl+1 (6)

where zl represents the output of the W-Trans block, and zl+1 represents the output of the
SW-Trans block. Self-attention [49,50] is calculated as

Attention(Q, K, V) = SoftMax
(

QKT
√

d
+ B

)
V, (7)

where Q, K, V ∈ RN2×d represent the query, key and value matrices, respectively. N2

denotes the number of patches of a window. B and d, respectively, represent the relative
position bias and the dimension of the key or query. T denotes matrix transposition.
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2.4. Encoder

As shown on the left part of Figure 2, the patch partition divides the image into
the non-overlapping patches. After the patch partition, the input image is reshaped
to be W

4 ×
H
4 × 48, where W and H refer to the width and height of the original input

image. The number of image patches is W
4 ×

H
4 . Then, the patches are sent into the linear

embedding layer. The linear embedding layer produces tokenized input with the dimension
of W

4 ×
H
4 ×C. A consecutive structure of dual Swin Transformer blocks embedded with SF

module is developed, which is shown in Figure 4. Following three groups of such a structure
and the patch merging layer, the encoder outputs the feature of W

32 ×
H
32 × 8C. In the process,

Swin Transformer blocks are responsible for the representation learning without changing
the size of feature dimension and resolution. Then, the patch merging layer divides the
input patches into 4 equal parts and concatenates them together. The feature size is down-
sampled by 2× after the procedure. To reduce the dimension of concatenated features from
4× to 2×, a linear layer is utilized in the patch merging layer.

𝑧𝑧𝑙𝑙−1

Window-based Transformer block

Shifted Window-based Transformer block

SF

𝑧𝑧𝑙𝑙+3

 𝑧𝑧𝑙𝑙+1

Window-based Transformer block

Shifted Window-based Transformer block

SF



Figure 4. Swin Transformer blocks with the spatial fusion (SF) module.

2.5. Bottleneck

In the bottleneck, the resolution and dimension of the feature remain unchanged. Two
Swin Transformer blocks are used to replace the CNN-based bottleneck block for better
deep feature representation [51].

An MSA layer can be used as a convolution layer in the bottleneck. Consider an
MSA layer consisting of Nh = K2 heads of dimension Dh and output dimension Dout. Let
f : [Nh]→ ∆K be a mapping of heads onto shifts and ∆K contain all possible shifts in the
convolution. Suppose that the following holds for every head h:

softmax
(

A(h)
q

)
k
=

{
1 if f (h) = q− k
0 otherwise

(8)

where q, k stand for query and key pixels. A stands for the attention scores and the softmax
outputs attention probabilities. Then, for any convlution layer (Conv) with Dout output
dimension, there are

{
W (h)

val

}
h∈[Nh ]

such that MSA(X) = Conv(X) for every X ∈ RW×H×Din .

For one output pixel of MSA:
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MSA(X)q,: = ∑
h∈[Nh ]

(
∑
k

softmax
(

A(h)
q,:

)
k
Xk

)
W (h) + bout (9)

where W is the weight tensor and b is the bias vector. For the h-th head, the probability of
attention is 1 when k = q− f (h) and 0 otherwise. The output is then equal to:

MSA(X)q = ∑
h∈[Nh ]

Xq− f (h),:W
(h) + bout (10)

When K =
√

Nh, the above is equivalent to a convolution layer. Therefore, the bottleneck
using Swin Transformer blocks performs the same function as a convolutional bottleneck.

2.6. Decoder

Symmetric with the encoder, the decoder is developed based on regular Swin Trans-
former blocks and patch expanding layers [42] to up-sample the feature map to the original
resolution, as shown on the right part of Figure 2. Contrary to the patch merging layer in
the encoder, the patch expanding layer up-samples the extracted feature by 2×. Specifically,
given the dimension of the input is 2C1, the patch expanding layer uses a linear layer to
double the feature dimension to 4C1. Then, a rearrange operation is conducted to expand
the resolution of the input features by 2×, and the dimension of the feature is reduced to
one-quarter of the ascended dimension to be C1.

