
����������
�������

Citation: Attiya, I.; Abualigah, L.;

Alshathri, S.; Elsadek, D.; Abd Elaziz,

M. Dynamic Jellyfish Search

Algorithm Based on Simulated

Annealing and Disruption Operators

for Global Optimization with

Applications to Cloud Task

Scheduling. Mathematics 2022, 10,

1894. https://doi.org/10.3390/

math10111894

Academic Editors: Zenonas Turskis,

Ioannis E. Livieris and Frank Werner

Received: 11 March 2022

Accepted: 24 May 2022

Published: 1 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamic Jellyfish Search Algorithm Based on Simulated
Annealing and Disruption Operators for Global Optimization
with Applications to Cloud Task Scheduling

Ibrahim Attiya 1 , Laith Abualigah 2,3 , Samah Alshathri 4,* , Doaa Elsadek 1 and Mohamed Abd Elaziz 1,5,6,*

1 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
ibrahimateya@zu.edu.eg (I.A.); daudy.kaushy@gmail.com (D.E.)

2 Faculty of Computer Sciences and Informatics, Amman Arab University,
Amman 11953, Jordan; aligah.2020@gmail.com

3 School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
4 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
5 Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
6 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
* Correspondence: sealshathry@pnu.edu.sa (S.A.); abd_el_aziz_m@yahoo.com (M.A.E.)

Abstract: This paper presents a novel dynamic Jellyfish Search Algorithm using a Simulated Anneal-
ing and disruption operator, called DJSD. The developed DJSD method incorporates the Simulated
Annealing operators into the conventional Jellyfish Search Algorithm in the exploration stage, in a
competitive manner, to enhance its ability to discover more feasible regions. This combination is
performed dynamically using a fluctuating parameter that represents the characteristics of a hammer.
The disruption operator is employed in the exploitation stage to boost the diversity of the candidate
solutions throughout the optimization operation and avert the local optima problem. A compre-
hensive set of experiments is conducted using thirty classical benchmark functions to validate the
effectiveness of the proposed DJSD method. The results are compared with advanced well-known
metaheuristic approaches. The findings illustrated that the developed DJSD method achieved promis-
ing results, discovered new search regions, and found new best solutions. In addition, to further
validate the performance of DJSD in solving real-world applications, experiments were conducted
to tackle the task scheduling problem in cloud computing applications. The real-world application
results demonstrated that DJSD is highly competent in dealing with challenging real applications.
Moreover, it achieved gained high performances compared to other competitors according to several
standard evaluation measures, including fitness function, makespan, and energy consumption.

Keywords: artificial Jellyfish Search Algorithm (JSA); simulated annealing (SA); task scheduling;
cloud computing; optimization; metaheuristics

MSC: 90C26; 90C27; 68M20; 68T20

1. Introduction

Every day, new and complex optimization problems arise in fields such as mathematics,
industry, and engineering [1]. When the problems became more complex, traditional
optimization approaches were discovered with high computing costs and they were trapped
in local optima while solving them [2]. As a result, scientists have been looking for
new techniques to address these problems [3]. Metaheuristic algorithms are promising
solutions proposed by drawing inspiration from herd animals’ food-finding habits or
natural occurrences. Metaheuristic (MH) algorithms have many benefits, including the
ability to resist local optima, use a gradient-free mechanism, and provide rational solutions
regardless of problem structure [4].

Mathematics 2022, 10, 1894. https://doi.org/10.3390/math10111894 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111894
https://doi.org/10.3390/math10111894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3313-2299
https://orcid.org/0000-0002-2203-4549
https://orcid.org/0000-0002-8805-7890
https://orcid.org/0000-0002-7682-6269
https://doi.org/10.3390/math10111894
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111894?type=check_update&version=2

Mathematics 2022, 10, 1894 2 of 23

Mathematical optimization is the process of locating an item within an accessible
domain for a given problem that has a maximum or minimum value [5]. The advancement
of optimization methods is critical since optimization problems arise in different fields of
analysis. The majority of traditional optimization approaches are deterministic and rely
on derivative knowledge [6]. However, in real life, determining the optimal values of a
problem is not always feasible [7]. Because of their derivative-free behavior and promising
optimization ability, MH techniques are becoming increasingly popular. Other benefits of
these approaches include flexibility, ease of execution, and the avert ability to skip local
optima [8].

Exploration and exploitation of the MH technique are two main methods used in
metaheuristics [9]. Exploration refers to the opportunity to discover or visit new areas of
the solution space. In contrast, exploitation refers to retrieving valuable knowledge about
nearby regions from the found search domain. The balance between manipulation and
discovery determines the consistency of the solutions found by any MH. These algorithms
(i.e., MH), look for a single candidate agent or a set of agents. Single agent-oriented
approaches are those that are based on a single candidate agent, whereas population-based
approaches are those that are based on a group of candidate solutions. MH are made to look
like natural phenomena. MH techniques can be divided into three categories depending on
their source of inspiration: swarm intelligence-based algorithms, evolutionary algorithms,
and physics-based algorithms.

Swarm intelligence has risen to prominence in the world of nature-inspired strategies
in recent years [10]. It is also utilized to address real-life optimization problems and
is focused on the mutual actions of swarms or colonies of animals [11]. Swarm-based
optimization algorithms use the collaborative trial and error approach to find the optimal
solution. The Arithmetic Optimization Algorithm (AOA) [10], the Aquila Optimizer
(AO) [12], and the Barnacles Mating Optimizer (BMO) [13] are well-known methods in this
category. Thus, many complicated optimization problems have been solved using this class
of optimization algorithm, such as scheduling problems [14].

Recently, a new swarm-based optimization technique has been proposed which named
is named the Jellyfish Search Algorithm (JSA) [15]. This algorithm emulates the behaviour
of a jellyfish swarm in nature. In accordance with the characteristics of JSA, it has been
applied to solve different sets of optimization problems. For example, JSA has been
used to determined the optimal solution of global benchmark functions in [15] and its
efficiency over other metaheuristic (MH) techniques has been established. Gouda et al. [16]
proposed an alternative method for estimating the parameters of the PEM fuel cell. In [17],
a multi-objective version of JSA is proposed and it has been applied to solve multiple
objective engineering problems. In [18], the JSA was implemented to solve the spectrum
defragmentation problem and it showed better performance compared to other methods.
Chou et al. [19] presented a time-series forecasting method for energy consumption.
This method was compared with other teaching-learning-based optimization (TLBO) and
symbiotic organism search (SOS) algorithms. The results of JSA are better than those
algorithms. In addition, JSA was applied to other fields such as video watermarking [20].

In previous applications of JSA, its ability to solve different optimization problems
has been observed. However, it still suffers from some drawbacks that can affect its
performance. For example, it requires more improvement in its ability to balance between
the exploration and exploitation phases during the searching process. This motivated us to
propose an alternative version of JSA to avoid the limitations of conventional JSA and to
apply it as a global optimization technique.

The proposed developed version of JSA is called DJSD—dynamic differential annealed
technique. The proposed DJSD method integrated the Jellyfish Search Algorithm operators
with active differential annealed optimization [21] and the disruption operator to gain
the advantages of both approaches. The proposed method is evaluated using various
benchmark problems (i.e., classical benchmark). The proposed approach’s performance
is analyzed and compared with other methods to solve the same problems. The results

Mathematics 2022, 10, 1894 3 of 23

proved that the presented method is better than other comparative approaches, and it
found new best solutions for several test cases. In addition, it is extended by using it as a
task scheduler technique in a cloud computing environment.

In conclusion, the following contributions are included in this paper:

• Enhancing the Jellyfish Search Algorithm using the concept of the dynamic annealed
and disruption operator to improve its exploration and exploitation abilities during
the searching process.

• Applying the developed method, named DJSD, as a global optimization method
through evaluating it using different classical optimization benchmark functions
against other well-known MH methods.

• Offering an alternative task scheduling method to address cloud task scheduling
problems.

The remaining sections of this paper are organized as follows. Section 2 presents the
background of the jellyfish optimization algorithm, the Simulated Annealing algorithm,
and the disruption operator. Section 3 introduces the steps of the proposed method. The
experimental results and discussions are presented in Section 4. Finally, Section 5 concludes
the paper.

2. Background
2.1. Jellyfish Search Algorithm

In this section, the basic information of the Jellyfish Search Algorithm (JSA) [15] is
given. In general, JSA simulates the behaviour of jellyfish that squeeze water out of their
body to move; rising ocean temperatures cause the creation of swarms [15]. The ability of
these species to appear almost anywhere in the ocean is due to their movements within a
swarm and the ensuing ocean currents that form jellyfish blooms. Since the amount of food
at jellyfish-friendly sites varies, the best location would be determined by comparing food
proportions [15].

Following [15], the ideas underpinning the jellyfish optimization algorithm can be
formulated as:

• JSA goes around the water looking for food and is drawn to areas with a higher supply
of food.

• The time control mechanism regulates shifting among motion groups. Jellyfish either
move inside the swarm or follow the ocean current.

The major steps of metaheuristic algorithms are exploitation and exploration. Explo-
ration is the motion in an ocean current, while exploitation is the motion inside a jellyfish
swarm and the time control mechanism that manages the swapping between them. To lo-
cate areas with optimal locations, the possibility of exploration exceeds that of exploitation
at the beginning. However, over time, exploitation’s probability exceeds that of exploration;
then, the jellyfish determine the best position within the known places.

2.1.1. Population Initialization

In most cases, jellyfish populations are initiated at random positions, and the slow
convergence and propensity to get stuck in the local optima due to low population diversity
are some drawbacks of this strategy [15]. Therefore, many chaotic maps, for example,
the tent map, the Liebovitch map, and the logistic map, have been created to increase the
composition of the initial population. A logistic map generates a larger initial population
than random selection and has a lower risk of premature convergence [15].

Xi+1 = ηXi(1− Xi), 0 ≤ X0 ≤ 1 (1)

where X0 is a basic jellyfish population, Xi denotes the logistically chaotic value of the
jellyfish’s location i, η = 4.0, X0 ∈ (0, 1), and X0 /∈ {0.0, 0.25, 0.75, 0.5, 1.0}.

Mathematics 2022, 10, 1894 4 of 23

Since the earth is roughly spherical, a jellyfish that leaves the search domain’s bound-
aries would go back to the direct opposite limit. This mechanism is represented in
Equation (2).

X′i,d =

{
(Xi,d −UBd) + LBd i f Xi,d > UBd

(Xi,d − LBd) + UBd i f Xi,d < LBd
(2)

where X′i,d denotes the new value of Xi,d at dimension d after checking the limits of the
search space (i.e., UB and LB).

2.1.2. Exploration Stage: Ocean Current

The jellyfish are drawn to the ocean current because it carries many nutrients; the
ocean current’s direction (TO) is calculated as:

TO =
1
N ∑

i
TOi =

1
N ∑(Xb − ecXi) = Xb − ec

∑ Xi
N

= Xb − ecµ (3)

where TO is determined by:
TO = Xb − d f , d f = ecµ (4)

In Equation (4), N is the number of jellyfish, Xb is the best jellyfish in the swarm with
the best fitness value, ec is the attraction’s governing factor, µ is the jellyfish’s average posi-
tion, d f the distinction among the jellyfish’s current best position and the average position
of all jellyfish. Based on the assertion that jellyfish have a regular spatial distribution in all
directions, and a distance of ±βσ, all jellyfish are likely to be found in the vicinity of the
mean position, and the standard deviation of the distribution is σ.

d f = β× σ× rand f (5)

σ = µ× randα (6)

So,
d f = µ× β× rand f × randα, d f = µ× β× rand (7)

ec = β× rand (8)

TO = Xb − β× rand× µ (9)

The value of Xi is updated using Equation (10).

Xi(t + 1) = rand× TO + Xi(t) (10)

Based on the definition of TO, Equation (10) can be reformulated as:

Xi(t + 1) = µ× rand× (Xb − β× rand) + Xi(t) (11)

In Equation (11), the length of TO is related to β > 0, which is a coefficient of distribu-
tion, and TO depends on the findings of the numerical experiment’s sensitivity analysis.

2.1.3. Exploitation Stage

Jellyfish move in swarms in passive and active motions (group A and group B, re-
spectively). When the swarm is first forming, most jellyfish move in a group A pattern.
They increasingly exhibit active motion over time, and passive activity is the movement of
jellyfish that surround their positions with each jellyfish’s updated position being provided
as follows.

Xi(t + 1) = (Ub − Lb)× γ× rand + Xi(t) (12)

where Ub denotes the upper limit and Lb represents the lower limit of the search domain,
and γ > 0 is the coefficient of motion.

Mathematics 2022, 10, 1894 5 of 23

According to the numerical results of experiments’ sensitivity analyses, it was obtained
that γ = 0.1. To emulate the active motion of jellyfish (j), more than one are chosen
randomly and a vector is employed to determine the direction of motion from Xi to Xj.
Every Xi in a swarm moves in the best direction to find the food using Equations (13)–(16),
to mimic the motion direction and modify the jellyfish position.

step = rand× Direction (13)

step = Xi(t + 1)− Xi(t) (14)

Direction =

{
Xj(t)− Xi(t) i f Fiti ≥ Fitj,
Xi(t)− Xj(t) i f Fiti < Fitj

(15)

where Fit is the fitness function of position X.

Xi(t + 1) = step + Xi(t) (16)

2.1.4. Time Control Mechanism (TCM)

In the beginning, passive motion is preferred. However, with time, active movement
is favored to mimic this case; we use a time control mechanism to organize jellyfish travel
between going inside a jellyfish swarm and following the ocean current. The TCM has a
time control function c(t) which is a time-varying random value that ranges from 0 to 1,
and co is a constant; Equation (17) represents the TCM.

c(t) = |2× (1− t
tmax

)× (rand− 1)| (17)

where tmax stands for the maximum number of generations. (1− c(t)) is the function simu-
lating the move inside a swarm (passive or active motion); when rand(0, 1) > (1− c(t)), X
exhibits a passive motion. Otherwise, X exhibits an active motion.

The complete steps of the jellyfish optimization algorithm are given in Algorithm 1.

Algorithm 1 Steps of jellyfish optimization algorithm

1: Determine initial parameters such as N number of solutions, tmax total number of
generations.

2: Construct population Xi(i = 1, 2, ..., N) utilizing logistic chaotic map.
3: Compute fitness function (Fiti) for Xi.
4: Allocate the best solution (Xb).
5: Set t = 1.
6: repeat
7: for i = 1 to N do
8: Update c(t) according to Equation (17).
9: if c(t) ≥ 0.5 then

10: (1) Update TO using Equation (9).
11: (2) Update Xi using Equation (11).
12: else:
13: if rand > (1− c(t)) then
14: (1) Update Xi according to Equation (12).
15: else:
16: (2) Update the direction of Xi according to Equation (15).
17: (3) Update Xi according to Equation (16).
18: Check boundary conditions for Xi.
19: Compute Fiti for Xi and update Xb.
20: t = t + 1.
21: until t > tmax.
22: Output: Xb.

Mathematics 2022, 10, 1894 6 of 23

2.2. Simulated Annealing Algorithm

The Simulated Annealing (SA) algorithm is a single-based solution optimization
technique simulating the metallurgical annealing process [22,23].

The SA algorithm starts by generating a random solution with a starting value X and
comes up with a new solution Y from its neighborhood. The fitness value for X and Y
is calculated as the following step in SA, and if Fit(Y) ≤ Fit(X), then X = Y . On the
other hand, SA can replace X with Y even when Y’s fitness is not greater than X’s. This is
determined by the probability (p), which is defined as follows:

p = e
−∆E

T , (18)

∆E =
Cost(X)− Cost(Y)

Cost(Y)
(19)

where T stands for the temperature variable, which should start high and steadily decrease
in value as iterations progress. The probability of adopting a new solution is denoted by p.
The difference between the objective value of the suggested solution Y and the solution X
objective value is called ∆E. The SA algorithm is illustrated in Algorithm 2.