With skip connections, the up-sampled features in the decoder are fused with the
features from the encoder. Shallow features are concatenated with deep features to reduce
the loss of the spatial information during down-sampling, and a linear layer keeps the
dimension unchanged. The process of skip connection can be formulated as:

yl+1 = F(yl©xl) (11)

where xl and yl refer to the feature from the encoder and the decoder, respectively, while
yl+1 refers to the input of rearrange operation. © represents the channel-level concatenation.
F(·) represents the linear layer.

2.7. Spatial Fusion Module

In Swin Transformer, the computation of self-attention is limited in each local non-
overlapping window, resulting in linear computational cost in relation to image size and
reduced memory overhead. However, this mechanism cuts down the ability of global
modeling compared to Transformer [4]. Moreover, additional spatial knowledge helps
eliminate the blurred contours of the post-disaster building. Therefore, the Spatial Fusion
(SF) module is proposed to allow for more spatial knowledge learned by the encoder and
boost the information exchange over the W-Trans block and SW-Trans block.

By adding the weighted feature to the output of the W-Trans block, the SF module
emphasizes spatial information from neighboring pixels of the same class label as the central
pixel, and it suppresses pixels of different class labels. The structure of the SF module is
shown in Figure 5. In phase n, let the input feature of W-Trans block zl−1 ∈ R(h×w)×c1

reshape into s ∈ Rh×w×c1 , where c1 = 2n−1C, w = W
2n+1 and h = H

2n+1 . The s is sent into a
3× 3 dilated convolution layer of dilation rate 2.
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Figure 5. The structure of SF module.

A simple convolution layer can be formed as:

ŝ(x, y) =
c1

∑
d′=1

(
∑

−L≤i,j≤L
kd
(
i, j, d′

)
· Fd′(x− i, y− j)

)
(12)

where x, y are integers for which 0 ≤ x ≤ w, 0 ≤ x ≤ h, and 1 ≤ d′ ≤ c1. Kd stands for
coefficients for all pairs (i, j, d′) for which |i|, |j| ≤ L. Fd′ is the input and ŝ is the output
of the layer. It can be inferred that ŝ corresponding to the point (x, y) is determined by
Fd′(x− i, y− j) at points (x− i, y− j) corresponding to |i|, |j| ≤ L.

Compared with convolution, dilated convolution makes a larger receptive field. A di-
lated convolution layer is formed as:

ŝ(x, y) =
c1

∑
d′=1

(
∑

−L≤i,j≤L
kd
(
i, j, d′

)
· Fd′(x− ` · i, y− ` · j)

)
(13)

where ` refers to the dilation rate. In this case, convolution is performed on (x − ` ·
i, y− ` · j) instead of (x− i, y− j). Dilated convolution is conducted within more distant
pixels. This approach expands the receptive field and thereby enhances the perception of
global information.

Then, the channel number is reduced to c1/2, and the feature passes through the
global average pooling layer in the horizontal and vertical directions, respectively, to get
the feature map statistics of spatial information. The formula of the above two directions is
represented as:

vi
wj

=
1
h

h−1

∑
j=0

ŝi(j, k), (14)

vi
hk

=
1
w

w−1

∑
j=0

ŝi(j, k), (15)

where i, j, and k are the indexes of the channel and the horizontal and vertical directions,
respectively, and 0 ≤ k ≤ h, 0 ≤ j ≤ w, 0 ≤ i < c1/2. The tensor vw contains the
attention weights in the horizontal direction and vh in the vertical direction. Then, the vw
and vh obtained from (14) and (15) multiply to obtain the attention feature map on spatial,
M ∈ Rh×w× c1

2 , following a convolution layer to double the dimension. The final feature
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map F output from SF is generated by adding M and sl+1 yielded from the SW-Trans block.
The feature F ∈ Rh×w×c1 is formulated as

M = vw ⊗ vh (16)

F = zl+1 ⊕ ζ(Ge(M)) (17)

where ⊕ refers to element-level addition, and ⊗ refers to matrix multiplication. ζ(·) and
Ge(·) stand for the 1× 1 convolutional layer and GELU activation function, respectively.