Algorithm 2 The SA method

Input: Initial temperature (T0), D is the solution dimension and tmax is the maximum
number of generations.
The initial solution is generated X.
Compute the fitness value Fit of X to evaluate its efficiency.
Allocate the best solution Xb = X and Fit(Xb) = Fit(X).
Allocate t = 1 and T = T0.
while t < tmax do

Discover the neighbour Y for the X.
Compute Fit(Y) for Y.
if Fit(Y) < Fit(Xi) then

Xi = Y.
else

Update ∆ = Fit(Xi)− Fit(Y).
if (p ≤ r5) then

Xi = Y.
if Fit(Xb) > Fit(X) then

Xb = X;
Set t = t + 1.

Output: Xb.

2.3. Disruption Operator

The preliminaries of the disruption operator (Dop) are described in this section. Dop
depends on the physical processes in astrophysics, where this rule supposes that when a
set of gravitationally bound particles (with total mass m) is very close to a massive object
(with mass M), then the group becomes torn apart [24]. The role in Equation (20) [24] can
be used to implement this process:

Dop =

{
disti,j × δ(−1

2 , 1
2) i f disti,best ≥ 1

1 + disti,best × δ(−10−16

2 , 10−16

2) otherwise
(20)

where disti,best represents the Euclidean distance between the best solution and the ith
solution. disti,j denotes the Euclidean distance between the ith solution and the nearest
neighborhood (jth). Additionally, δ(a, b) represents a random value in domain [a, b].

Mathematics 2022, 10, 1894 7 of 23

3. Developed Method

The framework of the presented DJSD method is illustrated in Figure 1. The improved
DJSD aims to enhance the performance of the traditional JSA using dynamic differential
Simulated Annealing and a disruption operator. Each of these techniques is applied to
enhance the exploration and exploitation of JSA.

Figure 1. Schematic flowchart of the developed DJSD method.

The developed DJSD starts by producing the initial population then computing the
fitness value for each agent inside this population. This is followed by determining the
best agent that has the smallest fitness value. The following process updates the agents
according to the time control mechanism (TCM) value, which determines whether the
agents will be updated using an ocean current or jellyfish swarm. In the latter (i.e., the
jellyfish swarm), the traditional operators of the JSA algorithm are applied to update the
current agent. Otherwise, the competition between JSA operators, dynamic differential
Simulated Annealing, and the Dop are used to update the present agent. This is performed
by updating the agents using either the traditional operators of the JSA in ocean current or
the DJSD. Then, the mechanism of SA to decrease the probability of choosing a new agent
as the temperature is reduced is applied. Finally, after updating the current population, the
Dop is used to improve the diversity of X.

Mathematics 2022, 10, 1894 8 of 23

3.1. Initial Stage

The developed DJSD starts at this point by constructing an initial population (Xi) with
N agents, and this is formulated as:

Xi = LB + rand(1, D)× (UB− LB) (21)

In Equation (21), rand(1, D) stands for random D values. LB and UB refer to the limits
of the search domain.

3.2. Updating Stage

At this stage, the DJSD starts updating the agents within the current population (X) by
calculating the fitness value Fiti for each agent Xi. The next step in DJSD is to allocate the
best agent Xb, which has the best fitness value Fitb. Then the value of TCM is improved
using Equation (17). In cases where c(t) < 0.5, the operators of the jellyfish swarm are
used to update Xi. Otherwise, the combination of ocean current, DJSD, and Dop is used to
enhance Xi. This is achieved based on the dynamic characteristics of the hammer during
the search for the optimal solution. This represents a fluctuating parameter between the
ocean current and the operator of SA. Hence, this process is formulated as:

Xnew
i =

{
Xi + rand× Xb − µ× β× rand if rem(t, 2) = 1
(Xr1 − Xr2) + Xr× f if rem(t, 2) = 0

(22)

In Equation (22), f ∈ [0, 1] is random number and rem represents the remaining
mathematical function. Xr1, Xr2 are random solutions chosen from the current population
X, while Xr denotes a random solution generated in the search space.

After that, the new value of Xi (i.e., Xnew
i) is accepted at temperatures elevated above

low temperatures, and this is performed depending on the probability value p as in the
traditional SA. This process is formulated as follows.

Xi =

{
Xnew

i Fitnew
i < Fiti

Apply Equations (18) and (19) Otherwise
(23)

The next step is to apply the Dop operator to the current updated population X.
However, this process takes more time, and this increases the computational time of the
developed method. Accordingly, Dop will be applied according to the following formula:

Xi =

{
Apply Equation (20) rand > 0.5
Xi Otherwise

(24)

3.3. Terminal Stage

The stop conditions are checked within this stage; if they are not met, the updating
stage is repeated. Otherwise, the best solution found so far (Xb) is returned.

4. Experimental Results and Discussion

In this section, the presented optimizer’s performance is evaluated using several
experiments and comprehensive comparisons to demonstrate the algorithm’s abilities. The
implemented experiments consist of a set of thirty classical benchmark functions. The
results of the developed DJSD are compared with those of several metaheuristic optimizers
including the whale optimization algorithm (WOA) [25], artificial ecosystem optimization
(AEO) [26], the chimp optimization algorithm (Chimp) [27], the firefly algorithm (FA) [28],
and the traditional JSA. The setting parameters for all comparison algorithms are given in
Table 1. These values are chosen based on the original implementation of the algorithms.
The considered algorithms are conducted 30 times with a population size of 30, and the
maximum number of iterations per run is set to 1000. The experiments and analyses are

Mathematics 2022, 10, 1894 9 of 23

executed using MATLAB R2018b on a machine equipped with an Intel Core i5 CPU and
4 GB RAM running under Windows 10 64-bit.

Table 1. The value of each parameter of compared methods.

Algorithm Parameter Values

DJSD γ = 0.1, η = 4.0
JSA γ = 0.1, η = 4.0
AEO rand1, rand2, rand3, rand4 ∈ [0, 1]
MFO a =∈ [−2− 1], Spiral factor b = 1
FA β0 = 1, γFA ∈ [0.01− 100], αFA ∈ [0, 1]
Chimp a = [−1, 1], f decreased from 2→ 0
WOA a = [0, 2], b = 1, l = [−1, 1]

4.1. Experimental Series 1: Mathematical Optimization Problems

The major objective of the current experimental series is to assess the ability of the
developed method to determine the ideal solution for classical benchmark functions [29].
The description of these benchmark functions is given in Table 2. It is evident from the
table that there are two types of functions, namely unimodal (UM) and multimodal (MM).
The unimodal type (F1–F10) is used to assess the ability of the MH technique to find the
solution inside a a single solution search space. Likewise, the multimodal type (F11–F30) is
applied to test the capability of the MH method to find the optimal solution inside a search
domain having more extreme solutions.

Table 2. Formulation of global problems.