3. Experiment Results
3.1. Experiment Data
3.1.1. xBD Dataset

In our study, the xBD dataset [48] is used to validate the performance of the proposed
method. The xBD dataset is a large-scale public building segmentation and damage
assessment dataset with high-quality building annotations from high-resolution satellite
images before and after 19 different natural disasters (e.g., earthquakes, volcanic eruptions,
hurricanes, and floods). It is sourced from the Maxar/DigitalGlobe Open Data Program [52],
where high-resolution images from many disparate regions of the worlds are available.
The dataset consists of pairs of pre-disaster and post-disaster 1024 × 1024 satellite images.
The images are below the 0.8 m ground sample distance (GSD) mark. The split of train,
validation, and test sets is shown in Table 1.

Table 1. Size of xBD dataset split.

Split Image Number

Train 16,470
Validation 1833

Test 1866

The dataset provides 4-level damage labels, including no damage, minor damage,
major damage and destroyed. The number of damage annotations of each level is shown
in Table 2. It should be noted that the distribution of each damage level is imbalanced.

Table 2. The distribution of damage level annotations.

No Damage Minor Major Destroyed

Number 313,033 38,680 29,904 31,560
Percentage 76.04% 8.98% 7.29% 7.69%

3.1.2. Instance Data

Four individual disaster events are used to verify the robustness and transferability
of the proposed method. Two of them are the tornadoes in USA, and the other two are
Typhoon Yutu in the northern Mariana Islands. The detailed information of these disasters
is shown in Table 3.

Table 3. Detailed information of the two disasters.

Disaster Location Date

Tornado in Arkansas Monette, AR, USA 20 December 2021
Tornado in Kentucky Mayfield, KY, USA 28 January 2017

Typhoon Yutu Saipan Island, Northern Mariana Islands 12 October 2018
Typhoon Yutu Tinian Island, Northern Mariana Islands 12 October 2018
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3.2. Implementation Details

The proposed method is implemented using Pytorch 1.10. The experimental environ-
ment is on a computer with an Intel Core i7-10700 CPU and a NVIDIA RTX-3090 GPU.
Simple data argumentation is used to enhance the diversity of the data, including rotation
and flip. AdamW is used as the optimization algorithm for backpropagation. The learning
rate for Stage 1 (building localization) is 0.00015 and for Stage 2 (damage classification)
is 0.0002. The number of epochs for Stage 1 is 120 and for Stage 2 is 20. The pre-trained
weights with ImageNet are used for initialization.

3.3. Loss Function

We adopt binary cross-entropy loss for building localization loss Lloc, which is defined as

Lloc = −[yloc log Ploc + (1− yloc) log(1− ploc)] (18)

where Ploc and yloc are the probability of building location and the reference label. The dam-
age classification outputs a mask of five channels, including one channel of localization
and four of damage levels. In order to alleviate the imbalance of samples on damage levels,
a weighted mixed loss function which consists of focal loss and dice loss is used for damage
classification loss Lcls, which is formulated as:

Lcls =
4

∑
n=0

wn × [c1 × Focaln
(
mp, mt

)
+ c2 ×Dicen

(
mp, mt

)
] (19)

where mp and mt are the predicted mask and true mask for channel n, respectively. c1 and
c2 are the weights for focal loss and dice loss, respectively. wn is the weight for channel
n. Larger weights are set for minor damaged and major damaged, which are uncommon
classes (c = 2, 3). Accordingly, a smaller weight is set for localization weight (c = 0).

3.4. Performance Evaluation Metrics

In segmentation tasks, precision and recall are important accuracy indicators. In most
cases, it is difficult to evaluate performance well using only one of them. The F1 score
represents the balance between precision and recall and can better reflect the overall
performance of the model, especially in the case of unbalanced samples. TP (true-positive)
represents the number of pixels that are predicted as the right categories. FP (false-positive)
denotes the number of pixels from other categories that are incorrectly predicted as this
category. FN (false-negative) indicates the number of pixels belonging to this category
that are incorrectly classified. In this paper, the XView2 Challenge metric [48] is used to
evaluate the results. The F1 for weighted mean of the building segmentation (F1loc) and
the F1 for harmonic average of class damage classification (F1cls) are applied. F1Ci refers to
the F1 score of each damage class and Ci represents the i-th damage class, where C1 to C4
denote no damage, minor, major, and destroyed, respectively. F1loc and F1cls are defined as

F1loc =
2TP

2TP + FP + FN
, (20)

F1cls =
n

∑n
i=1

1
F1Ci

, (21)

The final score [48] of overall evaluation comprehensively reflects the building segmen-
tation and damage classification performance, which is formed based on F1loc and F1cls.

score = 0.3× F1loc + 0.7× F1cls (22)

3.5. Comparisons with Other Models on xBD Dataset

To verify the effectiveness of the proposed method in this paper, we compare it with
some existing CNN-based methods, including
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• The Weber’s method [53] utilizes Mask R-CNN with FPN structure and parallel
architecture for both building segmentation and damage classification. It concate-
nates pre-disaster and post-disaster features after feature extraction with ResNet-50.
Then, the fused feature map is fed into the segmentation head for damage assess-
ment. A novel loss function is designed to weight the mistakes on levels inversely
proportional to their occurrence in the xBD dataset.

• In RescueNet [54], a dilated ResNet-50 is used for the backbone of the U-Net. To utilize
the differences between pre-disaster and post-disaster images, both images are fed
into the network for building segmentation. Only the post-disaster image is used
in the task of damage classification. Different loss functions are applied to the two
tasks separately. Specifically, the Binary Cross-Entropy loss is used for building
segmentation, while the foreground-only selective Categorical Cross-Entropy loss is
used for damage classification. A dual-head framework is developed, which contains
a segmentation head and a change detection head.

• The approaches of the top two results from the XView2 Challenge are employed
for evaluation, including XView2 1st [55] and XView2 2nd [56]. The XView2 1st
builds a multi-model ensemble for better performance. XView2 2nd simutaneously
applies DPN-92 and DenseNet-161 to U-Net for damage assessment. Both methods
use various techniques including data argumentation and multiple test strategies.

Table 4 shows the damage assessment results of different methods on the xBD dataset.
In the overall task, our framework performs better and reaches the score of 80.2%. In com-
parison with the highest overall score of XView2 1st, our method obtains a 1.5% boost.
The F1loc is improved compared with MaskRCNN and RescueNet. The F1Ci scores also
reach their highest, except that the F1C1 is slightly lower than the method of XView2 2nd,
which may be due to the dual-model strategy of XView2 2nd.

Table 4. Performance comparison of the proposed method with existing CNN-based methods. (F1C1 :
F1 score of no damage; F1C2 : F1 score of minor damage; F1C3 : F1 score of major damage; F1C4 : F1
score of destroyed).

Methods Score (%) F1loc (%) F1cls (%) F1C1 (%) F1C2 (%) F1C3 (%) F1C4 (%)

MaskRCNN [53] 74.1 83.6 70.0 90.6 49.3 72.2 83.7
RescueNet [54] 77.0 84.0 74.0 88.3 56.3 77.1 80.8
XView2 1st 78.7 86.1 75.5 91.9 57.2 77.0 86.3
XView2 2nd 76.8 84.0 73.7 92.8 53.8 75.2 85.9

SDAFormer 80.2 86.1 77.6 92.5 61.4 77.5 86.8

Figure 6 visualizes the damage assessment results of each method. For RescueNet,
more errors appear in the damage classification, especially on the minor damage level.
For Mask R-CNN, it can be seen that the model outputs more segmentation mistakes,
and more mistakes appear on the edges of damaged areas. It can be seen that our proposed
model obtains more accurate damage level prediction with smoother boundaries. Overall,
the proposed SDAFormer performs best with fewer assessment mistakes.

Figure 7 visualizes the results of the building segmentation, which is Stage 1 of the
proposed framework. The results of Figure 7c,d mistakenly detect the area of cropland
as buildings and cannot provide accurate contours of the buildings in the pre-disaster
image. It can be seen that our framework achieves more precise segmentation results in
comparison with the other methods. In the results of our method, the contours are clear
enough for the siamese network to locate the buildings. Thus, the output of Stage 1 is
adequate for locating buildings in Stage 2 where damage classification is to be performed.
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(a) (b) (c) (f)(d) (e)

Background No damage Minor damage Major damage DestroyedBackground No damage Minor damage Major damage Destroyed

Figure 6. Building damage assessment results. (a,b) respectively show pre- and post-disaster images;
(c) shows ground truth; (d,e) are the results of RescueNet and MaskRCNN, respectively; (f) is the
prediction of our proposed framework.