ID Formula of Function LW UW dimW Type

F1 f (x) = ∑n
i=1 x2

i −100 100 30 UM
F2 f (x) = ∑n

i=1 |xi|+ Πn
i=1|xi| −10 10 30 UM

F3 f (x) = ∑n
i=1(∑

i
j−1 xi)

2 −100 100 30 UM
F4 f (x) = maxi{|xi|, 1 6 i 6 n} −100 100 30 UM
F5 f (x) = ∑n−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2] −30 30 30 UM
F6 f (x) = ∑n

i=1([xi + 0.5])2 −100 100 30 UM
F7 f (x) = ∑n

i=1 ix4
i + random[0, 1] −1.28 1.28 30 UM

F8 f (x) = ∑n
i=1 ix2

i −10 10 30 UM
F9 f (x) = ∑n

i=1 ix4
i −1.28 1.28 30 UM

F10 f (x) = ∑n
i=1 |xi|i+1 −1 1 30 UM

F11 f (x) = ∑n
i=1−xisin(

√
|xi|) −500 500 30 MM

F12 f (x) = ∑n
i=1[x

2
i − 10cos(2πxi) + 10] −5.12 5.12 30 MM

F13 f (x) = −20exp(−0.2
√

1
n ∑n

i=1 x2
i) − exp(1

n ∑n
i=1 cos(2πxi)) +

20 + e
−32 32 30 MM

F14 f (x) = 1
4000 ∑n

i=1 x2
i −Πn

i=1cos(xi√
i
) + 1 −600 600 30 MM

F15 f (x) = π
n {10sin2(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)] +

(yn − 1)2}+ ∑n
i=1 u(xi, 10, 100, 4)

−50 50 30 MM

u(xi, a, k, m) =

k(xi − a)m, xi > a
0, −a 6 xi 6 a
k(−xi − a)m, xi < −a

F16 f (x) = 0.1{sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)] +

(xn − 1)2[1 + sin2(2πxn)]}+ ∑n
i=1 u(xi, 5, 100, 4)

−50 50 30 MM

F17 f (x) = ∑n
i=1(xi − 1)2 + [1+ sin2(3πxi + 1)] + sin2(3πx1) + |xn−

1|[1 + sin2(3πxn)]
−10 10 30 MM

F18 f (x) = ∑n
i=1 |xisin(xi) + 0.1xi| −10 10 30 MM

F19 f (x) = 0.1n− (0.1 ∑n
i=1 cos(5πxi)−∑n

i=1 x2
i −1 1 30 MM

F20 f (x) = ∑n
i=1 x2

i + (∑n
i=1 0.5ixi)

2 + (∑n
i=1 0.5ixi)

4 −5 10 30 MM

F21 f (x) = ∑n
i=1 0.5 +

sin2(
√

100x2
i−1+x2

i −0.5)

1+0.001(x2
i −2xi−1xi+x2

i)
2 −5 10 30 MM

Mathematics 2022, 10, 1894 10 of 23

Table 2. Cont.

ID Formula of Function LW UW dimW Type

F22 f (x) = 0.1sin2(3πx1) + ∑n−1
i=1 (xi − 1)2(1 + sin2(3πxi+1) + (xn −

1)2(1 + sin2(3πxn))

−5 5 30 MM

F23 f (x) = ∑n
i=1(106)(i−1)/(n−1)x2

i −100 100 30 MM
F24 f (x) = (−1)n+1Πn

i=1(cos(xi))exp(∑n
i=1(xi − π)2) −100 100 30 MM

F25 f (x) = 1− cos(2π
√

∑n
i=1 x2

i) + 0.1
√

∑n
i=1 x2

i −100 100 30 MM

F26 f (x) = 0.5 + sin2(
√

∑n
i=1 x2

i)−0.5
(1+0.001(∑n

i=1 x2
i))

2 −100 100 30 MM

F27 f (x) = (1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)6)

−1 −65.536 65.536 2 MM

F28 f (x) = ∑11
i=1[ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2 −5 5 4 MM

F29 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − x2
2 + 4x4

2 −5 5 2 MM
F30 f (x) = (x2 − 5.1

4π2 x2
1 +

5
π x1 − 6)2 + 10(1− 1

8π)cosx1 + 10 −5 5 2 MM

Results and Discussions

The findings of DJSD and other peer algorithms in terms of solving classical global
benchmark functions are given in Tables 3–6. From Table 3, which illustrates the average of
the fitness value, it is clear that DJSD outperforms other peer methods in most of the tested
functions. More specifically, it achieves the smallest fitness value in eighteen functions,
representing 60% of the total tested functions, followed by AEO and FA ranked in the
second and third places, respectively. Conversely, the traditional JSA only provides better
results than MFO, Chimp, and WOA.

Table 3. Average of fitness value obtained by each algorithm.

DJSD JSA AEO MFO FA Chimp WOA

F1 0.00E+00 3.71E-61 0.00E+00 2800.05 3.46E-20 5.3E-102 4.7E-148
F2 0.00E+00 1.7E-25 5.5E-163 39.22343 2.82E-11 2.42E-59 6.3E-106
F3 0.00E+00 14.62956 0.00E+00 18238.91 3.72E-20 4.12E-83 3.33E-10
F4 0.00E+00 1.3E-36 3.5E-162 74.64607 1.4E-10 1.66E-39 2.88E-06
F5 0.02752 0.039121 21.7095 3205702 2.76E-13 1.850126 13.89417
F6 0.016425 1.72E-09 6.46E-07 3620.098 3.56E-20 0.000822 1.12E-06
F7 1.66E-05 0.00021 0.000425 0.143259 2.29E-05 0.000235 0.000737
F8 0.00E+00 6.6E-12 0.00E+00 660.0002 8.21E-22 6.5E-103 2.4E-153
F9 0.00E+00 1.17E-57 0.00E+00 3.435974 3E-47 1.7E-181 5.4E-230
F10 0.00E+00 3.1E-101 9.5E-297 3.11E-09 2.48E-15 9.23E-96 6.4E-141
F11 −1632.06 −953.103 −1295.09 −1358.43 −214.577 −217.608 −217.608
F12 0.00E+00 0.001876 0.00E+00 175.4167 0.00E+00 0.117139 0.00E+00
F13 8.9E-16 3.45E-15 8.9E-16 15.96415 1.23E-10 4.3E-15 2.59E-15
F14 0.00E+00 0.00E+00 0.00E+00 18.24552 0.012442 0.033193 0.007454
F15 0.018289 3.2E-10 4.06E-08 56.90585 1E-21 0.000577 2.61E-05
F16 0.004851 1.12E-10 0.203345 558,082.7 2.3E-21 0.136374 4.53E-05
F17 0.006209 2.57E-07 0.023806 56.18722 3.7E-14 0.74102 0.007575
F18 0.00E+00 0.000611 9.5E-168 6.644079 3.03E-12 0.022677 0.030925
F19 0.00E+00 0.00E+00 0.00E+00 0.765822 0.00E+00 0.00E+00 0.00E+00
F20 0.00E+00 0.134279 4.6E-304 356.8576 3.31E-22 1.2E-106 5.33E-47
F21 −29 −8.14357 −25.2567 −6.91495 −2.9989 −2.90701 −2.99528
F22 0.002068 4E-09 2.31E-06 27.34682 1.6E-22 0.283575 1.54E-05
F23 0.00E+00 13.79083 0.00E+00 57385344 1.35E-16 9.6E-102 3.4E-140
F24 −0.98907 0.00E+00 −0.67793 0.00E+00 0.00E+00 −0.34884 −0.35958
F25 0.00E+00 0.099873 1.2E-159 8.919873 0.05493 0.097249 0.079904
F26 0.00E+00 0.009716 0.00E+00 0.49962 0.009716 0.009716 0.009262
F27 1.039757 0.998 0.998 3.705114 0.998 0.998008 1.785747
F28 0.000324 0.00031 0.000353 0.004177 0.000353 0.00127 0.00084
F29 −1.03158 −1.0316 −1.0316 −1.0316 −1.0316 −1.03162 −1.03163
F30 0.398318 0.39789 0.39789 0.39789 0.39789 0.398106 0.397889

Mathematics 2022, 10, 1894 11 of 23

Moreover, it can be observed from the standard deviation values given in Table 4 that
the developed DJSD method is more stable than other MH techniques, while JSA, AEO,
MFO, FA, Chimp, and WOA achieved the smallest STD values at 5, 14, 2, 8, 3, and 4 out of
30 functions, respectively. By analyzing the performance of the developed DJSD algorithm
in terms of the best fitness value as provided in Table 5, one can see that AEO has the best
fitness value in seventeen functions, followed by DJSD and FA, which provide better results
in sixteen and fifteen functions, respectively. In addition, it can be noticed from the worst
fitness values given in Table 6 that the proposed DJSD still gets better results even in its
worst case. In particular, it provides a smaller fitness values in sixteen functions, followed
by AEO. On the other hand, JSA and FA have nearly the same performance by attaining
the smallest value at only eight and nine functions, respectively.