(a) (b) (c) (d) (e)

Figure 7. Visual examples of segmentation results in Stage 1. (a) shows pre-disaster images; (b) shows
ground truth; (c,d) are the results of RescueNet and MaskRCNN, respectively; (e) is the segmentation
result of our proposed framework.

3.6. Ablation Study

An ablation experiment is conducted to demonstrate the effectiveness of our proposed
method. To investigate the effectiveness of the Transformer-based structure, a CNN-based
network using the backbone of Res-50 without additional modules as the baseline is
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implemented for comparison. To evaluate the contribution of the SF module, a Transformer-
based network without the SF module is used. Table 5 shows that the scores of Transformer-
based methods exceed the score of the Res-50-based baseline, which proves the effectiveness
of the Transformer-based network.

Table 5. Ablation study of the proposed method (F1C1 : F1 score of no damage; F1C2 : F1 score of
minor damage; F1C3 : F1 score of major damage; F1C4 : F1 score of destroyed).

Methods Score (%) F1loc (%) F1cls (%) F1C1 (%) F1C2 (%) F1C3 (%) F1C4 (%)

Baseline (Res-50) 78.5 85.9 75.4 92.2 57.0 76.3 86.3
SDAFormer (without SF) 79.5 86.1 76.7 92.6 59.6 76.9 86.5
SDAFormer (with SF) 80.2 86.1 77.6 92.5 61.4 77.5 86.8

Furthermore, SDAFormer achieves an impressive improvement with the SF module. It
can be seen that the F1 score of damage classification (F1cls) is improved to 77.6%. The result
shows that the SF module has little influence on the localization accuracy, but obvious
performance gain is achieved on the classification accuracy. The score of minor damage
class (F1C2) obtains a better improvement (from 57.0% to 61.4%), and it shows that the
spatial attention mechanism helps enhance the performance on the damage level, which is
difficult to recognize.

To further evaluate the influence of the Transformer structure and SF module, three
groups of sample images in the test set are picked out for comparison, as shown in
Figures 8–10, respectively.

Figure 8 illustrates the performance on the detection of undamaged and minor dam-
aged buildings. It can be seen that SDAFormer has more prediction mistakes on minor
damage. There are several reasons for this. Firstly, the training set is imbalanced on the
damage level annotations and heavily biased toward the level of no damage. Secondly,
the high visual similarity between no damage and minor damage leads to the misclassifi-
cation of these two classes. Moreover, as shown in Figure 8a,b, the imaging angles of the
pre-disaster and post-disaster images are different, which leads to an incomplete overlap of
building locations in the two images.

Figure 9 illustrates the performance on the detection of undamaged and major dam-
aged buildings. It can be seen that the Transformer-based models perform well in detecting
undamaged buildings. However, due to the complex damage distribution of the local build-
ings, wrong judgments are made for the major damaged buildings. The baseline method
achieves a lower prediction accuracy, where some undamaged buildings are incorrectly
classified as major damaged buildings. In comparison with the result of the SDAFormer
without the SF module, the SDAFormer with SF module outputs more accurate results on
the major damage classification.

Figure 10 illustrates the performance on the detection of destroyed buildings. The as-
sessment result shows that the output of all models is generally correct in terms of building
localization. As for the damage assessment, the baseline output in Figure 10d has a few
classification errors in the lower left corner of the image, and the quality of the assessment
for small building objects is not satisfactory. The output of SDAFormer can indicate the
damage degree of the disaster-affected area, but the results differ in the details. For example,
the building group in the center of Figure 10e is regarded as major damage by SDAFormer
without SF. In Figure 10f, the building group is regarded as undamaged except for the
lower right corner. Comparing the pre-disaster and post-disaster buildings in Figure 10a,b,
due to the tsunami, it can be recognized that a giant deviation of the buildings emerged
after the disaster, but the structures of the buildings are still largely preserved. However,
such buildings are taken as undamaged in the ground truth masks in xBD. The model with
SF notices the structural connections of the deviant houses and shows a better performance
in this position.
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(d) (e) (f)

(a) (b) (c)

Background No damage Minor damage Major damage DestroyedBackground No damage Minor damage Major damage Destroyed

Figure 8. The visual comparison of prediction results on hurricane–Harveyan xBD dataset. (a) Pre-
disaster; (b) post-disaster; (c) ground truth; (d) baseline; (e) SDAFormer (without SF); (f) SDAFormer
(with SF).