Table 4. Standard deviation (STD) of fitness value obtained by each algorithm.

DJSD JSA AEO MFO FA Chimp WOA

F1 0.00E+00 1.78E-60 0.00E+00 4582.544 1.73E-20 2.6E-101 2.3E-147
F2 0.00E+00 4.78E-25 2.2E-162 20.95827 1.13E-11 1.21E-58 2.6E-105
F3 0.00E+00 60.96466 0.00E+00 13.08201 1.74E-20 1.18E-82 1.48E-09
F4 0.00E+00 5.42E-36 1.4E-161 7.189487 3.5E-11 4.76E-39 1.42E-05
F5 0.040261 0.114029 0.758328 15.987014 9.9E-13 0.517673 65.63104
F6 0.008016 3.88E-09 2.04E-06 7043.193 2.06E-20 0.00043 1.08E-06
F7 1.3E-05 0.000136 0.00041 0.065556 1.72E-05 0.000178 0.000828
F8 0.00E+00 3.18E-11 0.00E+00 842.1203 4.87E-22 3.2E-102 9.1E-153
F9 0.00E+00 5.87E-57 0.00E+00 10.69595 2.64E-47 0.00E+00 0.00E+00
F10 0.00E+00 1.6E-100 0.00E+00 1E-08 1.61E-15 3.44E-95 2.3E-140
F11 4.67E-13 93.09167 116.4478 115.9915 13.55914 8.7E-14 8.7E-14
F12 0.00E+00 0.004866 0.00E+00 39.89599 0.00E+00 0.5103 0.00E+00
F13 0.00E+00 1.63E-15 0.00E+00 5.58406 3.04E-11 7.11E-16 1.81E-15
F14 0.00E+00 0.00E+00 0.00E+00 36.80455 0.006164 0.037899 0.024534
F15 0.013575 1.43E-09 9.34E-08 266.8043 7.1E-22 0.000302 2.98E-05
F16 0.006616 1.88E-10 0.535908 2.790243 1E-21 0.094932 4.87E-05
F17 0.00547 9.15E-07 0.044597 87.93472 1.92E-14 0.778326 0.021809
F18 0.00E+00 0.001582 0.00E+00 6.635905 7.19E-13 0.113023 0.069025
F19 0.00E+00 0.00E+00 0.00E+00 0.55367 0.00E+00 0.00E+00 0.00E+00
F20 0.00E+00 0.382123 0.00E+00 112.4312 3.03E-22 5E-106 2.28E-46
F21 1E-04 3.641219 3.247221 2.0739 0.001684 0.056524 0.011708
F22 0.002482 7.74E-09 9.78E-06 27.93048 7.2E-23 0.455526 1.92E-05
F23 0.00E+00 66.21312 0 63.143829 7.81E-17 3.6E-101 1.2E-139
F24 0.022494 0.00E+00 0.418408 0.00E+00 0.00E+00 0.474768 0.489318
F25 0.00E+00 2.58E-09 4.8E-159 3.685783 0.050977 0.013124 0.049949
F26 0.00E+00 6.52E-10 0.00E+00 0.000296 2.39E-14 3.19E-08 0.006859
F27 0.077113 0.00E+00 0.00E+00 3.702885 1.76E-16 8.78E-06 1.995907
F28 1.17E-05 6.85E-19 0.000205 0.007225 0.000205 2.55E-05 0.000569
F29 4.08E-05 6.72E-16 2.22E-16 6.8E-16 7.2E-17 6.63E-06 6.78E-10
F30 0.00044 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00016 2.82E-06

Table 5. Best fitness values obtained by each algorithm.

DJSD JSA AEO MFO FA Chimp WOA

F1 0.00E+00 1.73E-75 0.00E+00 0.000125 1.01E-20 1E-134 1.5E-178
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 0.00E+00 9.66E-15 0.00E+00 916.7575 8.72E-21 3.4E-102 7.33E-29
F4 0.00E+00 6.73E-40 1.9E-175 52.53843 6.3E-11 1.63E-53 1.18E-17
F5 0.00031 4.34E-05 20.32461 53.54365 1E-17 1.212414 0.000112
F6 0.004841 3.77E-12 1.36E-09 0.000127 5E-21 0.000101 3.52E-08
F7 7.2E-08 4.67E-05 8.23E-06 0.057151 4.27E-06 1.59E-05 2.22E-05

Mathematics 2022, 10, 1894 12 of 23

Table 5. Cont.

DJSD JSA AEO MFO FA Chimp WOA

F8 0.00E+00 3.2E-49 0.00E+00 0.000147 2.25E-23 3.2E-143 2.7E-177
F9 0.00E+00 5.5E-136 0.00E+00 1.99E-10 6.99E-49 2.8E-252 2.8E-269
F10 0.00E+00 2.4E-124 0.00E+00 1.19E-17 1.53E-16 7.2E-139 1.2E-163
F11 −1632.06 −1171.81 −1431.69 −1632.06 −217.608 −217.608 −217.608
F12 0.00E+00 1.91E-09 0.00E+00 113.496 0.00E+00 0.00E+00 0.00E+00
F13 8.88E-16 8.88E-16 8.88E-16 1.646332 6.1E-11 8.88E-16 8.88E-16
F14 0.00E+00 0.00E+00 0.00E+00 0.000251 0.00E+00 0.00E+00 0.00E+00
F15 3.02E-05 4.82E-14 1.65E-10 0.000115 2.4E-22 7.26E-05 1.99E-07
F16 9.7E-05 1.35E-13 1.03E-07 0.011984 5.6E-22 0.000156 2.92E-06
F17 0.000254 6.98E-11 4.93E-07 6.83E-05 9.8E-15 0.009356 5.02E-05
F18 0.00E+00 4.53E-11 2.5E-180 9.42E-05 1.63E-12 4.01E-69 1.2E-116
F19 0.00E+00 0.00E+00 0.00E+00 0.147785 0.00E+00 0.00E+00 0.00E+00
F20 0.00E+00 3.13E-08 0.00E+00 138.8081 9.86E-23 1.8E-126 1.52E-67
F21 −29 −15.789 −28.9867 −10.7271 −3 −2.9935 −3
F22 1.22E-06 1.08E-11 9.76E-11 5.07E-06 4.6E-23 0.001067 2.75E-07
F23 0.00E+00 3.52E-19 0.00E+00 2487123 9.49E-18 7.6E-143 2.1E-164
F24 −1 0 −0.99999 0.00E+00 0.00E+00 −0.98982 −0.99999
F25 0.00E+00 0.099873 0.00E+00 3.899873 3.42E-12 0.034255 2.55E-78
F26 0.00E+00 0.009716 0.00E+00 0.49865 0.009716 0.009716 0.00E+00
F27 0.998004 0.998 0.998 0.998 0.998 0.998004 0.998004
F28 0.000312 0.00031 0.00031 0.000735 0.00031 0.001229 0.000308
F29 −1.03163 −1.0316 −1.0316 −1.0316 −1.0316 −1.03163 −1.03163
F30 0.397889 0.39789 0.39789 0.39789 0.39789 0.397899 0.397887

Table 6. Worst fitness values obtained by each algorithm.