(d) (e) (f)

(a) (b) (c)

Background No damage Minor damage Major damage DestroyedBackground No damage Minor damage Major damage Destroyed

Figure 9. The visual comparison of prediction results on hurricane-Michael in xBD dataset. (a) Pre-
disaster; (b) post-disaster; (c) ground truth; (d) baseline; (e) SDAFormer (without SF); (f) SDAFormer
(with SF).
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(d) (e) (f)

(a) (b) (c)

Background No damage Minor damage Major damage DestroyedBackground No damage Minor damage Major damage Destroyed

Figure 10. The visual comparison of prediction results on palu-tsunami in xBD dataset. (a) Pre-
disaster; (b) post-disaster; (c) ground truth; (d) baseline; (e) SDAFormer (without SF); (f) SDAFormer
(with SF).

3.7. Robustness and Transferability

Due to the difficulty in obtaining a building damage assessment dataset other than
the xBD dataset, we selected four independent disaster events outside the xBD dataset to
verify the transferability and robustness of the proposed method. The details of the events
are listed in Table 3. For each instance, the pre-disaster and post-disaster images are fed
into our framework. The results are shown in Figure 11.

In the cases of the tornadoes, the buildings are less dense. Due to the seriously dam-
aged buildings, most of the buildings in the image are labeled as destroyed in our model,
which is consistent with the damage situation. The results of RescueNet and MaskRCNN
cannot accurately outline the buildings and therefore fail to predict the damage levels.

In the cases of typhoon Yutu, the results of our model shows that the majority of the
buildings in the image are well detected and correctly located. Some multi-story buildings
cast large areas of shadows on the upper right side, which limits the ability to locate
buildings and causes some errors around these buildings. In the damage assessment stage,
it can be seen that most of the single-story houses are correctly classified as reasonable
damage levels from no damage to destroyed. However, for the multi-story buildings
located in the right of the image, the majority of them are recognized as destroyed or major
damage. It can be seen from the post-disaster image that the texture features of some of
the roofs are changed. For some buildings which are detected as destroyed, the top floors
are damaged but the structure of the buildings still remains. Moreover, the effect of side
shooting distracts the assessment, which is common on high buildings. On the whole,
the predicted results of our method are more precise than other compared methods.
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(a) (b) (e)(c) (d)

Background No damage Minor damage Major damage DestroyedBackground No damage Minor damage Major damage Destroyed

Figure 11. Results of the independent disaster events. First row to fourth row are: tornado in
Arkansas and in Kentucky, typhoon on the Saipan Island and on the Tinian Island. (a) Pre-disaster;
(b) post-disaster; (c) RescueNet; (d) MaskRCNN; (e) our results.

4. Discussion
4.1. Findings and Implications

Pairs of pre-disaster and post-disaster satellite images can reflect the building damage
level in the disaster-affected areas in a timely and accurate manner. Therefore, we construct
the two-stage SDAFormer framework. Meanwhile, Swin Transformer is introduced to form
the framework. According to the analysis of experimental results, our framework has a
higher overall score than existing CNN-based methods, which proves the effectiveness of
our method. The proposed two-stage framework can consider the temporal and spatial
relevance between pre- and post-disaster remote sensing images, which helps to improve
the building segmentation and damage assessment.

The application of different types of Transformers in the visual field has been a hot
research topic in recent years, which can improve the scalability and performance of many
tasks. Transformer can correlate key features in different channels and improve the ability
to model the global relationships of the framework in building damage assessment. In our
study, Swin Transformer is applied in the encoder, decoder, and bottleneck, which shows
the universality of the Swin Transformer block in the building damage assessment field.
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In our study, a spatial attention mechanism, also known as the spatial fusion module,
is also introduced. For the model with the spatial attention mechanism, the score of
building localization is kept constant. Meanwhile, the accuracy of damage classification is
improved, especially in the minor and major damage classes. The spatial fusion module has
little impact on the semantic segmentation performance of the module, which can use the
surrounding texture of the buildings to support damage-level inference. The spatial fusion
module is able to enhance the spatial context feature representation and compensate for the
limitation of window mechanism in Swin Transformer. As a result, the ambiguity caused
by blurred post-disaster buildings can be alleviated, improving the ability to distinguish
between minor damage and major damage level.