DJSD JSA AEO MFO FA Chimp WOA

F1 0.00E+00 8.92E-60 0.00E+00 10,000 8.03E-20 1.3E-100 1.1E-146
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 0.00E+00 302.5686 0.00E+00 46251.87 6.74E-20 4.51E-82 7.41E-09
F4 0.00E+00 2.72E-35 6.4E-161 85.78559 2.01E-10 1.82E-38 7.08E-05
F5 0.144537 0.416692 23.76492 79943279 4.4E-12 2.980005 328.8432
F6 0.038934 1.88E-08 9.16E-06 20200.5 8.09E-20 0.001767 4.35E-06
F7 3.9E-05 0.000604 0.001437 0.288575 5.88E-05 0.000597 0.002443
F8 0.00E+00 1.59E-10 0.00E+00 3600 1.64E-21 1.6E-101 4.5E-152
F9 0.00E+00 2.93E-56 0.00E+00 53.68709 1.02E-46 4.3E-180 1.4E-228
F10 0.00E+00 7.9E-100 1.1E-295 4.26E-08 5.52E-15 1.6E-94 1.1E-139
F11 −1632.06 −799.48 −993.194 −1098.47 −156.97 −217.608 −217.608
F12 0.00E+00 0.019379 0.00E+00 265.1552 0.00E+00 2.53774 0.00E+00
F13 8.88E-16 4.44E-15 8.88E-16 19.96319 1.74E-10 4.44E-15 4.44E-15
F14 0.00E+00 0.00E+00 0.00E+00 90.55646 0.024644 0.145274 0.120817
F15 0.046437 7.19E-09 3.68E-07 1337.494 2.73E-21 0.001278 9.44E-05
F16 0.020395 6.96E-10 2.098957 13951247 4.28E-21 0.300018 0.000171
F17 0.019758 4.53E-06 0.110464 315.2073 7.58E-14 2.984835 0.1112
F18 0.00E+00 0.007634 1.8E-166 21.76085 4.3E-12 0.565188 0.231832
F19 0.00E+00 0.00E+00 0.00E+00 2.086707 0.00E+00 0.00E+00 0.00E+00
F20 0.00E+00 1.441498 9.2E-303 553.6802 1.32E-21 2.5E-105 1.14E-45
F21 −28.9996 −1.7987 −18.2892 −3.86103 −2.9944 −2.78942 −2.95236
F22 0.009314 3E-08 4.38E-05 87.63483 3.38E-22 1.020128 7.21E-05
F23 0.00E+00 331.3585 0 2.38E+08 2.91E-16 1.6E-100 5.4E-139
F24 −0.90466 0.00E+00 −8.4E-06 0.00E+00 0.00E+00 −7E-192 0.00E+00
F25 0.00E+00 0.099873 2.1E-158 16.59987 0.099873 0.099874 0.199873
F26 0.00E+00 0.009716 0.00E+00 0.499917 0.009716 0.009716 0.037224

Mathematics 2022, 10, 1894 13 of 23

Table 6. Cont.

DJSD JSA AEO MFO FA Chimp WOA

F27 1.302557 0.998 0.998 14.56305 0.998 0.998044 10.76318
F28 0.000354 0.00031 0.001223 0.020363 0.001223 0.001311 0.002252
F29 −1.03149 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.03163
F30 0.399697 0.39789 0.39789 0.39789 0.39789 0.398416 0.397899

Figures 2 and 3 depict the convergence curves for the average of the fitness value over
the total number of iterations. It can be observed from these convergence curves that the
developed DJSD can converge faster than other MH techniques. For example, F1–F4 and
F21–F26 are examples of unimodal and multimodal functions, respectively.

Figure 2. Convergence curves of each approach for F1–F6.

Mathematics 2022, 10, 1894 14 of 23

Figure 3. Convergence curves of each approach for F21, F23, F24, F25, F26, and F27.

To further analyze the performance of the developed DJSD, a non-parametric test
named the “Friedman test” was applied to identify whether there is a significant difference
between DJSD and other MH techniques. Table 7 shows the value of the mean rank
accomplished by the Friedman test for all compared techniques. It can be reported that
DJSD accomplishes the best mean rank value in terms of the average, STD, and worst
fitness value. However, in terms of the best fitness value, DJSD allocates the second rank
behind the AEO algorithm.

Mathematics 2022, 10, 1894 15 of 23

In summary, the reported results demonstrate the high ability of DJSD to address
global mathematical optimization problems. This can be due to the integration of dynamics
Simulated Annealing and disruption operator with JSA.

Table 7. Friedman Test.

DJSD JSA AEO MFO FA Chimp WOA

Average 2.5167 3.7833 2.6500 6.4167 3.7500 4.8000 4.0833
STD 2.7667 3.6833 2.9833 6.4500 3.4333 4.3833 4.3000
Best 3.1500 4.0000 2.6000 5.9833 3.9333 4.7667 3.5667
Worst 2.6167 3.8000 2.6667 6.2500 3.5333 4.6333 4.5000

4.2. Experimental Series 2: Cloud Task Scheduling Problems

Cloud computing is the provision of computing resources and services over the Inter-
net. These services are delivered to cloud consumers under the Service Level Agreement
(SLA) specifications. The SLAs are made up of various quality of service (QoS) param-
eters promised by the cloud provider. Among them are minimal execution time, high
performance, service availability, energy consumption, and low prices. These parameters
can be considered separately when just one of them is crucial to the system performance
or combined when both parameters are related. Keep in mind that task scheduling is a
decision-making process that deals with allocating computing resources to tasks, and its
primary purpose is to target one or more objectives. Therefore, efficient task scheduling is
one of the critical steps to effectively leverage the power of cloud computing [30].

4.2.1. Problem Formulation

The scheduling model for the considered scheduling issue in cloud computing is
described as follows. Consider a data center consisting of several physical servers or
computational resources. These physical servers may vary in the number of CPU cores
(processing elements), memory size, network bandwidth, and storage capacity [31]. These
resources can be scaled up or down to meet the required QoS and SLAs. Suppose
VM = {VM1, VM2, ..., VMm} are a bunch of virtual machines (VMs) available within a
data center. Every VMj has its processing capability measured by MIPS (millions of instruc-
tions per second). Suppose T = {T1, T2, ..., Tn} is a collection of user requests submitted
by cloud subscribers to be performed on the set of VMs. Every task Ti has a length TLi
expressed in millions of instructions (MI).

In this study, an expected time to compute (ETC) matrix is used to keep the time
expected to perform a certain task (service) on various VMs [31]. The element ETCij

signifies the ETC of the ith task on the jth VM, where 1 ≤ i ≤ n, 1 ≤ j ≤ m.

ETCij =
TLi

VMPj
(25)

where TLi represents the length of the ith task and VMPj signifies the processing power of
the jth VM.

Our objective in this study is to ensure better QoS in terms of makespan and energy
efficiency. Makespan is the amount of time taken for the completion of all tasks [32].
Therefore, appropriate mapping of tasks to VMs requires a minimal makespan. In general,
makespan (MKS) is computed by the following equation.

MKS = max
j∈1,2,...,m

n

∑
i=1

ETCij (26)

Mathematics 2022, 10, 1894 16 of 23

Furthermore, energy consumption is referred to as the amount of energy consumed by
computing machines. Therefore, the energy consumption should be minimal to enhance the
system performance and provide better QoS to the users. Recall that the energy consumed
by VMj is determined by the energy consumed in the active state plus the energy consumed
in the idle state [31]. Additionally, the energy consumption of the idle VM is about 60%
of its active state [33]. Hence, the energy consumed (in terms of Joules) by VMj can be
determined as:

Eng(VMj) = (TEj × β j + (MKS− TEj)× αj)×VMPj (27)

β j = 10−8 ×VMP2
j (28)

αj = 0.6× β j (29)

where TEj represents the total execution time of VMj. β j and αj denote the consumed
energy by VMj in the active and idle state, respectively. The overall energy consumption
(TEng) of the cloud system is computed as given in Equation (30).

TEng =
m

∑
j=1

Eng(VMj) (30)

Since the whole performance of the cloud system is heavily influenced by the makespan
and energy consumption factors, our main objective here is to ensure a better makespan
with less energy consumption. Therefore, the considered problem is classified as a bi-
objective optimization problem. Then, the fitness function is given by:

F = λ× TEng + (1− λ)×MKS (31)

where λ signifies the balance parameter between the fitness function’s factors. Finally, the
goal of our task scheduling is to search the schedule that minimizes F.