According to Table 4, Weber’s method (Mask R-CNN) has much lower F1loc and F1cls
than SDAFormer. Unlike our proposed framework, in Weber’s method, a single-branch
decoder is applied after concatenating the extracted pre-disaster and post-disaster features.
The single-branch decoder results in the inability to utilize the relevant features of the
pre-disaster and post-disaster buildings. Therefore, buildings of different sizes are unable
to be located properly, which affects the damage assessment result. Meanwhile, the CNN
structure limits the global feature extraction capability and the overall understanding of
the image. Regarding RescueNet, both pre-disaster and post-disaster images are simultane-
ously used for building segmentation, but only post-disaster images are used in the process
of damage assessment. This strategy can provide additional information at different points
in time to the segmentation task. However, since the structure of the buildings is damaged
or destroyed by the disaster, the additional semantic information of the post-disaster images
can lead to confusion of the network. Meanwhile, the damage classification task lacks the
guidance on the localization of the original building, which weakens the ability to detect
destroyed buildings because of the seriously damaged appearance.

4.2. Limitations

Although SDAFormer has shown superior performance in the experiments, it still has
two limits.

• First, with the process of urbanization, it is important to assess urban disaster-affected
areas. However, it is still difficult to comprehensively assess the damage of the multi-
story buildings for our proposed framework. The information of a building from
the satellite image is limited to roofs, while damages on walls cannot be effectively
detected. In some cases, these tall buildings are projected into irregular shapes due to
the satellite imaging angle, and the sides of the buildings are shown in the satellite
images, which may lead to ambiguity of the network. In addition, the shadows of the
buildings may change with the satellite acquisition time. However, in the xBD dataset,
most of the building objects are low buildings, which weakens the model’s ability to
detect tall buildings.

• Second, the training samples are imbalanced in terms of damage levels and the
disaster categories, as shown in Table 2 and Figure 12. The imbalanced training set
may affect the training process of the network. Due to the difficulty in acquiring
paired high-resolution pre-disaster and post-disaster remote sensing images, the xBD
dataset is the first building damage assessment dataset with high-quality annotations.
Therefore, it requires a large amount of work to expand the size of the building damage
assessment dataset.
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Figure 12. The distribution of disaster categories in xBD dataset.

4.3. Future Work

We analyzed the advantages and disadvantages of the proposed SDAFormer in detail.
In this section, two possible research directions in the future are discussed.

Based on the aforementioned advantages and disadvantages of SDAFormer, further
research is needed in the following two aspects.

• First, in future experiments, additional relevant datasets from other remote sensing
sensors, including an Unmanned Aerial Vehicle (UAV) system, will be used to train
the network. The additional data allow our model to learn more key features and
verify the universal applicability of SDAFormer in building damage assessment.

• Second, on a larger scale, the patterns of damaged buildings are more diverse and
complex than the existing classification criteria, Joint Damage Scale (JDS) [48], es-
pecially for buildings in urban areas. The process of label calibration is subjective,
and this certain tendency of labeling can affect the training process. Therefore, more
detailed categories of damaged buildings can facilitate the model to analyze more
useful information to support HADR. We will further explore the classification method
for building damage assessment and the application of Transformer architecture in
the field of disasters response.

5. Conclusions

In this paper, we propose a two-stage siamese framework based on hierarchical Swin
Transformer for building damage assessment tasks named SDAFormer. In Stage 1 of
the framework, building segmentation is performed to locate the buildings. Based on the
building localization in Stage 1, damage assessment is then performed in Stage 2. Compared
with the CNN-based frameworks, SDAFormer can extract long-range semantic information
for damage assessment. Moreover, the spatial fusion module is designed to be embedded
in the Swin Transformer blocks to facilitate spatial information exchange. SDAFormer is
the first to introduce a pure Transformer architecture for a multi-temporal remote sensing
interpretation task. Compared with existing CNN-based methods, the proposed framework
achieves significant improvements on the large-scale building damage assessment dataset,
xBD. Furthermore, four independent disasters are processed for evaluation. The results
verify that our framework is robust and has good potential for transferring to other tasks.
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