4.2.2. Experimental Environment and Datasets

To demonstrate the applicability of the developed DJSD approach, we perform com-
putational experiments using different workload instances. Three different workload traces
are used to validate the proposed algorithm; these are synthetic workload, HPC2N work-
load, and NASA Ames iPCS/860 workload. The synthetic workload contains 1500 tasks
varying in length from 2000 to 56,000 MI created based on a uniform distribution. Table 8
describes the synthetic workload. The real workload traces, on the other hand, consisting of
HPC2N and NASA Ames, are derived from the “Parallel Workload Archives” [34]. HPC2N
encompasses the statistics of 527,371 tasks, while NASA Ames includes the statistics of
42,264 tasks.

Table 8. Attributes of the synthetic workload.

Parameter Value

Number of tasks 300 to 1500
Task length 2000 to 56,000 MI
File size 400 to 600 MB

The cloud environment comprises a single data center and 20 VMs with different
setups hosted on two host machines in all experiments. The configurations of the host
machines and VMs are displayed in Table 9. As evident from Table 9, the fastest and slowest
VMs have a processing capacity of 5000 and 1000 MIPS, respectively.

Mathematics 2022, 10, 1894 17 of 23

Table 9. Experimental parameter settings.

Entity Parameter Value

User No. of users [100, 200]
Datacenter No. of datacenters 1
Host No. of hosts 2

Storage space 1 TB
RAM size 20 GB

Bandwidth 10 Gb/s
VM No. of VMs 20

Processing power [1000, 5000] MIPS
Storage space 10 GB
Memory size 1 GB
Bandwidth 1 Gb/s

No. of CPUs 1

4.2.3. Results and Discussions

In this paper, eight state-of-the-art metaheuristics are chosen as peer algorithms
for comparative analysis, including the standard JSA [15], AEO [26], MFO [35], FA [28],
Chimp [27], WOA [25], golden jackal optimization (GJO) [36], and SA [23]. Each algorithm
is executed with 20 independent runs on each scheduling instance in order to produce more
precise estimates of our findings. Moreover, λ is set to 0.7 as our major goal is reducing
energy consumption.

To scrutinize the performance behavior of the presented DJSD algorithm, the graphs of
the average fitness values for the nine comparative algorithms are plotted in Figures 4–6, for a
different number of tasks and datasets. The x-axis of the given graphs show the number of
tasks, whereas the y-axis represents the fitness function’s value. In particular, as shown in
Figure 4, DJSD achieves better fitness values for the synthetic workload when task sizes
range from 300 to 1500. In a similar manner, the comparative results in Figure 5 show
that on the NASA Ames iPSC/860 dataset, DJSD performs much better than the other
eight peer algorithms in terms of the fitness function. Additionally, Figure 6 illustrates that
when the number of tasks ranges from 1000 to 5000, DJSD performs well on the HPC2N
workload. Overall, the curves affirm the superior performance and ability of the presented
DJSD approach to identify near-optimum solutions on almost all datasets.

Figure 4. Convergence curve for the synthetic workload.

Mathematics 2022, 10, 1894 18 of 23

Figure 5. Convergence curve for NASA iPSC real workload.

Figure 6. Convergence curve for HPC2N real workload.

The comparisons of experimental outcomes in terms of the average makespan pro-
duced by DJSD, JSA, AEO, MFO, FA, Chimp, WOA, GJO, and SA for the synthetic and real
workload traces are given in Figures 7–9. In comparison to the traditional JSA and other
peer algorithms, the suggested DJSD approach generates the best average makespan for
the synthetic workload, as demonstrated in Figure 7. Besides that, when the NASA iPSC
workload is employed, Figure 8 shows that DJSD delivers better average makespan values
than other peer algorithms. In addition, when considering the HPC2N workload, Figure 9
shows that DJSD attains lower average makespan values compared to existing algorithms.
Ultimately, the reported results reveal that DJSD exhibits the best average makespan among
the other eight comparative methods for all investigated instances.

Figures 10–12 demonstrates the comparison of total energy consumption between
DJSD, JSA, AEO, MFO, FA, Chimp, WOA, GJO, and SA algorithms using synthetic and real
datasets, including HPC2N and NASA. Figure 10 illustrates that, for the synthetic dataset,
DJSD consumes the least amount of energy when compared to the comparaive algorithms.
Similarly, Figures 11 and 12 demonstrate that DJSD delivers the least amount of energy
consumption when compared to the available methods for the NASA iPSC and HPC2N
workload, respectively. In brief, the comparison of experimental outcomes indicates that
for all tested instances and datasets, DJSD provides better energy consumption than other
comparative methods.

Mathematics 2022, 10, 1894 19 of 23

Figure 7. Average makespan for the synthetic workload.

Figure 8. Average makespan for NASA iPSC real workload.

Figure 9. Average makespan for HPC2N real workload.

Mathematics 2022, 10, 1894 20 of 23

Figure 10. Total energy consumption for the synthetic workload.

Figure 11. Total energy consumption for NASA iPSC real workload.

Figure 12. Total energy consumption for HPC2N real workload.

Mathematics 2022, 10, 1894 21 of 23

To summarize, the results mentioned above confirm the benefit of integrating the SA
strategy and Dop with the JSA algorithm. Finally, the findings demonstrate that the DJSD al-
gorithm produces better solution diversity and quality, resulting in near-optimal solutions.

5. Conclusions

The artificial Jellyfish Search Algorithm (JSA) is a recent promising search method to
simulate jellyfish in the ocean. It has been applied to solve various optimization problems.
However, it faces some problems in the search process while solving complicated problems,
particularly the local optima problem and the low diversity of candidate solutions. This
paper suggests a novel dynamic search method based on using the artificial jellyfish search
optimizer with two search techniques (Simulated Annealing and disruption operators),
called DJSD. The enhancement of the proposed method occurs in two stages. In the first
stage, the Simulated Annealing operators are incorporated into the artificial jellyfish search
optimizer to enhance the ability to discover more feasible regions in a competitive manner.
This modification is performed dynamically by using a fluctuating parameter representing
a hammer’s characteristics to keep the solution diverse and balance the search processes. In
the second stage, the disruption operator is employed in the exploitation frame to further
improve the diversity of the candidate solutions throughout the optimization process and
avert the local optima problem.

Two experiment series are conducted to validate the performance of the proposed
DJSD method. In the first experiment series, thirty classical benchmark functions are used
to validate the effectiveness of DJSD compared with other well-known search methods.
The findings revealed that the suggested DJSD approach obtained encouraging results,
discovered new search regions, and found new best solutions for most test cases. In the
second experiment series, a set of tests is conducted to solve cloud computing applications’
task scheduling problems to further prove DJSD’s ability to function in real-world applica-
tions. The real-world application results confirmed that the proposed DJSD is competence
in dealing with challenging real applications. Moreover, it obtained high performances
compared to other similar methods using several standard evaluation measures, including
fitness function, makespan, and energy consumption.

The proposed method can be tested further to find potential improvements in future
works. Furthermore, it can be combined with other search methods to further improve its
searchability in dealing with complicated problems. Different optimization problems can
be tested to investigate the performance of the proposed technique, such as text clustering,
photovoltaic cell parameters, engineering and industrial optimization problems, forecasting
models, feature selection, image segmentation, and multi-objective problems.

Author Contributions: Conceptualization, I.A., L.A., S.A., D.E. and M.A.E.; methodology, I.A., L.A.,
S.A., D.E. and M.A.E.; software, I.A., L.A. and M.A.E.; validation, I.A., L.A., S.A., D.E. and M.A.E.;
formal analysis, I.A., L.A. and M.A.E.; investigation, I.A., L.A. and M.A.E.; writing—original draft
preparation, I.A., L.A., S.A., D.E. and M.A.E.; writing—review and editing, I.A., L.A., S.A., D.E.
and M.A.E.; visualization, I.A., L.A. and M.A.E.; supervision, M.A.E.; project administration, I.A.,
L.A., S.A., D.E. and M.A.E.; and funding acquisition, S.A. All authors have read and agreed to the
published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R197), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: The Data Available upon request from corresponding Author.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R197), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 1894 22 of 23

References
1. Alshinwan, M.; Abualigah, L.; Shehab, M.; Abd Elaziz, M.; Khasawneh, A.M.; Alabool, H.; Al Hamad, H. Dragonfly algorithm: A

comprehensive survey of its results, variants, and applications. Multimed. Tools Appl. 2021, 80, 14979–15016. [CrossRef]
2. Xia, W.; Wu, Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput.

Ind. Eng. 2005, 48, 409–425. [CrossRef]
3. He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.

Appl. Artif. Intell. 2007, 20, 89–99. [CrossRef]
4. Karakoyun, M.; Ozkis, A.; Kodaz, H. A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve

the multi-objective optimization problems. Appl. Soft Comput. 2020, 96, 106560. [CrossRef]
5. Gupta, S.; Deep, K. A memory-based grey wolf optimizer for global optimization tasks. Appl. Soft Comput. 2020, 93, 106367.

[CrossRef]
6. Schuëller, G.I.; Jensen, H.A. Computational methods in optimization considering uncertainties–An overview. Comput. Methods

Appl. Mech. Eng. 2008, 198, 2–13. [CrossRef]
7. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
8. Afshari, H.; Hare, W.; Tesfamariam, S. Constrained multi-objective optimization algorithms: Review and comparison with

application in reinforced concrete structures. Appl. Soft Comput. 2019, 83, 105631. [CrossRef]
9. Gupta, S.; Deep, K.; Mirjalili, S. An efficient equilibrium optimizer with mutation strategy for numerical optimization. Appl. Soft

Comput. 2020, 96, 106542. [CrossRef]
10. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
11. Bansal, J.C.; Singh, S. A better exploration strategy in Grey Wolf Optimizer. J. Ambient. Intell. Humaniz. Comput. 2021,

12, 1099–1118. [CrossRef]
12. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
13. Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles mating optimizer: A new bio-inspired algorithm for solving

engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [CrossRef]
14. Abd Elaziz, M.; Attiya, I. An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing.

Artif. Intell. Rev. 2021, 54, 3599–3637. [CrossRef]
15. Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021,

389, 125535. [CrossRef]
16. Gouda, E.A.; Kotb, M.F.; El-Fergany, A.A. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models:

Steady-state performance and analysis. Energy 2021, 221, 119836. [CrossRef]
17. Chou, J.S.; Truong, D.N. Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems.

Chaos Solitons Fractals 2020, 135, 109738. [CrossRef]
18. Manivannan, S.; Selvakumar, S. A Spectrum Defragmentation Algorithm Using Jellyfish Optimization Technique in Elastic

Optical Network (EON). Wirel. Pers. Commun. 2021, 1–19. [CrossRef]
19. Chou, J.S.; Truong, D.N. Multistep energy consumption forecasting by metaheuristic optimization of time-series analysis and

machine learning. Int. J. Energy Res. 2021, 45, 4581–4612. [CrossRef]
20. Dhevanandhini, G.; Yamuna, G. An Efficient Lossless Video Watermarking Extraction Process with Multiple Watermarks Using

Artificial Jellyfish Algorithm. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 3048–3055.
21. Ghafil, H.N.; Jármai, K. Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering

applications. Appl. Soft Comput. 2020, 93, 106392. [CrossRef]
22. Bertsimas, D.; Tsitsiklis, J. Simulated annealing. Stat. Sci. 1993, 8, 10–15. [CrossRef]
23. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
24. Ibrahim, R.A.; Abd Elaziz, M.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution

and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [CrossRef]
25. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
26. Zhao, W.; Wang, L.; Zhang, Z. Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm. Neural

Comput. Appl. 2020, 32, 9383–9425. [CrossRef]
27. Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
28. Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O.,

Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.
29. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem Definitions and Evaluation Criteria for

the CEC 2005 Special Session on Real-Parameter Optimization. KanGAL Rep. 2005, 2005005, 2005.
30. Attiya, I.; Abualigah, L.; Elsadek, D.; Chelloug, S.A.; Abd Elaziz, M. An Intelligent Chimp Optimizer for Scheduling of IoT

Application Tasks in Fog Computing. Mathematics 2022, 10, 1100. [CrossRef]
31. Attiya, I.; Elaziz, M.A.; Abualigah, L.; Nguyen, T.N.; Abd El-Latif, A.A. An Improved Hybrid Swarm Intelligence for Scheduling

IoT Application Tasks in the Cloud. IEEE Trans. Ind. Inform. 2022. [CrossRef]

http://doi.org/10.1007/s11042-020-10255-3
http://dx.doi.org/10.1016/j.cie.2005.01.018
http://dx.doi.org/10.1016/j.engappai.2006.03.003
http://dx.doi.org/10.1016/j.asoc.2020.106560
http://dx.doi.org/10.1016/j.asoc.2020.106367
http://dx.doi.org/10.1016/j.cma.2008.05.004
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.asoc.2019.105631
http://dx.doi.org/10.1016/j.asoc.2020.106542
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1007/s12652-020-02153-1
http://dx.doi.org/10.1016/j.cie.2021.107250
http://dx.doi.org/10.1016/j.engappai.2019.103330
http://dx.doi.org/10.1007/s10462-020-09933-3
http://dx.doi.org/10.1016/j.amc.2020.125535
http://dx.doi.org/10.1016/j.energy.2021.119836
http://dx.doi.org/10.1016/j.chaos.2020.109738
http://dx.doi.org/10.1007/s11277-021-08572-3
http://dx.doi.org/10.1002/er.6125
http://dx.doi.org/10.1016/j.asoc.2020.106392
http://dx.doi.org/10.1214/ss/1177011077
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/j.eswa.2018.04.028
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s00521-019-04452-x
http://dx.doi.org/10.1016/j.eswa.2020.113338
http://dx.doi.org/10.3390/math10071100
http://dx.doi.org/10.1109/TII.2022.3148288

Mathematics 2022, 10, 1894 23 of 23

32. Attiya, I.; Zhang, X.; Yang, X. TCSA: A dynamic job scheduling algorithm for computational grids. In Proceedings of the 2016
First IEEE International Conference on Computer Communication and the Internet (ICCCI), Wuhan, China, 13–15 October 2016;
pp. 408–412.

33. Mishra, S.K.; Puthal, D.; Rodrigues, J.J.P.C.; Sahoo, B.; Dutkiewicz, E. Sustainable Service Allocation Using a Metaheuristic Technique
in a Fog Server for Industrial Applications. IEEE Trans. Ind. Inform. 2018, 14, 4497–4506. [CrossRef]

34. Parallel Workloads Archive. Available online: http://www.cse.huji.ac.il/labs/parallel/workload/logs.html (accessed on 28
April 2021).

35. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.
[CrossRef]

36. Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert
Syst. Appl. 2022, 198, 116924. [CrossRef]

http://dx.doi.org/10.1109/TII.2018.2791619
http://www.cse.huji.ac.il/labs/parallel/workload/logs.html
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.eswa.2022.116924

	Introduction
	Background
	Jellyfish Search Algorithm
	Population Initialization
	Exploration Stage: Ocean Current
	Exploitation Stage
	Time Control Mechanism (TCM)

	Simulated Annealing Algorithm
	Disruption Operator

	Developed Method
	Initial Stage
	Updating Stage
	Terminal Stage

	Experimental Results and Discussion
	Experimental Series 1: Mathematical Optimization Problems
	Experimental Series 2: Cloud Task Scheduling Problems
	Problem Formulation
	Experimental Environment and Datasets
	Results and Discussions

	Conclusions
	References

